Revision History

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Notes</th>
<th>Approver</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>29 July 2017</td>
<td>Initial Release</td>
<td>Jay White</td>
</tr>
<tr>
<td>1.1</td>
<td>31 August 2017</td>
<td>Updated Figure 1
Updated Section 3.3 – Tact Switches</td>
<td>Andrew Chen</td>
</tr>
<tr>
<td>1.2</td>
<td>08 October 2018</td>
<td>Updated Figure 1: Development board
Updated Table 1: M.2 Key-E socket pins (pin20,21,34,54)
Updated Figure 2: SDIO Golden Finger and Pin Header
Updated section 3.3 Tact Switches
Updated section 3.8 LED Indicator
Update section 3.9 Micro USB port (USB3)
Updated model name from DVK-SU60-2230C to DVK-60-2230C
Updated template</td>
<td>Jay White</td>
</tr>
<tr>
<td>1.3</td>
<td>13 Feb 2019</td>
<td>Updated logos and URLs</td>
<td>Sue White</td>
</tr>
</tbody>
</table>
CONTENTS

1. Overview .. 4
 1.1 Introduction .. 4
 1.2 Package Contents ... 4

2. M.2 Development Kit – Main Development Board ... 4
 1.3 Key Features .. 5
 1.4 Understanding the Development Board ... 6

3. Functional Blocks ... 7
 1.5 Pin Definitions .. 7
 1.5.1 M.2 Key-E Socket .. 7
 1.5.2 SDIO-Pin Header ... 9
 1.5.3 PCIe Golden Finger ... 10
 1.6 Power Supply ... 11
 1.7 Tact Switch .. 12
 1.7.1 PCIE_W_DISABLE_N (SW5) .. 12
 1.7.2 PDn (SW6) .. 12
 1.7.3 PMU_EN (SW7) .. 12
 1.8 4-wire UART Serial Interface ... 13
 1.8.1 UART Mapping .. 13
 1.8.2 UART Interface Driven by USB .. 13
 1.8.3 UART Interface Driven by External Source ... 13
 1.9 32.768 KHz Oscillator .. 14
 1.10 PCM ... 14
 1.11 LTE Coexistence .. 15
 1.12 LED Indicator .. 15

4. Additional Documentation ... 16

5. Appendix .. Error! Bookmark not defined.
1 OVERVIEW

The Laird M.2 development kit provides a platform for rapid wireless connectivity prototyping, providing multiple options for the development of Wi-Fi applications.

This manual is for Rev. 01 of the development PCB and relates to DVK-60-2230C-B0 on the PCB itself. The complete functionality of the development kit hardware requires the use of Laird 50- and 60-series firmware version v xx.xx.xx or greater.

Part number: DVK-60-2230C

Applicable to the following Wi-Fi module part numbers:

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>60-2230C</td>
<td>Dual-Band 802.11ac Wi-Fi + Bluetooth v4.2 combo module</td>
</tr>
<tr>
<td>M2SD50NBT</td>
<td>Dual-Band 802.11ac Wi-Fi + Bluetooth v4.0 combo module</td>
</tr>
<tr>
<td>M2US50NBT</td>
<td>Dual-Band 802.11ac Wi-Fi + Bluetooth v4.0 combo module</td>
</tr>
</tbody>
</table>

1.1 Introduction

The Laird M.2 development kit is designed to support the rapid development of applications and software for the 50- and 60-series of Wi-Fi modules featuring Laird’s innovative event driven programming language – xxxxxx. More information regarding this product series including a detailed module user guide are available from the 60 Series product page of the Laird website.

1.2 Package Contents

Each kit contains the following:

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development board</td>
<td>The development board has the required 60-2230C module installed onto it and exposes all the various hardware interfaces available.</td>
</tr>
</tbody>
</table>
| Power options | ▪ USB cable – Type A to micro B. The cable also provides serial communications via the FTDI USB – RS232 converter chip on the development board
 ▪ DC barrel plug with clips for connection to external power supply |
| IDC cable x? | Supplied to allow simple connection to the ? x ? way pin headers into J20, J21, and J23. The IDC cables are 2.54 mm pitch. |
| SDIO extension cable | Supplied to allow a simple connection to the SDIO socket |
| Web link card | Provides links to additional information including the 50- and 60-series user guide, schematics, quick start guides, and firmware release notes. |

2 M.2 DEVELOPMENT KIT – MAIN DEVELOPMENT BOARD

This section describes the M.2 development board hardware. The M.2 development board is delivered with the 50- and 60-series modules but no onboard firmware applications.

The M.2 development board is a universal development tool to highlight the capabilities of the 50- and 60-series modules. The development kit is supplied in a default configuration which should be suitable for multiple experimentation options. It also offers a number of pin headers that help to create different configurations for 50- and 60-series modules. This allows you to test different operating scenarios.

The development board allows the 50- and 60-series modules to physically connect to a SDIO host via the supplied SDIO extension cable for development purposes. The development board also provides USB-to-Virtual
COM port conversion through a FTDI chip – part number FT232R. Any Windows PC (XP or later) and Linux PC (Ubuntu xx.xx or Fedora xx.xx) should auto-install the necessary drivers; if your PC cannot locate the drivers, you can download them from http://www.ftdichip.com/Drivers/VCP.htm

2.1 Key Features

The M.2 development board has the following features:

- 50- or 60-series module installed on-board
- Power supply options for powering development board from:
 - USB
 - External DC supply
 - SDIO interface
- Regulated 3.3 V for powering the 50- or 60-series modules. Optional regulated 1.8 V for powering the VCCIO for FTDI chip
- USB-to-UART bridge (FTDI chip)
- USB interface for Wifi or BT
- M.2 UART can be interfaced to:
 - USB (PC) using the USB-UART bridge
 - External UART source (using IO break-out connector when development board powered from DC jack or SDIO interface)
- Current measuring options:
 - Pin header (Ammeter)
- IO break-out (2.54 mm pitch headers) connectors interface for plugging-in external modules and accessing all interfaces of the 50- or 60-series modules [UART, LTE coexistence, PCM, GPIO].
- Three buttons and LEDs for user interaction.
- External 32 KHz oscillator for the sleep clock.
2.2 Understanding the Development Board

Figure 1: Development board
3 FUNCTIONAL BLOCKS

This section covers the major functional blocks that form the development board.

3.1 Pin Definitions

3.1.1 M.2 Key-E Socket

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Name</th>
<th>Type</th>
<th>Voltage Ref.</th>
<th>Description</th>
<th>If Not Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td>-</td>
<td>-</td>
<td>Ground</td>
<td>GND</td>
</tr>
<tr>
<td>2</td>
<td>3.3V</td>
<td>Power</td>
<td>-</td>
<td>3.3V module power supply</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>USB_D+</td>
<td>I/O</td>
<td>3.3V</td>
<td>USB Differential Data-Positive</td>
<td>N/C</td>
</tr>
<tr>
<td>4</td>
<td>3.3V</td>
<td>Power</td>
<td>-</td>
<td>3.3V module power supply</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>USB_D-</td>
<td>I/O</td>
<td>3.3V</td>
<td>USB Differential Data-Negative</td>
<td>N/C</td>
</tr>
<tr>
<td>6</td>
<td>LED1#</td>
<td>O, PU</td>
<td>3.3V</td>
<td>LED indicator for WLAN with 10mA drive capability</td>
<td>N/C</td>
</tr>
<tr>
<td>7</td>
<td>GND</td>
<td>-</td>
<td>-</td>
<td>Ground</td>
<td>GND</td>
</tr>
<tr>
<td>8</td>
<td>PCM_CLK</td>
<td>I/O</td>
<td>1.8V</td>
<td>PCM Clock Signal (Optimal)</td>
<td>N/C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Optimal clock used for some codecs. Output if Master mode; Input if Slave mode.</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>SDIO CLK</td>
<td>I, PU</td>
<td>1.8V</td>
<td>SDIO 4-bit Mode Clock Input</td>
<td>N/C</td>
</tr>
<tr>
<td>10</td>
<td>PCM_SYNC</td>
<td>I/O</td>
<td>1.8V</td>
<td>PCM Sync Pulse Signal Output if Master mode; Input if Slave mode.</td>
<td>N/C</td>
</tr>
<tr>
<td>11</td>
<td>SDIO CMD</td>
<td>I/O</td>
<td>1.8V</td>
<td>SDIO 4-bit Mode Command/Response</td>
<td>N/C</td>
</tr>
<tr>
<td>12</td>
<td>PCM_IN</td>
<td>I</td>
<td>1.8V</td>
<td>PCM Data</td>
<td>N/C</td>
</tr>
<tr>
<td>13</td>
<td>SDIO DATA0</td>
<td>I/O, PU</td>
<td>1.8V</td>
<td>SDIO 4-bit Mode DATA line Bit[0]</td>
<td>N/C</td>
</tr>
<tr>
<td>14</td>
<td>PCM_OUT</td>
<td>O</td>
<td>1.8V</td>
<td>PCM Data</td>
<td>N/C</td>
</tr>
<tr>
<td>15</td>
<td>SDIO DATA1</td>
<td>I/O, PU</td>
<td>1.8V</td>
<td>SDIO 4-bit Mode DATA line Bit[1]</td>
<td>N/C</td>
</tr>
<tr>
<td>16</td>
<td>LED2#</td>
<td>O, PU</td>
<td>3.3V</td>
<td>LED indicator for BT with 10mA drive capability.</td>
<td>N/C</td>
</tr>
<tr>
<td>17</td>
<td>SDIO DATA2</td>
<td>I/O, PU</td>
<td>1.8V</td>
<td>SDIO 4-bit Mode DATA line Bit[2]</td>
<td>N/C</td>
</tr>
<tr>
<td>18</td>
<td>GND</td>
<td>-</td>
<td>-</td>
<td>Ground</td>
<td>GND</td>
</tr>
<tr>
<td>19</td>
<td>SDIO DATA3</td>
<td>I/O, PU</td>
<td>1.8V</td>
<td>SDIO 4-bit Mode DATA line Bit[3]</td>
<td>N/C</td>
</tr>
<tr>
<td>20</td>
<td>WOBT</td>
<td>O, PU</td>
<td>3.3V</td>
<td>Wake up on BT</td>
<td>N/C</td>
</tr>
<tr>
<td>21</td>
<td>WOW</td>
<td>O, PU</td>
<td>1.8V</td>
<td>Wake up on Wireless Lan</td>
<td>N/C</td>
</tr>
<tr>
<td>22</td>
<td>UART TXD</td>
<td>O</td>
<td>1.8V</td>
<td>UART Serial Data Output</td>
<td>N/C</td>
</tr>
<tr>
<td>23</td>
<td>SDIO RESET#</td>
<td>N/C</td>
<td>N/C</td>
<td>N/C</td>
<td>N/C</td>
</tr>
<tr>
<td>32</td>
<td>UART RXD</td>
<td>I</td>
<td>1.8V</td>
<td>UART Serial Data Input</td>
<td>N/C</td>
</tr>
<tr>
<td>33</td>
<td>GND</td>
<td>-</td>
<td>-</td>
<td>Ground</td>
<td>GND</td>
</tr>
<tr>
<td>34</td>
<td>UART RTS</td>
<td>O, PU</td>
<td>1.8V</td>
<td>UART Request-to-Send (Active low)</td>
<td>N/C</td>
</tr>
<tr>
<td>35</td>
<td>PERp0</td>
<td>I</td>
<td>1.8V</td>
<td>PCIe Receive Data-Positive</td>
<td>N/C</td>
</tr>
<tr>
<td>36</td>
<td>UART CTS</td>
<td>I</td>
<td>1.8V</td>
<td>UART Clear-to-Send (Active low)</td>
<td>N/C</td>
</tr>
<tr>
<td>37</td>
<td>PERn0</td>
<td>I</td>
<td>1.8V</td>
<td>PCIe Receive Data-Negative</td>
<td>N/C</td>
</tr>
<tr>
<td>38</td>
<td>VENDOR DEFINED38</td>
<td>N/C</td>
<td>N/C</td>
<td>N/C</td>
<td>N/C</td>
</tr>
<tr>
<td>Pin #</td>
<td>Name</td>
<td>Type</td>
<td>Voltage Ref.</td>
<td>Description</td>
<td>If Not Used</td>
</tr>
<tr>
<td>-------</td>
<td>-------------------</td>
<td>------</td>
<td>--------------</td>
<td>--</td>
<td>-------------</td>
</tr>
<tr>
<td>39</td>
<td>GND</td>
<td>-</td>
<td>-</td>
<td>Ground</td>
<td>GND</td>
</tr>
<tr>
<td>40</td>
<td>VENDOR DEFINED</td>
<td>N/C</td>
<td>N/C</td>
<td>N/C</td>
<td>N/C</td>
</tr>
<tr>
<td>41</td>
<td>PETp0</td>
<td>O</td>
<td>1.8V</td>
<td>PCIe Transmit Data-Positive</td>
<td>N/C</td>
</tr>
<tr>
<td>42</td>
<td>VENDOR DEFINED</td>
<td>N/C</td>
<td>N/C</td>
<td>N/C</td>
<td>N/C</td>
</tr>
<tr>
<td>43</td>
<td>PETn0</td>
<td>O</td>
<td>1.8V</td>
<td>PCIe Transmit Data-Negative</td>
<td>N/C</td>
</tr>
<tr>
<td>44</td>
<td>COEX3</td>
<td>I/O</td>
<td>1.8V</td>
<td>General purpose I/O pin.</td>
<td>N/C</td>
</tr>
<tr>
<td>45</td>
<td>GND</td>
<td>-</td>
<td>-</td>
<td>Ground</td>
<td>GND</td>
</tr>
<tr>
<td>46</td>
<td>COEX2</td>
<td>O, PD</td>
<td>1.8V</td>
<td>Serial data to external LTE device/</td>
<td>N/C</td>
</tr>
<tr>
<td>47</td>
<td>REFCLKp0</td>
<td>I</td>
<td>1.8V</td>
<td>PCIe Differential Clock Input-Positive</td>
<td>N/C</td>
</tr>
<tr>
<td>48</td>
<td>COEX1</td>
<td>I, PD</td>
<td>1.8V</td>
<td>Serial data from external LTE device/</td>
<td>N/C</td>
</tr>
<tr>
<td>49</td>
<td>REFCLKn0</td>
<td>I</td>
<td>1.8V</td>
<td>PCIe Differential Clock Input-Negative</td>
<td>N/C</td>
</tr>
<tr>
<td>50</td>
<td>SUSCLK(32KHz)</td>
<td>I, PU</td>
<td>3.3V</td>
<td>Sleep Clock Input</td>
<td>-</td>
</tr>
<tr>
<td>51</td>
<td>GND</td>
<td>-</td>
<td>-</td>
<td>Ground</td>
<td>GND</td>
</tr>
<tr>
<td>52</td>
<td>PERST0#</td>
<td>I, PD</td>
<td>3.3V</td>
<td>PCIe host indication to reset the device (input) (active low)</td>
<td>N/C</td>
</tr>
<tr>
<td>53</td>
<td>CLKREQ0#</td>
<td>I/O</td>
<td>3.3V</td>
<td>PCIe clock request (input/output) (active low)</td>
<td>GND</td>
</tr>
<tr>
<td>54</td>
<td>W_DISABLE2#</td>
<td>N/C</td>
<td>N/C</td>
<td>N/C</td>
<td>N/C</td>
</tr>
<tr>
<td>55</td>
<td>PEWAKE0#</td>
<td>I/O</td>
<td>3.3V</td>
<td>PCIe wake signal (input/output) (active low)</td>
<td>N/C</td>
</tr>
<tr>
<td>56</td>
<td>W_DISABLE1# (0/3.3V)</td>
<td>I, PU</td>
<td>3.3V</td>
<td>PCIe host indication to disable the WLAN function of the device (input) (active low)</td>
<td>N/C</td>
</tr>
<tr>
<td>57</td>
<td>GND</td>
<td>-</td>
<td>-</td>
<td>Ground</td>
<td>GND</td>
</tr>
<tr>
<td>58</td>
<td>I2C DATA (I/O)</td>
<td>N/C</td>
<td>N/C</td>
<td>N/C</td>
<td>N/C</td>
</tr>
<tr>
<td>59</td>
<td>RESERVED/PETp1</td>
<td>N/C</td>
<td>N/C</td>
<td>N/C</td>
<td>N/C</td>
</tr>
<tr>
<td>60</td>
<td>I2C CLK (O)</td>
<td>N/C</td>
<td>N/C</td>
<td>N/C</td>
<td>N/C</td>
</tr>
<tr>
<td>61</td>
<td>RESERVED/PETn1</td>
<td>N/C</td>
<td>N/C</td>
<td>N/C</td>
<td>N/C</td>
</tr>
<tr>
<td>62</td>
<td>ALERT# (I)</td>
<td>N/C</td>
<td>N/C</td>
<td>N/C</td>
<td>N/C</td>
</tr>
<tr>
<td>63</td>
<td>GND</td>
<td>-</td>
<td>-</td>
<td>Ground</td>
<td>GND</td>
</tr>
<tr>
<td>64</td>
<td>RESERVED</td>
<td>N/C</td>
<td>N/C</td>
<td>N/C</td>
<td>N/C</td>
</tr>
<tr>
<td>65</td>
<td>RESERVED/PERp1</td>
<td>N/C</td>
<td>N/C</td>
<td>N/C</td>
<td>N/C</td>
</tr>
<tr>
<td>66</td>
<td>UIM_SWP/PERST1#</td>
<td>N/C</td>
<td>N/C</td>
<td>N/C</td>
<td>N/C</td>
</tr>
<tr>
<td>67</td>
<td>RESERVED/PERn1</td>
<td>N/C</td>
<td>N/C</td>
<td>N/C</td>
<td>N/C</td>
</tr>
<tr>
<td>68</td>
<td>UIM_POWER_SNK/CLKREQ1#</td>
<td>N/C</td>
<td>N/C</td>
<td>N/C</td>
<td>N/C</td>
</tr>
<tr>
<td>69</td>
<td>GND</td>
<td>-</td>
<td>-</td>
<td>Ground</td>
<td>GND</td>
</tr>
<tr>
<td>70</td>
<td>UIM_POWER_SRC/GPIO1/PEWAKE1#</td>
<td>N/C</td>
<td>N/C</td>
<td>N/C</td>
<td>N/C</td>
</tr>
<tr>
<td>71</td>
<td>RESERVED/REFCLKp1</td>
<td>N/C</td>
<td>N/C</td>
<td>N/C</td>
<td>N/C</td>
</tr>
<tr>
<td>72</td>
<td>3.3V</td>
<td>Power</td>
<td>-</td>
<td>3.3V module power supply</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 2: SDIO pin header

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Name</th>
<th>Type</th>
<th>Voltage Ref.</th>
<th>Description</th>
<th>If Not Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td>-</td>
<td>-</td>
<td>Ground</td>
<td>GND</td>
</tr>
<tr>
<td>2</td>
<td>SDIO DATA2</td>
<td>I/O, PU</td>
<td>1.8V</td>
<td>SDIO 4-bit Mode DATA line Bit[2]</td>
<td>N/C</td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
<td>-</td>
<td>-</td>
<td>Ground</td>
<td>GND</td>
</tr>
<tr>
<td>4</td>
<td>SDIO DATA3</td>
<td>I/O, PU</td>
<td>1.8V</td>
<td>SDIO 4-bit Mode DATA line Bit[3]</td>
<td>N/C</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>-</td>
<td>-</td>
<td>Ground</td>
<td>GND</td>
</tr>
<tr>
<td>6</td>
<td>SDIO CMD</td>
<td>I/O</td>
<td>1.8V</td>
<td>SDIO 4-bit Mode Command/Response</td>
<td>N/C</td>
</tr>
<tr>
<td>7</td>
<td>GND</td>
<td>-</td>
<td>-</td>
<td>Ground</td>
<td>GND</td>
</tr>
<tr>
<td>8</td>
<td>GND</td>
<td>-</td>
<td>-</td>
<td>Ground</td>
<td>GND</td>
</tr>
<tr>
<td>9</td>
<td>SDIO_3V3</td>
<td>Power</td>
<td>-</td>
<td>3.3V module power supply</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>SDIO_3V3</td>
<td>Power</td>
<td>-</td>
<td>3.3V module power supply</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>GND</td>
<td>-</td>
<td>-</td>
<td>Ground</td>
<td>GND</td>
</tr>
<tr>
<td>12</td>
<td>SDIO CLK</td>
<td>I, PU</td>
<td>1.8V</td>
<td>SDIO 4-bit Mode Clock Input</td>
<td>N/C</td>
</tr>
<tr>
<td>13</td>
<td>GND</td>
<td>-</td>
<td>-</td>
<td>Ground</td>
<td>GND</td>
</tr>
<tr>
<td>14</td>
<td>GND</td>
<td>-</td>
<td>-</td>
<td>Ground</td>
<td>GND</td>
</tr>
<tr>
<td>15</td>
<td>GND</td>
<td>-</td>
<td>-</td>
<td>Ground</td>
<td>GND</td>
</tr>
<tr>
<td>16</td>
<td>SDIO DATA0</td>
<td>I/O, PU</td>
<td>1.8V</td>
<td>SDIO 4-bit Mode DATA line Bit[0]</td>
<td>N/C</td>
</tr>
<tr>
<td>17</td>
<td>GND</td>
<td>-</td>
<td>-</td>
<td>Ground</td>
<td>GND</td>
</tr>
<tr>
<td>18</td>
<td>SDIO DATA1</td>
<td>I/O, PU</td>
<td>1.8V</td>
<td>SDIO 4-bit Mode DATA line Bit[1]</td>
<td>N/C</td>
</tr>
</tbody>
</table>
3.1.3 PCIe Golden Finger

Table 3: PCIe golden finger pins

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Name</th>
<th>Type</th>
<th>Voltage Ref.</th>
<th>Description</th>
<th>If Not Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PEWAKE0#</td>
<td>I/O</td>
<td>3.3V</td>
<td>PCIe wake signal (input/output) (active low)</td>
<td>N/C</td>
</tr>
<tr>
<td>2</td>
<td>PCIE_3V3</td>
<td>Power</td>
<td>-</td>
<td>3.3V module power supply</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>-</td>
<td>-</td>
<td>Ground</td>
<td>GND</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>CLKREQ0#</td>
<td>I/O</td>
<td>3.3V</td>
<td>PCIe clock request (input/output) (active low)</td>
<td>GND</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>GND</td>
<td>-</td>
<td>-</td>
<td>Ground</td>
<td>GND</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>REFCLKn0</td>
<td>I</td>
<td>1.8V</td>
<td>PCIe Differential Clock input-Negative</td>
<td>N/C</td>
</tr>
<tr>
<td>12</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>REFCLKp0</td>
<td>I</td>
<td>1.8V</td>
<td>PCIe Differential Clock input-Positive</td>
<td>N/C</td>
</tr>
<tr>
<td>14</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>GND</td>
<td>-</td>
<td>-</td>
<td>Ground</td>
<td>GND</td>
</tr>
<tr>
<td>16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>17</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>18</td>
<td>GND</td>
<td>-</td>
<td>-</td>
<td>Ground</td>
<td>GND</td>
</tr>
<tr>
<td>19</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>20</td>
<td>W_DISABLE1#</td>
<td>I, PU</td>
<td>3.3V</td>
<td>PCIe host indication to disable the WLAN function of the device (input)</td>
<td>N/C</td>
</tr>
<tr>
<td>21</td>
<td>GND</td>
<td>-</td>
<td>-</td>
<td>Ground</td>
<td>GND</td>
</tr>
<tr>
<td>22</td>
<td>PERST0#</td>
<td>I, PD</td>
<td>3.3V</td>
<td>PCIe host indication to reset the device (input)</td>
<td>N/C</td>
</tr>
<tr>
<td>23</td>
<td>PETn0</td>
<td>O</td>
<td>1.8V</td>
<td>PCIe Transmit Data-Negative</td>
<td>N/C</td>
</tr>
<tr>
<td>24</td>
<td>PCIE_3V3</td>
<td>Power</td>
<td>-</td>
<td>3.3V module power supply</td>
<td>-</td>
</tr>
<tr>
<td>25</td>
<td>PETp0</td>
<td>O</td>
<td>1.8V</td>
<td>PCIe Transmit Data-Positive</td>
<td>N/C</td>
</tr>
<tr>
<td>26</td>
<td>GND</td>
<td>-</td>
<td>-</td>
<td>Ground</td>
<td>GND</td>
</tr>
<tr>
<td>27</td>
<td>GND</td>
<td>-</td>
<td>-</td>
<td>Ground</td>
<td>GND</td>
</tr>
<tr>
<td>28</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>29</td>
<td>GND</td>
<td>-</td>
<td>-</td>
<td>Ground</td>
<td>GND</td>
</tr>
<tr>
<td>30</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>31</td>
<td>PERn0</td>
<td>I</td>
<td>1.8V</td>
<td>PCIe Receive Data-Negative</td>
<td>N/C</td>
</tr>
<tr>
<td>32</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>33</td>
<td>PERp0</td>
<td>I</td>
<td>1.8V</td>
<td>PCIe Receive Data-Positive</td>
<td>N/C</td>
</tr>
<tr>
<td>34</td>
<td>GND</td>
<td>-</td>
<td>-</td>
<td>Ground</td>
<td>GND</td>
</tr>
<tr>
<td>35</td>
<td>GND</td>
<td>-</td>
<td>-</td>
<td>Ground</td>
<td>GND</td>
</tr>
<tr>
<td>36</td>
<td>USB_D-</td>
<td>I/O</td>
<td>3.3V</td>
<td>USB Differential Data-Negative</td>
<td>N/C</td>
</tr>
</tbody>
</table>
The development board can be powered from a DC 12-volt supply (into DC jack connector CON5), USB (type micro-B connector, USB2/USB3) or the host interface (PCIe or SDIO interface). The power source fed into DC jack is regulated down to 5 volts with an on-board regulator and wire to SW2.

The 5 volts from the USB or the DC jack is regulated down to 3.3 volts with an on-board regulator on the development board. Switch SW2 selects between the regulated 5 volt and USB. The voltage from host interface (PCIe or SDIO interface) is not regulated but is fed directly to M.2 module supply pin.

Default position of SW2 is to select regulated 5 volts.

The development board has a 1.8-volt regulator for the VCCIO of FTDI-Chip.
On the development board, the power domain:

- M2_3V3 supplies the M.2 module only.
- The header connectors (J3, J4, J5) can be used to measure the current of power domain M2_3V3.
- REG_1V8 supplies the FTDI chip IO only.

3.3 Tact Switches

The development board has reserved three tact switches to access the PDn, W_Disable1#, WOW and WOBT. To view the location, refer to Figure 1.

3.3.1 PDn (SW6)

Full Power-Down (Input) (Active Low)

0 – Full power-down mode

1 – Normal mode

- PDn can accept an input of 1.8 volts
- PDn may be driven by the host
- PDn must be high for normal operation

An internal pull-up resistor on this pin.

3.3.2 W_Disable1# (SW7)

PCIe host indication to disable the WLAN function of the device (Input) (Active Low)

0 – Disable the WLAN

1 – Normal mode

- W_Disable1# can accept an input of 3.3 volts.
- W_Disable1# may be driven by the host
- W_Disable1# must be high for normal operation

An internal pull-up resistor on this pin.

3.3.3 WOW (SW8)

Easily measured the “Wake on Wireless Lan” signal which generate by M.2 module.
3.3.4 WOBT (SW9)

Easily measured the “Wake on BT” signal which generate by M.2 module.

Note: W_DISABLE1# and PDn were also wired out to J23 for testing. To view its location, refer to Figure 1.

3.4 4-wire UART Serial Interface

The development board provides access to the M.2 module 4-wire UART interface (TX, RX, CTS, RTS) either through USB (via U7 FTDI USB-UART convertor chip) or through a breakout header connector J15, J16, J17 and J18. Refer to Figure 5.

Note: M.2 module provides 4-wire UART interface on the HW.

\[V_{hi} \text{ is from 1.26V to 2.2V; } \ V_{li} \text{ is from -0.4V to 0.54V.} \]

3.4.1 UART Mapping

UART connection on the 50 and 60 series modules and FTDI IC are shown in table below. Refer to Figure 5 to see how the 50 and 60 series module UART is mapped to the breakout header connector (J15, J16, J17 and J18).

<table>
<thead>
<tr>
<th>M.2 Default Function</th>
<th>FTDI IC UART</th>
</tr>
</thead>
<tbody>
<tr>
<td>BT_UART_RXD (output)</td>
<td>RXD</td>
</tr>
<tr>
<td>BT_UART_TXD (input)</td>
<td>TXD</td>
</tr>
<tr>
<td>BT_UART_CTS (output)</td>
<td>CTS</td>
</tr>
<tr>
<td>BT_UART_RTS (input)</td>
<td>RTS</td>
</tr>
</tbody>
</table>

3.4.2 UART Interface Driven by USB

- **USB Connector** – The development kit provides a USB Type micro-B connector (USB2) which allows connection to any USB host device. The connector optionally supplies power to the development kit and the USB signals are connected to a USB to serial convertor device (FT232R).

- **USB–UART** – The development kit is fitted with a (U7) FTDI FT232R USB to UART convertor which provides USB-to-Virtual COM port on any Windows PC (XP or later). Upon connection, Windows auto-installs the required drivers. For more details and driver downloads, visit http://www.ftdichip.com/Products/FT232R.htm.

- **UART interface driven by USB FTDI chip** – In normal operation, the M.2 UART interface is driven by the FTDI FT232R USB to UART convertor.

3.4.3 UART Interface Driven by External Source

- **UART interface driven by external UART source** – The M.2 module UART interface (TX, RX, CTS, RTS) is presented at a 2.54 mm (0.1 in.) pitch headers (J15, J16, J17 and J18). To allow the M.2 UART interface to be driven from the breakout header connector (J15, J16, J17 and J18):
 - Development board must be powered from DC jack (CON5) and switch SW1 is in position DC JACK 5V.
3.5 32.768 KHz Oscillator

The development kit is fitted with a (U1) 32.768 KHz oscillator which provides sleep clock to M.2 module.

Fit a jumper on J1 to disable the sleep clock, if needed.

3.6 PCM

The development kit provides the PCM signal on J20.

The pin descriptions of J20 for PCM signal are shown in below table.

<table>
<thead>
<tr>
<th>J20</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin 1</td>
<td>GND</td>
</tr>
<tr>
<td>Pin 2</td>
<td>PCM_IN</td>
</tr>
<tr>
<td>Pin 3</td>
<td>PCM_OUT</td>
</tr>
</tbody>
</table>
3.7 LTE Coexistence

The development kit provides the LTE coexistence signal on J21.

The pin descriptions of J21 for LTE coexistence signal are shown in below table.

<table>
<thead>
<tr>
<th>J21</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin 1</td>
<td>COEX1</td>
</tr>
<tr>
<td>Pin 2</td>
<td>COEX2</td>
</tr>
<tr>
<td>Pin 3</td>
<td>COEX3</td>
</tr>
<tr>
<td>Pin 4</td>
<td>GND</td>
</tr>
</tbody>
</table>

Note: V_{IH} is from 1.26V to 2.2V; V_{IL} is from -0.4V to 0.54V.

3.8 LED Indicator

![LED Indicator Diagram](image)

Figure 7: LED indicator

<table>
<thead>
<tr>
<th>LEDs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED1</td>
<td>(Active Low)</td>
</tr>
<tr>
<td>LED2</td>
<td>(Active Low)</td>
</tr>
<tr>
<td>LED3</td>
<td>3.3V module power</td>
</tr>
</tbody>
</table>

Table 7: LED descriptions
3.9 Micro USB Port (USB3)

The development board provides access to the M.2 module USB2.0 interface (USB_D+ and USB_D-) either through micro USB connector (USB3) or through PCIe golden finger. To view the location, refer to Figure 1.

4 ADDITIONAL DOCUMENTATION

Laird offers a variety of documentation and ancillary information to support our customers through the initial evaluation process and ultimately into mass production. Additional documentation includes:

- DVK-60-2230C - Schematics
- 50 and 60 series M.2 Module – User Manual – Hardware Datasheet and Integration Guide

For any additional questions or queries, or to receive local technical support for this Development Kit or for the 50 and 60 series modules, please contact wirelessinfo@lairdtech.com