Laird

CONNECTIVITY

User Guide

BL654 smartBASIC Extensions

Release 29.3.3.0

This guide pertains to BL654-specific smartBASIC functions and routines. For
information on functions and routines that apply to all smartBASIC modules, see

the smartBASIC Core Manual.

http://b7c114b8ac32968eb0a5-0034a95ea8a03cf459b9e4f7b28746f2.r86.cf3.rackcdn.com/home/brandworld/files/User%20Guide%20-%20smartBASIC%20Core%20Functionality.pdf

BL654 smartBASIC Extensions

L ir NNECTIVITY
User Guide \id) €0 <

REVISION HISTORY

29.0.0.0 01 Feb 2018 Initial Release Youssif Saeed Jonathan Kaye
29.0.0.5 12 Apr 2018 Updated with few additions Youssif Saeed Jonathan Kaye
29.1.1.0 01 Jun 2018 First Production Release Youssif Saeed Jonathan Kaye
29.2.2.0 20 Aug 2018 Second Production Release Youssif Saeed Jonathan Kaye
29.3.3.0 28 Dec 2018 Third Production Release Youssif Saeed

© Copyright 2019 Laird. All Rights Reserved. Any information furnished by Laird and its agents is believed to be accurate and reliable. All
specifications are subject to change without notice. Responsibility for the use and application of Laird materials or products rests with the end
user since Laird and its agents cannot be aware of all potential uses. Laird makes no warranties as to non-infringement nor as to the fitness,
merchantability, or sustainability of any Laird materials or products for any specific or general uses. Laird, Laird Technologies, Inc., or any of
its affiliates or agents shall not be liable for incidental or consequential damages of any kind. All Laird products are sold pursuant to the Laird
Terms and Conditions of Sale in effect from time to time, a copy of which will be furnished upon request. When used as a tradename herein,
Laird means Laird PLC or one or more subsidiaries of Laird PLC (Laird Technologies, Inc; Laird Technologies; Laird — Lenexa; Laird — Akron;
Laird — Taiwan; Laird — Wooburn; Laird — Taiwan (or Zhubei City); Summit Data Communications, Inc.; Ezurio, Ltd.; Aerocomm, Inc.). Laird™,
Laird Technologies™, corresponding logos, and other marks are trademarks or registered trademarks of Laird. Other marks may be the
property of third parties. Nothing herein provides a license under any Laird or any third party intellectual property right.

https://connectivity.lairdtech.com 2 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

CONTENTS
1 a0 o [8 o3 T o PSP PRTP PP 12
1.1 What Does @ BLE MOAUIE CONTAINTuiiiiiiiii ettt st e b nare e e e nanes 12
2 [V ol (] = @delq1ile U] = 11 o] o LN PSSP PPPRP 13
3 INLEraCtive MOOE COMIMANGSuei ittt ettt ettt b ettt e e bt ettt e bt e be e e sttt et e e ea bt e e bt e ea bt e eabe e et e e e nbeenabeeanneenane s 13
311 AT 108 ATTOF ATIX ettt etk ekt b e bt ettt eee bt bt e bt e st e e e n b e e ekt e s bt e nb e e et et aee e eneeene e 13
K TR T L I 1 PSSR 14
K Ry R T L 1 1) PSSR 18
3.1.4 AT B T D ¥ 18
3.1.5 AT B L X 19
Bu1iB AT & e E LR R e Rt et eh e Rt Rt et h et nreenns 19
BT ATHPROTECT ..ottt ettt bbbt bt a e et e b ekt e e bt e bt et e e et e bt e Rt e Rt e E e e et bbb nne e nre s 20
3.1.8 ATHREGOUTO ...ttt ettt oottt e e 444 s bbbttt e 4444 aaa e b ettt e e o244 R b bbb et e e e 24 e n bbb bt et e e e e aaanbb e e e e e e e nannnennees 20
4 Core Language BUIlt-in ROULINESuiii ittt ettt ettt ettt e e et e e s aabe e e e snbe e e e abb e e e enbeeeesnbaeeeasbeeenan 21
4.1 INFOrMALION ROULINES ...ttt a e et e e et e et e e s et e et e e s et e eaneenan e e saneenare s 21
4.1.1 5N 5T NV L PP TR UPOUPPPPPTNE 21
412 S S 1L SR 24
4.2 107N = I] =] o = ot PRSPPI 24
4.21 L0 = T4 (O] o =T o [T O P TR PR 24
422 UBISEERTS ...ttt ekttt ettt h et e bt E e e b e e bt e et e bt ek e bt e e bt e et e st e et bt e Rt e bt n e nene s 25
4.2.3 UBAIMBREAK ...ttt ettt ettt h et bt h e b e et e et e bt ekt E e e E e Rt et eR e n e r e e r e e 25
4.3 Auxiliary UART (Universal Asynchronous ReCEIVE TTaNSIMIL)ooiiueiiiiiiieiiiiieesiieee s siiee e siiee et ee s e e s e e 25
4.3.1 AUXIITATY UART EVENLS ...eiiiiiiiiiiiiiee ettt ettt e sttt e sttt e e tb e e e aatt e e e sae e e e e s b b e e e e amte e e e snbbe e e et beeesanteeeesnnbeeeanbbeeenans 25
432 AUX O DI <. 27
4.3.3 AAUXCIOSE ...ttt ettt e+ oottt e e+ 4 4o kbt bttt e 42424 aa kbt et e e e oo 4o nEhee e e e e e a4 oA he et e e e e e e e e nbbeeeeaeeeaanraeneas 29
4.3.4 AUXCIOSEEX ...ttt ettt oottt e e e oo e s et bttt e e e e e o nt b e et e e e e e e e ntbeeeeeee e e e e naeeeeeeeeeaaanntbseeaaaeeeannsanneas 29
4.3.5 21U 1o (o T OSSR 29
A.3.8 AUXWWIIE .ottt ettt h bt e etk k e bt e H e e e e ae e e h et h e e Rt e Rt et R e R bR e Rt ne et eae e ne e 30
3.7 AUXREAM ...ttt ettt E R R R Rt Rt h b b e E e Ee e r et ane e ene e 30
4.3.8 F 8) =T Lo N PRSP UPPPRR 31
439 AUXREAAMEILCH ...ttt h e h ekt h et b e e e be e e s ket eabe e e s ket e ene e e nbe e e be e e nbneeneeen 31
T T 0 U) G 0L o OO PT ORI 32
L3 T By I U) (€1 =] (3 1 T 33
A 3,12 AUX S IR T S Lo s 33
0 Ty B U) €= =T 1 S UTTOTPPRRR 33
4.4 [2C — TWO WIir€ INTEITACE (TWVI) . eiteiiiie e ittt ettt e ettt e e e e e ettt e e e e e e s et bt e e e e e e aasbeb e e e e e e e easbtbaeeeeeeeasssaneeaeeeas 33
4.5 SPIINTEITACE ...ttt a et s et e e s bt e e b et e b et e b e e e b et e b e et et e e e n e be e e 33
48 SPISIAVE INTEITACEeeiiiieiiiee ittt e ettt e et e bt e ettt et et ettt et e e e b e e et e e ene e e nbeenneeen 33

https://connectivity lairdtech.com 3 Americas: +1-800-492-2320

© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

4.6.1 EVENES QNG MESSAGESeiieiiiiiiiiiiiiee e ettt e e e e e ettt e e e e e e st e et e e e e s s taeae et aeeeeasatbeeeaaeeeaasstbaeeaeeeeeassbsaeeaaeeeasnssaeees 34
46.2 SPISIAVECONTIG ... ettt h et h b b E bt E e ah e bt h et nan et r e nan e 34
4.6.3 SPISIAVEOPENN ...ttt ekttt h ek b L b h Rt Rt bt E e Rt bt e e b e bt e nar et r e nan e e 35
46.4 SPISIAVECIOSE ...ttt e e E et e e e R e et e et e e e e 36
46.5 SPISIAVETXBUIFEIVWIITE ...ttt r e e et e e et e e s e e e s e e e rn e e e nannes 37
4.6.6 SPISIAVERXBUTIEIREAMeiiie ittt e et et e e e e et e et eae e e e s atbaeteeaeaesstbaaeeaeeessnnsbbaeeaaeesannnes 38
47 L0 1] o T T TSP U PP T S RT PSP POPPUPPUPPRSPROUN 39
471 [T S T Lo Y 1= T= Vo [PP OPPP 39
472 (0151 S (0] o= o BT PTPT T OPOPPPPPPPNE 39
B.7.3 QSPICIOSE. ...ttt ettt e et 43
474 (@ ST o (o])0 1T S 43
4.7.5 (0151 2 (0] 1 To [1= SRRSO PPRRRT 45
4.7.6 QS PIACHVECONTIGGEL ...ttt e st e e ettt e et e e s n e e ekt e e st e e e e e e e s e e e e e e nnnes 46
477 QISPIWIILE ..ttt h etk ekt E e bt et et e et e bt b e Rt e bt e h ekt ke Rt Rt et et he e n e r et 47
4.7.8 QSPIREAM ...ttt ettt E R R et e et h e Rt bt b r e r e 48
4.7.9 (O 1S | = = LS PP PPPRPPPN 48
4710 QSPICUSIOMCOMMEANGuuiiiiiiiei ittt e et e e e e ettt e e e e e e st b e e e eeeeesaatbaaeeeeeeesasbaseeeaeeesanssasaeeaeessansasaaneeaeans 49
4711 QSPISEIPOWEIMOUE ...ttt e ettt eee ettt e e e e e ettt e e e e e e e ettt eeeeeeeesaabbaaeeeeeessasbaaseeaeeeaanssssaeeeeeesanssraanaeaeaas 51
o e 1 O 151] [| (o TP UPT ORI 51
G713 QSPIMEIMOIYSIZE ...ttt e e h et e e e e et ookt e oo s st e e e s et e e s e et e e aa R et e e et e e e nnrn e e e s nn e e e e r e e nn 52
AT A4 QS PSS BUSY .. s 52
715 QSPIDPMSEL ..ttt ettt et E Rt h Rt bt et b b e h e E e r et nne e 53
718 QSPIHSDPM ...ttt ettt h ettt bR e R Rttt h e etk h e bt e r et ene e ene e 53
7T QSPIRESEL ..ottt ettt h et E R R Rt bt et h e bttt h e E e e n et ane e nne e 54
4.8 INPUL/OULPUL INEEITACE ROULINESeeiiiiiiiiie ittt ettt e ettt e e sttt e e s bt e e e et b e e e enbae e e sabbe e e e abbeeeeanbeeeennnees 54
4.8.1 [T S T Lo Y T T= Vo [PP UPPRT 56
4.8.2 (€7 010 ST =1 ¥ [T PP PR PPRR 56
4.8.3 (€010 ST =1 ¥ {1 = SO P PSPPSR 58
484 (€0l o10fo] o1 1o] =il o o TP PR PPPRP 61
48.5 (€01 o] SL=T- Lo [H PO P PSPPSR 63
4.8.6 (7710 1YL 1 (= PR UOPRRRTN 64
4.8.7 GPIOBINAEVEN/GRIOASSIGNEVENTciiiiiiiiiiiiiiet e ettt ettt e e e e e st eeeeeaeasatbaeteeaeaesstbaaeeeeeessnnsbsaneeaeesannnes 66
4.8.8 GpioUnbindEveNt/GRIOUNASSIGNEVENTcouiiieiiiiiee ettt sttt e e et b e e s snta e e e sbb e e e s nnbeeeesnteeeesnnees 68
4.9 MISCEIIANEOUS ROULINESeiiiiiiiiieitit etttk ettt ettt eb e h e bt s bt e be e e s b bt e ebe e e s kbt e e ae e e nb bt e abn e e nbneennn e et 68
4.9.1 ASSERTBLGSA 68
492 ERASEFILESYSTEM ... 69

5 BLE EXtENSIONS BUIIE-IN ROULINESoiiiiieiii ettt et et e e skt e e st e s e e e et e e s e e e nnnree s 70
5.1 [1 1o PP O T PO P PP OPPPPPTPPRPP 70
51.1 21T Lo 7N (o | LTI Y o 1= O PSS PRRP ST 70

https://connectivity lairdtech.com 4 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

52 EVENEIS QN0 MESSAGES ... uuitiiiieeeiiiiitei e e e e e e ettt e e e e e ettt e e e e e s st bta e et e e e e ss s b et eeeeeeeaassetaetaeeeeassntbeeeeaeeeesnnsbaneaaeeessnssenees 72
5.2.1 EVBLE_ADV _TIMEOUT ...ttt ettt ettt e o2 4o ekttt e e 244 a b bbbt et e e e e e e s ab bbbt e e e e e aannbbe et e e e e e e anntnneeas 72
522 EVBLE_CONN_TIMEOUT ...ttt ettt oo 4okttt e e a4 o e b bbbt et e e e e e e s ab b e et e e e e e e e nnbbe et e e e e e s annenneeas 73
523 EVBLE_ADV_REPORT ... 73
524 EVBLE_FAST_PAGED ... 73
5.2.5 EVBLE_SCAN_TIMEOUT ..ottt ittt ettt eb etttk bt e e ettt ebe e ebe e bt e bt e e nenenine e 73
5.2.6 EVBLEMSG ...ttt ettt ettt ettt h b h b e R R Rt Rt Rt eh e h e r e e n e e nrne s 73
527 LA 5] 1] 6@ 1 O PP O PP PPPPP PP 76
528 EVCHARVAL ...ttt ettt oo 4ottt oo 44k b ettt e e e 44 e R bt ettt e e oo e b b e et e e e e e e b e et e e e e e et nee s 7
529 EVCHARVALUEttt oottt e e o4 oo h b ettt e e e oo ek ab b e et e e e e e e aabbe et e e e e e e annbbeeeeaeeeeannnbneeas 7
B.2.10 EVCHARHVC ...ttt ettt oo e oottt e e e+ e e e et b e et e e e oo e e n bbb et e e e e e e anbbbeeeeaeeeentbnneeaaeeeaannns 79
D.2.11 EVCHARGCCECND ...iuitiiiuiuitiiiieitieitattetauesebeseeeaese ettt et e et s et s 5545555555555 5555555555555 5555555555555 5555ttt t ks et e ks e et s e nnnnnnnnn 79
D.2.12 EVCHARSECECD ...ititiiiuiuiuititiitieitteaeeaaesesebeee ettt ettt et e sttt 5555555555555 5555555555555 55555555555t £ £ 5ttt k£t et st s e et st e nnennne 82
B.2.13 EVCHARDESC ...ttt a1t bbb ek kR Rt Rt Rt Rttt h et nre s 87
B.2.14 EVAUTHVAL ..ottt h bbbt h ekt ekt e bt e bttt e et e he e eb e e e bt et e e s e et e nb e e st e e nbeenne e 89
5,215 EVAUTHWVALEX ..o tiiitititititiitiitis sttt et e et b et 1 b e s s 1 e b8 8 88888 e 8888888888888 888 e b s b e s s s e b s bbb e b ennnnnnnne 90
B5.2.18 EVAUTHOCCECD ...iiiiiiiiiiie ettt ettt oottt e e e 44kttt e e 2444 aa b b e e et e e e 2o aaa bbb e et e e e e e e ab b b et e e e e e e snbbnnreeeeeeannns 92
B.2.17 EVAUTHSECCD....ceieii ettt ettt ettt oo oottt et e e 44 4Rkt bttt e e 2424 e ma b b e et e e a2 e e aan b be et e e e e e e e nbbbeeeaaeeesnsbaneeeaeaenannns 94
B.2.18 EVAUTHDESC ...ttt ettt e o4 oottt et e e 444 a s h bbb et e e e e e e e ma e b e et e e e e e e aan b bee e e e e e e e snbbbeeeaaeeesnbbaneeaaeasaannns 96
T L T AV Ay Ao o o) TP PP P PP P PPPPTPPPPPPPPPPPPR 98
D.2.20 EVV S P T XEMPTY eiiiiiitttittttttutttittttttttteeee bttt ettt ettt e etttk s 5555555555555 5555555555555 5555555555tttk t ettt st s e et e nnnnnnnnen 98
B.2.21 EVCONNRSSI ..ottt h e bbbt e ke k e R e Rttt R e Rt Rt e E et bt nne e 99
B.2.22 EVNOTIFYBUF ...ttt bbbttt ke b e bt e bttt e e he e eb e Rt e bt e e et st e st e e nbeenneennis 99
5.2.23 EVCONNPARAMREQ.......ciittiitteitietieit sttt ettt ettt ea et eb e bttt et ee e e be e sk e e s bt e s bt e et et ean e eae e ene e r e e n e nene s 102

53 MISCEIIANEOUS FUNCLONSeeiutii ittt bttt ekttt b et et e ekt e b et et e e e be e e beeen e e e sbeeaneeen 104
5.3.1 BIETXPOWEISEL. ...ttt ittt h e a e bt e e h bt e e et eeab e e ekt e e b st e s bt e san e e e b e e e b et enan e e 104
5.3.2 BlETXPWIWWNIIEPAINNG ...ttt ettt et e e et e e e e s e e e s e e e s e e e e e nnnn e e e nnnnes 105
533 (2 L=TOf o] a1 o 5o B Lo PP PP PP 106
534 BlECRNANNEIMAP ...ttt e e Rt et r e e et e e n e 106

54 AAVEITISING FUNCHIONS ...ttt e e ekt e e st e e s s et e e e s e e e e e st et e e s s e e e e et b e e e s ante e e e snnneeeanneeenan 107
5.4.1 BIEAGVEITSTAIT ...ttt s e st s e e e st bt e s b e e st e e s e e e s b e e s et e e 107
542 121 1=Y a0 Vo 4 £ (o] o ST SPUPPPPRRRN 111
54.3 (2] =Y o V=T (o] o1 o EO PRSPPSO 112
544 (2] =Y N0 V7 o1 o1 S PRSP OPPR 112
54.5 (2L ST or= LT o4 PSP P PR PPPR 113
546 BlEAUVRPIGEISPACE.eeii ittt ettt e e st e ettt e e e et e e e R e e et e e e e e e e e 114
547 12112y o V7 o] 7N (o L TN o X TR PUPPPSRRTN 114
54.8 1212y o V7 o 7Aoo L TN o i 2 SRR UUPPPSRRRN 116
54.9 121 1=Y e V7 o 7AYo o<1 oo /AN S UPT S PPPPPPRPRN 117

https://connectivity lairdtech.com 5 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

0 e I =11 Yo (V] = o] £1@4o] 1 111111 APPSO 117
55 SCANNING FUNCHIONS ...ttt ettt a ettt e oo et e eh e e ea e e e e bt e ea bt e e et e et e ena bt e e abe e ne bt e eane e et e snneenane s 118
5.5.1 2] SRS or= 1 151 7= o T TSP TSP PP PPPRUPPPP 119
5.5.2 (2 LIS o= 1YY o Jo] AP PP PP PPPRPO 120
553 (2] Lo o= 1 5] (o] o J PP PP P PP PPPRR 121
55.4 BIESCANFIUSI ...ttt 123
5.5.5 12113 Tor=T @0 oo TS UR S UUPPPPRRRN 124
556 (2] LYotz T €= 7aNe AV = o Lo PRSPPI 126
557 BleSCANGEIATVREPOIMEX ...ttt ettt ettt e e e e e et b e e e aabe e e e snbbe e e e nbbeeeeanteeeennnees 128
55.8 2] LT eT=l TN Do) [T [T U P TTP TP TP UPPPP 130
TR T =1 [=Y =1 7Y) V2 o [OOSR 131
55,10 BleSCANGEIPAGEIAUUNoeiiiiiii ettt s et e e st e e st et e e st e e a et e e et et e a e n e e e n e e e e e e e 133
5.6 CONNECHION FUNCLIONS.ceiiitie ettt ettt e e et et e e e sttt e s b e e e et et e e st et e e ssne e e e et n e e e e nrneeennnnee s 134
5.6.1 EVENEIS QNU MESSAGESeiieeeeiiitiiieee e et eeiit ettt e e e e sttt e e e e e s s b et eeaeaesatbtaeeeeeeeaanssteeeeaaeesaasssbaeseeeesssansbsaseeeeesnnnses 134
5.6.2 (2] (=10 e 10 o =T o ST TP T P U PR TRT TP 135
56.3 BIECONNECICANCEL. ...ttt ettt h e et skt e s bt e sk bt esen e e et bt e san e e ne e nan e e e 137
564 (2] L=T0f o] o] o= (O o] oo [PRSPPSO 139
5.6.5 2] [T ot g T= o TPV PR PP UPPRPP 141
5.6.6 BIESEICUINCONMNPAIMIS ...ttt ettt a e bt eea e e sh e s h bt e eh bt e eab e e ek bt e sh bt e s b bt e sab e e nb bt e nab e e nb e e nnnee e 142
56.7 (2] (=TT (O (O o] o] o] o= 1 14 I S PP PP PP PPPRP 145
56.8 (2] =T o] ol a1V [o (O o To (@1 {o [P PP PP PP PPPRP 145
56.9 BleGetConNHANAIEFTOMAGUIc.uiiie e 146
5.6.10 BleGetAddrFromCONNHANGIE.ioiiiiiiiee et e s e e 148
5.8.11 BlECONNRSSISTAIeiiiiiiiiiie ittt s bt b e s b et e b e e st e e e be e e s be e e abe e e beesnne e e sreeenneeens 150
oI D =1 1= T @ o Ta T a1 ETY I o] o PRSP PPRR 151
57 Whitelist ManagemeENt FUNCLIONScoiuiiiiiiiii ettt sttt e st e e s s sttt e e s b bt e e et b e e e s anbeeeesnbneeeanbbeeeanns 152
571 [Loy Y T o] (S (@ (= L= PP PP PP R 152
5.7.2 BIEWRNIEIISTDESIIOY ...ttt ettt e e ekt e et e e st e e et r e e e e asn e e e s nr e e e et e e e e e nnnes 155
5.7.3 BIEWITEISICIEAI ... ettt e ket e st e e st e e et et e e aa bt e e s nr e e e e b n e e e e anr e e e nnnnes 156
574 BIEWNITEIISTSEIFIITET ...ttt e e e e et e e st e e s e e e e bn e e e e e e e e nnnnes 156
57.5 BIEWHITEIISTAGUAUN ...ttt s e e st e s b e e s e b e e s e e e st b e e s an e e seneesane e e 157
5786 BIEWHItEIISTAGUINGEX. ...ttt et e e s et s e e e bt e s e e e st e e sane et 157
57.7 BIEWHITEISTINTO ...ttt h e s et e s bt e et e bt 158
58 GATT SEIVEE FUNCHONS.ccettetti ettt ettt ettt e et e st s et e e et e sh e e e bt e e et e et e e s et e e bt e ne bt e s e e st e saneenane s 158
5.8.1 EVENTS QN0 IMESSATESceiiiiieeee ittt et e et e e et et e e st e e st e e et e e e e ann et e e s nr e e e et n e e e e e e nnnnes 165
5.8.2 BlEGAPSVCINIL. ...eeee ittt e et e et e et e e e et n e n e e 165
58.3 BlIEGEIDEVICENGMESottt ettt e ettt et e et e e et e et e s et e s et eseeeseeseeeeee e eeemeeemeeemeeeneeeeenteeneeeneeareeaneenaeenean 167
584 BIESVCREGDEVINTO ...ttt ettt e bt e e 168
58.5 BIEHANAIEUUIALEccvviiiiieiiiie ettt ettt e s bt s bt e b et e st e e sar e e st bt e s e e ne e e nane e e 169
https://connectivity lairdtech.com 6 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

User Guide La"'d 2» CONNECTIVITY

5886 BIEHANAIEUUILL2Soooiiiiiiiieiiee ettt s e e s bt e s b e e st e e s e e e st bt e san e e ne e e sane e e 170
587 BIEHANAIQUUIASIDING.eeeeiiieieee ettt ettt et b e s e e nb e e st e e e s e e 171
58.8 BIESEIVICENEW ...ttt ettt h ekt a e bt e ekt e ekt e ea et e ekt e e b et e s b bt e san e e e bt e s an e e b e e nan et 172
5.8.9 (2 Lo IST=T Vot =T @ o] 411 1| SO PP PP PPPRP 174
5.8.10 BIESVCAAUINCIUAESVC ...ttt e et et e e st e et e e st e e et et e aanne e e e nnnn e e e e nneeenans 174
5.8.11 BlEAMIMELAOATAEX. ..ottt et e et e e et e e e e 176
5.8.12 BIECRAINEW ...ttt ettt ettt e e et e e b et e e e e e nre e 178
5.8.13 BlECRArDESCUSEIDESC.uutiiiieiiiieitit ettt ettt etttk s bt bt e sb et s ke e be e e ek et e be e e sk e e e abe e e beeenne e e nbneeneeen 180
5.8.14 BleCharDESCPISINEIML.c.etiiiiiiiiieitt ettt ettt ettt b et skt e sb et e sk et e e b et e sk e e e be e e sk e e e abe e e nbneenneeesbneenneeen 181
5.8.15 BlECRAIDESCAUDeeiiiieitiieit ettt ettt etk h e h e e bt ek bt e b et e ekt e b et e ket e Re e e ket e be e et e e e ne e nrneenre e 183
5.8.18 BlECRAITCOMITILceiutiiitiieitiee ittt ettt ettt h ettt e e a bt e e b et e b et e sk et e be e ook et e be e e s b et e be e e ek e e e be e e ke e e ne e e nbneeneean 185
5.8.17 BIECNAIVAIUEREAX.cceiiiiieiiiiii ettt e e et e e st e e e et e s st e e st e e et b e e e nanne e e e nn e e e e anreeenans 187
5.8.18 BlECNAIVAIUEWWIIIEeeie ittt ettt e skt e e s a e e e et et e e st e e ss et e e e b ne e e s annn e e e nnnn e e e e nneeenans 189
5.8.19 BlECRArVAIUBWIIIEEX.......cccuiiiiiieiiie ittt ettt b e s bt b e e sk e et e e e s b e e e ebe s e st e e s ane e e srneennenans 190
B5.8.20 BlECNArValUBNOLIY .. cciiiiiiieiiiee ettt e ettt e e e e ettt et e e e e e e s st b e et e e e e e e s st bbaeeeae e e s ntbbaaeeeeeeaarnrbaeaaaeean 191
5.8.21 BleCharValUEINGICALE.........c..eiiiieiiieiti ettt ettt ettt skt et etk e e b e e be e e ane e e nbneennenen 193
5.8.22 BlECRAIDESCREAM.cc.utiiiiiieitiieite ettt ettt ettt b e e e bt n ke b et ekt a e b e r et e et e e 195
5.8.23 BIEAUINOMNZECNANeiiiiieieee ettt a e bbbt h ekt b et bt e bt e e kbt e be et e e e ane e bn e ne e 197
5.8.24 BlEAUINOMNZEDESCeeeiiieiie ettt ettt ettt h ekt a e h e bt ekt e bt ekt e bt bt e Rt E b e b et b e e ne e nrn e nr e 198
5.8.25 BIeServiCECNANGEANIIYoiiiiiiiiiiiiie ittt r e e e e st et e et e e s e e e et e e e aann e e e e n e e e e e e nan 198
5.9 GATT ClENE FUNCHIONS ...ttt etttk et e ettt e e e e ekt e e st et e e s b e e e e ek e e e e amne e e e snne e e e e b n e e e nnne e e e nnnnee s 199
5.9.1 EVENES QN0 MESSAGES ...evvieeeeiiiitiiieiee et eetiie et e e e e sttt e e e e e e e s b aeeeeaeaesatataeeeaaessansseteeeaaeesaasssbaeeeeeeessnnsbeaseeaeesnnnses 201
59.2 121 L=T TV (ol @] o= o SRR PUPPPPRRRN 206
593 BIEGAICCIOSE ..ottt h e sttt ettt 207
594 BleDiscServiCeFirst / BIEDISCSEIVICENEXEcciriiiiiiriieiiie ittt ettt et 207
595 BleDiscCharFirst / BIEDISCCNANNEXLc.uiiiiiiriiieiiiesiit ettt ettt san et enan e e 211
596 BleDiSCDESCFIrst /BIEDISCDESCNEXL.iiiiuriieiiriie ettt arn e s e e e s e e s annr e e s 215
59.7 (2] =T CT= 1a (o] o 0 To [o PSP P R PPPR 219
5938 BlEGALICFINODESC. ...t e ettt e e e e s e et e ek et e e st et e e s bt e e e s e e e e st et e e e nn e e e e s n e e e e nn e e e 224
599 BleGattCRead/BIEGACREAUDALAviiiiiieie ittt e ettt e s e e e st e e s e e 228
5.9.10 BIEGAMCWWIIIE ...ttt ettt ettt e s b e s bt e be e s b et e b e e e s b e e e be e e sk e e e b e et e e ne e e e 232
5.9.11 BleGaAtCWIIIECMIU. .. .eiiiiieiiiie ittt ettt e e s b e e b e e s b et e b e e e s ke e e s be e e s b e e e ebe e e s beeeane e e sreeennenens 235
o I D S (o L (o g1 (] e =T o L PO TPRPPRR 239
5.9.13 BlEGAMCWIIIEEXECULEcciuiiiiiieiiiieit ettt ettt ekt b e b e s bt ekt e e be e e ek et e be e e sk e e e be e e bneene e e nbneenneeens 240
5.9.14 BIEGACNOLIYREAMccciiiiiiiiiii et e et s e e s e e e et e e nann et e e nrn e e e e e e e 240
5.10 Attribute ENCOTING FUNCHIONScoiiiiiiiiiei ettt ek e e et e e s e e e et e e e e et e e s e e e e nnnenenan 243
510,17 BIEENCOUES ...ttt e et e e ettt e ekt e oo R e e e e et e et e e e et e e Rt e n et e e ann e e e e e nan 244
5.10.2 BIEENCOUELE ...ttt ettt a e e ettt ookt e 4o h e e e e bt e e R et e e e a e e e bt e anb et e e nn e e e et e nan 245
5.10.3 BIBENCOUE24 ...ttt h e bttt ettt h e b bt e et e e 246
https://connectivity lairdtech.com 7 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

User Guide La"'d 2» CONNECTIVITY

5.10.4 BIBENCOUEB2 ...ttt ettt E ekttt h et e e bt e et e e 247
5.10.5 BIEENCOUBFLOAT ..ottt ettt ettt ettt ettt ekt b e e sk bt e e b et e e bt e b et e skt e b et e ek bt e be e e s b e e e bt e e ke e e nne e e nbneeneeen 248
5.10.6 BIEENCOUESFLOATEX ..ociiiiieiiiiti e ettt ettt e ettt e ettt e e e sttt e e aate e e e s aaee e e e smteee e e tte e e e nteeeeamseeeeantbeeeaanteeeeansaeeeansbeeennn 249
T O A = 1= Y elo o (=3 @ AN PP RTPTPRR 250
5.10.8 BIEENCOUETIMESTAIMP ...ttt e ettt e e e e e ettt e e e e e e s aebeeeeaae e e e ntbaaeeeaeeeaansnsaeeaeaeeaannnnseeeaaaens 251
5.10.9 BIEENCOUESTRING.. ...ttt ettt ettt a ettt b e bttt ee e s b e ekt e s b e e s et e et e et ee e ebe e ebeenr e e bt ennenenenenens 252
5.10.10 BIEENCOUEBITS ...ttt e b b e e b e e e s b e e b e e e s be e e s b e e e sbe e e sbe e e seneesaee e e 253
5.11 Attribute DECOMING FUNCHONSeiiiiiiiiiiie ettt e et bt e e ettt e e e s bt e e e e bb e e e s ante e e e snnneeeanbbeeeenn 254
5,111 BIBDECOUESS ...ttt ettt h e a ekt h e ekt h ekt h ettt h ekt e bt et e e et e e 254
5,112 BIEDECOURUSooiiiiiiieite ettt etttk h e h ekt e bt e ket e bt e ekt e bt e e e be e e bt e e ke e e be e e ke e e ne e bn e e nr e 255
5.11.3 BIEDECOUESLEcoueeeiiieiiiieitii ettt ettt ettt ekt h et ekt e h bt e ke e b et ekt e b et ekt e bt ekt Re e ke e be e et e e ne e nrn e nre e 256
N B - S =1 1= T L= ToleTo [U K TP PUPRTOPPRPPPPRRI 258
5115 BIEDECOUES24 ...ttt ettt e oottt e e bt e oo h Rt e e e R et e e Rt e e e e e e e R et e n et e e e e e e e 259
5118 BIEDECOUEU24 ...ttt bt b e bt e e b et e e e e 260
B.11.7 BIEDECOUE3B2Z........oooeeie ettt e E e e e e s e e 261
5.11.8 BlEDECOUEFLOAT ...ttt ettt etttk b ettt e e b ekt e bt e ekt eebe e e ek et e ebe e e ek et e abe e e sk e e e be e e nbeeene e e sbneeneeens 262
5.11.9 BlEDECOUESFLOAT ...ttt ettt ekt b ekt h et e ek et e eb et e s bt e be e e ek et e e be e e sk e e e be e e s beeene e e sbneeneeens 264
5.11.10 BIEDECOUETIMESTAMP ...ttt etttk etk bbbt e bt e ekt e bt e e b bt e abe e e sk bt e nan e e nbneennne et 265
5.11.11 BIEDECOUESTRING ..ottt ittt etttk e bbbt e bt e b et e b et ek et e b b e e s b et e abe e e sk e e e nan e e s bneennne et 266
5.11.12 2] eI oTo o [=] =] S TP PP PO PUPPPTPPRP 267
512 Bonding and Bonding Database FUNCHONScioiiiiiiiiieiiiiie et e e e e s 269
Tt D~ B = To o Vo [1a Yo TN =0 g Tor 1 o] o 1= PP PSP 269
5.12.2 Bonding Table Types: ROIING & PEISISTuuiiiiiiiiiiiiiiie e e e e s e e e e e s e s ntraeaaae s 269
5.12.3 WHISPEI MOAE PaNING ..uitiieiiiee e ettt e e sttt e e ettt e e e e e e et e e e e e e e e s satbaeteeeeeesntbbateeaeee s sssaaaeaaeesaasstbeeeaaeens 270
o e o1 1=T = T o [T 5] = £ PP TPRRPRR 270
5.12.5 BleBONINGPEISISTKEY ...cciitiiiiiiiiii ettt ettt e et e e sttt e e s a b et e e ettt e e e nbe e e e anbe e e e anbbeeesanbeeeesnbbeeeabbeeeaan 271
5.12.86 BIEBONUINGISTIUSIEccciiiiiiiiiiiie ettt s et e e e e st et e e et e e st e e et r e e e s ann e e e e nnnneeeanrenenans 272
5.12.7 BIEBONUINGETASEKEYcciiiiiiiiiiiie ittt s e e st e e et et e e et e e s e e e e et re e e nanne e e e nnnn e e e s nreeenans 273
5.12.8 BIEBONINGETASEAIL......ccoiiiiiiiiii ettt s et e e st e e e s et e e st e e ss et e e e b e e e aannn e e e nnnn e e e e nreeenan 274
5.12.9 BIeBONAMNGIGEINTOceeiiiiieiiiiie ettt e e st e et e e s e e e ek e e e nann et e e nnn e e e e e e nan 274
513 SECUILY MANAGET FUNCHONS.ciiii ittt e et e e e e e ettt e e e e e e st b aa e e e e e e e s stbbeaeeeeeeaassbeaeeeaeesanssbsaseaaeessnnses 275
513,17 EVENTS QNU IMESSAQESuvvvriiiieeeeiiiitiiteee e e s settttteeaeessatbeaeeeaeeasasatbeeeeaaeaassssbseeeeaeeeaassssaeeeeeesaassssaaeaeeesaanssssseaaaeens 276
5.13.2 BleSECMNGrLESCPAINNGPTET.ttt ettt e e sttt e s st et e e sab e e e e e bb e e e santeeeesnbbeeeabbeeeean 278
D133 BlEPaIN ..t bRt E e h ettt h e E e e r et et e e e e tn e 278
5.13.4 BIESECMNGIIOCADuveeeeiiiiie ittt ettt e e ettt e skt e e s a et e e ettt e e s et e e na e e e et e e e n et e e n e e e e e e nan 282
5.13.5 BIEACCEPIPAINNG -..ee e veeeeiitie ettt st e skt e e ettt e s me et e e s h e e e e R et e e e e e n et e et e e n et e e n e e e an e e e nan 283
5.13.8 BIESECMNGIPASSKEYceiiiiiiiiiiiii ittt et s et e e st e e ettt e e st e e sa et e e e b et e e nn et e e n e e e e e e 283
5.13.7 BleSecMNgrLesSCKEYPreSSENGDIEcooiiiiiiiiii ittt e et s e e e e et e e 285
5.13.8 BleSeCMNgrLESCKEYPIESSNOLIYuiiiiiie ittt e e e e s e e e e e e s et e e e e e e e ss bbb a e e e e e e s sansntbaeeaaeeas 286
https://connectivity lairdtech.com 8 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

5.13.9 BleSECMNGIOOB P Sttt e e et e e e e e e et e e e e e e et ——— e e e e e e e ——aaaaeeaanrraaaaaaan 287
5.13.10 BIESECMNGIOOBKEYcutiiiitit ittt ettt etttk e bt b e bt ekt e b et e ekt e b e e e b et abe ekt ennn et e nnn e e 287
5.13.11 BleSecMNgrLeSCOWNOODDAIAGELccciiiiiiiiie ittt et sb e e st e nane e e 289
5.13.12 BleSecMNQrLeSCPEErOODDALASELciitiiiiieetie ittt ettt ettt be e b e e sbb e e san e e nbbeesane e e 290
5.13.13 BlESECMNQIKEYSIZES ... ettt s et e ekt e e et e e s e e et e e e e e e e e e e e e e nn 292
5.13.14 2] Le3S LTl T aTo] 2 g o |2 J=To [P RS USPRRPR 293
5.13.15 (2] 0=] = g Yot oY/ o1 (O] o 0 T=Ted 1o o [P U S USPRRPR 293
5.14 Virtual Serial Port SErvice — MANAGEMueiiiiiiieiiiie ittt et e et e e e et e e e sbb e e e e arbe e e e anbee e e snees 296
o P o VA S O) o U =1 1o o PP TPRP RPN 297
514.2 Command and Bridge MO OPEIALIONccuiiiiiieiiieiiiieiie ettt ettt ettt ettt ettt e e b et e e e ane e e sinesaneeens 303
5.14.3 VSP (Virtual Serial POIt) EVENTScccuviiiiieiiiieiie ettt ettt ettt ettt ettt e e b e ek eenbe e e nbeeeane e e sbneenneeans 305

N S =11 ST o 1@ o= o OO PP PO PR OPPRRPPPRR 306
5.14.5 BIEVSPOPENEX ...eiiiiitiiee ittt ettt st e ekt e e ettt e Rt e e et e R et e e et e e et e e R et e a e n et e e n e e e e e e e e nan 308
T T =1 1oAY A o @4 [0 1= PP 309
BUAAT BIEVSPINTO ettt Rt ettt en e bt e n e 311

o S R =11 ST o)V 1 (= OO TPRPPRR 312

o P R =11 ST o] LT o PP TPRRPPRR 313
5.14.10 2] oAV AT o 10 E=T g1 2] o o = O O P T PP T PP PP PPPPPPTN 316
5.14.11 2] LYY o U o USRS 318
5.15 Data Packet LeNQth EXIENSIONcoiiiiiiiieie ittt e et e e s e e an e e e anr e e e nnre e e e nnnnee s 320
I - T @ V= VT OO PP PUPRTOPPRRPPPRPI 320
5.15.2 CFG KEYS CONFIQUIATION.eeiiieiiiiiiiiiieeeees ittt e e e e s sttt e e e e e s s tbebeeteeaesaasstbaeteeeeesassbaaeeeaeessassbaaaeaaeesaansnssseeaaenns 321
5.15.3 EVENTS QNU IMESSAQES .. .uvviveiiieeeiiiiitieieee e e s sitteteeee e e s tbeaaetaeeaaasatbaeeeaaeaaasssbaeteeaeeeanssbsaseaaeeesassssaeeaeeeeaanssssseeaaneas 322
5,154 BleGattCALNDUIEMIUREOUEST ...ttt e e e e e et e e e e e e st bt e e e e e e e e sasbeaeeeeeessasstsaeeaaeeas 322
5.15.5 BleMaxPacKetLenGtNSELccoouiiiiiiiiie ittt ettt e e et et e b e e e e rbeeeean 324
5.15.8 BIeMaxPacketLenGtNGEL.ccoouuiiiiiiiie ettt e et s ittt e e et e e et e e e e nnbb e e e e rbeeeeae 324
5.16 [T T PP UPT R UOPTUPPPPRN 325
T L T © V= VT PP PO PR PP PPPRI 325
5.16.2 EVENLS AN MESSAUES ..eeeiiriieiiiiiiieitieee ettt e e ettt e e sttt e et et e e ettt e s st et e s s a b et e e e s et e e see e e e sa s e e e e e b b e e e nanne e e e annn e e e e nreeenan 325
5.16.3 BIEPINGAUINTIMEOUL......ceiiiiiiiiiii ittt e et e e e st et e et e e s e e e et e e e s anne e e e ssnneeeanreeenans 325
517 LE 2M PHY @Nnd CODED PHYoiiiiiiiiiiiiiite ettt itttk nt ettt et sbe e ene e bt e bt e nenenine s 327
BT EVENTS QNU IMESSAQESuvvvviiiieeeeiiiittttteeeeesiitttteeaeessatbeaeeeaeeaaasstbeeeeeaeaaasssbaetaeaeeaaassbsaseeaeesaassssaeeaeeesaansstsseeaanens 327
B.17.2 BIBPRYSEL. ..ottt ettt 328

6 Other EXteNSION BUIIt-IN ROULINESiiiiiiiiii ettt e et e e st e eneenane s 330
6.1 Near Field CommuniCatioNS (NFC)oouiiiiiiiiie it e e e e e e e e s e e s nennee s 330
6.1.1 OWVEBIVIBWV ...ttt ettt ettt ookt e ekttt e st e ookt e o2 et oo e e et e e 4R et e e R et e e e e R et e e et e e e e R e e e e nnn e e e e e e e e nnes 330
6.1.2 NDEF MESSBUESceiiieiieeeei ittt e ettt e e oo ettt e e e e e et e e e e e e e e et e e e e et e e e e e en e e e et e e e n e e e e n et e e e e e aan e nreeeeeenaaens 331
6.1.3 Arduing BaSEA NFC REAUETueeiiiiiiie ittt ettt e e et e e st e e s b e e e e et e e sanne e e s nannee s 332
6.1.4 ¥ Taa] o] (RN o] o1 o= i o] o 0 PSPPSR 332

https://connectivity lairdtech.com 9 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

6.1.5 ST Taa] o] (RN o] o1 o= i o] o N2 PR POPPPPPPRN 335
6.1.6 WWAKE-ON-NFC ...ttt ekt e bt ekt e bt ookt e bt e h e e he e ekt e be e e ket e ebn e e e b e e ean e et n e e nnne et 339
6.1.7 EVENES BNG MESSAGESeveeiiieiiieeitii ettt ettt ettt e he ekt ea e e e bt e e h bt e ekt e aae e e skt e she e e sb bt e sab e e nb bt e nan e e ne bt e naneenens 339
6.1.8 NFCHAIAWAIESTALEeeiiieie ettt et e e ek et e et e e s bt e e et et e e ant et e e s n e e e e b n e e e nannn e e e nnnnes 339
6.1.9 [N (e @ o1 o IO PP RO PP PPP R 340
B.1.10 INFCCIOSEttt e e h e b e E et e b et e s bt e b e e e s b e e e be e b e e b e et e e re e e e 341
B.1.11 NFCFIEIOSENSE ...ttt b e s bt e s b e e sk e e be e e sk e e e abe s et e e e ane s e sreeenneeens 341

(S I - N (o N Lo 1= 11 =T L PR TPRPPPR 342
B.1.13 NICNAEIMSGDEIELEeeieiiiiie ettt sttt e e st e e ettt e e e abe e e e snbe e e e anbb e e e santeeeesnbbeeeatbeeenans 343
B.1.14 NICNAEIMSGGELINTO ...ttt b bbbt e bt e s bt e bt e skt e be e e be e e ane e e sbneenneeens 343
B.1.15 NFCNUAEIMSGRESEL ... ittt ettt h e bbbt b e e b et e ek bt e abe e e sk b e e be e e beeeane e e sbneeneeen 344
B.1.16 NICNAETRECATULEOODeeiiiiiiiie ettt et e e et e et e e s e e e et e e e s asne e e e s nn e e e e nreeenaes 344
B.1.17 NICNAEIRECAUUGENETICeeeiiiiii ettt ettt s et e e st e e et et e e st e e s et e e et et e nannn e e e nnnneeeanreeenans 346

L 70 I T \VJ (o NN o 1= 111/ Yo @0 1] 3 PP UPT PSSP 347
6.2 System COoNfIQUIAtioN ROULINESuiiiiiie ettt et e e e e e s sttt e e e e e e st bbeaeaeeesaansbaaaeeaeessasbsaeeeeeesaanses 348
6.2.1)Y (T 1] 1 (SIS OO PRSP P PP PPPPPPPPPN 348
6.3 FIASH ROULINES ...ttt ettt etk e b et ekt e e bt et et e be e e beeene e e nbeenneeen 348
6.3.1 OVEIVIBW ...tttk etttk ettt e b4ttt o2 bt 4kt e 228t e 4kt 42 AR e oA £ e a2 A b et 4 b e e ea b et e b et e bt e e ke e ettt e beeenbe e e nbeenneeen 348
6.3.2 [Fo T 410 o 1= o F T T TP U PSP PR UPPPP 349
6.3.3 [F=] g1 =T T [P ERPPP PP PPPRRO 349
6.3.4 [F=] DTV 1 LT PP PP PPPRP 350
6.3.5 FIBSNETASE ...ttt ettt b e s bt e h e st h e s e et e e E et 351
6.3.6 FIBSNCIOSE ...t e e h e st bt s e et e e et 351
6.4 (01901 (0T [r=To] g1 Tol = Lo U 1] 0 1= PSP SOTPPPPR 352
6.4.1 ECCGENEIAIEPUDPIVKEYS ... ittt ettt e et e et e e et b e e e aab et e e sbbe e e e nbb e e e e anteeeennnees 352
6.4.2 ECCCAICSNATEUSECTELviiiiieieie ettt e e h e et s ke et e s b bt e ean e e et bt e nan e ne e nan e e e 352
6.4.3 ECCHMACSNAZ256........ce ettt ettt e ke e et e e st e e et et e e e st et e e s nre e e e s n e e e annn e e e nnnnes 353
6.5 RVAV = Lot aTo (oo B T3 T PSSO PR PP OPPRR PRI 354
6.5.1 LTAT 0 165 = g SO RRTR P 354
6.5.2 LAY 102 LTS ST RRTR P 355
6.5.3 RVAY o 14 £ {0 o] a1 oo S PRPRPPP 356
MiISCEIIANEOUS ROULINES ..ottt ettt b e bt e b e e e s bt e be e e s b e e e be e e s ke e e ebe e e s ke e e be s e sbeeebe s e ntneenenans 356
6.5.4 REAAPWISUPPIYMV ...ttt ettt e ekt e e at et e e s ab bt e et b e e e e aabe e e e s nbte e e e abb e e e e anteeeennnees 356
6.5.5 SEtPWISUPPIYTRIESNMV ... ettt e bt e e et e e s st e e s ssb e e e e antbeeennnees 357
6.5.6 101 S O3 KT 1=T o [=T = 1O TP PO PUTPPTRR 359
6.5.7 101 Sy 02 7 =T [T = 11O TP PO PUTPPTRR 359

7 EVENTS QNG IMESSATESeveieiitiee ettt e e e et e ekt e e sttt e o b e e e ek R et e e sttt e e s R e e e e ek b et e e e nE et e e nnne e e e e s e e e e annn e e e s 360
8 TS Tot] | FoTa = To L L O PP ST PP PPP PP POPPP 360
8.1 BlUETOOTN RESUIL COUES. ... ittt ettt e b e bt bt et et e be s e be e e bt e e nteesneeen 360

https://connectivity lairdtech.com 10 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

L ir NNECTIVITY
User Guide \id) €0 <

9 Yo QLo [=To (o =T 4 aT=T PP PPTPPP 362
9.1 F Y SR =g To1 g o (1o o BT T T TP PP PP UPRPPPN

9.1.1 License Terms

9.1.2 (B[S To1 £ 4T O PP PP PP PPPRP

9.2 Tl 0 =l O OO PPPRP TR

9.2.1 License Terms
9.2.2 DISCIAIMET ... 363
O T N = N 364

https://connectivity.lairdtech.com 11 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird 2> CONNECTIVITY

User Guide

1 INTRODUCTION

This user guide provides detailed information on BL654-specific smartBASIC extensions which provide a high-level managed
interface to the underlying Bluetooth stack in order to manage the following:

= Perform GAP functionality such as scanning, advertising, and connections

= Perform GATT server functionality

= Perform GATT client functionality

= Perform pairing, bonding, and security manager functions

= Manage Tx power functionality

= Attribute encoding and decoding

= Perform NFC related functionality

= Events related to the above

1.1 What Does a BLE Module Contain?

Our smartBASIC-based BLE modules are designed to provide a complete wireless processing solution. Each contains the
following:

= A highly-integrated radio with an integrated antenna (external antenna options are also available)

= BLE Physical and Link layer

= Higher level stack

= Multiple SIO and ADC

= Wired communication interfaces such as UART, 12C, and SPI

= A smartBASIC run-time engine

= Program accessible flash memory — Contains a robust flash file system exposing a conventional file system and a
database for storing user configuration data

For simple end devices, these modules can replace an embedded processing system.

The following block diagram (Figure 1) illustrates the structure of the BLE smartBASIC module from a hardware perspective on
the left and a firmware/software perspective on the right.

L:A4.8mm W:A0mm H:2.imm. (Pad pitch: 0.8mm)

65 connection pads

Flash
File

System |UART || GPIO || ADC || 12¢ || sPI || NFC || UsB || QsPI |
xample App for [T
smartBASIC I
PRINT "Laird Programmable Module" Apps ARM Cortex M4

WAITEVENT

Execuion In Place (XIP)

with Floating Point
[64MHz | 256K RAM

Optional External
32.768Khz Crystal

with Cryptocell

smartBASIC Non-Volatile :
run-time engine e I I 1 Serial (SP) Flash
(provides safe access to hardware) 802.15.4 Radio BLE Radio (v5) Proprietary Radio
(E.g. Thread) 1MPHY + 2MPHY + LE-CODED (2.4GHz ISM Band)
Bluetooth Low Energy Stack \ l]]
NFC Stack Internal
USB Stack OR
Figure 1: Bluetooth smartBASIC module block diagram
https://connectivity.lairdtech.com 12 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird CONNECTIVITY

User Guide

2 MODULE CONFIGURATION

There are many features of the module that cannot be modified programmatically which relate to interactive mode operation or
alter the behaviour of the smartBASIC runtime engine. These configuration objects are stored in non-volatile flash and are
retained until the flash file system is erased via AT&F* or AT&F 1.

To write to these objects, which are identified by a positive integer number, the module must be in interactive mode and you
must use the AT+CFG command. To read current values of these objects, use the AT+CFG command, described here.

Predefined configuration objects are as listed under details of the AT+CFG command.

3 INTERACTIVE MODE COMMANDS

Below are some BL654-specific AT commands.

3.1.1 AT I or ATl or ATIX

COMMAND

Provides compatibility with the AT command set of Laird’s standard Bluetooth modules.

Note: ATIX results in any integer values being displayed in hexadecimal.

AT | num
Returns \n10\tMM\tinformation\r

\n0O\r

Where

\n = linefeed character 0X0A

\t = horizontal tab character 0x09

MM = a number (see below)

Information = string consisting of information requested associated with MM

\r = carriage return character OxOD

Arguments
num Integer Constant

A number in the range of 0 to 65,535. Currently defined numbers are:
0 Device Name
1 BLE Stack Build Number
3 Version number of module firmware
4 Bluetooth Address
5 Chipset ID
6 File System Flash Segment Statistics
14 Static Random BLE address
16 NvRecords Flash Segment Statistics
24 If AT+MAC used to set IEEE address, then that mac address
26 BLE Bonding database segment
33 smartBASIC core version number
36 Config Keys Flash Serment Statistics
44 Current random BLE address

2080 Module startup time
https://connectivity.lairdtech.com 13 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird CONNECTIVITY

User Guide

2081 Get time in milliseconds since reset (overflows as 32-bit counter)
Get High Voltage mode as follows:
2083 0: Normal mode
1: High Voltage Mode
7001 Toolchain used to build firmware
0xCOFE Displays the licence
0xC12C CRC of most recent file downloaded since reset - volatile
Interactive Yes
Command

This is an Interactive mode command and must be terminated by a carriage return for it to be processed.

‘Example:

AT 1 3

10 3 28.6.1.2

00

AT I 4

10 4 01 D31A%20731BO

3.1.2 AT+CFG

COMMAND

AT+CFG is used to set a non-volatile configuration key. Configuration keys are comparable to S registers in modems. Their
values are kept over a power cycle but are deleted if the AT&F* command is used to clear the file system.

Unless otherwise stated, if a config key value is changed then a reset is required for it to take effect.

The “num value” syntax is used to set a new value and the “num ?” syntax is used to query the current value. When the value
is read the syntax of the response is:

27 Oxhhhhhhhh (dddd)
...where Oxhhhhhhhh is an eight hexdigit number which is O padded at the left and dddd is the decimal signed value.

AT+CFG num value or AT+CFG num ?

Returns If the config key is successfully updated or read, the response is \n0O\r.

Arguments:

Integer Constant

num The ID of the required configuration key. All of the configuration keys are stored as an array of 16-bit words.

Integer_constant
value This is the new value for the configuration key and the syntax allows decimal, octal, hexadecimal, or binary
values.
This is an Interactive mode command and must be terminated by a carriage return for it to be processed.
The following Configuration Key IDs are defined.

40 Maximum size of local simple variables
41 Maximum size of local complex variables
42 Maximum depth of nested user-defined functions and subroutines
43 The size of stack for storing user functions’ simple variables
44 The size of stack for storing user functions’ complex variables
45 The size of the message argument queue length
https://connectivity.lairdtech.com 14 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

p NNECTIVITY
User Guide Lalrd co CTIV

100 Enable/Disable Virtual Serial Port Service when in interactive mode. Valid values are:
0x0000 | Disable
0x0001 | Enable
0x81nn Enable ONLY if Signal Pin nn on module is HIGH
0xClnn | Enable ONLY if Signal Pin nn on module is LOW
ELSE Disable
101 In Virtual Serial Port Service, select either to use INDICATE or NOTIFY to send data to client.
0 Prefer Notify
ELSE Prefer Indicate
This is a preference and the actual value is forced by the property of the TX characteristic of the service.

102 Advert interval in milliseconds when advertising for connections in interactive mode and AT Parse mode.
Valid values: 20 to 10240 milliseconds

103 Advert timeout in milliseconds when advertising for connections in interactive mode and AT Parse mode.
Valid values: 0 to 16383 seconds, where 0 means forever.

104 Data transfer is managed in the Virtual Serial Port service manager.
When sending data using NOTIFIES, the underlying stack uses transmission buffers of which there is a finite
number. This specifies the number of transmissons to leave unused when sending a lot of data and allows other
services to send notifies without having to wait for them.
The total number of transmission buffers can be determined by calling SYSINFO(2014) or in interactive mode
submitting the command ATi 2014

105 When in interactive mode and connected for virtual serial port services, this is the minimum connection interval in
milliseconds to be negotiated with the master.
Valid values: 0 to 4000 ms.
If a value of less than 8 is specified, then the minimum value of 7.5 is selected.

106 When in interactive mode and connected for virtual serial port services, this is the maximum connection interval
in milliseconds to be negotiated with the master.
Valid values: 0 to 4000 ms.
Note: If a value of less the minimum specified in 105, then it is forced to the value in
105 plus 2 milliseconds.

107 When in interactive mode and connected for virtual serial port services, this is the connection supervision timeout
in milliseconds to be negotiated with the master.

Valid range: 0 to 32000.
Note: If the value is less than the value in 106, then a value double the one in 106 is used.

108 When in interactive mode and connected for virtual serial port services, this is the slave latency to be negotiated
with the master. An adjusted value is used if this value times the value in 106 is greater than the supervision
timeout in 107

109 When in interactive mode and connected for virtual serial port services, this is the Tx power used for adverts and
connections. The main reason for setting a low value is to ensure that in production, if smartBASIC applications
are downloaded over the air, limited range allows many stations to be used to program devices.

110 If Virtual Serial Port Service is enabled in interactive mode (see 100), this specifies the size of the transmit ring
buffer in the managed layer sitting above the service characteristic FIFO register.
Valid range: 32 to 256

111 If Virtual Serial Port Service is enabled in interactive mode (see 100), this specifies the size of the receive ring
buffer in the managed layer sitting above the service characteristic fifo register.
Valid range: 32 to 256

112 If set to 1, then the service UUID for the virtual serial port is as per Nordic’s implementation and any other value
https://connectivity.lairdtech.com 15 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

p NNECTIVITY
User Guide Lalrd co CTIV

is per Laird’s modified service.

See more details of the service definition here.

VSP can also be configured using a $autorun$ application which does not have a waitevent statement so will exit
as soon as the VSP is configured.

113 This is the advert interval in milliseconds when advertising for connections in interactive mode and UART bridge
mode.

VSP can also be configured using a $autorun$ application which does not have a waitevent statement so will exit
as soon as the VSP is configured.
Valid values: 0 to 16383 seconds, where 0 means forever.

114 This is the advert timeout in milliseconds when advertising for connections in interactive mode and UART bridge
mode.

VSP can also be configured using a $autorun$ application which does not have a waitevent statement so will exit
as soon as the VSP is configured.
Valid values: 0 to 16383 seconds. O disables the timer (makes it continuous)

115 This is used to specify the UART baudrate when Virtual Serial Mode Service is active and UART bridge mode is
enabled.

VSP can also be configured using a $autorun$ application which does not have a waitevent statement so will exit
as soon as the VSP is configured.

Valid values: 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 76800, 115200, 230400,
250000, 460800, 921600, 1000000.

Note: If an invalid value is entered, then the default value of 9600 is used.

116 In VSP/UART bridge mode, this value specifies the latency in milliseconds for data arriving via the UART and
transfering to VSP and then onward on-air. This mechanism ensures that the underlying bridging algorithm waits
for up to this amount of time before deciding that no more data is going to arrive to fill a BLE packet and so
flushes the data onwards.

Note: Given that the largest packet size takes 20 bytes, if more than 20 bytes arrive then the latency timer is
overridden and the data is immediately sent.

200 Maximum number of 128-bit, Vendor Specific UUID bases to allocate

204 Gatt Table : Attribute table size in bytes. The size must be a multiple of 4

205 Max number of connections acting as a peripheral (Can be up to 1)

206 Max number of connections acting as a central (Can be up to 16)

Note: In order to configure the device to be able to have eight connections as central, CFG 205 should be set
to 0, otherwise the device auto-adjusts to have seven connections as central and one as peripheral.

207 Max number of SMP instances for all connections acting as a central. We recommend that this is left to 1 as the
stack reserves memory for its use which is only used occasionally

208 Include the Service Changed characteristic in the Attribute Table (default is included)

209 Security manager is placed in debug mode to use the SIG defined debug key for LE Secure Connections pairing

210 Low Frequency Clock Configuration
The BL654 module does not have an onboard 32.768Khz low frequency crystal and that clock is derived from an
RC oscillator which is calibrated against the high frequency 32MHz crystal on a periodic basis. However, the user
has access to the relevant pins (SIO0 and SIO1) to fit the 32K crystal externally.

This register is used to configure the LF clock source to be either one or the other or even for autodetection.
Note: Autodetection means there is a startup delay from reset of up to half a second as opposed to about 1 to
https://connectivity.lairdtech.com 16 Americas: +1-800-492-2320

© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

2 milliseconds. This should be factored into any battery life calculations.

This configuration register is a bitmask consisting of :

0..7 (8) Calibration Time Interval in 1/4 second units
8..15 (8) How often (in number of calibration intervals) the RC oscillator shall be calibrated
if the temperature hasn't changed.
16..26 (10) Crystal accuracy in ppm (0..1024ppm)
27..29 (3) Reserved for future use (set to 0)
30..31 (2) LF Clock Source : 00 - Autodetect
01 - RC Oscillator with Calibration against HF Clock
10 - Crystal
11 - Synthesized from HF Clock (Very power inefficient)

Note: If bits 30-31 is 10 then bits 0-15 are ignored; likewise, if 30-31 is 01 then bits 16..26 are ignored.

The command AT | 2082 or from an application SYSINFO(2082) returns the actual parameters installed at the
instance. For example, if autodection is specified (bits 31..31 == 00) then the value returned is either 01, 10, or
11. And similarly for the other parameters, if invalid values where entered.

211 Maximum ATT_MTU size. Possible values are 23 — 247 Bytes.

212 Maximum Attribute data length. Possible values are 20 — 244 Bytes.

213 Use EVCHARVALUE and EVATTRNOTIFYEX instead of the default EVCHARVAL and EVATTRNOTIFY

respectively. These former events include all parameters in the event, including the string data, and therefore
provide improved throughputs. For more information, see EVCHARVALUE and EVATTRNOTIFYEX.

214 0 — Medium bandwidth (three packets per connection interval) is used on all connections.

1 — High bandwidth (six packets per connection interval) is used on the FIRST connection. Other connections
have medium bandwidth.

Note: When high bandwidth is used, the maximum number of connections that a device can have are reduced
from eight to six.

216 Maximum packet length a module can use (this is not the same as the current packet length). Possible values
are 27-251. By default this is set to 251.

518 The default UART TX ring buffer length.
519 The default UART RX ring buffer length.

520 The baudrate to use for command mode on power up. This setting is inherited by the $autorun$ application if a
print happens before an explicit uartopen inside that application.

Note: These values revert to factory default values if the flash file system is deleted using the
AT & F * interactive command.

https://connectivity.lairdtech.com 17 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird CONNECTIVITY

User Guide

3.1.3 AT+CFGEX

COMMAND

AT+CFGEX is used to set a non-volatile string configuration key. Configuration keys are comparable to S registers in modems.
Their values are kept over a power cycle but are deleted if the AT&F* command is used to clear the file system.

Unless otherwise stated, if a config key value is changed, a reset is required for it to take effect.

The num value syntax is used to set a new value and the num ? syntax is used to query the current value. When the value is
read, the syntax of the response is:

27 string
...where string is the current value of the configuration key.

AT+CFGEX num value or AT+CFGEX num ?

Returns If the config key is successfully updated or read, the response is \n0O\r.
Arguments:
num Integer Constant
The ID of the required configuration key. All of the configuration keys are stored as an array of 16-bit words.
String_constant
value

This is the new string value for the configuration key.

This is an Interactive mode command and must be terminated by a carriage return for it to be processed.

The following Configuration Key IDs are defined.

117 VSP advertisement name, the name of the device which will be seen by scanning devices when the module is in
VSP mode (can be between 1-31 bytes in length).

Default value is: LAIRD BL654

Note: These values revert to factory default values if the flash file system is deleted using the AT & F * interactive
command.

3.1.4 AT+BTD *

COMMAND

Deletes the bonded device database from the flash.
AT+BTD*

Returns \nOO\r

Arguments None

This is an Interactive Mode command and must be terminated by a carriage return for it to be processed.

Note: The module self-reboots so that the bonding manager context is also reset.

Example:

AT+BTD¥*

https://connectivity.lairdtech.com 18 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

3.1.5 AT+BLX

COMMAND

This command is used to stop all radio activity (adverts or connections) when in interactive mode. It is particularly useful when
the virtual serial port is enabled while in interactive mode.

AT+BLX

Returns \nOO\r

Arguments: None

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be processed.

Example

AT+BLX

3.1.6 AT&F

COMMAND

AT&F provides facilities for erasing various portions of the module’s non-volatile memory.

AT&F integermask

Returns OK if flash is successfully erased

Arguments
Integermask Integer corresponding to a bit mask or the * character

The mask is an additive integer mask with the following acceptable values:

0x0000xxXX Also see core user guide
1 Erases flash file system
0x100 Erase the system config keys’ flash segment (AT+CFG)
0x10000 Erase the BLE bonding manager
0x10 or 0x40000 Erase the NvRecords flash segment
* Erases all data segments
Else Not applicable to current modules

If an asterisk is used in place of a number, then the module is configured back to the factory default state by erasing all flash
file segments.

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be processed.

AT&F 1 ‘delete the file system
AT&F 16 ‘delete the user config keys
AT&F * ‘delete all data segments
https://connectivity.lairdtech.com 19 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird CONNECTIVITY

User Guide

3.1.7 AT+PROTECT

COMMAND

This command is used to enable readback protection of the flash. For this command to be issued correctly, the readback
protection flag should first be enabled using AT+PROTECT “E” followed by setting the protection using AT+PROTECT “S”.

WARNING: Enabling readback protection is a one time only command. Exiting this mode completely erases the firmware
and requires the use of an nrfjprog command to be issued through the JTAG interface. Once erased, a new
license for the module is needed. While this mode is enabled, firmware upgrade can only be carried out over
UART. Do not enable readback protection unless absolutely necessary.

Note: To make note of the license, keep a copy of the response to the command AT | 14 and AT | OXCOFE.

AT+PROTECT “Char”

Returns 00 for successful execution.

Arguments:
A character which could be one of the following values:
“Char” E — Enable the readback protection flag.
D — Disable the readback protection flag.

S — Set readback protection on the module. This is an irreversible command.

This is an Interactive mode command and must be terminated by a carriage return for it to be processed.

3.1.8 AT+REGOUTO

COMMAND

This command is used to enable external circuitry to be supplied from the VDD pin and set the external output/supply voltage
value. This command can only be performed once and the module must be reset (using SIO_18, ATZ, reset(0), or UART
BREAK) for the new value to take effect.

AT+REGOUTO nValue

Returns 00 for successful execution.

Arguments:
0:1.8v
1:2.1v
2:2.4v
3:2.7v
4:3.0v
5:3.3v

nValue

This is an Interactive mode command and must be terminated by a carriage return for it to be processed.

https://connectivity.lairdtech.com 20 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

il“ NNECTIVITY
User Guide _d) €0 CTIV

4 CORE LANGUAGE BUILT-IN ROUTINES

Core language built-in routines are present in every implementation of smartBASIC. These routines provide the basic
programming functionality. They are augmented with target-specific routines for different platforms which are described in the
extension manual for each target platform.

All the core functionality is described in the Laird smartBASIC Core Functionality Guide. This document is available from the
BL654 product page on the Laird website. Additional information is also available from our Laird Embedded Wireless Solutions
Support Center at http://ews-support.lairdtech.com.

Some functions have small behavioral differences from the core functionality. These are listed in the sections below.

4.1 Information Routines

4.1.1 SYSINFO

FUNCTION

Returns an informational integer value depending on the value of varld argument.

SYSINFO (varld)

Returns INTEGER. Value of information corresponding to integer ID requested.
Exceptions = Local Stack Frame Underflow
= Local Stack Frame Overflow
Arguments:
byVal varld AS INTEGER
An integer ID which is used to determine which information is to be returned as described below.
0 Device ID. Each platform type has a unique identifier.
Module firmware version number
Example:
W.X.Y.Z is returned as a 32-bit value made up as follows:
(W<<24) + (X<<18) + (Y<<6) + (2)
3 where W is the platform and will always be 28 for the BL654 and X is changed whenever 3™
party libraries are changed. In this case the Nordic Softdevice and Y is the build number and Z
is the sub-build number.
Note you can check the Softdevice build number in command mode by submitting the
command AT | 1
BASIC core version number
Example:
varld 33 A.B is returned as a 32 bit value made up as follows:
(A<<8) + (B)
and note the string “A.B” is returned via command mode command AT | 33
601 Flash File System: Data Segment: Total Space
602 Flash File System: Data Segment: Free Space
603 Flash File System: Data Segment: Deleted Space
611 Flash File System: FAT Segment: Total Space
612 Flash File System: FAT Segment: Free Space
613 Flash File System: FAT Segment: Deleted Space
631 NvRecord Memory Store Segment: Total Space
632 NvRecord Memory Store Segment: Free Space
633 NvRecord Memory Store Segment: Deleted Space
1000 BASIC compiler HASH value as a 32 bit decimal value
1001 How RAND() generates values: 0 for PRNG and 1 for hardware assist
1002 Minimum baudrate
https://connectivity.lairdtech.com 21 Americas: +1-800-492-2320

© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

http://www.lairdtech.com/products/bl654-ble-thread-nfc-modules
http://ews-support.lairdtech.com/

BL654 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

1003 Maximum baudrate
1004 Maximum STRING size
1005 Is 1 for run-time only implementation, 3 for compiler included
1010 Module Type
Reset Reason
= 8 : Self-Reset due to Flash Erase
= 9:ATZ
= 10: Self-Reset due to smart BASIC app invoking function RESET()
Cause of last reset. This is a bit mask where the bits are defined as follows:
Bit 0: Reset from pin-reset
Bit 1: Reset from watchdog
2001 Bit 2: Reset from soft reset
Bit 3: Reset from CPU lockup
Bit 16: Reset due to wake up from System OFF mode when wakeup is triggered from GPIO
Bit 19: Reset due to wake up from System OFF mode by NFC field detect
2002 Timer resolution in microseconds
2003 Number of timers available in a smart BASIC Application
2004 Tick timer resolution in microseconds
2005 LMP Version number for BT 4.0 spec
2006 LMP Sub Version number
2007 Chipset Company ID allocated by BT SIG
2008 Returns the current TX power setting (see also 2018)
2009 Number of devices in trusted device database
2010 Number of devices in trusted device database with IRK
2011 Number of devices in trusted device database with CSRK
2012 Max number of devices that can be stored in trusted device database
2013 Maximum length of a GATT Table attribute in this implementation
Radio activity of the baseband and the BT allocation is as follows:-
= 0 - advertising
= 1 - connected as slave
= 2 —Initiating a connection
= 3 - scanning for adverts
= 4 — connected as master

2018 Returns the TX power while pairing in progress (see also 2008)

2021 Stack tide mark in percent. Values near 100 are not good.

2022 Stack size

2023 Initial Heap size

2024 The chipset temperature in tenth of a centigrade. For example, 23.4 is returned as 234
Current free heap memory.

2000

2016

Note: This is the total of all free blocks. It is entirely possible to get a MALLOC_FAIL even
though this indicates there is enough memory for your need because there may not

2025 be a block large enough to accommodate the request.

Although smartBASIC does not directly expose malloc/free, they are used extensively in
STRING variable operations.

2026 Supply voltage in millivolts

2040 Max number of devices that can be stored in trusted device database

2041 Number of devices in trusted device database

2042 Number of devices in the rolling device database

Maximum number of devices that can be stored in the rolling device

Database

2044 Returns a 16 bit hash of the current state of the Gatt Table Schema

2050 Will be 0 if NFC pins are disabled and 1 if enabled

2043

https://connectivity.lairdtech.com 22 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

il“ NNECTIVITY
User Guide _d) €0 CTIV

2051 Maximum number of NDEF messages that can be created simultaneously
2052 Maximum size of an NDEF message in bytes
2080 The startup time from reset to just before the autorun application is launched in milliseconds
2081 The current tick count in milliseconds
This is a bitmask value
2082 The actual Low Frequency Clock configuration submitted to the softdevice. See AT+CFG 210
description for details about the 4 bit fields in the 32 bits
Get High Voltage Mode as follows:-
2083 0: Normal mode
1: High Voltage Mode
2100 Connect Scan Interval used when connecting, in milliseconds
2101 Connect Scan Window used when connecting, in milliseconds
2102 Connect Slave Latency default value in connection requests
2105 Connect Multi-Link Connection Interval periodicity in milliseconds
2150 Scan Interval used when scanning in milliseconds
2151 Scan Window used when scanning in milliseconds
2152 Scan Type Active or Passive (O=Passive, 1=Active)
2203 Advert Channel Mask
Content of FICR register in the Nordic nrf52840 chipset. In the nrf52840 datasheet, in the

OX8_OOO FICR section, all the FICR registers are listed in a table with each register identified by an

OX87FE offset, so for example, to read the Code memory page size which is at offset 0x010, call
SYSINFO(0x8010) or in interactive mode use AT | 0x8010.

0x9000 Content of UICR register in the Nordic nrf52 chipset. In the nrf52840 datasheet, in the UICR

. section, all the UICR registers are listed in a table with each register identified by an offset, so

0x9800 for example, to read the NFC pins functionality which is at offset 0x20C, call

SYSINFO(0x920C) or in interactive mode use AT | 0x920C.
Example:
// Example :: SysInfo.sb

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

PRINT "\nSysInfo 601 = ";SYSINFO (601) // Flash File System: Total Space (Data Segment)
PRINT "\nSysInfo 2102 = ";SYSINFO(2102) // Default connect slave latency
PRINT "\nSysInfo 1002 = ";SYSINFO(1002) // Minimum UART baud rate

Expected Output:

SysInfo 601 = 49152
SysInfo 2102 =0
SysInfo 1002 = 1200

https://connectivity.lairdtech.com 23 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

4.1.2 SYSINFO$%

FUNCTION
Returns an informational string value depending on the value of varld argument.

SYSINFOS$ (varld)

Returns STRING. Value of information corresponding to integer ID requested.

Exceptions » Local Stack Frame Underflow
= Local Stack Frame Overflow

Arguments:
varld byVal varld AS INTEGER
An integer ID which is used to determine which information is to be returned as described below.
The Bluetooth address of the module.

4 It is seven bytes long. First byte is 00 for IEEE public address and 01 for random public address.
Next six bytes are the address.

A random public address unique to this module. May be the same value as in 4 above unless an
IEEE Bluetooth address is set.

14
It is seven bytes long. First byte is 00 for IEEE public address and 01 for random public address.
Next six bytes are the address.
Example:
// Example :: SysInfo$.sb

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

PRINT "\nSysInfo$ (4) = ";SYSINFOS (4) // address of module
PRINT "\nSysInfo$(14) = ";SYSINFOS$(14) // public random address
PRINT "\nSysInfo$ (0) = ";SYSINFOS (0)

Expected Output:

SysInfo$ (4) = \01\FA\84\D7H\D9\03
SysInfo$ (14) \O1\FA\84\D7H\DI9\03
SysInfo$ (0)

4.2 UART Interface

4.2.1 UartOpen

FUNCTION
This function is used to open the main default UART peripheral using the parameters specified.

See core manual for further details.

UARTOPEN (baudrate, txbuflen, rxbuflen, stOptions)

byVal stOptions AS STRING
This string (can be a constant) MUST be exactly 5 characters long where each character is used to specify
stOptions further comms parameters as follows.
Character Offset:
0 | DTE/DCE role request:

https://connectivity.lairdtech.com 24 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

User Guide La"'d 2» CONNECTIVITY

= T-DTE
= C-DCE
Parity:

= N-None
= O-0dd (Not Available)
= E - Even (Not Available)

2 Databits: 8

3 Stopbits: 1

Flow Control:

4 = N-None

= H-CTS/RTS hardware

= X — Xon/Xof (Not Available)

SIO pin for RTS
SIO pin for TX
SIO pin for CTS
SIO pin for RX

(el RN R L]

The following baud rates are supported: 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 76800, 115200, 230400,
250000, 460800, 921600 and 1000000 baud.

4.2.2 UartSetRTS

The BL654 module does not offer the capability to control the RTS pin as the underlying hardware does not allow it.

4.2.3 UartBREAK

The BL654 module does not offer the capability to send a BREAK signal.

4.3 Auxiliary UART (Universal Asynchronous Receive Transmit)

This section describes all the events and routines used to interact with the Auxilliary UART peripheral available on the module.
Depending on the platform, at a minimum, the UART consists of a transmit, a receive, a CTS (Clear To Send) and RTS
(Ready to Send) line. The CTS and RTS lines are used for hardware handshaking to ensure that buffers do not overrun.

If there is a need for the following low bandwidth status and control lines found on many peripherals, then the user is able to
create those using the GPIO lines of the module and interface with those control/status lines using smartBASIC code.

Output DTR Data Terminal Ready
Input DSR Data Set Ready
Output/Input DCD Data Carrier Detect
Output/Input RI Ring Indicate

The lines DCD and RI are marked as Output or Input because it is possible, unlike a device like a PC where they are always
inputs and modems where they are always outputs, to configure the pins to be either so that the device can adopt a DTE (Data
Terminal Equipment) or DCE (Data Communications Equipment) role.

Note: DCD and RI have to be BOTH outputs or BOTH inputs; one cannot be an output and the other an input.

4.3.1 Auxilliary UART Events

In addition to the routines for manipulating the Auxilliary UART interface, when data arrives via the receive line it is stored
locally in an underlying ring buffer and then an event is generated.

Similarly, when the transmit buffer is emptied, events are thrown from the underlying drivers so that user smartBASIC code in
handlers can perform user defined actions.

https://connectivity.lairdtech.com 25 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird

) CONNECTIVITY
User Guide _)

The following is a detailed list of all events generated by the UART subsystem which can be handled by user code.

This event is generated when one or more new characters have arrived and have been

EVAUXRX stored in the local ring buffer.
EVAUXTXEMPTY This event is generated V\(hen the last character is transferred from the local transmit ring
buffer to the hardware shift register.
// Example :: EVAUXRX.sb
DIM rc

FUNCTION HndlrAuxRx ()
PRINT "\nData has arrived\r"
ENDFUNC 1 //remain blocked in WAITEVENT

FUNCTION BtnOPressed()
ENDFUNC O

rc = GPIOBRindEvent (0,16,1)
PRINT "\nPress Button 0 to exit this application \n"

ONEVENT EVAUXRX CALL HndlrAuxRx
ONEVENT EVGPIOCHANO CALL BtnOPressed

WAITEVENT //wait for rx, tx and modem status events
PRINT "Exiting..."

Expected Output:

Press Button 0 to exit this application

e

Data has arrived
Data has arrived
Data has arrived

Exiting...

Note: If you type unknown commands, an EQ07 error displays in UwTerminal.

// Example :: EVAUXTXEMPTY.sb
FUNCTION HndlrUartTxEty ()

PRINT "\nTx buffer is empty"
ENDFUNC 0

ONEVENT EVAUXTXEMPTY CALL HndlrAuxTxEty

PRINT "\nSend this via uart"

WAITEVENT

https://connectivity.lairdtech.com 26 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird CONNECTIVITY

User Guide

Expected Output:

Send this via uart

Tx buffer is empty

4.3.2 AUXOpen

Note: If communicating with a Mac OS X device, the baud rate cannot be set above 230400 due to Mac having no
support for these baud rates.

FUNCTION
This function is used to open the main default UART peripheral using the parameters specified.

If the UART is already open, then this function fails. To prevent this, call AuxClose() or AuxCloseEx() before calling this
function.

If this function is used to alter the communications parameters, like say the baudrate and the application exits to interactive
mode, then those settings are inherited by the interactive mode parser. Hence this is the only way to alter the communications
parameters for Interactive mode.

While the Auxilliary UART is open, if a BREAK is sent to the module, then it forces the module into deep sleep mode as long
as BREAK is asserted. As soon as BREAK is deasserted, the module wakes up through a reset as if it had been power cycled.

AUXOPEN (baudrate,txbuflen,rxbuflen,stOptions)

INTEGER Indicates success of command:
0 Opened successfully
0x5208 Invalid baudrate
0x5209 Invalid parity
0x520A Invalid databits
0x520B Invalid stopbits

Returns: 0x520C Cannot be DTE (because DCD and RI cannot be inputs)
0x520D Cannot be DCE (because DCD and RI cannot be outputs)
0x520E Invalid flow control request
0x520F Invalid DTE/DCE role request
0x5210 Invalid length of stOptions parameter (must be five characters)

0x5211 Invalid Tx buffer length
0x5212 Invalid Rx buffer length

Local Stack Frame Underflow

Exceptions Local Stack Frame Overflow

Arguments:

byVal baudrate AS INTEGER

The baudrate for the UART. Note that, the higher the baudrate, the more power is drawn from the
baudrate supply pins.

AT 11002 or SYSINFO(1002) returns the minimum valid baudrate

AT 11003 or SYSINFO(1003) returns the maximum valid baudrate

https://connectivity.lairdtech.com 27 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

L ir NNECTIVITY
User Guide \id) €0 <

byVal txbuflen AS INTEGER
txbuflen Set the transmit ring buffer size to this value. If set to 0 then a default value is used by the
underlying driver

byVal rxbuflen AS INTEGER
Rxbuflen Set the receive ring buffer size to this value. If set to 0 then a default value is used by the
underlying driver

byVal stOptions AS STRING
This string (can be a constant) MUST be exactly 5 characters long where each character is used
to specify further comms parameters as follows.

Character Offset:

DTE/DCE role request:
0 = T-DTE
= C-DCE
Parity:
1 = N-None
= O-0Odd
= E- Even
stOptions 2 Databits: 5, 6, 7, 8, or 9

3 Stopbits: 1 or 2

Flow Control:

= N -None
= H-CTS/RTS hardware
= X - Xon/Xof (may not be available, see extension manual)

SIO pin to use for RTS
SIO pin to use for TX
SIO pin to use for CTS
SIO pin to use for RX

0 N O | »,

Interactive

NO
Command

Note: There are further restrictions on the options based on the hardware as for example a PC implementation cannot be
configured as a DCE role. Likewise, many microcontroller UART peripherals are not capable of 5 bits per character
—butaPCis.

Note: In DTE equipment DCD and RI are inputs, while in DCE they are outputs.

https://connectivity.lairdtech.com 28 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird CONNECTIVITY

User Guide

4.3.3 AUXClose

FUNCTION
This subroutine is used to close the auxilliary UART port which had been opened with AUXOPEN.

When this subroutine is invoked, the receive and transmit buffers are both flushed. If there is any data in either of these
buffers when the UART is closed, it will be lost. This is because the execution of AUXCLOSE takes a very short amount of
time, while the transfer of data from the buffers takes much longer.

AUXCLOSE()

Local Stack Frame Underflow

Exceptions = Local Stack Frame Overflow

Arguments None

4.3.4 AUXCloseEx

FUNCTION

This function is used to close the Auxilluary UART port which had been opened with AUXOPEN depending on the flag mask in
the input parameter.

Please see UartClose() for more details.

AUXCLOSEEX(nFlags)

INTEGER

Returns An integer result code. The most typical value is 0x0000, which indicates a successful operation.
If 0x5231 is returned it implies one of the buffers was not empty so not closed.

= Local Stack Frame Underflow

Exceptions = Local Stack Frame Overflow
Arguments
byval nFlags AS INTEGER
nFlags If Bit O is set, then only close if both rx and tx buffers are empty. Setting this bit to 0 has the same

effect as UartClose() routine.
Bits 1 to 31 are for future use and must be set to 0.

4.3.5 AUXInfo

FUNCTION

This function is used to query information about the Auxilliary UART, such as buffer lengths, whether the port is already open
or how many bytes are waiting in the receive buffer to be read.

AUXINFO (infold)

Returns INTEGER The value associated with the type of uart information requested
Exceptions . tocal Stack Frame Underflow
. ocal Stack Frame Overflow

Arguments

byVval infold AS INTEGER

This specifies the type of UART information requested as follows if the UART is open:
infold 0 1 - The port is open

0 — The port is closed
The following specify the type of uart information when the port is open:
https://connectivity.lairdtech.com 29 Americas: +1-800-492-2320

© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird CONNECTIVITY

User Guide

Receive ring buffer capacity

Transmit ring buffer capacity

Number of bytes waiting to be read from receive ring buffer

Free space available in transmit ring buffer

Number of bytes still waiting to be sent in transmit buffer

o O~ W (N |-

Total number of bytes waiting in rx and tx buffer

If the UART is closed, 0 is always returned regardless of the value of infold.
Note: UARTINFO(0O) always returns the open/close state of the UART.

4.3.6 AUXWrite

FUNCTION

This function is used to transmit a string of characters from the auxilliary uart interface

AUXWRITE (strMsg)

INTEGER
0 to N : Actual number of bytes successfully written to the local transmit ring buffer
= Local Stack Frame Underflow
Exceptions = Local Stack Frame Overflow
= UART has not been opened using UARTOPEN (or auto-opened with PRINT statement)

Returns

Arguments

byRef strMsg AS STRING

The array of bytes to be sent. STRLEN(strMsg) bytes are written to the local transmit ring buffer. If

STRLEN(strMsg) and the return value are not the same, this implies the transmit buffer did not
strMsg have enough space to accommodate the data. If the return value does not match the length of the

original string, then use STRSHIFTLEFT function to drop the data from the string, so that

subsequent calls to this function only retries with data which was not placed in the output ring

buffer.
Interactive
NO
Command
Note: strMsg cannot be a string constant (e.g. “the cat”); it must be a string variable. If you must use a const string, first

save it to a temp string variable and then pass it to the function.

4.3.7 AUXRead

FUNCTION

This function is used to read the content of the receive buffer of the Auxilliary uart port and append it to the string variable
supplied.

AUXREAD(strMsQ)

INTEGER 0to N : The total length of the string variable — not just what got appended. This
Returns means the caller does not need to call strlen() function to determine how many bytes in the string
that need to be processed.
= Local Stack Frame Underflow

Exceptions = Local Stack Frame Overflow
= Uart has not been opened using UARTOPENXxxx

Arguments

https://connectivity.lairdtech.com 30 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird CONNECTIVITY

User Guide

byRef strMsg AS STRING

strMs
9 The content of the receive buffer is appended to this string.
Interactive
NO
Command
Note: strMsg cannot be a string constant (e.g. “the cat”); they must be a string variable. If you must use a const string,

first save it to a temp string variable and then pass it to the function.

4.3.8 AUXReadN
FUNCTION

This function is used to read the content of the receive buffer of the Auxilliary uart port and append it to the string variable
supplied but it ensures that the string is not longer than nMaxLen.

AUXREADN(strMsg, nMaxLen)

INTEGER 0to N : The total length of the string variable — not just what got appended. This
Returns means the caller does not need to call strlen() function to determine how many bytes in the string
that need to be processed.

= Local Stack Frame Underflow
Exceptions = Local Stack Frame Overflow
= Uart has not been opened using UARTOPENXxxx

Arguments
StrMs byRef strMsg AS STRING
9 The content of the receive buffer is appended to this string.

byval nMaxLen AS INTEGER

AMaxLen The output string strMsg is never longer than this value unless on entry the string was already
longer. If a value less than 1 is specified, it is clipped to 1 and if > that OXFFFF it is clipped to
OXFFFF.

Interactive
NO

Command

Note: strMsg cannot be a string constant (e.g. “the cat”); they must be a string variable. If you must use a const string,

first save it to a temp string variable and then pass it to the function.

4.3.9 AUXReadMatch

FUNCTION

This function is used to read the content of the underlying receive ring buffer of the Auxilliary uart port and append it to the
string variable supplied, up to and including the first instance of the specified matching characters (up to a sequence of 3
characters) OR the end of the ring buffer.

This function is very useful when interfacing with a peer which sends messages terminated by a constant character such as a
carriage return (Ox0D) or the dual character sequence (0xOD Ox0A). In that case, in the handler, if the return value is greater
than 0, it implies a terminated message arrived and so can be processed further.

AUXREADMATCH(strMsg , chr)

INTEGER Indicates the presence of the match character in strMsg as follows:
0 — Data may have been appended to the string, but no matching character.

Returns
1 to N — The total length of the string variable up to and including the match chr.
Note: When 0 is returned you can use STRLEN(strMsg) to determine the length of data stored
https://connectivity.lairdtech.com 31 Americas: +1-800-492-2320

© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird CONNECTIVITY

User Guide

in the string. On some platforms with low amount of RAM resources, the underlying code
may decide to leave the data in the receive buffer rather than transfer it to the string.
= Local Stack Frame Underflow

Exceptions = Local Stack Frame Overflow
= Uart has not been opened using UARTOPEN

Arguments
byRef strMsg AS STRING

strMsg The content of the receive buffer gets appended to this string up to and including the match
character.
byVal chrs ASINTEGER
The characters to match in the receive buffer; for example, the carriage returns character 0x0D, or
0x0AOD.

Chrs For OXOAOQD, it will mean the string <CR><LF> because an integer constant is specified in little
endien format.
The most significant byte MUST be 0x00 as it is taken as the NULL terminator for the string that is
cast from this 4 byte integer value.

Interactive

Command NO

Note: strMsg cannot be a string constant (e.g. “the cat”); they must be a string variable. If you must use a const string,

first save it to a temp string variable and then pass it to the function.

4.3.10 AUXFlush

SUBROUTINE
This subroutine is used to flush either or both receive and transmit ring buffers of the Auxilliary uart port.

This is useful when, for example, you have a character terminated messaging system and the peer sends a very long
message and the input buffer fills up. In that case, there is no more space for an incoming termination character and the RTS
handshaking line would have been asserted so the message system stalls. A flush of the receive buffer is the best approach
to recover from that situation.

Note: Execution of AUXFLUSH is much quicker than the time taken to transmit data to/from the
buffers

AUXFLUSH (bitMask)

= Local Stack Frame Underflow
Exceptions = Local Stack Frame Overflow
= Uart has not been opened using UARTOPEN

Arguments
byVal bitMask AS INTEGER
This bit mask is used to choose which ring buffer to flush.
Bit Description
bitMask
0 Set to flush the Rx buffer
1 Set to flush the Tx buffer
Interactive
N
Command o
https://connectivity.lairdtech.com 32 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

User Guide La"'d 2» CONNECTIVITY

4.3.11 AUXGetCTS

FUNCTION
This function is used to read the current state of the CTS status input line of the Auxilliary Uart port

If the device does not expose a CTS input line, then this function returns a value that signifies an asserted line.

AUXGETCTS()
INTEGER Indicates the status of the CTS line:
Returns 0 : CTSline is NOT asserted

1 : CTSline is asserted

= Local Stack Frame Underflow
Exceptions *= Local Stack Frame Overflow
= Uart has not been opened using UARTOPEN

Arguments None

Interactive

Command NO

4.3.12 AUXSetRTS

The BL654 module does not offer the capability to control the RTS pin as the underlying hardware does not allow it.

4.3.13AUXBreak

The BL654 module does not offer the capability to send a BREAK signal from the Auxilliary uart port

4.4 12C - Two Wire Interface (TWI)

The BL654 can be only be configured as an 12C master if it is the only master on the bus and only 7-bit slave addressing is
supported. Refer to the core user guide for API details.

When the 12C interface is opened using 12cOpen(), it takes a frequency parameter for the clock line. Valid values
are 100KHz, 250KHz and 400KHz.

4.5 SPI Interface

The BL654 module can be configured as both SPI master and SPI slave. The section below describes the SPI slave API. See
core user guide for SPI master API.

4.6 SPI Slave Interface

This section describes all the events and routines used to interact with the SPI Slave peripheral that is available on the
module. For successful SPI operations, the remote SPI master's CS, MISO, MOSI, and SCK should be connected directly to
the module’s CS, MISO, MOSI and SCK pins (respectively). The module’s 4 SPI Slave pins can be configured using the
SpiSlaveConfig() function, which by default are 11 (CS), 17 (MISO), 18 (MOSI), and 19 (SCK). Special purpose pins such as
nAutorun (13) and nReset (22) cannot be configured for SPI Slave operations.

On the BL654, the SPI Slave peripheral supports the following frequencies:- 125KHz, 250KHz, 500KHz, 1MHz, 2MHz, 4MHz,
and 8MHz. These frequencies are set by the SPI master and cannot be configured by the SPI Slave.

https://connectivity.lairdtech.com 33 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

4.6.1 Events and Messages

4.6.1.1 EVSPISLAVETXRX

This event is thrown when an SPI slave transaction has been completed and the SPI slave Tx/Rx buffers have been updated.
The event comes with the following parameters:

nTxAmount — The amount of data that was read (clocked out) by the remote SPI master.

nRxAmount — The amount of data that was written by the remote SPI master into the SPI slave Rx buffer.

4.6.1.2 EVSPISLAVERXBUFFERFULL

This event is thrown when the SPI slave Rx buffer is full and as a result some data written by the remote SPI master might've
been dropped. The event contains the following parameters:-

nRxAmountDropped — The amount of data that was written from the remote SPI master but dropeed due to the buffer being
full.

4.6.1.3 EVSPISLAVETXBUFFEREMPTY

This event is thrown when the SPI slave Tx buffer has been emptied due to an SPI master reading out the Tx data from the
SPI slave Tx buffer. The handler for this event contains no parameters.

4.6.2 SpiSlaveConfig

FUNCTION

This function is used to update the configuration options of the SPI slave peripheral. If the SPI slave peripheral is already
open, then these values will not take effect until the peripheral is closed and then opened again.

SPISLAVECONFIG(nConfigld, nValue)

Returns INTEGER, a result code.
Typical value:
0x0000 - The Tx buffer has been updated successfully
0x5260 - Invalid configuration index

Arguments:

nConfigld byVal nConfigld AS INTEGER.
The configuration ID, possible values are:-

0 SPI Slave Chip Select (CS) pin — default 28
1 SPI Slave Master In Slave Out (MISO) pin — default 29
2 SPI Slave Master Out Slave In (MOSI) pin — default 30
3 SPI Slave Clock (SCK) pin — default 31
4 SPI Slave Tx buffer size in bytes — (Possible values: 16-255, default 255)
5 SPI Slave Rx buffer size in bytes — (Possible values: 16-255, default 255)
6 SPI Slave Mode:-
Mode CPOL CPHA
0 0 0
1 0 1
2 1 0
3 1 1
nvalue byVvalnValue AS INTEGER
The value to be assigned to the configuration ID.
Example:
// Example :: SpiSlaveConfig.sb

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples
dim rc, nHandle

https://connectivity.lairdtech.com 34 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

il“ NNECTIVITY
User Guide _d) €0 CTIV

// Configure SPI Slave peripheral Tx buffer before opening
rc = SpiSlaveConfig (4, 100)
if rc == 0 then
print "\nSPI slave tx buffer size configured"
else
print "\nFailed to configure SPI slave tx buffer with error code ";integer.h' rc
endif

// Open SPI Slave Periperhal
rc = SpiSlaveOpen (nHandle)

if rc == 0 then
print "\nOpened SPI Slave peripheral with handle = ";integer.h' nHandle
else
print "\nFailed to open SPI Slave peripheral"
endif
WaitEvent

Expected Output:

SPI slave tx buffer size configured
Opened SPI Slave peripheral with handle = 9ABCDEFO

4.6.3 SpiSlaveOpen

FUNCTION

This function is used to open a slave SPI peripheral in half duplex mode using the preconfigured SPI Slave values. The
parameters (GPIO pins, buffer sizes, mode, etc) are inherited from the SpiSlaveConfig() function. The default parameters on
the BL654 are:

SPI Slave CS Pin 28
SPI Slave MOSI Pin 29
SPI Slave MISO Pin 30
SPI Slave SCK Pin 31

SPI Slave Tx Buffer Size (in bytes) 255
SPI Slave Rx Buffer Size (in bytes) 255
SPI Slave Mode 0 (CPOL =0, CPHL = 0)

In order to change these parameters, the SPI slave peripheral should be closed before SpiSlaveConfig() is used. After all the
parameters have been successfully configured, SpiSlaveOpen can be called again at which point the new values will take
effect.

SPISLAVEOPEN(nHandle)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nHandle byRef nHandle AS INTEGER.
When calling this function, a variable should be given which on return will contain the handle of the opened
SPI Slave peripheral if the function is successful.

Example:

// Example :: SpiSlaveOpen.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples
dim rc, nHandle

// Open SPI Slave Periperhal
rc = SpiSlaveOpen (nHandle)
if rc == 0 then

https://connectivity.lairdtech.com 35 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

print "\nOpened SPI Slave peripheral with handle = ";integer.h' nHandle
else

print "\nFailed to open SPI Slave peripheral"
endif
WaitEvent

Expected Output:

| Opened SPI Slave peripheral with handle = 9ABCDEF0

4.6.4 SpiSlaveClose
FUNCTION

This function is used to close the spi slave peripheral with the given handle.

SPISLAVECLOSE(nHandle)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
Arguments:
nHandle byRef nHandle AS INTEGER.

Handle of the SPI slave interface to close. On return, this will contain an invalid handle indicating that the
SPI Slave peripheral has been successfully closed.

Example:

// Example :: SpiSlaveClose.sb

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples
dim rc, nHandle

// Open SPI Slave Periperhal
rc = SpiSlaveOpen (nHandle)

if rc == 0 then
print "\nOpened SPI Slave peripheral with handle = ";integer.h' nHandle
rc = SpiSlaveClose (nHandle)
if rc == 0 then
print "\nSPI Slave successfully closed"
endif
endif
WaitEvent

Expected Output:

Opened SPI Slave peripheral with handle = 9ABCDEFO0
SPI Slave successfully closed

https://connectivity.lairdtech.com 36 Americas: +1-800-492-2320

© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird CONNECTIVITY

User Guide

4.6.5 SpiSlaveTxBufferWrite

FUNCTION

This function is used to write the content of a string to the SPI slave Tx buffer. This written data is only stored in the buffer
and not sent to the SPI master until the SPI master selects the SPI slave chip and clock out the data from the buffer.
When the SPI master selects the chip and clocks out the data, the buffer becomes unaccessible by the app until the SPI
master operation is complete.

SPISLAVETXBUFFERWRITE(nHandle, strwr$)

Returns INTEGER, a result code.
Typical value:
0x0000 The Tx buffer has been updated successfully
0x5206 Tx Buffer full
0x521D Resource busy (e.g. the buffer is being accessed by the remote SPI master)
0x5220 Invalid handle
0x5222 Invalid wite length (e.g. the given string is larger than the Tx buffer size)

Arguments:
nHandle byVal nHandle AS INTEGER.
Handle of the SPI slave interface to write to.
strwr$ byRef strwr$ AS STRING
Reference to a string variable to write to the SPI slave Tx buffer.

Example:

// Example :: SpiSlaveTxBufferWrite.sb

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples
dim rc, nHandle

dim st$: st$ = "SPI Slave Data"

// Open SPI Slave Periperhal
rc = SpiSlaveOpen (nHandle)
if rc == 0 then
// Try writing data to the buffer
rc = SpiSlaveTxBufferWrite (nHandle, st$)

if rc == 0 then
print "\nSPI Slave buffer updated with written data"
else
print "\nFailed to write SPI Slave data with error code ";integer.h' rc
endif
endif
WaitEvent

Expected Output:

| SPI Slave buffer updated with written data

https://connectivity.lairdtech.com 37 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions l_ailﬂ-‘:lw CONNECTIVITY

User Guide

4.6.6 SpiSlaveRxBufferRead

FUNCTION

This function is used to read the contents of the SPI slave Rx buffer. The data in the Rx buffer would have been placed by the
remote SPI master in an earlier transaction. This Rx buffer can only be accessed if the SPI slave is not selected by the
remote SPI master and there is no ongoing SPI operation. The data that is read is then removed from the buffer in order to
make room for more SPI master write operations.

If data is received from the remote SPI master and the Rx buffer is full, the event EVSPISLAVERXBUFFERFULL is thrown
with the amount of data that was dropped.

SPISLAVERXBUFFERREAD(nHandle, nLength, strRd$)

Returns INTEGER, a result code.
Typical value:
0x0000 The Rx buffer has been read successfully
0x5220 Invalid handle
0x5223 Invalid read length (e.g. the given length is larger than the Rx buffer)

Arguments:
nHandle DPYRefnHandle AS INTEGER.
Handle of the SPI slave interface to close. On return, this will contain an invalid handle indicating that the
SPI Slave peripheral has been successfully closed.
nLength byRef nLength AS INTEGER

Number of bytes to read from the Rx buffer. On return, this value will contain the number of data bytes
that was read.

strRd$ BYRef strRd$ AS STRING

On return, this variable will contain the string data that was read from the SPI slave Rx buffer.

Example:

// Example :: SpiSlaveRxBufferRead.sb

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples
dim rc, nHandle, st$

dim nLen : nLen = 30 // Try to read 30 bytes of data

// Open SPI Slave Peripheral
rc = SpiSlaveOpen (nHandle)
if rc == 0 then

// Try reading data from SPI slave buffer

rc = SpiSlaveRxBufferRead (nHandle, nLen, st$)

if rc == 0 then

if nLen > 0 then
print "\nSPI slave Data read: "; st$

else
print "\nNo SPI slave data read"
endif
else
print "\nFailed to read SPI Slave data with error code ";integer.h' rc
endif
endif
WaitEvent

Expected Output:

No SPI slave data read

https://connectivity.lairdtech.com 38 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

4.7 QSPI

The BL654 can interact with a QSPI memory to read/write data for data logging or other purposes. For successful QSPI
operations, the remote QSPI memory’s CS, DIOO0, DIO1, DIO2, DIO3 and SCK should be connected directly to the module’s
CS, DIOO, DIO1, DIO2, DIO3 and SCK pins (respectively). The QSPI memory can operate in various modes including fast
read, dual-read output, dual-read input/output, quad-read output, quad-read input/output, page program, dual page program
output, quad page program output and quad page input/output and has has support for deep power-down mode and 24/32-bit
addressing modes.

4,71 Events and Messages

4.7.1.1 EVQSPIERASED

This event is thrown when a QSPI full-chip erase operation has completed either successfully or unsuccessfully, note that this
will only be called when a full-chip erase is used, a sector/page erase will not use this event. The event comes with the
following parameters:-

nHandle — The handle of the QSPI interface on which the erase was performed.

nStatus — The status of the full-chip erase procedure in hex which can be:

0x0000 Full-chip erase process completed successfully

0x5270 Full-chip erase process failed.

0x5271 Full-chip erased aborted by forced reset

4.7.2 QSPIOpen

FUNCTION
This function is used to open the QSPI interface with the settings configured through the QSPIConfigSet function.

QSPIOPEN(nHandle)

Returns INTEGER, a result code.
Typical value:
0x0000 The QSPI interface has been successfully opened
0x0211 Invalid configuration parameter
0x5207 QSPI device already open
0x521D Resource not available
0x5225 Invalid frequency
0x5266 QSPI device not detected
0x5274 Invalid pin configuration

Arguments:

nHandle bYRefnHandle AS INTEGER
On return, this will contain a handle to the QSPI interface, if opened successfully.

https://connectivity.lairdtech.com 39 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions
User Guide

Laird 2» CONNECTIVITY

Example:

// Example QSPI.sb
dim rc

dim gspihandle
dim tmpval

dim Manufacturer,
dim data$

MemoryType, MemoryDensity

sub AssertRC (rc,
if rc!=0 then
print "Failed with ";integer.h'
endif
endsub

taqg)

function QSPITest ()
rc = QSPIConfigGet (6,
AssertRC (rc, 0)

tmpval)

if (xc != 0) then
exitfunc 0O
endif

print "Default drive strength is: ";tmpval;"\r\n"

rc = QSPIConfigSet (6, 1)
AssertRC (rc, 1)

if (rc != 0) then
exitfunc 0
endif

print "Changed drive strength to: 1\r\n"

rc = QSPIConfigGet (6,
AssertRC (rc, 2)

tmpval)

if (rc != 0) then
exitfunc 0
endif

print "Drive strength is now: ";tmpval;"\r\n"
rc = QSPIOpen (gspihandle)

AssertRC (rc, 3)

if (rc !'= 0) then
exitfunc 0
endif

print "Opened QSPI interface, handle:

rc = QSPIConfigSet (6, 0)
AssertRC (rc, 4)

if (rc != 0) then
exitfunc 0
endif

rc = QSPIActiveConfigGet (gspihandle, 6,
AssertRC (rc, 5)

tmpval)

if (xc != 0) then
exitfunc 0
endif

rc = QSPISetPowerMode (gspihandle, 1)
AssertRC (rc, 6)
if (rc !'= 0) then

exitfunc 0

print "Changed volatile drive strength configuration to:

print "Drive strength on handle ";gspihandle;" is:

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

rc;" at tag ";tag;"\n"

";gspihandle; "\r\n"

0O\r\n"

";tmpval;"\r\n"

https://connectivity.lairdtech.com 40
© Copyright 2019 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

p NNECTIVITY
User Guide Lalrd co CTIV

endif
print "Entered high performance mode\r\n"

rc = QSPIErase (gspihandle, 0, 0)
AssertRC (rc, 7)

if (rxc != 0) then
exitfunc 0
endif

print "Erased 4KB sector at 0x0\r\n"

data$ = "test data ab"
rc = QSPIWrite (gspihandle, data$, 0x4)
AssertRC (rc, 8)

if (xc != 0) then
exitfunc 0
endif

print "Wrote '";data$;"' to Ox4\r\n"

datas$ = ""
rc = QSPIRead (gspihandle, data$, 0x4, 12)
AssertRC (rc, 9)

if (xc != 0) then
exitfunc 0
endif

print "Read '";data$;"' from 0x4\r\n"

rc = QSPIInfo(gspihandle, Manufacturer, MemoryType, MemoryDensity)
AssertRC (rc, 7)

if (rc != 0) then
exitfunc 0O
endif
print "QSPI memory manufacturer ID: ";Manufacturer;", memory type: ";MemoryType;",

density: ";MemoryDensity;"\r\n"

rc = QSPIMemorySize (gspihandle, 6, tmpval)
AssertRC (rc, 7)

if (xc != 0) then
exitfunc 0
endif

print "QSPI memory size: ";tmpval;"KB\r\n"

rc = QSPIDPMSet (gspihandle, 1)
AssertRC (rc, 7)

if (rc != 0) then
exitfunc 0
endif

print "Entered DPM\r\n"

tmpval = QSPIIsDPM (gspihandle)
print "DPM mode: ";tmpval;"\r\n"

tmpval = QSPIIsBusy (gspihandle)
print "Busy (with erase): ";tmpval;"\r\n"

rc = QSPIDPMSet (gspihandle, 0)
AssertRC (rc, 7)

if (rc != 0) then
exitfunc 0
endif

print "Exited DPM\r\n"

tmpval = QSPIIsDPM (gspihandle)

https://connectivity.lairdtech.com 41 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird :

) CONNECTIVITY
User Guide _)

print "DPM mode: ";tmpval;"\r\n"

rc = QSPIReset (gspihandle, 0, 1)
AssertRC (rc, 7)

if (rc != 0) then
exitfunc 0
endif

print "Reset QSPI chip keeping configuration\r\n"

rc = QSPIClose (gspihandle)
AssertRC (rc, 3)

if (xc != 0) then
exitfunc 0
endif

print "QSPI handle ";gspihandle;" closed.\r\n"
endfunc 1

print "QSPI example, ensure SB4, SB5, SB6, SB7, SB10 and SBll are soldered before
running.\r\n\zr\n"
rc = QSPITest ()

Expected Output:

QSPI example, ensure SB4, SB5, SB6, SB7, SB10 and SB1ll are soldered before running.

Default drive strength is: 0

Changed drive strength to: 1

Drive strength is now: 1

Opened QSPI interface, handle: -1698897952

Changed volatile drive strength configuration to: 0
Drive strength on handle -1698897952 is: 1

Entered high performance mode

Erased 4KB sector at 0x0

Wrote 'test data ab' to 0x4

Read 'test data ab' from 0x4

QSPI memory manufacturer ID: 194, memory type: 40, density: 19
QSPI memory size: 512KB

Entered DPM

DPM mode: 1

Busy (with erase): O

Exited DPM

DPM mode: 0

Reset QSPI chip keeping configuration

QOSPI handle -1698897952 closed.

https://connectivity.lairdtech.com 42 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird CONNECTIVITY

User Guide

4.7.3 QSPIClose

FUNCTION

This function is used to close a previously opened QSPI interface and free the pins for other functionality. Note that if the QSPI
memory is busy with a full-chip erase then closing the interface will fail, use the QSPIReset function to reset the memory whilst
a full-chip erase is active to allow closing it.

QSPICLOSE(nHandle)

Returns

INTEGER, a result code.

Typical value:

0x0000 The QSPI interface has been successfully closed
0x5201 QSPI not open

0x5220 Invalid handle

0x526C QSPI busy with full-chip erase

Arguments:

nHandle

byVal nHandle AS INTEGER
Handle of the QSPI interface to close. On return, this will contain an invalid handle indicating that the
QSPI peripheral has been successfully closed.

4.7.4 QSPIConfigSet

FUNCTION

This function is used to set the configuration options before opening the QSPI interface. Note that changing these
configuration options after opening the QSPI interface will have no effect.

QSPICONFIGSET(nIndex, nValue)

Returns INTEGER, a result code.
Typical value:
0x0000 The volatile configuration option has been updated successfully
0x0209 Invalid configuration index
0x0211 Invalid configuration parameter
0x5227 Pin configuration cannot be changed
Arguments:
nindex byVal nindex AS INTEGER
Index of the configuration which is as follows:
6 Drive strength (0 = standard, 1 = high)
7 Frequency in Hz (2M, 3.2M, 4M, 6.4M, 8M, 16M or 32M)
8 QSPI clock mode (0 = clock starts with level 0, 3 = clock starts with level 1)
QSPI read mode (0 = Single data line (FAST_READ, op-code 0x0b), 1 = Dual data line
9 (READ20, op-code 0x3B), 2 = Dual data line (READ2IO, op-code 0xBB), 3 = Quad data line
(READA4O, op-code 0x6B), 4 = Quad data line (READA4IO, op-code 0XEB))
10 QSPI write mode (1 = Dual data line (PP20, op-code 0xA2), 2 = Quad data line (PP40, op-
code 0x32), 3 = Quad data line (PP410, op-code 0x38))
11 RX delay (in 15.625ns periods)
12 Clock delay (in 62.5ns periods)
13 Force-enable QSPI mode on open (0 = do not change QSPI mode, 1 = enable QSPI enable bit
when interface is opened)
https://connectivity.lairdtech.com 43 Americas: +1-800-492-2320

© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

L ir NNECTIVITY
User Guide \id) €0 <

Power mode on open (0 = do not change power mode, 1 = set to ultra-low power mode when

14 interface is opened, 2 = set to high performance mode when interface is opened)

15 Dummy cycles on open (0 = do not change dummy cycles, 1 = set to 0 when interface is
opened, 2 = set to 1 when interface is opened)

16 Page size (256 bytes or 512 bytes)

17 Enable DPM (0 = DPM functionality disabled, 1 = DPM functionality enabled)

18 DPM enter duration (in 16us periods)

19 DPM exit duration (in 16us periods)

20 Address type (24-bit or 32-bit)

21 32-bit address op-code

22 32-bit address byte 0
23 32-bit address byte 1

Extended address mode (0 = do not send any instruction, 1 = send op-code, 2 = send op-code

24 and byte 0, 3 = send op-code and byte 0 and byte 1)
25 Extended address WIP wait (0 = do not wait for write, 1 = wait for write complete)
26 Extended address write enable (0 = do not enable writing, 1 = enable writing)
27 XIP offset
nvalue DbyVal nValue AS INTEGER
Value to set.

See example for QSPIOpen.

https://connectivity.lairdtech.com 44 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

4.7.5 QSPIConfigGet

FUNCTION

This function is used to query the volatile configuration options of the QSPI interface, note that this will not get the
configuration options of an opened interface, to query that use the QSPIActiveConfigGet function.

QSPICONFIGGET(nIndex, nValue)

Returns INTEGER, a result code.
Typical value:
0x0000 Configuration returned successfully
0x0213 Invalid index

Arguments:

nindex byVal nindex AS INTEGER
Index of the configuration which is as follows:

6 Drive strength (0 = standard, 1 = high)
7 Frequency in Hz (2M, 3.2M, 4M, 6.4M, 8M, 16M or 32M)
8 QSPI clock mode (0 = clock starts with level 0, 3 = clock starts with level 1)
QSPI read mode (0 = Single data line (FAST_READ, op-code 0x0b), 1 = Dual data line
9 (READ20, op-code 0x3B), 2 = Dual data line (READ2I0, op-code 0xBB), 3 = Quad data line

(READA40O, op-code 0x6B), 4 = Quad data line (READA4IO, op-code 0XEB))
QSPI write mode (1 = Dual data line (PP20, op-code 0xA2), 2 = Quad data line (PP40, op-

10 code 0x32), 3 = Quad data line (PP410, op-code 0x38))

11 RX delay (in 15.625ns periods)

12 Clock delay (in 62.5ns periods)

13 Force-enable QSPI mode on open (0 = do not change QSPI mode, 1 = enable QSPI enable bit
when interface is opened)

14 _Power m(_)de on open (0 =do nqt change power mode, 1 = se_t to uItra—_Iow power mode when
interface is opened, 2 = set to high performance mode when interface is opened)

15 Dummy cycles on open (0 = do not change dummy cycles, 1 = set to 0 when interface is
opened, 2 = set to 1 when interface is opened)

16 Page size (256 bytes or 512 bytes)

17 Enable DPM (0 = DPM functionality disabled, 1 = DPM functionality enabled)

18 DPM enter duration (in 16us periods)

19 DPM exit duration (in 16us periods)

20 Address type (24-bit or 32-bit)

21 32-bit address op-code

22 32-bit address byte 0

23 32-bit address byte 1

24 Extended address mode (0 = do not send any instruction, 1 = send op-code, 2 = send op-code
and byte 0, 3 = send op-code and byte 0 and byte 1)

25 Extended address WIP wait (O = do not wait for write, 1 = wait for write complete)

26 Extended address write enable (0 = do not enable writing, 1 = enable writing)

27 XIP offset

nValue byRefnValue AS INTEGER
On return, this variable will contain the volatile configuration value.

See example for QSPIOpen.

https://connectivity.lairdtech.com 45 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

User Guide

La i rdT J» CONNECTIVITY

4.7.6 QSPIlActiveConfigGet

FUNCTION

This function is used to query a configuration option of an open QSPI interface.

QSPIACTIVECONFIGGET(nHandle, nindex, nValue)

Returns INTEGER, a result code.
Typical value:
0x0000 Configuration returned successfully
0x0213 Invalid index
0x5220 Invalid handle

Arguments:

nHandle byVal nHandle AS INTEGER
Handle of the QSPI interface to use.

nindex byVal nindex AS INTEGER
Number of bytes to read from the Rx buffer. On return, this value will contain the number of data bytes
that was read.

0 Clock SIO

1 Chip select SIO

2 100 SIO

3 101 SIO

4 102 SIO

5 103 SIO

6 Drive strength (0 = standard, 1 = high)

7 Frequency in Hz

8 QSPI clock mode (0 = clock starts with level 0, 3 = clock starts with level 1)
QSPI read mode (0 = Single data line (FAST_READ, op-code 0x0b), 1 = Dual data line

9 (READ20, op-code 0x3B), 2 = Dual data line (READ2I0O, op-code 0xBB), 3 = Quad data line
(READA4O, op-code 0x6B), 4 = Quad data line (READ4IO, op-code OXEB))

10 QSPI write mode (1 = Dual Qata line (PP20, op-code 0xA2), 2 = Quad data line (PP40, op-
code 0x32), 3 = Quad data line (PP410, op-code 0x38))

11 RX delay (in 15.625ns periods)

12 Clock delay (in 62.5ns periods)

16 Page size

17 Enable DPM (0 = DPM functionality disabled, 1 = DPM functionality enabled)

18 DPM enter duration (in 16us periods)

19 DPM exit duration (in 16us periods)

20 Address type

21 32-bit address op-code

22 32-bit address byte 0

23 32-bit address byte 1

o4 Extended address mode (0 = do not send any instruction, 1 = send op-code, 2 = send op-code

and byte 0, 3 = send op-code and byte 0 and byte 1)

https://connectivity.lairdtech.com

46 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

25 Extended address WIP wait

26 Extended address write enable

27 XIP offset

28 Current mode (0 = ultra-low power mode, 1 = high performance mode)

nvalue BYRefnValue AS INTEGER
On return, this variable will contain the configuration value from the QSPI interface.

See example for QSPIOpen.

4.7.7 QSPIWrite

FUNCTION

This function is used to write data to the QSPI memory at a particular offset. Note that both the offset and data length must be
a multiple of 4, and the page being written to must be erased prior to writing to it using the QSPIErase function.

QSPIWRITE(nHandle, strWr$, nOffset)

Returns INTEGER, a result code.
Typical value:
0x0000 Data written successfully
0x5201 QSPI interface not open
0x5267 QSPI device timeout
0x5268 String size limit reached
0x526a Supplied offset is not valid
0x526b Supplied length is not valid
0x526¢ QSPI device busy with full-chip erase
0x5275 DPM mode is currently active

Arguments:

nHandle byVval nHandle AS INTEGER
Handle of the QSPI interface to use.
strwrg DYRef strWr$ AS STRING
Data to write to the QSPI memory. Must be a multiple of 4 bytes in length.
nOffset ByVal nOffset AS INTEGER
Offset of the QSPI memory in which to write the data to. Must be a multiple of 4.

See example for QSPIOpen.

https://connectivity.lairdtech.com a7 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

4.7.8 QSPIRead

FUNCTION

This function is used to read data from the QSPI memory. Note that both the offset and data length must be a multiple of 4.

QSPIREAD(nHandle, strRd$, nOffset, nLength)

Returns INTEGER, a result code.
Typical value:
0x0000 Data read successfully
0x5201 QSPI interface not open
0x5267 QSPI device timeout
0x5268 String size limit reached
0x526a Supplied offset is not valid
0x526b Supplied length is not valid
0x526¢ QSPI device busy with full-chip erase
0x5275 DPM mode is currently active

Arguments:

nHandle byVval nHandle AS INTEGER
Handle of the QSPI interface to use.
strRd$ DYRef strRd$ AS INTEGER
On success, this variable will contain the data read from the QSPI memory.
nOffset ByVal nOffset AS INTEGER
Offset of the QSPI memory in which to write the data to. Must be a multiple of 4.
nLength ByVal nLength AS INTEGER
Number of bytes to read from the QSPI memory. Must be a multiple of 4.

See example for QSPIOpen.

4.7.9 QSPIErase

FUNCTION

This function is used to erase data from the QSPI memory. After starting a full-chip erase, the EVQSPIERASED event must be
waited for before performing any other actions.

QSPIERASE(nHandle, nType, nOffset)

Returns INTEGER, a result code.
Typical value:
0x0000 Erase completed successfully
0x5201 QSPI interface not open
0x5267 QSPI device timeout
0x526a Supplied offset is not valid
0x526¢ QSPI device busy with full-chip erase
0x526d Specified erase type is not valid
0x526e Full-chip erase has started (wait for EVQSPIERASED event)
0x526f Timeout occured whilst starting erase process
0x5275 DPM mode is currently active

Arguments:

nHandle byVval nHandle AS INTEGER
Handle of the QSPI interface to use.

https://connectivity.lairdtech.com 48 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

User Guide

La i rdT J» CONNECTIVITY

nType

byVal nType AS INTEGER
The type of erase to perform which must be one of:

0 4KB sector erase
1 64KB sector erase
2 Full-chip erase

nOffset

ByVal nOffset AS INTEGER
The offset of the QSPI memory to start the erase process at, must be at a 4KB boundary for a 4KB sector
erase, must be at a 64KB boundary for a 64KB sector erase, must be 0 for a full-chip erase.

See example for QSPIOpen.

4.7.10 QSPICustomCommand

FUNCTION

This function is used to send a custom command to the QSPI memory and read the response.

QSPICUSTOMCOMMAND(nHandle, strWr$, strRd$, niO2Level, nlO3Level, nEnableWrite, nWaitWIP)

Returns INTEGER, a result code.
Typical value:
0x0000 Custom command executed successfully
0x5201 QSPI interface not open
0x526¢ QSPI device busy with full-chip erase
0x5273 Custom command too long
Arguments:
nHandle byVval nHandle AS INTEGER
Handle of the QSPI interface to use.
strwrg DYRef strWr$ AS INTEGER
String which contains op-code and data to write (maximuim 7 bytes)
strRdg BYRef strRd$ AS STRING
On return, this variable will contain the string data that was read from QSPI memory.
nlO2Level DPyVal nlO2Level AS INTEGER
The logic level of the 102 pin (0 = low, 1 = high)
nlo3Level DPyVal nlO3Level AS INTEGER

The logic level of the 102 pin (0 = low, 1 = high)

nEnableWrite

byVal nEnableWrite AS INTEGER
If to enable writing before executing the command (0 = do not enable writing, 1 = enable writing)

byVal nWaitWIP AS INTEGER

nWaitwIP h) . . .
If to wait for the write to complete (0 =do not wait, 1 = wait for the write to complete)
https://connectivity.lairdtech.com 49 Americas: +1-800-492-2320

© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird CONNECTIVITY

User Guide

Example:

// Example :: QSPI Custom.sb

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples
dim rc

dim gspihandle
dim wr$, rd$

sub AssertRC (rc, tag)
if rc!=0 then
print "Failed with ";integer.h' rc;" at tag ";tag;"\n"
endif
endsub

function QSPICustomTest ()
rc = QSPIOpen (gspihandle)
AssertRC (rc, 0)

if (rxc != 0) then
exitfunc 0
endif

print "Opened QSPI interface, handle: ";gspihandle;"\r\n"

//This op-code, 0x9f, is the RDID (read identification) command
wrs = "\9£\00\00\0O"

rc = QSpiCustomCommand (gspihandle, wr$, rd$, 1, 1, 0, 0)
AssertRC (rc, 1)

if (rc != 0) then
exitfunc 0
endif

print "Custom command sent: ";strhexize$ (wr$);", got: ";strhexize$ (rd$);"\r\n"

rc = QSPIClose (gspihandle)
AssertRC (rc, 2)

if (rc != 0) then
exitfunc 0
endif

print "QSPI handle ";gspihandle;" closed.\r\n"
endfunc 1

print "QSPI custom command example, ensure SB4, SB5, SB6, SB7, SB10 and SBll are soldered
before running.\r\n\r\n"
rc = QSPICustomTest ()

Expected Output:

QSPI custom command example, ensure SB4, SB5, SB6, SB7, SB10 and SB1ll are soldered before
running.

Opened QSPI interface, handle: -1698897952
Custom command sent: 9F000000, got: C22813
QSPI handle -1698897952 closed.

https://connectivity.lairdtech.com 50 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird CONNECTIVITY

User Guide

4.711 QSPISetPowerMode

FUNCTION

This function is used to change the power mode of the QSPI memory to either ultra-low power mode or high performance
mode.

QSPISETPOWERMODE(nHandle, nPowerMode)

Returns INTEGER, a result code.
Typical value:
0x0000 QSPI power mode set successfully
0x5201 QSPI interface not open
0x526¢ QSPI device busy with full-chip erase
0x5272 Supplied power mode is not valid
0x5275 QSPI chip is in DPM mode

Arguments:

nHandle byVal nHandle AS INTEGER
Handle of the QSPI interface to use.
byVal nPowerMode AS INTEGER
Power mode to set which can be:

nPowerMode

0 Ultra power-save mode

1 High performance mode

See example for QSPIOpen.

4.7.12 QSPlInfo

FUNCTION

This function is used to query the QSPI memory and retrieve details about it.

QSPIINFO(nHandle, nManufacturerlD, nMemoryType, nMemoryDensity)

Returns INTEGER, a result code.
Typical value:
0x0000 QSPI information returned successfully
0x5201 QSPI interface not open
0x526¢ QSPI device busy with full-chip erase
0x5275 QSPI chip is in DPM mode

Arguments:

byVal nHandle AS INTEGER

Handle of the QSPI interface to use.

byRef nManufactureriD AS INTEGER

On return, this variable will contain the manufacturer ID of the QSPI chip.
ByRef nMemoryType AS INTEGER

On return, this variable will contain the memory type of the QSPI chip.
ByRef nMemoryDensity AS INTEGER

On return, this variable will contain the memory density of the QSPI chip.

nHandle

nManufacturerID

nMemoryType

nMemoryDensit
y

See example for QSPIOpen.

https://connectivity.lairdtech.com 51 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

L ir NNECTIVITY
User Guide \id) €0 <

4.7.13 QSPIMemorySize

FUNCTION

This function is used to query the QSPI memory and retrieve the size of the memory in the desired format.

QSPIMEMORYSIZE(nHandle, nFormat, nSize)

Returns INTEGER, a result code.
Typical value:
0x0000 QSPI memory size returned successfully
0x0211 Invalid format specified
0x5201 QSPI interface not open
0x526¢ QSPI device busy with full-chip erase
0x5275 QSPI chip is in DPM mode

Arguments:

nHandle byVval nHandle AS INTEGER
Handle of the QSPI interface to use.
nEormat byVal nFormat AS INTEGER

Format of the memoi size to return which can be:

Bits
Kilobits

Bytes
KiloBytes

0
1
2 Megabits
5
6

7 MegaBytes

nsize BYRefnSize AS INTEGER
On return, this variable will contain the size of the QSPI memory in the format specified.

See example for QSPIOpen.

4.7.14 QSPlIsBusy
FUNCTION

This function is used to check if the QSPI memory is busy with a full-chip erase.

QSPIISBUSY(nHandle)

Returns INTEGER, if the memory is busy with an erase.
Typical value:
0x0000 QSPI memory is not busy with full-chip erase or is not open.
0x0001 QSPI memory is busy with full-chip erase.

Arguments:

nHandle DBYRefnHandle AS INTEGER.
Handle of the QSPI interface to use.

See example for QSPIOpen.

https://connectivity.lairdtech.com 52 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

L ir NNECTIVITY
User Guide \id) €0 <

4.715 QSPIDPMSet

FUNCTION

This function is used to enter or exit deep power-down mode.

QSPIDPMSET(nHandle, nDPM)

Returns INTEGER, a result code.
Typical value:
0x0000 QSPI memory entered/exited DPM successfully
0x0211 Invalid format specified
0x5201 QSPI interface not open
0x526¢ QSPI device busy with full-chip erase
0x5276 QSPI interface was not opened with DPM support enabled

Arguments:

nHandle byVval nHandle AS INTEGER.
Handle of the QSPI interface to use.
nDPM byVal nDPM AS INTEGER

If the QSPI memori should enter or exit DPM mode which can be:

0 Exit DPM
1 Enter DPM

See example for QSPIOpen.

4.7.16 QSPIlIsDPM

FUNCTION

This function is used to check if the QSPI memory is in deep power-down mode.

QSPIISDPM(nHandle)

Returns INTEGER, if the QSPI memory is in DPM mode.
Typical value:
0x0000 QSPI memory is not in DPM mode or interface is not open.
0x0001 QSPI memory is in DPM mode.

Arguments:

nHandle DPYRefnHandle AS INTEGER.
Handle of the QSPI interface to use.

See example for QSPIOpen.

https://connectivity.lairdtech.com 53 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird CONNECTIVITY

User Guide

4.7.17 QSPIReset

FUNCTION

This function is used to reset a QSPI memory.

QSPIRESET(nHandle, nType, nReapplyConfig)

Returns INTEGER, a result code.
Typical value:
0x0000 QSPI memory reset successfully
0x0211 Invalid type specified
0x5201 QSPI interface not open
0x526¢ QSPI device busy with full-chip erase
0x5275 QSPI chip is in DPM mode

Arguments:
nHandle byVval nHandle AS INTEGER
Handle of the QSPI interface to use.
nType byVal nType AS INTEGER

This specifies if the QSPI reset should be forced regardless if the chip is busy with an erase and can

be:
0 Normal (will not reset if full-chip erase is active)
1 Force (will reset if full-chip erase is active, this may lead to data corruption)

ByVal nReapplyConfig AS INTEGER

nReapplyConfig . ; . ! . . .
This controls if the volatile QSPI configuration should be re-applied after resetting the memory and

can be:
0 Do not re-apply configuration after reset
1 Re-apply configuration after reset (power mode and dummy cycles)

See example for QSPIOpen.

4.8 Input/Output Interface Routines

1/0 and interface commands allow access to the physical interface pins and ports of the smartBASIC modules. Most of these
commands are applicable to the entire range of modules. However, some are dependent on the actual I/O availability of each
module.

There are 48 SIO (Special 1/0) pins available on the BL654. All of these pins can be configured to provide additional types of
functionality. However, some of the pins have set functionality that should never be changed.

Note: All of the pins can be configured as digital inputs or outputs, therefore these are not listed in the table below.

Table 1: SIO ﬁin functionaliti

0 XTAL1
1 XTAL2
2 Adc00, Vsp
3 Adc01
https://connectivity.lairdtech.com 54 Americas: +1-800-492-2320

© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird CONNECTIVITY

User Guide

4 Adc02/SPIM MISO

5 UART_RTS/Adc03

6 UART_TX

7 UART_CTS

8 UART_RX

9 NFC1

10 NFC2

11 No alternate functionality

12 No alternate functionality

13 No alternate functionality

14 No alternate functionality

15 No alternate functionality

16 No alternate functionality

17 QSPI_CS

18 Reset (Cannot be used as an SIO pin)

19 QSPI_CLK

20 QSPI_DIOO

21 QSPI_DIO1

22 QSPI_DIO2

23 QSPI_DIO3

24 No alternate functionality

25 No alternate functionality

26 I2cData

27 [2cClock

28 Adc04

29 Adc05

30 Adc06

31 Adc07

32 No alternate functionality

33 No alternate functionality

34 No alternate functionality

35 Autorun

36 No alternate functionality

37 No alternate functionality

38 No alternate functionality

39 No alternate functionality

40 SPIM MOSI
https://connectivity.lairdtech.com 55 Americas: +1-800-492-2320

© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

41 SPIM CLK

42 No alternate functionality
43 No alternate functionality
44 SPIM CS

45 No alternate functionality
46 No alternate functionality
a7 No alternate functionality

Notes: Where Autorun or Vsp functionality is required, that pin can only be used for that function and cannot be changed.
Pwm option outputs a fully configurable waveform; Freq option outputs a 50:50 mark space ratio waveform.

SPIM refers to SPI Master peripheral.

4.8.1 Events and Messages

EVGPIOCHANN Here n is from 0 to N where N is platform dependent and an event is generated when a
preconfigured digital input transition occurs. The number of digital inputs that can auto-generate is
hardware dependent. For the BL654. N can be 0, 1, 2, or 3.

Use GpioBindEvent() to generate these events. See example for GpioBindEvent().

EVDETECTCHANNn Here nis from O to N where N is platform dependent and an event is generated when a
preconfigured digital input transition occurs. The number of digital inputs that can auto-generate is
hardware dependent. For the BL654, N can only be 0.

Use GpioAssignEvent() to generate these events.

4.8.2 GpioSetFunc

FUNCTION
This routine sets the function of the SIO pin identified by the nSigNum argument.

The module datasheet contains a pinout table which denotes SIO pins. The number designated for that special /0 pin
corresponds to the nSigNum argument.

The nFunction argument denotes the required functionality. Use only supported values from Table 1.
The bSubFunc argument defines the configuration of the requested function.
GPIOSETFUNC (nSigNum, nFunction, nSubFunc)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:
nSigNum byVal nSigNum AS INTEGER.
The signal number as stated in the pinout table of the module.
nFunction byVal nFunction AS INTEGER.
Specifies the configuration of the SIO pin as follows:
1 =DIGITAL_IN
2 = DIGITAL_OUT
3 =ANALOG_IN

https://connectivity.lairdtech.com 56 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

nSubFunc byVal nSubFunc INTEGER
Configures the pin as follows:
If nFunction == DIGITAL_IN
Bits 0..3

0x01 Pull down resistor (weak)

0x02 Pull up resistor (weak)

0x03 Pull down resistor (strong)

0x04 Pull up resistor (strong)

Else No pull resistors
Bits 4, 5

0x10 When in deep sleep mode, awake when this pin is LOW

0x20 When in deep sleep mode, awake when this pin is HIGH

Else No effect in deep sleep mode
Bits 8..31
Must be 0s

If nFuncType == DIGITAL_OUT
Values:

0 Initial output to LOW

1 Initial output to HIGH

Output is PWM (Pulse Width Modulated Output). See function GpioConfigPW() for more
configuration. The duty cycle is set using function GpioWrite().

2

Output is FREQUENCY. The frequency is set using function GpioWrite() where 0 switches off the
3 output; any value in range 1..4000000 generates an output signal with 50% duty cycle with that
frequency.

Bits 4..6 (output drive capacity)
0 0= Standard; 1 = Standard
0 = High; 1 = Standard
0 = Standard; 1 = High
0 = High; 1 = High

0 = Disconnect; 1 = Standard

0 = Disconnect; 1 = High

o O | W N

0 = Standard; 1 = Disconnect

7 0= High; 1 = Disconnect
If nNFuncType == ANALOG_IN
0 := Use Default for system.

0 Use the system default: 10-bit ADC, 1/6 scaling
0x16 10-bit ADC, 1/6 scaling
0x15 10-bit ADC, 1/5 scaling
0x14 10-bit ADC, 1/4 scaling
0x13 10-bit ADC, 1/3 scaling

https://connectivity.lairdtech.com 57 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird CONNECTIVITY

User Guide

0x12 10-bit ADC, 1/2 scaling
0x11 10-bit ADC, 1/1 scaling (Unity)
0x21 10-hit ADC, 2/1 scaling
0x41 10-bit ADC, 4/1 scaling

Note: The internal reference voltage is the same as the module Vcc value with +/- 1.5% accuracy.

Example:

// Example :: GpioSetFunc.sb

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

PRINT GpioSetFunc (15,1,2) //Digital In SIO 15, strong pull up resistor

PRINT GpioSetFunc(3,3,0) //Analog In SIO 3 (Temperature Sensor), default settings
PRINT GpioSetFunc(17,2,1) //SIO17 (LEDO) digital out, initial output high

Expected Output:

000

4.8.3 GpioSetFuncEx

FUNCTION

This routine sets the function of the SIO pin identified by the nSigNum argument and provides for more enhanced
configurability compared to the legacy function GpioSetFunc().

The module datasheet contains a pinout table which denotes SIO pins. The number designated for that special 1/0 pin
corresponds to the nSigNum argument.

The nFunction argument denotes the required functionality. Use only supported values from Table 1.
The bSubFunc argument defines the configuration of the requested function.

GPIOSETFUNCEX (nSigNum, nFunction, subFunc$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byVal nSigNum AS INTEGER.

nSigNum The signal number as stated in the pinout table of the module.

byVal nFunction AS INTEGER.

Specifies the configuration of the SIO pin as follows:
nEunction 1= D|G|TAL_|N

2 =DIGITAL_OUT

3 = ANALOG_IN

byVal nSubFunc$ INTEGER

If nFunction == DIGITAL_IN

subFunc$ subFunc$ will be a string that has the following form:- “\Digital_In_Bitmask”, where Digital_In_Bitmask bits
can be as follows:
Bits 0..3
0x01 Pull down resistor (weak)
https://connectivity.lairdtech.com 58 Americas: +1-800-492-2320

© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

0x02 Pull up resistor (weak)

0x03 Pull down resistor (strong)

0x04 Pull up resistor (strong)

Else No pull resistors
Bits 4, 5

0x10 When in deep sleep mode, awake when this pin is LOW

0x20 When in deep sleep mode, awake when this pin is HIGH

Else No effect in deep sleep mode
Bits 8..31
Must be Os

If nFuncType == DIGITAL_OUT
subFunc$ is a string that has the following form: \Digital_Out, where Digital_Out consists of the following:

= Bits 0-3: Values

= Bits 4-6: Drive Capacity (Only for LOW and HIGH configuration. For PWM and FREQUENCY this is
always set to 0=Standard; 1=Standard)

Values:
0 Initial output to LOW
1 Initial output to HIGH

Output is PWM (Pulse Width Modulated Output). See function GpioConfigPW() for more
configuration. The duty cycle is set using function GpioWrite().

2

Output is FREQUENCY. The frequency is set using function GpioWrite() where 0 switches off
3 the output; any value in range 1..4000000 generates an output signal with 50% duty cycle with

that frequency.

Bits 4..6 (output drive capacity)

0 = Standard; 1 = Standard

0 = High; 1 = Standard

0 = Standard; 1 = High

0 = High; 1 = High

0 = Disconnect; 1 = Standard

0 = Disconnect; 1 = High

0 = Standard; 1 = Disconnect

~N | oo~ |Ww N |- | O

0 = High; 1 = Disconnect

If nFuncType == ANALOG_IN
The reference voltage for the analog to digital converter is 0.6 volts.
subFunc$ is a string that has the following form: \Gain_hex\Resolution_hex\Acquisition_hex

If the string is empty, then default values are used. Otherwise, the values can be as follows:

Gain_hex
0 Use the system default: 10-bit ADC, 1/6 scaling
0x16 1/6 scaling
0x15 1/5 scaling

https://connectivity.lairdtech.com 59 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

0x14 1/4 scaling
0x13 1/3 scaling
0x12 1/2 scaling
0x11 1/1 scaling (Unity)
0x21 2/1 scaling
0x41 4/1 scaling

For example, if you have a maximum analog voltage of 1.7 volts, then select a gain of 1/3 so that the
maximum voltage into the convertor is 1.7 * 1/3 = 0.57. This means it is not bigger than the reference
voltage of 0.6v and it is specified in subFunc$ so that the first byte in the string is \13
Resolution_hex
0 Use the system default: 10-bit ADC

0x08 8-bit ADC resolution

O0XOA 10-bit ADC resolution

0x0C 12-bit ADC resolution

Acquisition_hex
0 Use the system default: 10 microseconds

0x03 3 microseconds

0x05 5 microseconds

O0x0A 10 microseconds

OxOF 15 microseconds

0x14 20 microseconds

0x28 40 microseconds

Any other value results in this function being rejected.

For example, selecting 1/5™ scaling, 12-bit resolution, and acquisition time of 20 microseconds requires that
the variable subFunc$ be initialised as \15\0C\14.

Note: The internal reference voltage is the same as the module Vcc value with +/- 1.5% accuracy.

Example:

// Example :: GpioSetFuncEx.sb
// https://github.com/LairdCP/BL6542-Applications/tree/master/UserGuideExamples

//Digital In SIO 15, strong pull up resistor

PRINT GpioSetFuncEx (15,1,"\02")

//Analog In SIO 3 (Temperature Sensor), default settings

PRINT GpioSetFuncEx (3,3,"")

//Analog In SIO 23, 1/6 scaling, 12-bit resolution, 3us acquisition time
PRINT GpioSetFuncEx (23,3,"\16\0C\03")

//SIO017 (LEDO) digital out, initial output high

PRINT GpioSetFuncEx (17,2,"\01")

//SI026 digital out, PWM

PRINT GpioSetFuncEx (26,2,"\02")

Expected Output:

00000

https://connectivity.lairdtech.com 60 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

https://github.com/LairdCP/BL6542-Applications/tree/master/UserGuideExamples

BL654 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

4.8.4 GpioConfigPwm

FUNCTION

This routine configures the PWM (Pulse Width Modulation) of all output pins when they are set as a PWM output using
GpioSetFunc() function described above.

Note: This is a ‘sticky’ configuration; calling it affects all PWM outputs already configured. We recommend that this is
called once at the beginning of your application and not changed again within the application unless all PWM
outputs are deconfigured and then re-enabled after this function is called.

The PWM output is generated using 32-bit hardware timers. The timers are clocked by a 1-MHz clock source.

A PWM signal has a frequency and a duty cycle property; the frequency is set using this function and is defined by the
nMaxResolution parameter. For a given nMaxResolution value, given that the timer is clocked using a 1-MHz source, the
frequency of the generated signal is 1000000 divided by nMaxResolution. Hence, if nMinFreqHz is more than the
1000000/nMaxResolution, this function will fail with a non-zero value.

The nMaxResolution can also be viewed as defining the resolution of the PWM output in the sense that the duty cycle can be
varied from 0 to nMaxResolution. The duty cycle of the PWM signal is modified using the GpioWrite() command.

For example, a period of 1000 generates an output frequency of 1KHz, a period of 500, and a frequency of 2Khz etc.

On exit, the function returns with the actual frequency in the nMinFreqHz parameter.

GPIOCONFIGPWM (nMinFreqHz, nMaxResolution)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byRef nMinFreqHz AS INTEGER.

nMinFreqH .
! qriz The nominal frequency of the waveform.

byVal nMaxResolution AS INTEGER.

nMaxResolution .
Set to same value as nMinFreqHz.

https://connectivity.lairdtech.com 61 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird

) CONNECTIVITY
User Guide _)

Example:

// Example :: GpioConfigPwm.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

dim retval

dim i

dim nFreq

dim nResolution

dim res[5] as integer

FUNCTION HandlerTimerl ()
dim TmpVal
i=i+1
if i==5 then
i=0
endif
TmpVal = (res[i]*100/nFreq)
PRINT "\nTimer event! PWM changed to "; TmpVal; "% duty cycle."
GpioWrite (13, res[1])
ENDFUNC 1

i=0

nFreg=2048
nResolution=2048
res[0]=nResolution/2
res[l]=nResolution/4
res[2]=nResolution/8
res[3]=0
res[4]=nResolution

ONEVENT EVTMR1 CALL HandlerTimerl

//Configure PWM
retval = GpioConfigPWM (nFreqg,nResolution)
retval = GpioSetFunc(1l3,2,2)

//Write the first value to the PWM out
GpioWrite (13, res[1])
PRINT "\nTimer started. PWM on 50% duty cycle."

//start a 5000 millisecond (5 second) recurring timer
TimerStart (1,5000,1)

WAITEVENT

Expected Output:

Timer started. PWM on 50% duty cycle.

Timer event! PWM changed to 25% duty cycle.
Timer event! PWM changed to 12% duty cycle.
Timer event! PWM changed to 0% duty cycle.
Timer event! PWM changed to 100% duty cycle.

https://connectivity.lairdtech.com 62 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird 2> CONNECTIVITY

User Guide

4.8.5 GpioRead

FUNCTION
This routine reads the value from a SIO pin.

The module datasheet contains a pinout table which mentions SIO (Special I/O) pins and the number designated for that SIO
pin corresponds to the nSigNum argument.

Note: For ADC readings, the value read has an error percentage of +/-3% for 1/6 and 1/4 gains, and +/-4% for 1/2 and 1
gains.

GPIOREAD (nSigNum)

Returns INTEGER, the value from the signal.
If the signal number is invalid, then it returns a value of 0.
For digital pins, the value is 0 or 1. For ADC pins it is a value in the range 0 to M where M is the maximum
value based on the bit resolution of the analogue to digital converter.

Arguments:

byVal nSigNum INTEGER.

nSighum The signal number as stated in the pinout table of the module.

Refer to the example for GpioBindEvent.

Example:

// Example: GpioRead.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

//This example reads from temperature sensor, for it to work, a jumper needs to be placed
on J6 between SIO 3 and TEMP SENS
#define GPIO TEMP SENS 3

dim rc, adc

//Start timer to read temperature sensor
TimerStart (0,1000,1)

//Remove resistor
rc = GpioSetFunc (GPIO TEMP SENS, 1, 2)

//Analogue in
rc = GpioSetFunc (GPIO TEMP SENS, 3, 0)

FUNCTION HandlerTimerO ()

//Read the ADC

adc = GpioRead (GPIO TEMP SENS)

PRINT "\nRaw Temperature Sensor Reading: ";adc
ENDFUNC 1

OnEvent EVTMRO call HandlerTimerO

WAITEVENT

Expected output:

Raw Temperature Sensor Reading: 1943
Raw Temperature Sensor Reading: 1943

https://connectivity.lairdtech.com 63 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

p NNECTIVITY
User Guide Lalrd co CTIV

4.8.6 GpioWrite

FUNCTION
This function writes a new value to the SIO pin. If the pin number is invalid, nothing happens.

If the SIO pin is configured as a PWM output then the nNewValue specifies a value in the range 0 to N where N is the
nMinFreqHz set in the GpioConfigPwm command. The write value controls the mark space ratio of the output waveform. A
value of 0 outputs a low, a value of nMinFregHz outputs a high, and a value in varies the mark space ratio. The higher the
value, the longer the mark period.

As with the GpioConfigPwm function, the nNewValue is used to calculate a hardware register value. This value must be less
than the register value calculated from the GpioConfigPwm function that is used to set the PWM output frequency. Again, be
careful to avoid non-integer results or the output waveform will not be accurate.

As an indication, if you divide the PWM output frequency by the value of the register calculated in the GpioConfigPwm function
above, that result is the minimum nNewValue you can enter to get a mark:space ratio. Other valid mark:space ratios are
provided by integer multiples of this minimum value.

For example, with a system frequency of 40 MHz and an output PWM frequency of 5 MHz, the register value to provide the
output frequency is 8. So the minimum value of nNewValue is 0.625 MHz and the remaining obtainable values are 4.375,
3.75, 3.125, 2.5, 1.875, and 1.25 MHz. Any other nNewValue entered rounds down to one of these values.

GPIOWRITE (nSigNum, nNewValue)

Returns

Arguments:

byVal nSigNum INTEGER.

The signal number as stated in the pinout table of the module.

byVal nNewValue INTEGER.

The value to be written to the port.

nNewValue If the pin is configured as digital, then 0 clears the pin and a non-zero value sets it.
If the pin is configured as a PWM then this value sets the duty cycle.
If the pin is configured as a FREQUENCY then this value sets the frequency.

nSigNum

Example:

// Example :: GpioWrite.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

dim rc, il, i2

i2 =1

il =1
A S S S
// For debugging

// --- rc = result code

// --- 1ln = line number

Sub AssertRC (rc, 1n)
if rc!=0 then
print "\nFail :";integer.h' rc;" at tag ";ln

endif

https://connectivity.lairdtech.com 64 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

User Guide

Laird 2» CONNECTIVITY

EndSub

AssertRC (rc, 20)

AssertRC (rc, 23)

il=!il

endfunc 1

i2=1i2

endfunc 1

endfunc 0

onevent evuartrx

onevent evtmr0

onevent evtmrl

print "\n\nPress

waitevent

GpioWrite (19,

GpioWrite (17,

TimerStart (0,500,

print "\nExiting...

rc=GpioSetFunc (17,2,1)

rc=GpioSetFunc (19,2,1)

function HandlerTmrO ()

il)

AssertRC (rc, 30)

function HandlerTmrl ()

i2)

AssertRC (rc,42)

function HandlerUartRx ()

1)

TimerStart (1,1000,1)

call HandlerUartRx
call HandlerTmrO
call HandlerTmrl

any key to exit"

Expected Output:

Press any key to
Exiting...

exit

https://connectivity.lairdtech.com

65
© Copyright 2019 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

4.8.7 GpioBindEvent/GpioAssignEvent

FUNCTION

This routine binds an event to a level transition on a specified SIO line configured as a digital input so that changes in the input
line can invoke a handler in smartBASIC user code.

When this function is called on the BL654, the SIO pin specified by nSigNum is set up as a digital input in the underlying
firmware so GpioSetFunc() does not need to be called beforehand.

If this function is used in your smartBASIC application, we recommend that you unbind all bound events by calling
GpioUnbindEvent() at the end of the application. Likewise for all assigned events, GpioUnassignEvent should be called.

Note: In the BL654 module, an SIO pin can only be bound to one event at a time.

GPIOBINDEVENT (nEventNum, nSigNum, nPolarity)

GPIOASSIGNEVENT (nEventNum, nSigNum, nPolarity)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byVal nEventNum INTEGER.
nEventNum The SIO event number (in the range of 0 - N) which results in the event EVGPIOCHANnN being thrown to
the smartBASIC runtime engine.

byVal nSigNum INTEGER.
The signal number as stated in the pinout table of the module.

byVal nPolarity INTEGER.
States the transition as follows:

nSigNum

0 Low to high transition

nPolarit
y 1 High to low transition

2 (GpioBindEvent Only) Either a low to high or high to low transition

Note: Using GpioBindEvent provides the capability to detect any transition. However, it results in slightly higher power
consumption. If power is of importance, GpioAssignEvent() should be used instead as it uses other resources to
expedite an event.

https://connectivity.lairdtech.com 66 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird

) CONNECTIVITY
User Guide _)

Example:

// Example :: GpioBindEvent.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

dim rc

function HandlerBtnoO ()

dim i : i = GpioRead(1l1)

'//1f button 0 was pressed
if i==0 then

print "\nButton 0 Pressed"

'//1if button 0 was released
elseif i==1 then

print "\nButton 0 Released"
endif

endfunc 1

function HandlerUartRx ()

endfunc 0

rc= GpioBindEvent (0,11,2) //Bind event 0 to high or low transition on SIOll (button
1)

if rc==0 then
onevent evgpiochan0 call HandlerBtnO //When event 0 happens, call BtnOPress
print "\nSIOll - Button 0 is bound to event 0. Press button 0"

else
print "\nGpioBindEvent Err: ";integer.h'rc

endif

onevent evuartrx call HandlerUartRx

print "\n\nPress any key to exit"

waltevent
rc=GpioUnbindEvent (0)
if rc==0 then
print "\n\nEvent 0 unbound\nExiting..."

endif

https://connectivity.lairdtech.com 67 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird CONNECTIVITY

User Guide

Expected Output:

SI011 - Button 0 is bound to event 0. Press button 0

Press any key to exit
Button 0 Pressed
Button 0 Released
Button 0 Pressed
Button 0 Released

Event 0 unbound
Exiting...
00

4.8.8 GpioUnbindEvent/GpioUnAssignEvent

FUNCTION

This routine unbinds the runtime engine event from a level transition bound using GpioBindEvent().
GPIOUNBINDEVENT (nEventNum)

GPIOUNASSIGNEVENT (nEventNum)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:
byVal nEventNum INTEGER.
nEventNum The SIO event number (in the range of 0 - N) which is disabled so that it no longer generates run-time
events in smartBASIC.

See example for GpioBindEvent.

4.9 Miscellaneous Routines

This section describes all miscellaneous functions and subroutines.

4.9.1 ASSERTBL654

SUBROUTINE

This function’s main use case is during smartBASIC source compilation and the presence of at least one instance of this
statement ensures that the smartBASIC application only fully compiles without errors on a BL654 module. This ensures that
apps for other modules are not mistakenly loaded into the BL654.

AssertBL654 ()

Returns Not acceptable as it is a subroutine

Arguments: None

Example:

AssertBL654 () //Ensure loading on BL654 only

https://connectivity.lairdtech.com 68 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird 2> CONNECTIVITY

User Guide

4.9.2 ERASEFILESYSTEM

FUNCTION

This function is used to erase the flash file system which contains the application that invoked this function, if and only if, the
SI02 input pin is held high.

Given that SIO2 is high, after erasing the file system, the module resets and reboots into command mode with the virtual serial
port service enabled; the module advertises for a few seconds. See the virtual serial port service section for more details.

This facility allows the current $autorun$ application to be replaced with a new one.

WARNING
If this function is called from within $autorun$ and the SIO2 input is high, it is erased and a fresh download of the application
is required which can be facilitated over the air.

ERASEFILESYSTEM (nArg)

Returns INTEGER Indicates success of command:

0 Successful erasure. The module reboots.

<>0 Failure.

Exceptions = Local Stack Frame Underflow
= Local Stack Frame Overflow

Arguments:

nArg byVal nArg AS INTEGER
This is for future use and MUST always be set to 1. Any other value will result in a failure.

Example:

DIM rc
rc = EraseFileSystem(1234)
IF rc!=0 THEN
PRINT "\nFailed to erase file system because incorrect parameter"
ENDIF
//Input SIO2 is low
rc = EraseFileSystem(1l)
IF rc!=0 THEN
PRINT "\nFailed to erase file system because SIO0O19 is low"
ENDIF

Expected Output:

Failed to erase file system because incorrect parameter
Failed to erase file system because SIOl9 is low
00

https://connectivity.lairdtech.com 69 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird CONNECTIVITY

User Guide

5 BLE EXTENSIONS BUILT-IN ROUTINES

5.1 LE Privacy

To address privacy concerns, there are four types of Bluetooth addresses in a BLE device which can change as often as
required. For example, an iPhone regularly changes its BLE Bluetooth address and it always exposes only its resolvable
random address.This feature is known as LE privacy. It allows the Bluetooth address within advertising packets to be replaced
with a random value that can change at different time intervals. Malicious devices are not able to track your device as it
actually looks like a series of different devices.

To manage this, the usual six-octet Bluetooth address is qualified on-air by a single bit which qualifies the Bluetooth address
as public or random:

= Public — The format is as defined by the IEEE organisation.
= Random — The format can be up to three types and this qualification is done using the upper two bits of the most
significant byte of the random Bluetooth address.

Address types:

00 Public
01 Random Static

02 Random Private Resolvable

03 Random Private Non-Resolvable

All other values are illegal

On the BL654, the address type can be set using the function BleSetAddressTypeEx(). On the other hand, Sysinfo$(4) can be
used to retrieve the Bluetooth address if it is public or random static. Due to LE privacy 1.2, if the address type is random
resolvable or random non-resolvable, it cannot be retrieved by the application layer since it is fully controlled by the baseband

layer.

Note: The Bluetooth address portion in smartBASIC is always in big endian format. If you sniff on-air packets, the same
six packets appear in little endian format, hence reverse order — and you do not see seven bytes, but a bit in the
packet somewhere which specifies it to be public or random.

5.1.1 BleSetAddressTypeEx

FUNCTION

This functions sets the current address type to be used by the LE radio scan/advert/connection requests. Type 2 and Type 3
can be set to be refreshed periodically.

BLESETADDRESSTYPEEX (nAddrType, nPeriodMS)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byVal nAddrType AS INTEGER.
Specifies the type of the LE address as follows:

0 Public address, same as Classic.
nAddrType 1 Random static address, generated first boot.
2 Random address, resolvable with IRK, generated on call.
3 Random address, non resolvable, generation on call
nPeriodMS The time period for changing resolvable and non-resolvable addresses in milliseconds. If the nAddrType is
0 or 1, this parameter is ignored. Negative values result in an error being returned. A value of 0 means the
https://connectivity.lairdtech.com 70 Americas: +1-800-492-2320

© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird CONNECTIVITY

User Guide

address will not change.

Example:

// Example: BleSetAddressTypeEx.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

DIM rc, addr$

// Set the address to pulic, nPeriodMS is ignored
rc = BleSetAddressTypeEx (0,0)

addr$ = SysInfos$ (4)

PRINT "\nBluetooth Address - "; StrHexize$ (addr$)

// Set the address to random static, nPeriodMS is ignored
rc = BleSetAddressTypeEx (1,0)

addr$ = SysInfo$ (4)

PRINT "\nBluetooth Address - "; StrHexize$ (addr$)

// Set the address to be random resolvable that changes every 30 seconds
rc = BleSetAddressTypeEx (2,30000)
addr$ = SysInfoS$ (4)

PRINT "\nCurrent Address - "; StrHexize$ (addr$)

// Set the address to be random non-resolvable that changes every 1 seconds
rc = BleSetAddressTypeEx (3,1000)

addr$ = SysInfos$ (4)

PRINT "\nBluetooth Address - "; StrHexize$ (addr$)

Expected Output:

Bluetooth Address - 000016A4B75201
Bluetooth Address - 01D3B61EE3F699
Bluetooth Address - 01D3B61lEE3F699
Bluetooth Address — 01D3B61EE3F699

Note: Even though Sysinfo$(4) returns the random static address after setting address types 2 and 3, the actual address
used by the radio packets are the random resolvable and the random non-resolvable addresses respectively. The
reason for this is that private addresses are only known to the baseband.

https://connectivity.lairdtech.com 71 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird CONNECTIVITY

User Guide

5.2 Events and Messages

5.21 EVBLE_ADV_TIMEOUT

This event is thrown when adverts that are started using BleAdvertStart() time out.

Example:

// Example :: EvBle Adv_Timeout.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

DIM peerAddrs$

//handler to service an advert timeout
FUNCTION HndlrBleAdvTimOut ()

PRINT "\nAdvert stopped via timeout"

//DbgMsg ("\n - could use SystemStateSet (0) to switch off")
/=
// Switch off the system - requires a power cycle to recover
/=

// rc = SystemStateSet (0)
ENDFUNC 0

//start adverts

//rc = BleAdvertStart (0,"",100,5000,0)

IF BleAdvertStart (0, peerAddrs$,100,2000,0)==0 THEN
PRINT "\n Advert Started"

ELSE
PRINT "\n\nAdvert not successful"

ENDIF

ONEVENT EVBLE ADV TIMEOUT CALL HndlrBleAdvTimOut

WAITEVENT

Expected Output:

Advert Started
Advert stopped via timeout

https://connectivity.lairdtech.com 72 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird CONNECTIVITY

User Guide

5.2.2 EVBLE_CONN_TIMEOUT

This event is thrown when a BLE connection attempt initiated by the BleConnect() function times out.

See example for BleConnect.

5.2.3 EVBLE_ADV_REPORT

This event is thrown when an advert report is received whether successfully cached or not.

See example for BleScanGetAdvReport.

5.2.4 EVBLE_FAST_PAGED

This event is thrown when an advert report is received which is of type ADV_DIRECT_IND and the advert had a target
address (InitA in the spec) which matches the address of this module.

See example for BleScanGetPagerAddr.

5.2.5 EVBLE_SCAN_TIMEOUT

This event is thrown when a BLE scanning procedure initiated by the BleScanStart() function times out.
See example for BLESCANSTART.

5.2.6 EVBLEMSG

The BLE subsystem is capable of informing a smartBASIC application when a significant BLE-related event has occurred. It
does so by throwing this message (as opposed to an EVENTTable 20, which is akin to an interrupt and has no context or
queue associated with it).

The message contains two parameters:

= msglD - Identifies what event was triggered
= msgCtx — Conveys some context data associated with that event.

The smartBASIC application must register a handler function which takes two integer arguments to be able to receive and
process this message.

Note: The messaging subsystem, unlike the event subsystem, has a queue associated with it and, unless that queue is
full, pends all messages until they are handled. Only messages that have handlers associated with them are
inserted into the queue. This prevents messages that will not get handled from filling that queue. The following
table lists the triggers and associated context parameters.

0 A BLE connection is established and msgCtx is the connection handle.
1 A BLE disconnection event and msgCtx identifies the handle.
4 A BLE Service Error. The second parameter contains the error code.
9 Pairing in progress and displayed Passkey supplied in msgCtx.
10 A new bond has been successfully created.
11 Pairing in progress and authentication key requested. msgCtx is key type.
14 Connection parameters update and msgCtx is the conn handle.
15 Connection parameters update fail and msgCtx is the conn handle.
16 Connected to a bonded master and msgCtx is the conn handle.
17 A new pairing has replaced old key for the connection handle specified.
18 The connection is now encrypted and msgCtx is the conn handle.
https://connectivity.lairdtech.com 73 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

p NNECTIVITY
User Guide Lalrd co CTIV

20 The connection is no longer encrypted and msgCitx is the conn handle
21 The device name characteristic in the GAP service of the local GATT table has been written by the remote GATT
client.

22 Attempt to add a new bonding to the bonding database failed

23 On a BLE connection to a bonded device, if the current GATT table schema does not match what existed at the
last connection, then a GATT Service Change Indication is automatically sent and the app is informed via this
event

24 On a BLE connection to a bonded device, if the current gatt table schema does not match what existed at the

last connection, then a GATT Service Change Indication is automatically sent and the app is informed when the
client acknowledges that indication

Note: Message ID 13 is reserved for future use.

Example:

// Example :: EvBleMsg.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

DIM addr$: addr$=""

DIM rc

//

// This handler is called when there is a BLE message
//

FUNCTION HndlrBleMsg (BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER)
SELECT nMsgId
CASE O
PRINT "\nBLE Connection ";nCtx
CASE 1
PRINT "\nDisconnected ";nCtx;"\n"
CASE 18
PRINT "\nConnection ";nCtx;" is now encrypted"
CASE 16
PRINT "\nConnected to a bonded master"
CASE 17
PRINT "\nA new pairing has replaced the old key";
CASE ELSE
PRINT "\nUnknown Ble Msg"
ENDSELECT
ENDFUNC 1

FUNCTION HndlrBlrAdvTimOut ()

https://connectivity.lairdtech.com 74 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird

) CONNECTIVITY
User Guide _)

PRINT "\nAdvert stopped via timeout"
PRINT "\nExiting..."

ENDFUNC O

FUNCTION HndlrUartRx ()
rc=BleAdvertStop ()
PRINT "\nExiting..."

ENDEFUNC O

ONEVENT EVBLEMSG CALL HndlrBleMsg
ONEVENT EVBLE ADV_TIMEOUT CALL HndlrBlrAdvTimOut
ONEVENT EVUARTRX CALL HndlrUartRx

// start adverts

IF BleAdvertStart (0,addr$,100,10000,0)==0 THEN
PRINT "\nAdverts Started"
PRINT "\nPress any key to exit\n"

ELSE
PRINT "\n\nAdvertisement not successful"

ENDIF

WAITEVENT

Expected Output (When connection made with the module):

Adverts Started
Press any key to exit

BLE Connection 3634

Connected to a bonded master
Connection 3634 is now encrypted

A new pairing has replaced the old key
Disconnected 3634

Exiting...

Expected Output (When no connection made):

Adverts Started
Press any key to exit

Advert stopped via timeout
Exiting...

https://connectivity.lairdtech.com 75 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird

) CONNECTIVITY
User Guide _)

5.2.7 EVDISCON

This event is thrown when there is a BLE disconnection. It comes with two parameters:

= Connection handle
= The reason for the disconnection

The reason, for example, can be 0x08 which signifies a link connection supervision timeout which is used in the Proximity
Profile.

A full list of Bluetooth HCI result codes for the reason of disconnection is provided in this document here.

Example:

// Example :: EvDiscon.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

DIM addr$: addrs$=""

FUNCTION HndlrBleMsg (BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER)
IF nMsgID==0 THEN
PRINT "\nNew Connection ";nCtx
ENDIF
ENDFUNC 1

FUNCTION BtnOPress ()
PRINT "\nExiting..."

ENDFUNC 0

FUNCTION HndlrDiscon (BYVAL hConn AS INTEGER, BYVAL nRsn AS INTEGER) AS INTEGER

PRINT "\nConnection ";hConn;" Closed: 0x";nRsn

ENDFUNC 0
ONEVENT EVBLEMSG CALL HndlrBleMsg
ONEVENT EVDISCON CALL HndlrDiscon

// start adverts

IF BleAdvertStart (0,addr$,100,10000,0)==0 THEN
PRINT "\nAdverts Started\n"

ELSE
PRINT "\n\nAdvertisement not successful"

ENDIF

WAITEVENT

Expected Output:

Adverts Started

New Connection 2915
Connection 2915 Closed: 0x19

https://connectivity.lairdtech.com 76 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

p NNECTIVITY
User Guide Lalrd co CTIV

5.2.8 EVCHARVAL

This event is thrown when a characteristic is written to by a remote GATT client. It comes with three parameters:

= Char Handle — Characteristic handle that was returned when the characteristic was registered using the function
BleCharCommit()

= Offset — Offset
= Length — Length of the data from the characteristic value

5.2.9 EVCHARVALUE

This event is thrown when the remote device writes to a characteristic value. It differs from EVCHARVAL in that the event
contains the parameters including the connection handle and the string data. If the write operation is performed on a
characteristic that requires authorisation, then EVAUTHVAL is thrown instead and the user should then authorize and read the
value.

If the event is thrown with an empty string but the length has a non-zero value, then this indicates that there was not enough
memory to allocate to the event.

The event comes with the following parameters:

= Connection Handle — The handle of the connection that wrote to the characteristic value.

= Char Handle — Characteristic handle that was returned when the characteristic was registered using the function
BleCharCommit()

= Offset — The offset at which the characteristic data was written.

= Length — The length of the data that was written. This should be equal to StrLen$(Data$), and can be used to detect if
there was any data loss.

= Data$ - The string data that was written to the characteristic.

Example:

// Example :: EvCharVal.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

DIM hMyChar,rc,at$, conHndl

//
// Initialise and instantiate service, characteristic, start adverts
//
FUNCTION OnStartup ()

DIM rc, hSvc, attr$, adRpt$, addr$, scRpt$: attr$="Hi"

//commit service
rc=BleSvcCommit (1,BleHandleUuidl6 (0x18EE),hSvc)
rc=BleServiceNew (1, BleHandleUuidl6 (0x18EE), hSvc)
//initialise char, write/read enabled, accept signed writes
rc=BleCharNew (0x0A,BleHandleUuidl6 (1) ,BleAttrMetabata(1,1,20,0,rc),0,0)
//commit char initialised above, with initial value "hi" to service 'hSvc'
rc=BleCharCommit (hSvc,attr$, hMyChar)
//commit changes to service
rc=BleServiceCommit (hSvc)
rc=BleScanRptInit (scRpt$)
//Add 1 service handle to scan report
//rc=BleAdvRptAddUuidl6 (scRpt$, 0x18EE,-1,-1,-1,-1,-1)
//commit reports to GATT table - adRpt$ is empty
rc=BleAdvRptsCommit (adRpt$, scRpt$)
rc=BleAdvertStart (0,addr$,20,300000,0)

ENDFUNC rc

//
// Close connections so that we can run another app without problems
https://connectivity.lairdtech.com 77 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

p NNECTIVITY
User Guide Lalrd co CTIV

//

SUB CloseConnections ()
rc=BleDisconnect (conHndl)
rc=BleAdvertStop ()

ENDSUB

//
// Ble event handler
//
FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)
conHndl=nCtx
IF nMsgID==1 THEN

PRINT "\n\n--- Disconnected from client"
EXITFUNC O
ELSEIF nMsgID==0 THEN
PRINT "\n--- Connected to client"
ENDIF
ENDFUNC 1
//
// New char value handler - Thrown when AT+CFG 213=0
//
FUNCTION HandlerCharVal (BYVAL charHandle, BYVAL offset, BYVAL len)
DIM s$
IF charHandle == hMyChar THEN
PRINT "\n";len;" byte(s) have been written to char value attribute from offset
";offset
rc=BleCharValueRead (hMyChar, s$)
PRINT "\nNew Char Value: ";s$
ENDIF
CloseConnections ()
ENDFUNC 1
//
// New char value handler - Thrown when AT+CFG 213=1
//

FUNCTION HandlerCharValue (BYVAL nConnHandle, BYVAL charHandle, BYVAL offset, BYVAL len,
BYVAL Data$)

DIM s$
IF charHandle == hMyChar THEN
PRINT "\n";len;" byte(s) have been written to char value attribute from offset
";offset
PRINT "\nData written is :";Data$ PRINT "\nData written is :";Data$;" - Connection

Handle=";integer.h' nConnHandle

rc=BleCharValueRead (hMyChar, s$)
PRINT "\nNew Char Value: ";s$

ENDIF
CloseConnections ()
ENDFUNC 1
ONEVENT EVCHARVAL CALL HandlerCharVal // This event is thrown if AT+CFG 213 = 0
ONEVENT EVCHARVALUE CALL HandlerCharValue // This event is thrown if AT+CFG 213 = 1
ONEVENT EVBLEMSG CALL HndlrBleMsg
IF OnStartup ()==0 THEN
rc = BleCharValueRead (hMyChar, at$)
PRINT "\nThe characteristic's value is ";at$
PRINT "\nWrite a new value to the characteristic\n"
https://connectivity.lairdtech.com 78 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird CONNECTIVITY

User Guide

ELSE

PRINT "\nFailure OnStartup"
ENDIF
WAITEVENT

PRINT "\nExiting..."

Expected Output (AT+CFG 213=0):

The characteristic’s value is Hi
Write a new value to the characteristic

--- Connected to client
5 byte(s) have been written to char value attribute from offset 0
New Char Value: Hello

—-—— Disconnected from client
Exiting...

Expected Output (AT+CFG 213=1):

The characteristic’s value is Hi
Write a new value to the characteristic

--- Connected to client

5 byte(s) have been written to char value attribute from offset O
Data written is :hello - Connection Handle=0001FFO0O0

New Char Value: Hello

—-—— Disconnected from client
Exiting...

5.210EVCHARHVC

This event is thrown when a value sent via an indication to a client gets acknowledged. It comes with one parameter:
= The characteristic handle that was returned when the characteristic was registered using the function BleCharCommit()

Example:

// Example :: EVCHARHVC charHandle

// See example that is provided for EVCHARCCCD

5.2.11 EVCHARCCCD

This event is thrown when the client writes to the CCCD descriptor of a characteristic. It comes with two parameters:

= The characteristic handle returned when the characteristic was registered with BleCharCommit()
= The new 16-bit value in the updated CCCD attribute

Example:

// Example :: EvCharCccd.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

DIM hMyChar,rc,at$,conHndl

https://connectivity.lairdtech.com 79 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird

) CONNECTIVITY
User Guide _)

//
// Initialise and instantiate service, characteristic, start adverts

//
FUNCTION OnStartup ()

DIM rc, hSvc, metaSuccess, at$, attr$, adRpt$, addr$, scRpt$
attr$="Hi"

DIM svcUuid : svcUuid=0x18EE

DIM charUuid : charUuid = BleHandleUuidl6 (1)

DIM charMet : charMet = BleAttrMetaData(0,0,20,1,metaSuccess)
DIM hSvcUuid : th;Uuid = BleHandleUuidl6 (svcUuid)

DIM mdCccd : mdCccd = BleAttrMetadata(l,1,2,0,rc) //CCCD metadata for char

//Create service

rc=BleServiceNew (1, hSvcUuid, hSvc)

//initialise char, write/read enabled, accept signed writes, indicatable

rc=BleCharNew (0x20, charUuid, charMet, mdCccd, 0)

//commit char initialised above, with initial value "hi" to service 'hMyChar'

rc=BleCharCommit (hSvc,attr$, hMyChar)

//commit service to GATT table

rc=BleServiceCommit (hSvc)

rc=BleAdvertStart (0,addr$,20,300000,0)

ENDFUNC rc

//

// Close connections so that we can run another app without problems
//

SUB CloseConnections ()
rc=BleDisconnect (conHndl)
rc=BleAdvertStop ()
rc=GpioUnbindEvent (1)

ENDSUB

//
// Ble event handler
//
FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)

https://connectivity.lairdtech.com 80 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird

) CONNECTIVITY
User Guide _)

conHndl=nCtx

IF nMsgID==1 THEN
PRINT "\n\n--- Disconnected from client"
EXITFUNC O

ELSEIF nMsgID==0 THEN

PRINT "\n--- Connected to client"
ENDIF
ENDFUNC 1
// :
// Indication acknowledgement from client handler
//

FUNCTION HndlrCharHvc (BYVAL charHandle AS INTEGER) AS INTEGER
IF charHandle == hMyChar THEN
PRINT "\nGot confirmation of recent indication"
ELSE
PRINT "\nGot confirmation of some other indication: ";charHandle
ENDIF

ENDFUNC 1

//
// Called when data received via the UART
//
FUNCTION HndlrUartRx () AS INTEGER

ENDFUNC 0

//
// CCCD descriptor written handler
//
FUNCTION HndlrCharCccd (BYVAL charHandle, BYVAL nVal) AS INTEGER

DIM value$
IF charHandle==hMyChar THEN
IF nVal & 0x02 THEN
PRINT "\nIndications have been enabled by client"
value$="hello"
IF BleCharValueIndicate (hMyChar,value$) !=0 THEN
PRINT "\nFailed to indicate new value"
ENDIF
ELSE

PRINT "\nIndications have been disabled by client"

https://connectivity.lairdtech.com 81 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird

) CONNECTIVITY
User Guide _)

ENDIF
ELSE
PRINT "\nThis is for some other characteristic"
ENDIF
ENDFUNC 1
ONEVENT EVBLEMSG CALL HndlrBleMsg

ONEVENT EVCHARHVC CALL HndlrCharHvc
ONEVENT EVCHARCCCD CALL HndlrCharCccd
ONEVENT EVUARTRX CALL HndlrUartRx

IF OnStartup ()==0 THEN
rc = BleCharValueRead (hMyChar, at$)
PRINT "\nValue of the characteristic ";hMyChar;" is: ";at$
PRINT "\nYou can write to the CCCD characteristic."
PRINT "\nThe BL654 will then indicate a new characteristic value\n"
PRINT "\n--- Press any key to exit"
ELSE
PRINT "\nFailure OnStartup"
ENDIF

WAITEVENT

CloseConnections ()

PRINT "\nExiting..."

Expected Output:

Value of the characteristic 1346437121 is: Hi
You can write to the CCCD characteristic.
The BL654 will then indicate a new characteristic value

--— Press any key to exit

--— Connected to client

Indications have been enabled by client
Got confirmation of recent indication
Exiting...

5.2.12EVCHARSCCD

This event is thrown when the client writes to the SCCD descriptor of a characteristic. It comes with two parameters:

= The characteristic handle that is returned when the characteristic is registered using the function BleCharCommit()
= The new 16-bit value in the updated SCCD attribute

The SCCD is used to manage broadcasts of characteristic values.

https://connectivity.lairdtech.com 82 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird

) CONNECTIVITY
User Guide _)

Example:

// Example :: EvCharSccd.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

DIM hMyChar, rc,chval$, conHndl

//
// Initialise and instantiate service, characteristic, start adverts
//
FUNCTION OnStartup ()

DIM rc, hSvec, attr$, adRpt$S, addr$, scRpt$S ,rc2
attr$="Hi"

DIM charMet : charMet = BleAttrMetaData(l,1,20,1,rc)

//Create service

rc=BleServiceNew (1,BleHandleUuidl6 (0x18EE), hSvc)

//initialise broadcast capable, readable, writeable

rc=BleCharNew (0x0B,BleHandleUuidl6 (1) ,charMet, 0,BleAttrMetadata(1,1,1,0,rc2))

//commit char initialised above, with initial value "hi" to service 'hMyChar'

rc=BleCharCommit (hSvc,attr$, hMyChar)

//commit service to GATT table

rc=BleServiceCommit (hSvc)

rc=BleAdvertStart (0,addr$,20,300000,0)

ENDFUNC rc

//
// Close connections so that we can run another app without problems
//

SUB CloseConnections ()

rc=BleDisconnect (conHndl)

rc=BleAdvertStop ()

rc=GpioUnbindEvent (1)
ENDSUB

//

https://connectivity.lairdtech.com 83 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions
User Guide

Laird 2» CONNECTIVITY

// Broadcast characterstic value

1/

FUNCTION PrepAdvReport ()
dim adRpt$, scRpt$, svcDta$

//initialise new advert report

rc=BleAdvRptinit (adRpt$, 2, 0, 0)

//encode service UUID into service data string

rc=BleEncodel6 (svcDta$, O0x18EE, O0)

//append characteristic value

svcDta$ = svcDta$ + chval$

//append service data to advert report

rc=BleAdvRptAppendAD (adRpt$, 0x1l6, svcDta$)

//commit new advert report, and empty scan report

rc=BleAdvRptsCommit (adRpt$, scRpt$)

ENDFUNC rc

//

// Reset advert report
//

FUNCTION ResetAdvReport ()

dim adRpt$, scRpt$

//initialise new advert report

rc=BleAdvRptinit (adRpt$, 2, 0, 20)

//commit new advert report, and empty scan report

rc=BleAdvRptsCommit (adRpt$, scRpt$)

ENDFUNC rc

//

// Ble event handler
//

FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)

conHndl=nCtx

https://connectivity.lairdtech.com 84
© Copyright 2019 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

p NNECTIVITY
User Guide Lalrd co CTIV

IF nMsgID==1 THEN
PRINT "\n\n--- Disconnected from client"
dim addr$
rc=BleAdvertStart (0,addr$,20,300000,0)
IF rc==0 THEN

PRINT "\nYou should now see the new characteristic value in the advertisment
data"

ENDIF
ELSEIF nMsgID==0 THEN
PRINT "\n--- Connected to client"
ENDIF
ENDFUNC 1

//
// Called when data arrives via UART
//
FUNCTION HndlrUartRx ()

ENDFUNC 0

//
// CCCD descriptor written handler
//
FUNCTION HndlrCharSccd (BYVAL charHandle, BYVAL nVal) AS INTEGER

DIM value$
IF charHandle==hMyChar THEN
IF nVal & O0x01 THEN
PRINT "\nBroadcasts have been enabled by client"
IF PrepAdvReport ()==0 THEN
rc=BleDisconnect (conHndl)
PRINT "\nDisconnecting..."
ELSE
PRINT "\nError Committing advert reports: ";integer.h'rc
ENDIF
ELSE
PRINT "\nBroadcasts have been disabled by client"
IF ResetAdvReport ()==0 THEN
PRINT "\nAdvert reports reset"
ELSE

PRINT "\nError Resetting advert reports: ";integer.h'rc

https://connectivity.lairdtech.com 85 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird

) CONNECTIVITY
User Guide _)

ENDIF
ENDIF
ELSE

PRINT "\nThis is for some other characteristic"

ENDIF

ENDFUNC 1

//

// New char value handler

//

FUNCTION HndlrCharVal (BYVAL charHandle, BYVAL offset, BYVAL len)
DIM s$
IF charHandle == hMyChar THEN

rc=BleCharValueRead (hMyChar,chval$)

PRINT "\nNew Char Value: ";chval$
ENDIF
ENDFUNC 1
//
// Called after a disconnection
//

FUNCTION HndlrDiscon (hConn, nRsn)

dim addr$

rc=BleAdvertStart (0,addr$,20,300000,0)
ENDFUNC 1

ONEVENT EVBLEMSG CALL HndlrBleMsg
ONEVENT EVCHARSCCD CALL HndlrCharSccd
ONEVENT EVUARTRX CALL HndlrUartRx
ONEVENT EVCHARVAL CALL HndlrCharVal
ONEVENT EVDISCON CALL HndlrDiscon

IF OnStartup ()==0 THEN
rc = BleCharValueRead (hMyChar,chvals$)
PRINT "\nCharacteristic Value: ";chVval$

PRINT "\nWrite a new value to the characteristic, then enable broadcasting.\nThe
module will then disconnect and broadcast the new characteristic value."

PRINT "\n--- Press any key to exit\n"
ELSE
https://connectivity.lairdtech.com 86 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird : CONNECTIVITY

User Guide

PRINT "\nFailure OnStartup"

ENDIF

WAITEVENT

CloseConnections ()

PRINT "\nExiting..."

Expected Output:

Characteristic Value: Hi

Write a new value to the characteristic, then enable broadcasting.

The module will then disconnect and broadcast the new characteristic value.
--- Press any key to exit

--- Connected to client

New Char Value: hello

Broadcasts have been enabled by client
Disconnecting...

--- Disconnected from client
You should now see the new characteristic value in the advertisment data
Exiting...

5.213EVCHARDESC

This event is thrown when the client writes to a writable descriptor of a characteristic which is not a CCCD or SCCD (they are
catered for with their own dedicated messages). It comes with two parameters:

= Thee characteristic handle that was returned when the characteristic was registered using the function BleCharCommit()
= Anindex into an opaque array of handles managed inside the characteristic handle. Both parameters are supplied as-is
as the first two parameters to the function BleCharDescRead().

Example:

// Example :: EvCharDesc.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

DIM hMyChar,rc,at$,conHndl, hOtherDescr

//

// Initialise and instantiate service, characteristic, start adverts
//
FUNCTION OnStartup$ ()

DIM rc, hSvc, at$, adRpt$, addr$, scRpt$, hOtherDscr,attr$, attr2$, rc2
attr$="Hi"
DIM charMet : charMet = BleAttrMetaData(1,0,20,0,rc)

//Commit svc with handle 'hSvcUuid'
rc=BleServiceNew (1,BleHandleUuidl6 (0x18EE), hSvc)

https://connectivity.lairdtech.com 87 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird

) CONNECTIVITY
User Guide _)

//initialise characteristic - readable

rc=BleCharNew (0x02,BleHandleUuidl6 (1), charMet, 0,0)

//Add user descriptor - variable length
attr$="my char desc"

rc=BleCharDescUserDesc (attr$,BleAttrMetadata(1,1,20,1,rc2))

//commit char initialised above, with initial value "char value" to service 'hSvc'
attr2$="char value"

rc=BleCharCommit (hSvc,attr2$, hMyChar)

//commit service to GATT table

rc=BleServiceCommit (hSvc)

rc=BleAdvertStart (0,addr$,20,300000,0)
ENDFUNC attr$

//
// Close connections so that we can run another app without problems
//

SUB CloseConnections ()

rc=BleDisconnect (conHndl)

rc=BleAdvertStop ()

rc=GpioUnbindEvent (1)
ENDSUB

//
// Ble event handler
//
FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)

conHndl=nCtx

IF nMsgID==1 THEN
PRINT "\n\n--- Disconnected from client"
EXITFUNC O

ELSEIF nMsgID==0 THEN

PRINT "\n--- Connected to client"
ENDIF
ENDFUNC 1
//
// Called when data arrives via UART
//
https://connectivity.lairdtech.com 88 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird

) CONNECTIVITY
User Guide _)

FUNCTION HndlrUartRx ()
ENDFUNC 0

//
// Client has written to writeable descriptor
//
FUNCTION HndlrCharDesc (BYVAL hChar AS INTEGER, BYVAL hDesc AS INTEGER) AS INTEGER

dim duid, a$, rc

IF hChar == hMyChar THEN
rc = BleCharDescRead (hChar, hDesc,0,20,duid, a$)
IF rc ==0 THEN

PRINT "\nNew value for desriptor ";hDesc;" with uuid ";integer.h'duid;" is

";as
ELSE
PRINT "\nCould not read the descriptor value"
ENDIF
ELSE
PRINT "\nThis is for some other characteristic"
ENDIF
ENDFUNC 1
ONEVENT EVBLEMSG CALL HndlrBleMsg

ONEVENT EVCHARDESC CALL HndlrCharDesc

ONEVENT EVUARTRX CALL HndlrUartRx

PRINT "\nOther Descriptor Value: ";OnStartup$ ()

PRINT "\nWrite a new value \n--- Press any key to exit\n"
WAITEVENT

CloseConnections ()

PRINT "\nExiting..."

Expected Output:

Other Descriptor Value: my char desc
Write a new value
--- Press any key to exit

-—-- Connected to client
New value for desriptor 0 with uuid FE012901 is hello

5.214EVAUTHVAL

This event is thrown instead of EVCHARVAL when a characteristic with read and/or write authorisation is being read or
written to by a remote GATT client. It comes with three parameters:

https://connectivity.lairdtech.com 89 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

p NNECTIVITY
User Guide Lalrd co CTIV

e Connection handle — The connection handle of the GATT client

e Char handle —The characteristic handle that was returned when the characteristic was registered using the function
BleCharCommit()

e ReadWrite —Will be 0x00000000 when this is a read attempt and 0x00010000 when write attempt
Call BleAuthorizeChar() to either grant or deny access.

If this a write attempt and access is granted then as soon as the function BleAuthoriseChar() returns the new value is ready to
be read using BleCharValueRead().

Note: When a characteristic requires authentication and the remote device reads from it or writes to it using the
WRITE_CMD (write without response), the event EVAUTHVALEX is thrown instead. The user should therefore
have both EVAUTHVAL and EVAUTHVALEX events in their app and service the events appropriately. See the
example below for more information.

5.215EVAUTHVALEX

This event is thrown when the remote device writes to a characteristic value that requires authentication using the
WRITE_CMD (write without response) command. You should then write the data using BleCharValueWriteEx at the app layer,
otherwise the value is not updated. If the event is thrown with an empty string but the length has a non-zero value, this
indicates that there was not enough memory to allocate to the event. The event comes with the following parameters:

e Connection handle — The connection handle of the GATT client

e Char handle —The characteristic handle that was returned when the characteristic was registered using the function
BleCharCommit()

e Offset — The offset of the characteristic at which the remote is attempting to write.

e Length — The length of the data that the remote is attempting to write. This should be equal to StrLen$(Data$) and can
be used to verify that no data loss has occurred.

o Data$ — The string data that the remote device is attempting to write.

Note: When a characteristic requires authentication and the remote device reads from it or writes to it using a noramal
WRITE, the event EVAUTHVAL is thrown instead. You should therefore have both EVAUTHVAL and
EVAUTHVALEX events in their app and service the events appropriately. See the example below for more
information.

Example:

// Example :: EvAuthVal.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

DIM hMyChar,rc,at$, conHndl

// Initialise and instantiate service, characteristic, start adverts

FUNCTION OnStartup ()
DIM rc, hSvc, attr$, adRpt$, addr$, scRpt$: attr$="Hi"

//Commit service

rc=BleServiceNew (1,BleHandleUuidl6 (0x18EE), hSvc)

//Initialise char, write/read enabled, accept signed writes

rc=BleCharNew (0x0A,BleHandleUuidl6 (1) ,BleAttrMetaDataex(1,1,20,8,rc),0,0)
//Commit char initialised above, with initial value "hi" to service 'hSvc'
rc=BleCharCommit (hSvc,attr$, hMyChar)

//Commit changes to the service

rc=BleServiceCommit (hSvc)

rc=BleScanRptInit (scRpt$)

//Add 1 service handle to scan report

https://connectivity.lairdtech.com 90 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

p NNECTIVITY
User Guide Lalrd co CTIV

//rc=BleAdvRptAddUuidl6 (scRpt$,hSve,-1,-1,-1,-1,-1)
//Commit reports to GATT table - adRpt$ is empty
rc=BleAdvRptsCommit (adRpt$, ScRpt$S)
rc=BleAdvertStart (0,addr$,20,300000,0)

ENDFUNC rc

SUB CloseConnections ()
rc=BleDisconnect (conHndl)
rc=BleAdvertStop ()

ENDSUB

FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)
conHndl=nCtx
IF nMsgID==1 THEN

PRINT "\n\n--- Disconnected from client"
EXITFUNC O
ELSEIF nMsgID==0 THEN
PRINT "\n--- Connected to client"
ENDIF
ENDFUNC 1
T
// AUTHVAL - The remote has written to the characteristic using WRITE (write with response)
/=
FUNCTION HndlrAuthVal (BYVAL connHandle, BYVAL charHandle, BYVAL readWrite)
DIM s$
IF charHandle == hMyChar THEN
IF readWrite!=0 THEN
rc=BleAuthorizeChar (connHandle, charHandle, 3) //Grant access
rc=BleCharValueRead (hMyChar, s$)
PRINT "\nAuthenticated char written using Write with response."
PRINT "\nNew Char Value: ";s$
ENDIF
ENDIF
ENDFUNC 1
/==
// AUTHVALEX - The remote has written to the characteristic using WRITE CMD (write without
response)
[] mmmmmmmmm om0 0 0 0 0 0 0 0 5 S e e

FUNCTION HndlrAuthValEx (BYVAL connHandle, BYVAL charHandle, BYVAL offset, BYVAL length,
BYVAL data$ AS STRING)
DIM s$
IF charHandle == hMyChar THEN
// We are OK with this connection handle, so write the characteristic
rc = BleCharValueWriteEx (charHandle, offset, data$)
rc=BleCharValueRead (hMyChar, s$)
PRINT "\nAuthenticated char written using Write without response."
PRINT "\nNew Char Value: ";s$
ENDIF
ENDFUNC 1

ONEVENT EVBLEMSG CALL HndlrBleMsg

https://connectivity.lairdtech.com 91 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions l_ailﬂ-(:lw CONNECTIVITY

User Guide

ONEVENT EVAUTHVAL CALL HndlrAuthVal
ONEVENT EVAUTHVALEX CALL HndlrAuthValEx
IF OnStartup ()==0 THEN

rc = BleCharValueRead (hMyChar, at$)

PRINT "\nThe characteristic's value is ";at$

PRINT "\nWrite a new value to the characteristic\n"
ELSE

PRINT "\nFailure OnStartup"
ENDIF

WAITEVENT

Expected Output:

The characteristic's value is Hi

Write a new value to the characteristic

--- Connected to client

Authenticated char written using Write with response.
New Char Value: "Test"

Authenticated char written using Write without response.
New Char Value: "Test"

5.216 EVAUTHCCCD

This event is thrown instead of EVCHARCCCD when a CCCD descriptor of a characterisic with read and/or write
authorisation is being read or written to by a remote GATT client. It comes with following three parameters:

e The connection handle of the Gatt client
e The characteristic handle returned when the characteristic was registered with BleCharCommit()

e |s 0x00000000 when this is a read attempt and 0Ox0001HHHH when write attempt where the new 16-bit value to be
written is OxHHHH

Call BleAuthorizeDesc() to either grant or deny access.

If this is a write attempt and access is granted, as soon as the function BleAuthoriseDesc() returns, the new value OxHHHH is
assumed to be written to the descriptor.

Example:

// Example :: EvAuthCccd.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

DIM hMyChar, rc,at$, conHndl

//
// Initialise and instantiate service, characteristic, start adverts
//
FUNCTION OnStartup ()

DIM rc, hSvc, metaSuccess, at$, attr$, adRpt$, addr$, scRpt$

attr$="Hi"

DIM svcUuid : svcUuid=0x18EE

DIM charUuid : charUuid = BleHandleUuidl6 (1)

DIM charMet : charMet = BleAttrMetaDataex(1,1,20,0,metaSuccess)

DIM hSvcUuid : hSvcUuid = BleHandleUuidl6 (svcUuid)

DIM mdCccd : mdCccd = BleAttrMetadataex(1l,1,2,8,rc) //CCCD metadata for char, write
auth

//Commit svc with handle 'hSvcUuid'

https://connectivity.lairdtech.com 92 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

p NNECTIVITY
User Guide Lalrd co CTIV

rc=BleSvcCommit (1, hSvcUuid, hSvc)

//Initialise char, write/read enabled, accept signed writes, indicatable

rc=BleCharNew (0x6A, charUuid, charMet, mdCccd, 0)

//Commit char initialised above, with initial value "hi" to service 'hMyChar'

rc=BleCharCommit (hSvc,attr$, hMyChar)

rc=BleScanRptInit (scRpt$)

//Add 1 service handle to scan report

rc=BleAdvRptAddUuidl6 (scRpt$,hSve,-1,-1,-1,-1,-1)

//Commit reports to GATT table - adRpt$ is empty

rc=BleAdvRptsCommit (adRpt$, scRpt$)

rc=BleAdvertStart (0,addr$,20,300000,0)

rc=GpioBindEvent (1,16,1) //Channel 1, bind to low transition on GPIO pin 16
ENDFUNC rc

//
// Close connections so that we can run another app without problems
//
SUB CloseConnections ()
rc=BleDisconnect (conHndl)
rc=BleAdvertStop ()
rc=GpioUnbindEvent (1)
ENDSUB

//
// Ble event handler
//
FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)
conHndl=nCtx
IF nMsgID==1 THEN

PRINT "\n\n--- Disconnected from client"
EXITFUNC O
ELSEIF nMsgID==0 THEN
PRINT "\n--- Connected to client"
ENDIF
ENDFUNC 1
//
// Indication acknowledgement from client handler
//
FUNCTION HndlrCharHvc (BYVAL charHandle AS INTEGER) AS INTEGER
IF charHandle == hMyChar THEN
PRINT "\nGot confirmation of recent indication"
ELSE
PRINT "\nGot confirmation of some other indication: ";charHandle
ENDIF
ENDFUNC 1
//
// Handler to service button 0 pressed
//
FUNCTION HndlrBtnOPr () AS INTEGER
CloseConnections ()
ENDFUNC 1
//
// CCCD descriptor authorisation
//
FUNCTION HndlrAuthCccd (BYVAL connHandle,BYVAL charHandle, BYVAL readWrite) AS INTEGER
DIM value$
IF charHandle==hMyChar THEN
IF readWrite != 0x0 THEN
https://connectivity.lairdtech.com 93 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird

) CONNECTIVITY
User Guide _)

rc=BleAuthorizeDesc (connHandle, charHandle, -1 ,3) //grant access
IF readWrite == 0x10002 THEN
PRINT "\nSending indication..."
value$="hello"
IF BleCharValueIndicate (hMyChar,value$) !=0 THEN
PRINT "\nFailed to indicate new value"
ENDIF
ELSE
PRINT "\nIndications were disabled"
ENDIF
ENDIF
ELSE
PRINT "\nThis is for some other characteristic"
ENDIF
ENDFUNC 1

ONEVENT EVBLEMSG CALL HndlrBleMsg
ONEVENT EVCHARHVC CALL HndlrCharHvc
ONEVENT EVAUTHCCCD CALL HndlrAuthCccd
ONEVENT EVGPIOCHAN1 CALL HndlrBtnOPr

IF OnStartup()==0 THEN
rc = BleCharValueRead (hMyChar,at$)
PRINT "\nValue of the characteristic ";hMyChar;" is: ";at$
PRINT "\nYou can write to the CCCD characteristic."
PRINT "\nThe BL600 will then indicate a new characteristic value\n"

PRINT "\n--- Press button 0 to exit"
ELSE

PRINT "\nFailure OnStartup"
ENDIF
WAITEVENT

PRINT "\nExiting..."

Expected Output:

Value of the characteristic 1818531328 is: Hi
You can write to the CCCD characteristic.
The BL600 will then indicate a new characteristic wvalue

--- Press button 0 to exit

--- Connected to client

Sending indication...

Got confirmation of recent indication

5.2.177EVAUTHSCCD

This event is thrown instead of EVCHARSCCD when a SCCD descriptor of a characterisic with read and/or write
authorisation is being read or written to by a remote GATT client. It comes with the following three paramenters

= The connection handle of the Gatt client

= The characteristic handle returned when the characteristic was registered with BleCharCommit()

= |s 0x00000000 when this is a read attempt and 0XO001HHHH when it's a write attempt where the new 16-bit value to be
written is OXHHHH

Call BleAuthorizeDesc() to either grant or deny access.

If this a write attempt and access is granted then as soon as the function BleAuthoriseDesc() returns the new value OxHHHH is
assumed to be written to the descriptor.

The SCCD is used to manage broadcasts of characteristic values.
https://connectivity.lairdtech.com 94 Americas: +1-800-492-2320

© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

p NNECTIVITY
User Guide Lalrd co CTIV

Example:

// Example :: EvAuthSccd.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

DIM hMyChar,rc,at$, conHndl

//
// Initialise and instantiate service, characteristic, start adverts
//
FUNCTION OnStartup ()

DIM rc, hSvc, at$, attr$, adRpt$S, addr$, scRpt$, rc2

attr$="Hi"

DIM charMet : charMet = BleAttrMetaDataex(1,1,20,0,zrc)

//Commit svc with handle 'hSvcUuid'

rc=BleServiceNew (1,BleHandleUuidl6 (0x18EE) , hSvc)

//Initialise char, read enabled, accept signed writes, broadcast capable
rc=BleCharNew (0x4B,BleHandleUuidl6 (1) ,charMet, 0,BleAttrMetadataex(1,1,2,8,rc2))
//Commit char initialised above, with initial value "hi" to service 'hMyChar'
rc=BleCharCommit (hSvc,attr$, hMyChar)

//Commit svc

rc=BleServiceCommit (hSvc)

rc=BleAdvRptInit (adRpt$, 0x02,0,20)

//Add 'hSvc' and 'hMyChar' to the advert report

rc=BleAdvRptAddUuidlé (adRpt$, hSvc, hMyChar,-1,-1,-1,-1)

//Commit reports to GATT table - adRpt$ is empty

rc=BleAdvRptsCommit (adRpt$, scRpt$)

rc=BleAdvertStart (0,addr$,20,300000,0)

rc=GpioBindEvent (1,16,1) //Channel 1, bind to low transition on GPIO pin 16
ENDFUNC rc

//
// Close connections so that we can run another app without problems
//
SUB CloseConnections ()
rc=BleDisconnect (conHndl)
rc=BleAdvertStop ()
rc=GpioUnbindEvent (1)
ENDSUB

//
// Ble event handler
//
FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)
conHndl=nCtx
IF nMsgID==1 THEN

PRINT "\n\n--- Disconnected from client"
EXITFUNC O
ELSEIF nMsgID==0 THEN
PRINT "\n--- Connected to client"
ENDIF
ENDFUNC 1
//
//handler to service button 0 pressed
//
FUNCTION HndlrBtnOPr () AS INTEGER
CloseConnections ()
ENDFUNC 1
https://connectivity.lairdtech.com 95 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird

) CONNECTIVITY
User Guide _)

//
// CCCD descriptor written handler
//
FUNCTION HndlrAuthSccd (BYVAL connHandle,BYVAL charHandle, BYVAL readWrite) AS INTEGER
DIM value$
IF charHandle==hMyChar THEN
IF readWrite != 0x0 THEN
rc=BleAuthorizeDesc (connHandle, charHandle, -2 ,3) //grant access
if readWrite == 0x10000 then
PRINT "\nBroadcasts have been disabled by client"
ELSE
PRINT "\nBroadcasts have been enabled by client"
endif
ENDIF
ELSE
PRINT "\nThis is for some other characteristic"
ENDIF
ENDFUNC 1
ONEVENT EVBLEMSG CALL HndlrBleMsg

ONEVENT EVAUTHSCCD CALL HndlrAuthSccd
ONEVENT EVGPIOCHAN1 CALL HndlrBtnOPr

IF OnStartup ()==0 THEN
rc = BleCharValueRead (hMyChar, at$)
PRINT "\nCharacteristic Value: ";at$
PRINT "\nYou can write to the SCCD attribute."
PRINT "\nThe BL600 will then indicate a new characteristic value"

PRINT "\n--- Press button 0 to exit\n"
ELSE

PRINT "\nFailure OnStartup"
ENDIF
WAITEVENT

PRINT "\nExiting..."

Expected Output:

Characteristic Value: Hi

You can write to the SCCD attribute.

The BL600 will then indicate a new characteristic value
--- Press button 0 to exit

--— Connected to client
Broadcasts have been enabled by client

5.218 EVAUTHDESC

This event is thrown instead of EVCHARDESC when a writable descriptor of a characteristic with read and/or write
authorisation is being read or written by a remote GATT client. It comes with the following parameters:
= The connection handle of the Gatt client
= The characteristic handle that is returned when the characteristic is registered using the function BleCharCommit()
= The descriptor Handle Index
= |5 0x00000000 when this is a read attempt and 0x00010000 when it is a write attempt

Call BleAuthorizeChar() to either grant or deny access.

The first three parameters in the event are supplied as-is as the first three parameters to the function BleAuthizeChar().

https://connectivity.lairdtech.com 96 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

p NNECTIVITY
User Guide Lalrd co CTIV

If this event is for a write, as soon as the function BleAuthorizeDesc() returns, the descriptor contains the value and so the
function BleCharDescRead() can be called to read it.

Example:

// Example :: EvAuthDesc.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

DIM hMyChar, rc,at$,conHndl, hOtherDescr

//
// Initialise and instantiate service, characteristic, start adverts
//
FUNCTION OnStartup$ ()

DIM rc, hSvc, at$, adRpt$, addr$, scRpt$, hOtherDscr,attr$, attr2s$s

attr$="Hi" :

DIM charMet : charMet = BleAttrMetaData(l,1,20,0,rc)

//Commit svc with handle 'hSvcUuid'

rc=BleServiceNew (1,BleHandleUuidl6 (0x18EE) , hSvc)
//Initialise char, read/write enabled, accept signed writes
rc=BleCharNew (0x4A,BleHandleUuidlo6 (1), charMet, 0,0)

//Add another descriptor

attr$="descr value"
rc=BleCharDescAdd (0x2905, attr$,BleAttrMetadataex(1,1,20,9,rc))

//Commit char initialised above, with initial value "hi" to service 'hMyChar'
attr2$="char value"

rc=BleCharCommit (hSvc,attr2$,hMyChar)

rc=BleServiceCommit (hSvc)

rc=BleAdvRptInit (adRpt$, 0x02,0,20)

rc=BleScanRptInit (scRpt$)

//Get UUID handle for other descriptor

hOtherDscr=BleHandleUuidl6 (0x2905)

//Add 'hSvc', 'hMyChar' and the other descriptor to the advert report

rc=BleAdvRptAddUuidl6 (adRpt$,hSvc, hOtherDscr,-1,-1,-1,-1)

rc=BleAdvRptAddUuidl6 (scRpt$, hOtherDscr,-1,-1,-1,-1,-1)

//Commit reports to GATT table - adRpt$ is empty

rc=BleAdvRptsCommit (adRpt$, scRpt$)

rc=BleAdvertStart (0,addr$,20,300000,0)

rc=GpioBindEvent (1,16,1) //Channel 1, bind to low transition on GPIO pin 16
ENDFUNC attr$

//
// Close connections so that we can run another app without problems
//
SUB CloseConnections ()
rc=BleDisconnect (conHndl)
rc=BleAdvertStop ()
rc=GpioUnbindEvent (1)
ENDSUB

//
// Ble event handler
//
FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)
conHndl=nCtx
IF nMsgID==1 THEN
PRINT "\n\n--- Disconnected from client"
EXITFUNC O
ELSEIF nMsgID==0 THEN

https://connectivity.lairdtech.com 97 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions
User Guide

La i rdT J» CONNECTIVITY

PRINT "\n--- Connected to client"
ENDIF
ENDFUNC 1
//
// Handler to service button 0 pressed
//
FUNCTION HndlrBtnOPr () AS INTEGER
CloseConnections ()
ENDFUNC 1
//
// Client has written to writeable descriptor
//

INTEGER, BYVAL rw) AS INTEGER
dim duid, a$, rc
IF hChar == hMyChar THEN
rc = BleAuthorizeDesc (hConn, hChar, hDesc, 3)
rc = BleCharDescRead (hChar,hDesc,0,512,duid, a$)
IF rc ==0 THEN
PRINT "\nNew value for desriptor ";hDesc;" is ";a$

ELSE
PRINT "\nCould not access the uuid"
ENDIF
ELSE
PRINT "\nThis is for some other characteristic"
ENDIF
ENDFUNC 1
ONEVENT EVBLEMSG CALL HndlrBleMsg

ONEVENT EVAUTHDESC CALL HndlrAuthDesc
ONEVENT EVGPIOCHAN1 CALL HndlrBtnOPr

PRINT "\nOther Descriptor Value: ";OnStartup$ ()
PRINT "\nWrite a new value \n--- Press button 0 to exit\n"

WAITEVENT

PRINT "\nExiting..."

FUNCTION HndlrAuthDesc (BYVAL hConn AS INTEGER, BYVAL hChar AS INTEGER, BYVAL hDesc AS

Expected Output:

Other Descriptor Value: descr value
Write a new value
--— Press button 0 to exit

--- Connected to client
New value for desriptor 0 is cC

5.219EVVSPRX

This event is thrown when the Virtual Serial Port service is open and data has arrived from the peer.

5.2.20 EVVSPTXEMPTY

This event is thrown when the Virtual Serial Port service is open and the last block of data in the transmit buffer is sent via a

notify or indicate. See VSP (Virtual Serial Port) Events

https://connectivity.lairdtech.com 98
© Copyright 2019 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Lairdw CONNECTIVITY

User Guide

5.2.21EVCONNRSSI

This event message is thrown when rssi reporting is enabled for specific connections using the function BleConnRssiStart()
which takes the connection handle.

It consists of a two integers payload with the following values:

= Integer 1 — The connection handle for which the rssi is being reported
= Integer 2 — The signed RSSI value in units of dBm.

5.2.22 EVNOTIFYBUF

When in a connection and attribute data is sent to the GATT client using a notify procedure (such as the function
BleCharValueNotify()) or when a Write_with_no_response is sent by the GATT client to a remote server, they are stored in
temporary buffers in the underlying stack. There is a finite number of these temporary buffers. If they are exhausted, the notify
function or the write_with_no_resp command fails with a result code of 0x6803 (BLE_NO_TX_BUFFERS). Once the attribute
data is transmitted over the air, if there are no acknowledges for Notify messages, the buffer is freed to be reused.

This event is thrown when at least one buffer has been freed. Because of this, the smartBASIC application can handle this
event to retrigger the data pump for sending data using notifies or writes_with_no_resp commands.

Note: When sending data using Indications, this event is not thrown. Those messages must be confirmed by the client
which results in a EVCHARHVC message to the smartBASIC application. Likewise, writes which are
acknowledged do not consume these buffers.

Example:

// Example :: EvNotifyBuf.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

DIM hMyChar,rc,at$,conHndl,ntfyEnabled

//

// Initialise and instantiate service, characteristic, start adverts
//
FUNCTION OnStartup ()

DIM rc, hSvc, at$, attr$, adRpt$, addr$, scRpt$
attr$S="Hi"
DIM mdCccd : mdCccd = BleAttrMetadata(1,1,2,0,rc) //CCCD metadata for char

//Commit svc with handle 'hSve'

rc=BleServiceNew (1, BleHandleUuidlé6 (0x18EE), hSvc)

rc=BleSvcCommit (1,BleHandleUuidl6 (0x18EE), hSvc)

//initialise char, write/read enabled, accept signed writes, notifiable
rc=BleCharNew (0x12,BleHandleUuidl6 (1) ,BleAttrMetabData (1,0,20,0,rc),mdCccd, 0)
//commit char initialised above, with initial value "hi" to service 'hMyChar'

rc=BleCharCommit (hSvc,attr$, hMyChar)

//commit changes to service

https://connectivity.lairdtech.com 99 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird

) CONNECTIVITY
User Guide _)

rc=BleServiceCommit (hSvc)
rc=BleScanRptInit (scRpt$)
//Add 1 service handle to scan report
rc=BleAdvRptAddUuidl6 (scRpt$, 0x18EE,-1,-1,-1,-1,-1)
//commit reports to GATT table - adRpt$ is empty
rc=BleAdvRptsCommit (adRpt$, scRptS$)
rc=BleAdvertStart (0,addr$,50,0,0)

ENDFUNC rc

//

// Close connections so that we can run another app without problems
//

SUB CloseConnections ()

rc=BleDisconnect (conHndl)
rc=BleAdvertStop ()
ENDSUB

SUB SendData ()
DIM tx$, count
IF ntfyEnabled then
PRINT "\n--- Notifying"
DO
tx$="SomeData"
rc=BleCharValueNotify (hMyChar, tx$)
count=count+1l
UNTIL rc!=0
PRINT "\n--- Buffer full"
PRINT "\nNotified ";count;" times"
ENDIF

ENDSUB

//
// Ble event handler
//
FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)

conHndl=nCtx
IF nMsgID==0 THEN
PRINT "\n--- Connected to client"

ELSEIF nMsgID THEN

https://connectivity.lairdtech.com 100 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird

) CONNECTIVITY
User Guide _)

PRINT "\n--- Disconnected from client"
EXITFUNC O
ENDIF
ENDFUNC 1
//
// Tx Buffer free handler
//
FUNCTION HndlrNtfyBuf ()
SendData ()
ENDFUNC 0
//
// CCCD descriptor written handler
//

FUNCTION HndlrCharCccd (BYVAL charHandle, BYVAL nVal) AS INTEGER
DIM value$, tx$
IF charHandle==hMyChar THEN
IF nVal THEN
PRINT " : Notifications have been enabled by client"
ntfyEnabled=1
tx$="Hello"
rc=BleCharValueNotify (hMyChar, tx$)
ELSE
PRINT "\nNotifications have been disabled by client"
ntfyEnabled=0
ENDIF
ELSE
PRINT "\nThis is for some other characteristic"
ENDIF
ENDFUNC 1

ONEVENT EVNOTIFYBUF CALL HndlrNtfyBuf
ONEVENT EVBLEMSG CALL HndlrBleMsg
ONEVENT EVCHARCCCD CALL HndlrCharCccd

IF OnStartup ()==0 THEN
rc = BleCharValueRead (hMyChar,at$)

PRINT "\nYou can connect and write to the CCCD characteristic."

https://connectivity.lairdtech.com 101 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird

) CONNECTIVITY
User Guide _)

PRINT "\nThe BL654 will then send you data until buffer is full\n"
ELSE
PRINT "\nFailure OnStartup"

ENDIF

WAITEVENT
CloseConnections ()

PRINT "\nExiting..."

Expected Output:

You can connect and write to the CCCD characteristic.
The BL654 will then send you data until buffer is full

--- Connected to client

Notifications have been disabled by client : Notifications have been enabled by client
--— Notifying

—-—— Buffer full

Notified 1818505336 times

Exiting...

5.2.23 EVCONNPARAMREQ

This event is only thrown for a central role connection when a peripheral requests an update to the connection parameters via
BleSetCurConnParams(). The user must turn manual parameter control to receive this message by using
BleConnectConfig(8,1). In this case, auto accept is disabled and full control is given to the user.

The event contains the following integer values:

= nConnHandle — The handle of the connection where the peripheral is requesting a change.
* nMinIntUs — The minimum acceptable connection interval in microseconds.

= nMaxIntUs — The maximum acceptable connection interval in microseconds.

= nSuprToutUs — The link supervision timeout for the connection in microseconds.

= nSlaveLatency — The number of connection interval polls that may be ignored.

Example:

//Example :: EvConnParamReq.sb

// In order to get the expected output, this application should be run against
// a peripheral device. The peripheral device should request new connection

// parameters upon connection, which in turn will trigger EVCONNPARAMREQ on

// this device.

// This is the target Bluetooth device to connect to, 7 bytes in hex
#define BTAddr "000016A4B75202"

// BLE EVENT MSG IDs

#define BLE EVBLEMSGID CONNECT 0 // msgCtx = connection handle
#define BLE EVBLEMSGID DISCONNECT 1 // msgCtx = connection handle
#define BLE EVBLEMSGID CONN_PARMS UPDATE 14 //nCtx = connection handle
#define BLE EVBLEMSGID CONN PARMS UPDATE FATL 15 //nCtx = connection handle
DIM rc
//
// This handler is called when there is a BLE message
//

https://connectivity.lairdtech.com 102 Americas: +1-800-492-2320

© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird

) CONNECTIVITY
User Guide _)

FUNCTION HndlrBleMsg (BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER)
SELECT nMsgId

CASE BLE EVBLEMSGID CONNECT
PRINT "\nBLE Connection ";integer.h' nCtx;"\n"

CASE BLE EVBLEMSGID DISCONNECT
PRINT "\nDisconnected ";nCtx;"\n"

CASE BLE EVBLEMSGID CONN PARMS UPDATE
// The connection parameter has been updated. Read connection parameters
dim intrvl, sprvto,slat
rc= BleGetCurConnParms (nCtx,intrvl, sprvto, slat)

print "--- Param Updated \n"
print "- interval:";intrvl;" supervision timeout:";sprvto;" latency:";slat;"\n"
CASE BLE EVBLEMSGID CONN PARMS UPDATE FAIL
print "--- Param Update Failed\n"
print "- interval:";intrvl;" supervision timeout:";sprvto;" latency:";slat;"\n"
CASE ELSE
PRINT "\nUnknown Ble Msg"
ENDSELECT
ENDFUNC 1
//
// This handler is called when peripheral requests new parameter
//

function HandlerParamReq (BYVAL hConn AS INTEGER, BYVAL intrvlmin AS INTEGER, BYVAL intrvlmax
AS INTEGER, BYVAL sprvto AS INTEGER, BYVAL slat AS INTEGER)

print "--- Param Request \n"

print "- intervalmin:";intrvlmin;" intervalmax:";intrvlimax;" supervision
timeout:";sprvto;" latency:";slat;"\n"

// Accept the peripheral's request by changing the connection's conn parameters

rc = BleSetCurConnParms (hConn, intrvlmin, intrvlmax, sprvto, slat)

endfunc 1

//
// Program starts here
//
// Disable auto accept so that we get an event when peripheral requests
// new connection parameteres. Set to 0 to re-enable auto accept

rc = BleConnectConfig(8,1)

// Connect to peripheral

DIM addr$: addr$ = BTAddr

addr$ = StrDehexize$ (addr$)

rc = BleConnect (addr$, 5000, 7500, 7700, 500000)

At
// Enable synchronous event handlers

At
ONEVENT EVBLEMSG CALL HndlrBleMsg

ONEVENT EVCONNPARAMREQ CALL HandlerParamReq

WAITEVENT

Expected Output:

BLE Connection 0001FF0O0

—-—- Param Request

- intervalmin:45000 intervalmax:50000 supervision timeout:6000000 latency:0
--- Param Updated

- interval:50000 supervision timeout:6000000 latency:0

https://connectivity.lairdtech.com 103 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

5.3 Miscellaneous Functions

This section describes all BLE-related functions that are not related to advertising, connection, security manager, or GATT.

5.3.1 BleTxPowerSet

FUNCTION
This function sets the power of all packets that are transmitted subsequently.

Although this function can accept any value, the actual transmit power is determined by the internal power table which
supports -40, -20, -16, -12, -8, -4, 0, 2, 4, 5, 6, 7, and 8 dBm. When a value is set, the highest transmit power that is less than
or equal to the desired power is used. SYSINFO(2008) and AT | 2008 can be used to return the power level set.

BLETXPOWERSET (nTxPower)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:
byVal nTxPower AS INTEGER.
nTxPower Specifies the new transmit power in dBm units to be used for all subsequent tx packets.
The actual value is determined by the radios internal power table.

Example:

// Example :: BleTxPowerSet.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

DIM rc,dp

dp=1000 : rc = BleTxPowerSet (dp)

PRINT "\nrc = ";rc

PRINT "\nTx power : desired= ";dp," actual= "; SysInfo(2008)
dp=8 : rc = BleTxPowerSet (dp)

PRINT "\nTx power : desired= ";dp," "," actual= "; SysInfo(2008)
dp=2 : rc = BleTxPowerSet (dp)

PRINT "\nTx power : desired= ";dp," "," actual= "; SysInfo (2008)
dp=-10 : rc = BleTxPowerSet (dp)

PRINT "\nTx power : desired= ";dp," "," actual= "; SysInfo(2008)
dp=-25 : rc = BleTxPowerSet (dp)

PRINT "\nTx power : desired= ";dp," "," actual= "; SysInfo(2008)
dp=-45 : rc = BleTxPowerSet (dp)

PRINT "\nTx power : desired= ";dp," "," actual= "; SysInfo (2008)
dp=-1000 : rc = BleTxPowerSet (dp)

PRINT "\nTx power : desired= ";dp," actual= "; SysInfo(2008)

Expected Output:

rc =0
Tx power : desired= 1000 actual= 4
Tx power : desired= 8 actual= 4
Tx power : desired= 2 actual= 0
https://connectivity.lairdtech.com 104 Americas: +1-800-492-2320

© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions l_ailﬂ-‘:lw CONNECTIVITY

User Guide

Tx power : desired= -10 actual= -12
Tx power : desired= -25 actual= -40
Tx power : desired= -45 actual= -40

Tx power : desired= -1000 actual= -40

5.3.2 BleTxPwrWhilePairing

FUNCTION

This function sets the transmit power of all packets that are transmitted while a pairing is in progress. This mode of pairing is
referred to as Whisper Mode Pairing. The actual value is clipped to the transmit power for normal operation which is set using
BleTxPowerSet() function.

At any time SYSINFO(2018) returns the actual transmit power setting. Or when in command mode, uses the command AT |
2018.

Although this function can accept any value, the actual transmit power is determined by the internal power table which
supports -40, -20, -16, -12, -8, -4, 0, 2, 4, 5, 6, 7, and 8 dBm, when a value is set the highest transmit power that is less than or
equal to the desired power is used. SYSINFO(2008) and AT | 2008 returns the power level set and does not reflect the
transmit power level of the radio itself.

BLETXPWRWHILEPAIRING (nTxPower)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:
byVal nTxPower AS INTEGER.
Specifies the new transmit power in dBm units to be used for all subsequent Tx packets while the
pairing is in progress and normal power is resumed when the transaction is complete. The actual
nTxPower Value is determined by the radios internal power table.

Please note that the tx power will be reduced to nTxPower for ALL connections, even on
connections that there is no pairing in progress.

Example:

// Example :: BleTxPwrWhilePairing.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

DIM rc,dp

dp=1000 : rc = BleTxPwrWhilePairing (dp)

PRINT "\nrc = ";rc

PRINT "\nTx power while pairing: desired= ";dp," actual= "; SysInfo(2018)
dp=8 : rc = BleTxPwrWhilePairing (dp)

PRINT "\nTx power while pairing: desired= ";dp," "," actual= "; SysInfo(2018)
dp=2 : rc = BleTxPwrWhilePairing (dp)

PRINT "\nTx power while pairing: desired= ";dp," "," actual= "; SysInfo(2018)
dp=-10 : rc = BleTxPwrWhilePairing (dp)

PRINT "\nTx power while pairing: desired= ";dp," actual= "; SysInfo(2018)
dp=-25 : rc = BleTxPwrWhilePairing (dp)

PRINT "\nTx power while pairing: desired= ";dp," actual= "; SysInfo(2018)

https://connectivity.lairdtech.com 105 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

dp=-45 : rc = BleTxPwrWhilePairing (dp)
PRINT "\nTx power while pairing: desired= ";dp," actual= "; SysInfo(2018)
dp=-1000 : rc = BleTxPwrWhilePairing (dp)

PRINT "\nTx power while pairing: desired= ";dp," actual= "; SysInfo(2018)

Expected Output:

rc =0

Tx power while pairing: desired= 1000 actual= 10
Tx power while pairing: desired= 8 actual= 8

Tx power while pairing: desired= 2 actual= 2

Tx power while pairing: desired= -10 actual= -10
Tx power while pairing: desired= -25 actual= -20
Tx power while pairing: desired= -45 actual= -20
Tx power while pairing: desired= -1000 actual= -20

5.3.3 BleConfigDcDc

SUBROUTINE
This routine is used to configure the DC to DC converter to one of two states: ENABLED or DISABLED.

BLECONFIGDCDC (nNewsState)

Returns None

Arguments

nNewState | byVal nNewState AS INTEGER.
Configure the internal DC to DC converter as follows:

0 Disabled
All other values Enabled

BleConfigDcDc (2) //Set for automatic operation

5.3.4 BleChannelMap

FUNCTION

This function is used to enable or disable data channel usage when in a connection. Applies to data channels 0 to 36 only.

BLECHANNELMAP (chanMap$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byVal chanMap$ AS STRING.

This must be a string which is exactly 5 bytes long where a bit set means enable that channel to be
used and a 0 means to disable.

The mapping between bits in the 5 bytes to data channels in BLE are as follows:-
Bit O of byte index O : BLE channel O

chanMap$ | Bit 7 of byte index 0 : BLE channel 7

Bit O of byte index 1 : BLE channel 8

Bit 7 of byte index 1 : BLE channel 15

Bit O of byte index 2 : BLE channel 16

Bit 7 of byte index 2 : BLE channel 23

Bit O of byte index 3 : BLE channel 24

https://connectivity.lairdtech.com 106 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions l_ailﬂ-‘:lw CONNECTIVITY

User Guide

Bit 7 of byte index 3 : BLE channel 31
Bit O of byte index 4 : BLE channel 32
Bit 4 of byte index 4 : BLE channel 36
Bit 5 to 7 of byte index 4 are ignored.

5.4 Advertising Functions

This section describes all the advertising-related routines.

An advertisement consists of a packet of information with a header identifying it as one of four types along with an optional
payload that consists of multiple advertising records, referred to as AD in the rest of this manual.

Each AD record consists of up to three fields:

= Field 1 — One octet in length and indicates the number of octets that follow it that belong to that record.

= Field 2 — One octet in length and is a tag value which identifies the type of payload that starts at the next octet. Hence the
payload data is ‘length — 1°.

= Field 3 — A special NULL AD record that consists of one field (the length field) when it contains only the 00 value.

The specification also allows custom AD records to be created using the Manufacturer Specific Data AD record.

Refer to the Supplement to the Bluetooth Core Specification, Version 1, Part A which contains the latest list of all AD records.
You must register as at least an adopter, which is free, to gain access to this information. It is available at
https://www.Bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=245130

5.4.1 BleAdvertStart
FUNCTION

This function causes a BLE advertisement event as per the Bluetooth specification. An advertisement event consists of an
advertising packet in each of the three advertising channels.

The type of advertisement packet is determined by the nAdvType argument and the data in the packet is initialised, created,
and submitted by the BLEADVRPTINIT, BLEADVRPTADDxxx, and BLEADVRPTCOMMIT functions respectively.

If the Advert packet type (nAdvType) is specified as 1 (ADV_DIRECT _IND), then the peerAddr$ string must not be empty and
should be a valid address. When advertising with this packet type, the timeout is automatically set to 1280 ms.

When filter policy is enabled, the whitelist consisting of all bonded masters is submitted to the underlying stack so that only
those bonded masters result in scan and connection requests being serviced.

Note: nAdvTimeout is rounded up to the nearest 1000 msec.

In order to advertise over CODED PHY (long range), BleAdvertConfig() should be called beforehand to set the
advertising primary and secondary channels to CODED PHY. See BleAdvertConfig() for more details. Furthermore,
the advertising type should be set to ADV_EXT_CONN_NONSCAN_DIRECTED. Finally, high bandwidth should be
enabled using “AT+CFG 214 1” followed by “ATZ".

Extended advertising types (6-11) are only supported as experimental features in this release.

BLEADVERTSTART (nAdvType, peerAddr$, nAdvinterval, nAdvTimeout, nFilterPolicy)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

If a 0x6A01 resultcode is received, it implies a whitelist has been enabled but the Flags AD in the
advertising report is set for Limited and/or General Discoverability. The solution is to resubmit a new advert
report which is made up so that the nFlags argument to BleAdvRptlnit() function is 0.

The BT 4.0 spec disallows discoverability when a whitelist is enabled during advertisement. See Volume 3,
Sections 9.2.3.2 and 9.2.4.2.

https://connectivity.lairdtech.com 107 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=245130

BL654 smartBASIC Extensions

p NNECTIVITY
User Guide Lalrd co CTIV

Arguments:

byVal nAdvType AS INTEGER.
Specifies the advertisement type as follows:

0 | ADV_IND Invites connection requests
Invites connection from addressed device.
nAdvertTimeout imust be <= 1280ms
because nAdvinterval is ignored and will
advertise at a rate of every 3.75milliseconds
which means this type of advert is not power
efficient and will impact battery life.
See ADV_DIRECT_LOW_DUTYCYCLE_IND
for a more power efficient alternative.
2 ADV_SCAN_IND Invites scan request for more advert data
3 ADV_NONCONN_IND Does not accept connections/active scans
Invites connection from addressed device.
No limit on nAdvertTimeout as the advertising
interval is as per nAdvinterval, like a normal
advert but with the payload being the target
address.
See ADV_DIRECT _IND for an alternative.

1 | ADV_DIRECT_IND

4 | ADV_DIRECT_LOW_DUTYCYCLE_IND

MACKTIHDE 5 Unused

Invites connection requests over the
secondary advertising channel. This
advertising type can be used for CODED
PHY connections.

Invites connection from addressed devices
over the secondary advertising channel. This
advertising type can be used for CODED
PHY connections.

Invites scan requests over the secondary
advertising channel.

Invites scan requests from addressed devices
over the secondary advertising channel.
Undirected nonconnecatable nonscannable
10 | ADV_EXT_NONCONN_NONSCAN advertising using extended advertising
packets.

Directed nonconnecatable nonscannable

11 | ADV_EXT_NONCONN_NONSCAN_DIRECTED | advertising using extended advertising
packets.

6 | ADV_EXT_CONN_NONSCAN

7 ADV_EXT_CONN_NONSCAN_DIRECTED

8 | ADV_EXT_NONCONN_SCAN

9 ADV_EXT_NONCONN_SCAN_DIRECTED

byRef peerAddr$ AS STRING

It can be an empty string that is omitted if the advertisement type is not ADV_DIRECT_IND.

This is only required when nAdvType == 1. When not empty, a valid address string is exactly seven octets
long (for example: \00\11\22\33\44\55\66) where the first octet is the address type and the rest of the six
octets is the usual Bluetooth address in big endian format (so the most significant octet of the address is at
peerAddr$ | offset 1), whether public or random.

0 Public

1 Random Static

2 Random Private Resolvable

3 Random Private Non-Resolvable

All other values are illegal.
byVal nAdvinterval AS INTEGER.
The interval between two advertisement events (in milliseconds).

nAdvinterval

https://connectivity.lairdtech.com 108 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

An advertisement event consists of a total of three packets being transmitted in the three advertising
channels.

Valid range is between 20 and 10240 milliseconds.

byVal nAdvTimeout AS INTEGER.

The time after which the module stops advertising (in milliseconds). The range of this value is between 0
and 16383000 milliseconds and is rounded up to the nearest 1 seconds (1000ms).

nAdvTimeout | A yalue of 0 means disable the timeout, but note that if limited advert modes was specified in
BleAdvRptlnit() then this function fails. When the advert type specified is ADV_DIRECT_IND , the timeout
is automatically set to 1280 ms as per the Bluetooth Specification.

WARNING: To save power, do not mistakenly set this to e.g. 100ms.
byVal nFilterPolicy AS INTEGER.

Specifies the filter policy for the whitelist as follows:

0 Disable whitelist
1 Filter Policy — Filter scan request; allow connection request from any
2 Filter Policy — Filter connection request; allow scan request from any
3 Filter scan request and connection request
nFilterPolicy hhh A whitelist handle (for more details see section “Whitelist Management
Functions)

If the filter policy is not 0, but 1,2 or 3 the whitelist is enabled and filled with first 8 addresses and 8 identity
resolving keys of devices in the trusted device database. Given the database can accommodate more
devices please note that if more than 8 devices exist than a partial whitelist is activated.

To cater for that limitation, a whitelist can be manually created using the API described in the section
“Whitelist Management Functions” and the handle returned from a manually created list can be supplied
for this parameter

https://connectivity.lairdtech.com 109 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird

) CONNECTIVITY
User Guide _)

Example:

// Example :: BleAdvertStart.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

DIM addr$: addr$=""

FUNCTION HndlrBlrAdvTimOut ()
PRINT "\nAdvert stopped via timeout"
PRINT "\nExiting..."

ENDFUNC 0

//The advertising interval is set to 25 milliseconds. The module will stop
//advertising after 60000 ms (1 minute)
IF BleAdvertStart (0,addr$,25,60000,0)==0 THEN

PRINT "\nAdverts Started"

PRINT "\nIf you search for Bluetooth devices on your device, you should see 'Laird
BL654"'"

ELSE
PRINT "\n\nAdvertisement not successful"

ENDIF

ONEVENT EVBLE ADV TIMEOUT CALL HndlrBlrAdvTimOut

WAITEVENT

Expected Output:

Adverts Started
If you search for Bluetooth devices on your device, you should see 'Laird BL654'

Advert stopped via timeout
Exiting...

https://connectivity.lairdtech.com 110 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

5.4.2 BleAdvertStop

FUNCTION

This function causes the BLE module to stop advertising.

BLEADVERTSTOP ()

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments | None

Example:

// Example :: BleAdvertStop.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

DIM addr$: addrs$=""
DIM rc

FUNCTION HndlrBlrAdvTimOut ()
PRINT "\nAdvert stopped via timeout"
PRINT "\nExiting..."

ENDFUNC 0

FUNCTION BtnOPress ()

IF BleAdvertStop ()==0 THEN

PRINT "\nAdvertising Stopped"
ELSE

PRINT "\n\nAdvertising failed to stop"
ENDIF

PRINT "\nExiting..."
ENDFUNC O

IF BleAdvertStart (0,addr$,25,60000,0)==0 THEN

PRINT "\nAdverts Started. Press button 0 to stop.\n"
ELSE

PRINT "\n\nAdvertisement not successful"
ENDIF

rc
rc

GpioSetFunc(11,1,2)
GpioBindEvent (0,11,1)

ONEVENT EVBLE ADV TIMEOUT CALL HndlrBlrAdvTimOut
ONEVENT EVGPIOCHANO CALL BtnOPress

WAITEVENT

Expected Output:

Adverts Started. Press button 0 to stop.

Advertising Stopped
Exiting...

https://connectivity.lairdtech.com 111 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird CONNECTIVITY

User Guide

5.4.3 BleAdvertConfig

FUNCTION

This function is used to modify the default parameters that are used when initiating an advertise operation using
BleAdvertStart().

The following lists the default values for the parameters:

Advert Channel Mask Bit field detailing the channels to advertise on.
Note: Set channel mask Bit 0 to enable advert channel 0, Bit 1 to enable advert channel 1, and Bit 2 to enable advert
channel 2.

BLEADVERTCONFIG (configID, configValue)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byVal configiD AS INTEGER.
This identifies the value to update as follows:

0 Unused

1 Unused

2 Unused

3 Advert Channel Mask. Set to 0 to enable channel 37, bit 1 to enable channel 38, and bit 2
to enable channel 39

configlD Primary PHY to advertise on. Possible values are:-

1- 1MPHY

© 4 - CODED PHY
All other values are invalid
Secondary PHY to advertisie on. Possible values are:-
1- 1IMPHY

5 | 4-CODED PHY

All other values are invalid

For all other configID values the function returns an error.

byVal configValue AS INTEGER.
This contains the new value to set in the parameters indentified by configID.

configValue

5.4.4 BleAdvRptInit

FUNCTION

This function is used to create and initialise an advert report with a minimal set of ADs (advertising records) and store it the
string specified. It is not advertised until BLEADVRPTSCOMMIT is called.

This report is for use with advertisement packets.

BLEADVRPTINIT (advRpt$, nFlagsAD, nAdvAppearance, nMaxDevName)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful
operation.
Arguments:
byRef advRpt$ AS STRING.
advRpt$ y- . pts .
This contains an advertisement report.

https://connectivity.lairdtech.com 112 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

il“ NNECTIVITY
User Guide _d) €0 CTIV

byVal nFlagsAD AS INTEGER.

nFlagsAD | Specifies the flags AD bits where bit 0 is set for limited discoverability and bit 1 is set
for general discoverability. Bit 2 will be forced to 1 and bits 3 & 4 will be forced to 0.
Bits 3 to 7 are reserved for future use by the BT SIG and must be set to 0.

byVal nAdvAppearance AS INTEGER.

Determines whether the appearance advert should be added or omitted as follows:
nAdvAppearance 0

Omit appearance advert

Add appearance advert as specified in the GAP service which is supplied via
the BleGapSvclinit() function

byVal nMaxDevName AS INTEGER.

1

nMaxDevName | Tne n |eftmost characters of the device name specified in the GAP service. If this

value is set to zero (0) then the device name is not included.

Example:

// Example :: BleAdvRptInit.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

DIM advRpt$: advRptS$=""
DIM discovMode : discovMode=0
DIM advAppearance : advAppearance = 1

DIM maxDevName : maxDevName = 10

IF BleAdvRptInit (advRpt$, discovMode, advAppearance, maxDevName)==0 THEN
PRINT "\nAdvert report initialised"
ENDIF

Expected Output:

| Advert report initialised

5.4.5 BleScanRptinit
FUNCTION

This function is used to create and initialise a scan report which will be sent in a SCAN_RSP message. It will not be used until
BLEADVRPTSCOMMIT is called.

This report is for use with SCAN_RESPONSE packets.

BLESCANRPTINIT (scanRpt)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
Arguments:
byRef scanRpt ASSTRING.
scanRpt . .
This contains a scan report.
Example:
// Example :: BleScanRptInit.sb

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

https://connectivity.lairdtech.com 113 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

DIM scnRpt$: scnRpt$=""

IF BleScanRptInit (scnRpt$)==0 THEN

PRINT "\nScan report initialised"
ENDIF

Expected Output:

| Scan report initialised

5.4.6 BleAdvRptGetSpace
FUNCTION

This function returns the free space in the advert advRpt$.

BLEADVRPTGETSPACE(advRpt)

Returns INTEGER, the free space in bytes.
Arguments:
byRef advRpt$ AS STRING.
advRpt$ y. . pts
This contains an advert/scan report.
Example:
// Example :: BleAdvRptGetSpace.sb

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

dim rc, s$, dnS
rc=BleScanRptInit (s$)
dn$ = BleGetDeviceName$ ()

//Add device name to scan report
rc=BleAdvRptAppendAD (s$, 0x09,dn$)

print "\nFree space in scan report: "; BleAdvRptGetSpace (s$); " bytes"

Expected Output:

| Free space in scan report: 18 bytes

5.4.7 BleAdvRptAddUuid16
FUNCTION

This function is used to add a 16 bit UUID service list AD (Advertising record) to the advert report. This consists of all the 16 bit
service UUIDs that the device supports as a server.

BLEADVRPTADDUUID16 (advRpt$, nUuid1, nUuid2, nUuid3, nUuid4, nUuid5, nUuid6)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
Arguments:
AdVRDLS byRef AdvRpt AS STRING.
P The advert report onto which the 16-bit uuids AD record is added.
https://connectivity.lairdtech.com 114

Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

p NNECTIVITY
User Guide Lalrd co CTIV

byVal uuidl AS INTEGER

nUuidl | UUID in the range 0 to FFFF; if the value is outside that range, it is ignored. Set the value to -1 to
have it ignored and then all further UUID arguments will also be ignored.

byVal uuid2 AS INTEGER

nUuid2 | UUID in the range 0 to FFFF; if the value is outside that range, it is ignored. Set the value to -1 to
have it ignored and then all further UUID arguments will also be ignored.

byVal uuid3 AS INTEGER

nUuid3 | UUID in the range 0 to FFFF; if the value is outside that range, it is ignored. Set the value to -1 to
have it ignored and then all further UUID arguments will also be ignored.

byVal uuid4 AS INTEGER

nUuid4 | UUID in the range 0 to FFFF; if the value is outside that range, it is ignored. Set the value to -1 to
have it ignored and then all further UUID arguments will also be ignored.

byVal uuid5 AS INTEGER

nUuid5 | UUID in the range 0 to FFFF; if the value is outside that range, it is ignored. Set the value to -1 to
have it ignored and then all further UUID arguments will also be ignored.

byVal uuid6 AS INTEGER

nUuid6 | UUID in the range 0 to FFFF; if the value is outside that range, it is ignored. Set the value to -1 to
have it ignored and then all further UUID arguments will also be ignored.

Example:

// Example :: BleAdvAddUuidlé6.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

DIM advRpt$, rc
DIM discovMode : discovMode=0
DIM advAppearance : advAppearance = 1

DIM maxDevName : maxDevName = 10

rc = BleAdvRptInit (advRpt$, discovMode, advAppearance, maxDevName)

//BatteryService = 0x180F

//DeviceInfoService = 0x180A
IF BleAdvRptAddUuidlé6 (advRpt$,0x180F,0x180A, -1, -1, -1, -1)==0 THEN
PRINT "\nUUID Service List AD added"

ENDIF

//Only the battery and device information services are included in the advert report

Expected Output:

| UUID Service List AD added

https://connectivity.lairdtech.com 115 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird 2> CONNECTIVITY

User Guide

5.4.8 BleAdvRptAddUuid128

FUNCTION

This function is used to add a 128 bit UUID service list AD (Advertising record) to the advert report specified. Given that an
advert can have a maximum of only 31 bytes, it is not possible to have a full UUID list unless there is only one to advertise.

BLEADVRPTADDUUID128 (advRpt, nUuidHandle)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byRef AdvRpt AS STRING.
The advert report into which the 128-bit UUID AD record is to be added.

byVal nUuidHandle AS INTEGER
nUuidHandle | This is handle to a 128-bit UUID which was obtained using a function such as
BleHandleUuid128() or some other function which returns one.

advRpt

Example:

// Example :: BleAdvAddUuidl28.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

DIM uuid$, hUuidCustom

DIM tx$,scRpt$,adRpt$,addr$, hndl
SCRptS$=""

PRINT BleScanRptInit (scRpt$)

//create a custom uuid for my ble widget

uuids "ced9d91366924a1287d56£2764762b2a"

uuid$ = StrDehexize$ (uuid$)

hUuidCustom = BleHandleUuidl28 (uuid$)

//Advertise the 128 bit uuid in a scan report

PRINT BleAdvRptAddUuidl28 (scRpt$, hUuidCustom)
adRpts$=""

PRINT BleAdvRptsCommit (adRpt$, scRptS$)

addr$="" //because we are not doing a DIRECT advert

PRINT BleAdvertStart (0,addr$,20,30000,0)

Expected Output:

00000

https://connectivity.lairdtech.com 116 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird CONNECTIVITY

User Guide

5.4.9 BleAdvRptAppendAD

FUNCTION

This function adds an arbitrary AD (Advertising record) field to the advert report. An AD element consists of a LEN:TAG:DATA
construct where TAG can be any value from 0 to 255 and DATA is a sequence of octets.

BLEADVRPTAPPENDAD (advRpt, nTag, stData$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byRef AdvRpt AS STRING.
The advert report onto which the AD record is to be appended.

byVal nTag AS INTEGER
nTag should be in the range 0 to FF and is the TAG field for the record.

byRef stData$ AS STRING
stData$ | This is an octet string which can be 0 bytes long. The maximum length is governed by the space
available in AdvRpt, a maximum of 31 bytes long.

AdvRpt

nTag

Example:

// Example :: BleAdvRptAppendAD.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

DIM scnRpt$,ads$
ad$="\01\02\03\04"

PRINT BleScanRptInit (scnRpt$)
IF BleAdvRptAppendAD (scnRpt$,0x31,ad$)==0 THEN //6 bytes will be used up in the report

PRINT "\nAD with data '";ad$;"' was appended to the advert report"

ENDIF

Expected Output:

0
AD with data '\01\02\03\04' was appended to the advert report

5.4.10 BleAdvRptsCommit

FUNCTION

This function is used to commit one or both advert reports. If the string is empty then that report type is not updated. Both
strings can be empty. In that case, this call will have no effect.

The advertisements will not happen until they are started using BleAdvertStart() function.

BLEADVRPTSCOMMIT (advRpt, scanRpt)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
Arguments:
https://connectivity.lairdtech.com 117 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions l_ailﬂ-(:lw CONNECTIVITY

User Guide

advRot byRef advRpt AS STRING.
P The most recent advert report.
byRef scanRpt AS STRING.
scanRpt
The most recent scan report.
Note: If any one of the two strings is not valid then the call will be aborted without updating the other report even if this

other report is valid.

Tip: You can commit advert reports to update your advertisement data while advertising.
Example:
// Example :: BleAdvRptsCommit.sb

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

DIM advRpt$: advRpts$=""
DIM scRpt$: scRpts$=""

DIM discovMode : discovMode = 0

I
—

DIM advApprnce : advApprnce

DIM maxDevName : maxDevName = 10

PRINT BleAdvRptInit (advRpt$, discovMode, advApprnce, maxDevName)
PRINT BleAdvRptAddUuidlé6 (advRpt$, 0x180F,0x180A, -1, -1, -1, -1)

PRINT BleAdvRptsCommit (advRpt$, scRpt$)

// Only the advert report will be updated.

Expected Output:

[000

5.5 Scanning Functions

When a peripheral advertises, the advert packet consists type of advert, address, RSSI, and some user data information.
A central role device enters scanning mode to receive these advert packets from any device that is advertising.

For each advert that is received, the data is cached in a ring buffer, if space exists, and the EVBLE_ADV_REPORT event is
thrown to the smartBASIC application so that it can invoke the function BleScanGetAdvReport() to read it.

The scan procedure ends when it times out (timeout parameter is supplied when scanning is initiated) or when explicity
instructed to abort or stop.

Note: While scanning for a long period of time, it is possible that a peripheral device is advertising for a connection to it
using the ADV_DIRECT_IND advert type. When this happens, it is good practice for the central device to stop
scanning and initiate the connection. To cater for this specific scenario, which would normally require the central
device to look out for that advert type and the self address, the EVBLE_FAST_PAGED event is thrown to the
application. This means that all the user app needs to do is to install a handler for that event which stops the scan
procedure and immediately starts a connection procedure.

For more information about adverts see the section Advertising Functions.

https://connectivity.lairdtech.com 118 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird CONNECTIVITY

User Guide

5.5.1 BleScanStart

FUNCTION
This function is used to start a scan for adverts which may result in at least one of the following events being thrown:

EVBLE_SCAN_TIMEOUT | End of scanning

EVBLE_ADV_REPORT Advert report received
EVBLE_FAST_PAGED Peripheral inviting a connection to this module

= EVBLE_ADV_REPORT - Received when an advert has been successfully cached in a ring buffer. The handler should
call the function BleScanGetAdvReport() repeatedly to read all the advert reports that have been cached until the cache
is empty, otherwise there is a risk that advert reports will be discarded. The output parameter nDiscarded returns the
number of discarded reports, if any.
= EVBLE_FAST_PAGED - Received when a peripheral has sent an advert with the address of this module. The handler
should stop scanning using BleScanStop() and then initiate a connection using BleConnect().
There are three parameters used when initiating a scan that are configurable using BleScanConfig(), otherwise default values
are used:
= Scan Interval — Specify the duty cycle for listening for adverts. Default value: 80 milliseconds.
= Scan Window — Specify the duty cycle for listening for adverts. Default value: 40 milliseconds.

= Scan Type — Default scan type: Active
Active scanning means that for each advert received (if it is ADV_IND or ADV_DISCOVER_IND) a SCAN_REQ is sent to

the advertising device so that the data in the scan response can be appended to the data that has already been received
for the advert.

The values for these default parameters can be changed prior to invoking this function by calling the function BleScanConfig()
appropriately.

Note: Be aware that scanning is a memory intensive operation and so heap memory is used to manage a cache. If the
heap is fragmented, it is likely this function will fail with an appropriate resultcode returned. If that happens, call
reset() and then attempt the scan start again. The memory that is allocated to manage this scan process is NOT
released when the scanning times out. To force release of that memory, we recommend that you start the scan and
then immediately call BleScanStop().

Connections may not be established during a scan operation. If a continued scan is required, stop the scan or let it
timeout, connect, then restart the scan.

In order to scan for devices over the CODED PHY medium (long range), BleScanConfig() should be called
beforehand to configure the device with this capability. See BleScanConfig() for more information. Furthermore,
high bandwidth should be enabled using “AT+CFG 214 1” followed by “ATZ".

BLESCANSTART (scanTimeoutMs, nFilterHandle)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byVAL scanTimeoutMs AS INTEGER.

The length of time in milliseconds the scan for adverts lasts. If the timer times out then the
scanTimeoutMs | event EVBLE_SCAN_TIMEOUT is thrown to the smartBASIC application.

Valid range is 0 to 65535000 milliseconds (about 18 hours). If 0 is supplied, a timer is not
started and scanning can only be stopped by calling either BleScanAbort() or Ble ScanStop().
byVAL nFilterHandle AS INTEGER

nFilterHandle | This must be zero (0) to specify no filtering of adverts.

Note: In this current firmware version, this is only a placeholder.

https://connectivity.lairdtech.com 119 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird CONNECTIVITY

User Guide

Example:

// Example :: BleScanStart.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

DIM rc

'//Scan for 20 seconds with no filtering
rc = BleScanStart (20000, 0)

IF rc==0 THEN

PRINT "\nScanning"
ELSE

PRINT "\nError: "; INTEGER.H'rc
ENDIF

'//This handler will be called when scanning times out
FUNCTION HndlrScanTO ()
PRINT "\nScan timeout"
ENDFUNC O
ONEVENT EVBLE SCAN TIMEOUT CALL HndlrScanTO

WAITEVENT

Expected Output:

Scanning
Scan timeout

5.5.2 BleScanAbort

FUNCTION

This function is used to cancel an ongoing scan for adverts which has not timed out. It takes no parameters as there can only
be one scan in progress.

Use the value returned by SYSINFO(2016) to determine if there is an ongoing scan operation in progress. The value is a bit
mask where:

= bit Ois set if advertising is in progress

= bit 1is set if there is already a connection in a peripheral role

= bit 2 is set if there is a current ongoing connection attempt

= bit 3 is set when scanning

= bit 4is setif there is already a connection to a peripheral
There is also BleScanStop() which cancels an ongoing scan. The difference is that, by calling BleScanAbort(), the memory
that was allocated from heap by BleScanStart() is not released back to the heap. The scan manager retains it for the next scan
operation.

BLESCANABORT ()

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments | None

Example:

// Example :: BleScanAbort.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

DIM rc, startTick

https://connectivity.lairdtech.com 120 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

BL654 smartBASIC Extensions l_ailﬂ-(:lw CONNECTIVITY

User Guide

'//Scan for 20 seconds with no filtering

rc = BleScanStart (20000, 0)

IF rc==0 THEN
PRINT "\nScanning"
ELSE
PRINT "\nError: "; INTEGER.H'rc

ENDIF

'//Wait 2 seconds before aborting scan
startTick = GetTickCount ()

WHILE GetTickSince (startTick) < 2000
ENDWHILE

'//If scan in progress, abort
IF SysInfo(2016) == 0x08 THEN
PRINT "\nAborting scan"
rc = BleScanAbort ()
IF SysInfo(2016) == 0 THEN
PRINT "\nScan aborted"
ENDIF
ENDIF

Expected Output:

Scanning
Aborting scan
Scan aborted

5.5.3 BleScanStop

FUNCTION

This function is used to cancel an ongoing scan for adverts which has not timed out. It takes no parameters, as there can only
be one scan in progress.

Use the value returned by SYSINFO(2016) to determine if there is an ongoing scan operation in progress. The value is a bit
mask where:

= bit Ois set if advertising is in progress

= bit 1is set if there is already a connection in a peripheral role

= bit 2 is set if there is a current ongoing connection attempt

= bit 3 is set when scanning

= bit 4is setif there is already a connection to a peripheral

There is also BleScanAbort() which cancels an ongoing scan. The difference is that, by calling BleScanStop(), the memory
that was allocated from heap by BleScanStart() is released back to the heap. The scan manager must reallocate the memory if
BleScanStart() is called again.

https://connectivity.lairdtech.com 121 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird CONNECTIVITY

User Guide

BLESCANSTOP ()

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments | None

Example:

// Example :: BleScanStop.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

DIM rc, startTick

'//Scan for 20 seconds with no filtering

rc = BleScanStart (20000, 0)

IF rc==0 THEN
PRINT "\nScanning"

ELSE
PRINT "\nError: "; INTEGER.H'rc

ENDIF

'//Wait 2 seconds before aborting scan
startTick = GetTickCount ()
WHILE GetTickSince (startTick) < 2000

ENDWHILE

'//If scan in progress, abort
IF SysInfo(2016) == 0x08 THEN
PRINT "\nStop scanning. Freeing up allocated memory"
rc = BleScanStop ()
IF SysInfo(2016) == 0 THEN
PRINT "\nScan stopped"

ENDIF

ENDIF

Expected Output:

Scanning
Stop scanning.
Scan stopped

Freeing up allocated memory

Americas: +1-800-492-2320
Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

122

https://connectivity.lairdtech.com
© Copyright 2019 Laird. All Rights Reserved

BL654 smartBASIC Extensions l_ailﬂ-‘:lw CONNECTIVITY

User Guide

5.5.4 BleScanFlush

FUNCTION
This function is used to flush the ring buffer which stores incoming adverts which are later read.

BLESCANFLUSH ()

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments | None

Example:

// Example :: BleScanFlush.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

DIM rc, startTick

'//Scan for 20 seconds with no filtering

rc = BleScanStart (20000, 0)

IF rc==0 THEN
PRINT "\nScanning"
ELSE
PRINT "\nError: "; INTEGER.H'rc

ENDIF

'//Wait 2 seconds before aborting scan
startTick = GetTickCount ()
WHILE GetTickSince (startTick) < 2000

ENDWHILE

'//If scan in progress, abort
IF SysInfo(2016) == 0x08 THEN
PRINT "\nAborting scan"
rc = BleScanAbort ()
IF SysInfo(2016) == 0 THEN
PRINT "\nScan aborted"

ENDIF

'//Free up memory
rc = BleScanFlush ()
IF (rc == 0) THEN
PRINT "\nScan results flushed."
ENDIF
ENDIF

123 Americas: +1-800-492-2320

© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

https://connectivity.lairdtech.com

BL654 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

Expected Output:

Scanning

Aborting scan

Scan aborted

Scan results flushed.

5.5.5 BleScanConfig

FUNCTION
This function is used to modify the default parameters that are used when initiating a scan operation using BleScanStart().

The following are the default values for the parameters:

Scan Interval 80 milliseconds
Scan Window 40 milliseconds
Scan Type (Active/Passive) Active
Minimum Reports in Cache 4
Note: The default Scan Window and Interval give a 50% duty cycle. The 50% duty cycle attempts to ensure that

connection events for existing connections are missed as infrequently as possible.

BLESCANCONFIG (configID, configValue)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byVal configiD AS INTEGER.
This identifies the value to update as follows:
0 Scan Interval in milliseconds (range 0..10240)
1 Scan Window in milliseconds (range 0..10240)
2 Scan Type (0O=Passive, 1=Active)
3 Advert Report Cache Slze
Scan PHYs. Possible values are:-
configID 1-1MPHY
4 - CODED PHY
All other values are invalid
Extended advertising. Possible values are:-
5 0 - Only return legacy advertising packets
1 - Return both legacy and extended advertisitng packets (required for CODED adverts)

For all other configID values the function returns an error.
byVal configValue AS INTEGER.
This contains the new value to set in the parameters indentified by configID.

configValue

Example:

// Example :: BleScanConfig.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

DIM rc, startTick

https://connectivity.lairdtech.com 124 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird

) CONNECTIVITY
User Guide _)

PRINT "\nScan Interval: "; SysInfo(2150) //get current scan interval
PRINT "\nScan Window: "; SysInfo(2151) //get current scan window
PRINT "\nScan Type: ";
IF SysInfo(2152)==0 THEN //get current scan type

PRINT "Passive"
ELSE

PRINT "Active"
ENDIF

PRINT "\nReport Cache Size: "; SysInfo(2153) //get report cache size

PRINT "\n\nSetting new parameters..."

rc = BleScanConfig (0, 100) //set scan interval to 100

rc = BleScanConfig(l, 50) //set scan window to 50

rc = BleScanConfig (2, 0) //set scan type to passive

rc = BleScanConfig (3, 3) //set report cache size

PRINT "\n\n--- New Parameters:"

PRINT "\nScan Interval: "; SysInfo(2150) //get current scan interval
PRINT "\nScan Window: "; SysInfo (2151) //get current scan window

PRINT "\nScan Type: ";

IF SysInfo(2152)==0 THEN //get current scan type
PRINT "Passive"

ELSE
PRINT "Active"

ENDIF

PRINT "\nReport Cache Size: "; SysInfo(2153) //get report cache size

Expected Output:

Scan Interval: 80
Scan Window: 40

Scan Type: Active
Report Cache Size: 4

Setting new parameters..

—-—-— New Parameters:
Scan Interval: 100
Scan Window: 50

Scan Type: Passive
Report Cache Size: 3

https://connectivity.lairdtech.com 125 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions l_ailﬂ-‘:lw CONNECTIVITY

User Guide

5.5.6 BleScanGetAdvReport

FUNCTION

When a scan is in progress after having called BleScanStart() for each advert report, the information is cached in a queue
buffer and an EVBLE_ADV_REPORT event is thrown to the smartBASIC application.

This function is used by the smartBASIC application to extract it from the queue for further processing in the handler for the
EVBLE_ADV_REPORT event.

The retrieved information consists of the address of the peripheral that sent the advert, the data payload, the number of
adverts (all, not just from that peripheral) that have been discarded since the last time this function was called and the RSSI
value for that packet.

Note: The RSSI can be used to determine the closest device. However, due to fading and reflections, it is possible that a
device further away could result in a higher RSSI value.

BLESCANGETADVREPORT (periphAddr$, advData$, nDiscarded, nRssi)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byREF periphAddr$ AS STRING

On return, this parameter is updated with the address of the peripheral that sent the advert.

byREF advData$ AS STRING

advData$ | On return, this parameter is updated with the data payload of the advert which consists of multiple AD
elements.

byREF nDiscarded AS INTEGER

nDiscarded | On return, this parameter is updated with the number of adverts that were discarded because there
was no space in the internal queue.

byREF nRssi AS INTEGER

On return, this parameter is updated with the RSSI as reported by the stack for that advert.

periphAddr$

nRssi
Note: This is NOT a value that is sent by the peripheral but a value that is calculated by the receiver
in this module.
Note: This code snippet was tested with another BL654 running the iBeacon app (see in smartBASIC_Sample_Apps

folder) on peripheral firmware.

Example:

// Example :: BleScanGetAdvReport.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

DIM rc

'//Scan for 20 seconds with no filtering

rc = BleScanStart (5000, 0)

IF rc==0 THEN
PRINT "\nScanning"

ELSE

https://connectivity.lairdtech.com 126 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions
User Guide

Laird 2» CONNECTIVITY

PRINT "\nError: "; INTEGER.H'rc

ENDIF

'//This handler will be called when scanning times out
FUNCTION HndlrScanTO ()
PRINT "\nScan timeout"

ENDFUNC 0
'//This handler will be called when an advert is received
FUNCTION HndlrAdvRpt ()

DIM periphAddr$, advDatas,

nDiscarded, nRssi

'//Read all cached advert reports

ONEVENT EVBLE SCAN TIMEOUT CALL HndlrScanTO

ONEVENT EVBLE ADV_ REPORT CALL HndlrAdvRpt

WAITEVENT

rc=BleScanGetAdvReport (periphAddr$, advData$, nDiscarded, nRssi)
WHILE (rc == 0)
PRINT "\n\nPeer Address: "; StrHexize$ (periphAddr$)
PRINT "\nAdvert Data: ";StrHexize$ (advData$)
PRINT "\nNo. Discarded Adverts: ";nDiscarded
PRINT "\nRSSI: ";nRssi
rc=BleScanGetAdvReport (periphAddr$, advData$, nDiscarded, nRssi)
ENDWHILE
PRINT "\n\n --- No more adverts in cache"
ENDFUNC 1

Expected Output:

Scanning
Peer Address: 01D8CFCF14498D
Advert Data:
No. Discarded Adverts: 0
RSSI: -97
Peer Address: 01D8CFCF14498D
Advert Data:
No. Discarded Adverts: 0
RSSI: -97

https://connectivity.lairdtech.com 127

© Copyright 2019 Laird. All Rights Reserved

0201061AFF4C000215E2C56DB5DFFB48D2B060D0OF5A71096E012345678C4

0201061AFF4C000215E2C56DB5DFFB48D2B060D0F5A71096E012345678C4

Americas: +1-800-492-2320
Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird CONNECTIVITY

User Guide

—-—— No more adverts in cache

Peer Address: 01D8CFCF14498D

Advert Data: 0201061AFF4C000215E2C56DB5DFFB48D2B060D0OF5A71096E012345678C4
No. Discarded Adverts: O

RSSI: -92

Peer Address: 01D8CFCF14498D

Advert Data: 0201061AFF4C000215E2C56DB5DFFB48D2B060D0OF5A71096E012345678C4
No. Discarded Adverts: 0

RSSI: -92

--- No more adverts in cache
Scan timeout

5.5.7 BleScanGetAdvReportEx

When a scan is in progress after having called BleScanStart() for each advert report, the information is cached in a queue
buffer and an EVBLE_ADV_REPORT event is thrown to the smartBASIC application.

This function is used by the smartBASIC application to extract it from the queue for further processing in the handler for the
EVBLE_ADV_REPORT event.

The retrieved information consists of the address of the peripheral that sent the advert, the data payload, the number of
adverts (all, not just from that peripheral) that have been discarded since the last time this function was called and the RSSI
value for that packet, in addition to the advert type and the channel number on which the advert was received.

BLESCANGETADVREPORTEX (nAdvertType, periphAddr$, advData$, nDiscarded, nRssi, nChannel)

Returns ‘ INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byREF nAdvertType AS STRING
On return, this parameter will contain the type of the advert that was read. Possible values are as follows:-

nAdvertType 0 ADV_IND Inv!tes connect?on requests :
1 ADV_DIRECT_IND Invites connection from addressed device
2 ADV_SCAN_IND Invites scan request for more advert data
3 ADV_NONCONN_IND Does not accept connections/active scans

byREF periphAddr$ AS STRING

On return, this parameter is updated with the address of the peripheral that sent the advert.

byREF advData $ AS STRING

advData$ | On return, this parameter is updated with the data payload of the advert which consists of multiple AD
elements.

byREF nDiscarded AS INTEGER

nDiscarded | On return, this parameter is updated with the number of adverts that were discarded because there was no
space in the internal queue.

byREF nRssi AS INTEGER

On return, this parameter is updated with the RSSI as reported by the stack for that advert.

periphAddr$

nRssi
Note: This is NOT a value that is sent by the peripheral but a value that is calculated by the receiver in
this module.
ch | byREF nChannel AS INTEGER
nChanne

On return, this parameter is set to the channel on which the advert has arrived. Valid values are 0, 1, or 2.

//Example :: BleScanGetAdvReportEx.sb

DIM rc

https://connectivity.lairdtech.com 128 Americas: +1-800-492-2320

© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird : CONNECTIVITY

User Guide

'//Scan for 5 seconds with no filtering
rc = BleScanStart (5000, O0)

IF rc==0 THEN

PRINT "\nScanning"
ELSE

PRINT "\nError: "; INTEGER.H'rc
ENDIF

'//This handler will be called when scanning times out
FUNCTION HndlrScanTO ()

PRINT "\nScan timeout"
ENDFUNC 0

'//This handler will be called when an advert is received
FUNCTION HndlrAdvRpt ()
DIM nAdvType, periphAddr$, advData$, nDiscarded, nRssi, nChannel

'//Read all cached advert reports
rc=BleScanGetAdvReportEx (nAdvType, periphAddr$, advData$, nDiscarded, nRssi, nChannel)

WHILE (rc == 0)
PRINT "\n\nAdvert Type: "; nAdvType
PRINT "\nPeer Address: "; StrHexize$ (periphAddr$)
PRINT "\nAdvert Data: ";StrHexize$ (advData$)
PRINT "\nNo. Discarded Adverts: ";nDiscarded
PRINT "\nRSSI: ";nRssi
PRINT "\nChannel: ";nChannel
rc=BleScanGetAdvReportEx (nAdvType, periphAddr$, advData$, nDiscarded, nRssi, nChannel)

ENDWHILE

PRINT "\n\n --- No more adverts in cache"

ENDFUNC 1

ONEVENT EVBLE SCAN TIMEOUT CALL HndlrScanTO
ONEVENT EVBLE ADV REPORT CALL HndlrAdvRpt

WAITEVENT

Scanning

Advert Type: 2

Peer Address: 01CDBD40C5A79A

Advert Data: 0201061AFF4C000215E2C56DB5DFFB48D2B060D0OF5A71096E012345678C40409526F6E
No. Discarded Adverts: 0

RSSTI: -81

Channel: 1

--- No more adverts in cache
Scan timeout
00

https://connectivity.lairdtech.com 129 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions l_ailﬂ-‘:lw CONNECTIVITY

User Guide

5.5.8 BleGetADbylndex

FUNCTION

This function is used to extract a copy of the nth (zero based) advertising data (AD) element from a string which is assumed to
contain the data portion of an advert report, incoming or outgoing.

Note: If the last AD element is malformed then it is treated as not existing. For example, it is malformed if the length byte
for that AD element suggests that more data bytes are required than actually exist in the report string.

BLEGETADBYINDEX (nindex, rptData$, nADtag, ADval$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
Arguments:
byVAL nindex AS INTEGER
nindex

This is a zero-based index of the AD element that is copied into the output data parameter ADval$.

byREF rptData$ AS STRING.

rptData$ | This parameter is a string that contains concatenated AD elements which were either constructed
for an outgoing advert or were received in a scan.

byREF nADTag AS INTEGER

nADTag | When the nth index is found, the single byte tag value for that AD element is returned in this
parameter.

byREF ADval$ AS STRING

ADval$ | When the nth index is found, the data excluding single byte the tag value for that AD element is
returned in this parameter.

Example:

// Example :: BleGetADbyIndex.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

DIM rc, adl$, ad2$, fullADS$, nADTag, ADvals$

'//AD with length = 6 bytes, tag = 0xDD
adls$="\06\DD\11\22\33\44\55"

'//AD with length = 7 bytes, tag 0xDA

ad2$="\07\EE\AA\BB\CC\DD\EE\FE"

fullADS = adl$ + ad2$
PRINT "\n\n"; Strhexize$ (fullADS);"\n"

rc=BleGetADbyIndex (0, fullAD$, nADTag, ADvals$)
IF rc==0 THEN
PRINT "\nFirst AD element with tag Ox"; INTEGER.H'nADTag ;" is ";StrHexize$ (ADvals$)

ELSE

https://connectivity.lairdtech.com 130 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions l_ailﬂ-‘:lw CONNECTIVITY

User Guide

PRINT "\nError reading AD: " ;INTEGER.H'rc

ENDIF

rc=BleGetADbyIndex (1, fullAD$, nADTag, ADvals$)
IF rc==0 THEN

PRINT "\nSecond AD element with tag 0x"; INTEGER.H'nADTag ;" is ";StrHexize$ (ADval$)
ELSE

PRINT "\nError reading AD: "; INTEGER.H'rc

ENDIF

'//Will fail because there are only 2 AD elements
rc=BleGetADbyIndex (2, fullAD$, nADTag, ADvals)
IF rc==0 THEN
PRINT "\nThird AD element with tag Ox"; INTEGER.H'nADTag ;" is ";StrHexize$ (ADval$)
ELSE
PRINT "\nError reading AD: "; INTEGER.H'rc

ENDIF

Expected Output:

06DD112233445507EEAABBCCDDEEFF

First AD element with tag 0x000000DD is 1122334455
Second AD element with tag 0x000000EE is AABBCCDDEEFF
Error reading AD: 00006060

5.5.9 BleGetADbyTag

FUNCTION

This function is used to extract a copy of the first advertising data (AD) element that has the tag byte specified from a string
which is assumed to contain the data portion of an advert report, incoming or outgoing. If multiple instances of that AD tag type
are suspected, then use the function BleGetADbylndex to extract.

Note: If the last AD element is malformed, then it is treated as nonexistent. For example, it is malformed if the length byte
for that AD element suggests that more data bytes are required than actually exist in the report string.

BLEGETADBYTAG (rptData$, nADtag, ADval$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byREF rptData$ AS STRING.

rptData$ | This parameter is a string that contains concatenated AD elements which were either constructed
for an outgoing advert or were received in a scan.

byVAL nADTag AS INTEGER

This parameter specifies the single byte tag value for the AD element that is to returned in the

nADTa
g ADval$ parameter. Only the first instance can be catered for. If multiple instances are suspected,
then use BleAdvADbylndex() to extract it.
https://connectivity.lairdtech.com 131 Americas: +1-800-492-2320

© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

p NNECTIVITY
User Guide Lalrd co CTIV

byREF ADval$ AS STRING

ADval$ | When the nth index is found, the data excluding single byte the tag value for that AT element is
returned in this parameter.

Example:

// Example :: BleGetADbyTag.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

DIM rc, adl$, ad2$, fullADS$, nADTag, ADvals$

'//AD with length = 6 bytes, tag = 0xDD
adls$="\06\DD\11\22\33\44\55"

'//AD with length = 7 bytes, tag 0xDA

ad2$="\07\EE\AA\BB\CC\DD\EE\FE"

fullADS = adl$ + ad2s
PRINT "\n\n"; Strhexize$ (fullADS);"\n"

nADTag = 0xDD
rc=BleGetADbyTag (fullAD$, nADTag, ADval$)

IF rc==0 THEN

PRINT "\nAD element with tag 0x"; INTEGER.H'nADTag ;" is ";StrHexize$ (ADval$)
ELSE

PRINT "\nError reading AD: " ;INTEGER.H'rc
ENDIF

nADTag = OxEE
rc=BleGetADbyTag (fullAD$, nADTag, ADvals$)

IF rc==0 THEN

PRINT "\nAD element with tag 0x"; INTEGER.H'nADTag ;" is ";StrHexize$ (ADval$)
ELSE

PRINT "\nError reading AD: "; INTEGER.H'rc
ENDIF

nADTAG = OxFF

'//Will fail because no AD exists in 'fullADS$' with the tag 'FF'
rc=BleGetADbyTag (fullAD$, nADTag, ADvals$)

IF rc==0 THEN

PRINT "\nAD element with tag 0x"; INTEGER.H'nADTag ;" is ";StrHexize$ (ADval$)

https://connectivity.lairdtech.com 132 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird CONNECTIVITY

User Guide

ELSE
PRINT "\nError reading AD: "; INTEGER.H'rc

ENDIF

Expected Output:

06DD112233445507EEAABBCCDDEEFF

AD element with tag 0x000000DD is 1122334455
AD element with tag 0x000000EE is AABBCCDDEEFF
Error reading AD: 00006060

5.5.10BleScanGetPagerAddr

FUNCTION

When a scan is in progress after calling BleScanStart(), an EVBLE_FAST_PAGED event is thrown whenever an
ADV_DIRECT_IND advert is received with the address of this module, requesting a connection to it.

This function returns the address of the peripheral requesting a connection and the RSSI. It should be used in the handler of
the EVBLE_FAST_PAGED event to get the peripheral’s address. Scanning should then be stopped using either
BleScanAbort() or BleScanStop(). You can then use the address supplied by this function to connect to the peripheral using
BleConnect() if that is the desired use case. The Bluetooth specification does NOT mandate a connection.

BLESCANGETPAGERADDR (periphAddr$, nRssi)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byREF periphAddr$ AS STRING
On return, this parameter is updated with the address of the peripheral that sent the advert.

byREF nRssi AS INTEGER
On return, this parameter is updated with the RSSI as reported by the stack for that advert.

periphAddr$

nRssi Note: This is NOT a value that is sent by the peripheral but a value that is calculated by the
receiver in this module.
Example:
// Example :: BleScanGetPagerAddr.sb

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

DIM rc

'//Scan for 20 seconds with no filtering

rc = BleScanStart (10000, 0)

IF rc==0 THEN
PRINT "\nScanning"
ELSE

PRINT "\nError: "; INTEGER.H'rc

https://connectivity.lairdtech.com 133 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions l_ailﬂ-‘:lw CONNECTIVITY

User Guide

ENDIF

'//This handler will be called when scanning times out
FUNCTION HndlrScanTO ()
PRINT "\nScan timeout"

ENDFUNC 0

'//This handler will be called when an advert is received requesting a connection to this
module

FUNCTION HndlrFastPaged()
DIM periphAddr$, nRssi
rc = BleScanGetPagerAddr (periphAddr$, nRssi)

PRINT "\nAdvert received from peripheral "; StrHexize$ (periphAddr$); " with RSSI
";nRssi

PRINT "\nrequesting a connection to this module"
rc = BleScanStop ()
ENDFUNC 0

ONEVENT EVBLE SCAN TIMEOUT CALL HndlrScanTO
ONEVENT EVBLE FAST PAGED CALL HndlrFastPaged

WAITEVENT

Expected Output:

Scanning
Advert received from peripheral 01D8CFCF14498D with RSSI -96
requesting a connection to this module

5.6 Connection Functions

This section describes all the connection manager-related routines.

The Bluetooth specification stipulates that a peripheral cannot initiate a connection but can perform disconnections. Only
Central Role devices are allowed to connect when an appropriate advertising packet is received from a peripheral.

5.6.1 Events and Messages

See also Events and Messages for BLE-related messages that are thrown to the application when there is a connection or
disconnection. The relevant message IDs are (0), (1), (14), (15), (16), (17), (18) and (20):

0 There is a connection and the context parameter contains the connection handle.
1 There is a disconnection and the context parameter contains the connection handle.
14 New connection parameters for connection associated with connection handle.
15 Request for new connection parameters failed for connection handle supplied.
https://connectivity.lairdtech.com 134 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

il“ NNECTIVITY
User Guide _d) €0 CTIV

16 The connection is to a bonded master

17 The bonding has been updated with a new long term key
18 The connection is encrypted

20 The connection is no longer encrypted

5.6.2 BleConnect
FUNCTION

This function is used to make a connection to a device in peripheral mode which is actively advertising.

Note: The peripheral device MUST be advertising with either ADV_IND or ADV_DIRECT_IND type of advert to be able to
successfully connect.

In the case of multiple connections, it is recommended that this function is not called in quick succession so that
the underlying stack is given time to complete the setup of the new connection before moving on to establish a new
connection. Calling this function in quick succession may cause newly established connections to be dropped.

In order to perform connections over CODED PHY (long range), BleConnectConfig() should be called beforehand
to set the connection PHYs to CODED PHY and enable extended connection. See BleConnectConfig() for more
details. Furthermore, high bandwidth should be enabled using “AT+CFG 214 1” followed by “ATZ".

When the connection is complete, a EVBLEMSG message with msgld = 0 and context containing the handle are thrown to the
smartBASIC runtime engine.

If the connection times out, then the event EVBLE_CONN_TIMEOUT is thrown to the smartBASIC application.

When a connection is attempted, there are other parameters that are used and the default values for those are assumed; for
example, scan window, scan interval, and periodicity. The default values for those can be changed using the
BleConnectConfig() function. At any time, the current settings can be obtained via the SYSINFO() command.

BLECONNECT (periphAddr$, connTimeoutMs, minConnIntUs, maxConnlintUs, nSuprToutUs)

Returns INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments:

byRef periphAddr$ AS STRING

periphAddr$ | The Bluetooth address of the device to connect to which MUST be properly formatted and is
exactly seven bytes long.

byVal connTimeoutMs AS INTEGER.

connTimeoutMs | The length of time in milliseconds that the connection attempt lasts. If the timer times out then
the event EVBLE_CONN_TIMEOUT is thrown to the smartBASIC application.

byVal minConnintUs AS INTEGER.

minConnintUs | The minimum connection interval in microseconds. Valid range is between 7500 and 4000000
microseconds.

byVal maxConnintUs AS INTEGER.

maxConnintUs | The maximum connection interval in microseconds. Valid range is between 7500 and 4000000
microseconds

byVal nSuprToutUs AS INTEGER.

The link supervision timeout for the connection in microseconds.

nSuprToutUs

https://connectivity.lairdtech.com 135 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird : CONNECTIVITY

User Guide

Example:

// Example :: BleConnect.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

DIM rc, periphAddr$

'//Scan indefinitely

rc=BleScanStart (0, 0)

IF rc==0 THEN
PRINT "\nScanning"
ELSE

PRINT "\nError: "; INTEGER.H'rc

ENDIF

'//This handler will be called when an advert is received

FUNCTION HndlrAdvRpt ()

DIM advData$, nDiscarded, nRssi

'//Read an advert report and connect to the sender

rc=BleScanGetAdvReport (periphAddr$, advData$, nDiscarded, nRssi)

rc=BleScanStop ()

'//Connect to device with Bluetooth address obtained above with 5s connection timeout,
'//20ms min connection interval, 75 max, 5 second supervision timeout.
rc=BleConnect (periphAddr$, 5000, 20000, 75000, 5000000)
IF rc==0 THEN
PRINT "\n--- Connecting"
ELSE
PRINT "\nError: "; INTEGER.H'rc
ENDIF
ENDFUNC 1

'//This handler will be called in the event of a connection timeout
FUNCTION HndlrConnTO ()

PRINT "\n--- Connection timeout"

rc=BleScanStart (0, 0)

ENDFUNC 1

136 Americas: +1-800-492-2320

© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

https://connectivity.lairdtech.com

BL654 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

'//This handler will be called when there is a BLE message
FUNCTION HndlrBleMsg (nMsgId, nCtx)

IF nMsgId == 0 THEN
PRINT "\n--- Connected to device with Bluetooth address "; StrHexize$ (periphAddr$)
PRINT "\n--- Disconnecting now"

rc=BleDisconnect (nCtx)
ENDIF
ENDFUNC 1

'//This handler will be called when a disconnection happens

FUNCTION HndlrDiscon (nCtx, nRsn)

ENDFUNC 0
ONEVENT EVBLEMSG CALL HndlrBleMsg
ONEVENT EVDISCON CALL HndlrDiscon

ONEVENT EVBLE ADV REPORT CALL HndlrAdvRpt
ONEVENT EVBLE CONN TIMEOUT CALL HndlrConnTO

WAITEVENT

Expected Output:

Scanning

--- Connecting

—-—— Connected to device with Bluetooth address 01D8CFCF14498D
--- Disconnecting now

5.6.3 BleConnectCancel

FUNCTION

This function is used to cancel an ongoing connection attempt which has not timed out. It takes no parameters as there can
only be one attempt in progress.

Use the value returned by SYSINFO(2016) to determine if there is an ongoing scan operation in progress. The value is a bit
mask where:

= bit Ois set if advertising is in progress

= bit 1is set if there is already a connection in a peripheral role

= bit 2 is setif there is a current ongoing connection attempt

= bit 3 is set when scanning

= bit 4is setif there is already a connection to a peripheral

BLECONNECTCANCEL ()

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments | None

https://connectivity.lairdtech.com 137 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird : CONNECTIVITY

User Guide

Example:

// Example :: BleConnectCancel.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

DIM rc, periphAddr$

'//Scan indefinitely

rc=BleScanStart (0, 0)

IF rc==0 THEN
PRINT "\nScanning"
ELSE
PRINT "\nError: "; INTEGER.H'rc

ENDIF

'//This handler will be called when an advert is received
FUNCTION HndlrAdvRpt ()

DIM advData$, nDiscarded, nRssi

'//Read an advert report and connect to the sender
rc=BleScanGetAdvReport (periphAddr$, advData$, nDiscarded, nRssi)

rc=BleScanStop ()

'//Wait until module stops scanning
WHILE SysInfo (2016)==8

ENDWHILE

'//Connect to device with Bluetooth address obtained above with 5s connection timeout,
'//20ms min connection interval, 75 max, 5 second supervision timeout.
rc=BleConnect (periphAddrs$, 5000, 20000, 75000, 5000000)

IF rc==0 THEN

PRINT "\n--- Connecting \nCancel"
ELSE

PRINT "\nError: "; INTEGER.H'rc
ENDIF

'//Cancel current connection attempt

rc=BleConnectCancel ()

https://connectivity.lairdtech.com 138 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird CONNECTIVITY

User Guide

PRINT "\n--- Connection attempt cancelled"
ENDFUNC 0

ONEVENT EVBLE ADV REPORT CALL HndlrAdvRpt

WAITEVENT

Expected Output:

Scanning

--- Connecting

Cancel

--— Connection attempt cancelled

5.6.4 BleConnectConfig

FUNCTION

This function is used to modify the default parameters that are used when attempting a connection using BleConnect(). At any
time they can be read by adding the configID to 2100 and then passing that value to SYSINFO().

When connecting, the central device must scan for adverts and then, when the particular peer address is encountered, it can
send the connection message to that peripheral.

Therefore, a connection attempt requires the underlying stack API to be supplied with a scan interval and scan window. In
addition, when multiple connections are in place, the radio has to be shared as efficiently as possible; one potential scheme is
to have all connection parmeters being integer multiples of a ‘base’ value. For the purpose of this documentation, this
parameter is referred to as multi-link connection interval periodicity.

The following are the default settings for these parameters:

Multi-link Connection Interval Periodicity 20 milliseconds
Scan Interval 80 milliseconds
Scan Window 40 milliseconds
Slave Latency 0

Notes: The Scan Window and Interval are multiple integers of the periodicity (although not required to be). The scanning
has a 50% duty cycle. The 50% duty cycle attempts to ensure that connection events for existing connections
are missed as infrequently as possible.

The Scan Window and Interval are internally stored in units of 0.625 milliseconds slots so reading back via
SYSINFO() does not accurately return the value you set.

BLECONNECTCONFIG (configlD, configValue)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byVal configiD AS INTEGER.
The following are the values to update:

fialD 0 Scan interval in milliseconds (range 0..10240)
contfig 1 Scan Window in milliseconds (range 0..10240)
2 Slave Latency (0..1000)
5 Multi-Link Connection Interval Periodicity (20..200)
https://connectivity.lairdtech.com 139 Americas: +1-800-492-2320

© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

p NNECTIVITY
User Guide Lalrd co CTIV

Turn manual control for connection parameter update. See EvConnParamReq for
more details.

Action to take when a PHY change request is received from remote device as
follows:-

0: Automatically ccept incoming PHY change request from remote device. This is
9 the default operation.

1: Throw an event to the smartBASIC app to allow the user to accept or reject
incoming PHY change request. The event thrown is EVBLE_PHY_REQUEST. See
LE 2M PHY for more information.

BLE PHY to perform the connection on. Possible values are:-

1-1MPHY

4 - CODED PHY

All other values are invalid

Extended Connection. Possible values are:-

11 | 0 - Connect to device sending out legacy adverts

1 - Connect to device sending out legacy or extended adverts

10

For all other configID values, the function returns an error.
byVal configValue AS INTEGER.

configValue o)
9 This contains the new value to set in the parameters indentified by configID.
Example:
// Example :: BleConnectConfig.sb

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

DIM rc, startTick

SUB GetParms ()
//get default scan interval for connecting
PRINT "\nConn Scan Interval: "; SysInfo(2100);"ms"
//get default scan window for connecting
PRINT "\nConn Scan Window: "; SysInfo(2101);"ms”
//get default slave latency for connecting
PRINT "\nConn slave latency: "; SysInfo(2102)
//get current multi-link connection interval periodicity
PRINT "\nML Conn Interval Periodicity: "; SysInfo(2105);"ms"

ENDSUB

PRINT "\n\n--- Current Parameters:"

GetParms ()

PRINT "\n\nSetting new parameters..."

rc = BleConnectConfig (0, 60) //set scan interval to 60
rc = BleConnectConfig(l, 13) //set scan window to 13 (will round to 12)
rc = BleConnectConfig (2, 3) //set slave latency to 1
https://connectivity.lairdtech.com 140 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird CONNECTIVITY

User Guide

rc = BleConnectConfig (5, 30) //set ML connection interval periodicity to 30

PRINT "\n"; integer.h'rc

PRINT "\n\n--- New Parameters:"

GetParms ()

Expected Output:

—-—- Current Parameters:

Conn Scan Interval: 80ms

Conn Scan Window: 40ms

Conn slave latency: 0

ML Conn Interval Periodicity: 20ms

Setting new parameters...

--- New Parameters:

Conn Scan Interval: 60ms

Conn Scan Window: 12ms

Conn slave latency: 3

ML Conn Interval Periodicity: 30ms

5.6.5 BleDisconnect

FUNCTION

This function causes an existing connection identified by a handle to be disconnected from the peer.

When the disconnection is complete, a EVBLEMSG message with msgld = 1 and context containing the handle is thrown to
the smartBASIC runtime engine.

BLEDISCONNECT (nConnHandle)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation

Arguments:

byVal nConnHandle AS INTEGER.

nConnHandl o . .
co andle Specifies the handle of the connection that must be disconnected.

Example:

// Example :: BleDisconnect.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

DIM addr$: addrs$=""

DIM rc

FUNCTION HndlrBleMsg (BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER)
SELECT nMsgId
CASE 0
PRINT "\nNew Connection ";nCtx
rc = BleAuthenticate (nCtx)

PRINT BleDisconnect (nCtx)

https://connectivity.lairdtech.com 141 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

p NNECTIVITY
User Guide Lalrd co CTIV

CASE 1
PRINT "\nDisconnected ";nCtx;"\n"
EXITFUNC O
ENDSELECT
ENDFUNC 1

ONEVENT EVBLEMSG CALL HndlrBleMsg

IF BleAdvertStart (0,addr$,100,30000,0)==0 THEN
PRINT "\nAdverts Started\n"

ELSE
PRINT "\n\nAdvertisement not successful"

ENDIF

WAITEVENT

Expected Output:

Adverts Started

New Connection 35800
Disconnected 3580

5.6.6 BleSetCurConnParms

FUNCTION

This function triggers an existing connection identified by a handle to have new connection parameters. For example: interval,
slave latency, and link supervision timeout.

When the request is complete, a EVBLEMSG message with msgld = 14 and context containing the handle are thrown to the
smartBASIC runtime engine if it is successful. If the request to change the connection parameters fails, an EVBLEMSG
message with msgid = 15 is thrown to the smartBASIC runtime engine.

BLESETCURCONNPARMS (nConnHandle, nMinIntUs, nMaxIntUs, nSuprToutUs, nSlaveLatency)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byVal nConnHandle AS INTEGER.

nConnHandle o . .
Specifies the handle of the connection that must have the connection parameters changed.

. byVval nMinIntUs AS INTEGER.
nMinintUs - S A
The minimum acceptable connection interval in microseconds.
byVal nMaxIntUs AS INTEGER.
nMaxIntUs . L A
The maximum acceptable connection interval in microseconds.
byVal nSuprToutUs AS INTEGER.

nSuprToutUs | The link supervision timeout for the connection in microseconds. It should be greater than the slave
latency times that granted the connection interval.

byVal nSlaveLatency AS INTEGER.

nSlavelLatency | The number of connection interval polls that the peripheral may ignore. This times the connection
interval shall not be greater than the link supervision timeout.

https://connectivity.lairdtech.com 142 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

p NNECTIVITY
User Guide Lalrd co CTIV

Note: Slave latency is a mechanism that reduces power usage in a peripheral device and maintains short latency.
Generally, a slave reduces power usage by setting the largest connection interval possible. This means the latency
is equivalent to that connection interval. To mitigate this, the peripheral can greatly reduce the connection interval
and then have a non-zero slave latency.

For example, a keyboard could set the connection interval to 1000 msec and slave latency to 0. In this case, key
presses are reported to the central device once per second, a poor user experience. Instead, the connection
interval can be set to 50 msec, for example, and slave latency to 19. If there are no key presses, the power use is
the same as before because ((19+1) * 50) equals 1000. When a key is pressed, the peripheral knows that the
central device will poll within 50 msec, so it can send that keypress with a latency of 50 msec. A connection interval
of 50 and slave latency of 19 means the slave is allowed to NOT acknowledge a poll for up to 19 poll messages
from the central device.

Example:

// Example :: BleSetCurConnParms.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

DIM rc

DIM addr$: addr$=""

FUNCTION HandlerBleMsg (BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER) AS INTEGER

DIM intrvl, sprvTo, sLat

SELECT nMsgId
CASE 0 //BLE_EVBLEMSGID CONNECT
PRINT "\n --- New Connection : ","",nCtx
rc=BleGetCurconnParms (nCtx,intrvl, sprvto,slat)
IF rc==0 THEN
PRINT "\nConn Interval","","",intrvl
PRINT "\nConn Supervision Timeout", sprvto
PRINT "\nConn Slave Latency","",slat
PRINT "\n\nRequest new parameters"
//request connection interval in range 50ms to 75ms and link
//supervision timeout of 4seconds with a slave latency of 19
rc = BleSetCurconnParms (nCtx, 50000, 75000,4000000,19)
ENDIF
CASE 1 //BLE_EVBLEMSGID DISCONNECT
PRINT "\n --- Disconnected : ",nCtx
EXITFUNC O
CASE 14 //BLE_EVBLEMSGID_CONN_PARMS_UPDATE
rc=BleGetCurconnParms (nCtx, intrvl, sprvto,slat)

IF rc==0 THEN

https://connectivity.lairdtech.com 143 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

User Guide La"'d 2» CONNECTIVITY

PRINT "\n\nConn Interval",intrvl
PRINT "\nConn Supervision Timeout", sprvto
PRINT "\nConn Slave Latency",slat
ENDIF
CASE 15 //BLE_EVBLEMSGID CONN PARMS UPDATE FAIL
PRINT "\n 2?2 Conn Parm Negotiation FAILED"
CASE ELSE
PRINT "\nBle Msg",nMsgIld
ENDSELECT
ENDFUNC 1

ONEVENT EVBLEMSG CALL HandlerBleMsg

IF BleAdvertStart (0,addr$, 25, 60000,0)==0 THEN
PRINT "\nAdverts Started\n"
PRINT "\nMake a connection to the BL654"
ELSE

PRINT "\n\nAdvertisement not successful"

ENDIF

WAITEVENT

Expected Output (Unsuccessful Negotiation):
Adverts Started

Make a connection to the BL654

--- New Connection : 1352
Conn Interval 7500
Conn Supervision Timeout 7000000
Conn Slave Latency 0

Request new parameters
??? Conn Parm Negotiation FAILED
--- Disconnected : 1352

Expected Output (Successful Negotiation):
Adverts Started

Make a connection to the BL654

--- New Connection : 134
Conn Interval 30000
Conn Supervision Timeout 720000
Conn Slave Latency 0

Request new parameters

New conn Interval 75000
New conn Supervision Timeout 4000000
New conn Slave Latency 19

--— Disconnected : 134

Note: The first set of parameters differ depending on your central device.

https://connectivity.lairdtech.com 144 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

5.6.7 BleGetCurConnParms

FUNCTION

This function gets the current connection parameters for the connection identified by the connection handle. Given there are 3
connection parameters, the function takes three variables by reference so that the function can return the values in those
variables.

BLEGETCURCONNPARMS (nConnHandle, nintervalUs, nSuprToutUs, nSlavelatency)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byVal nConnHandle AS INTEGER.

Specifies the handle of the connection to read the connection parameters of

byRef nintervalUs AS INTEGER.

The current connection interval in microseconds

byRef nSuprToutUs AS INTEGER.

The current link supervision timeout in microseconds for the connection.

byRef nSlaveLatency AS INTEGER.

The current number of connection interval polls that the peripheral may ignore. This value
multiplied by the connection interval will not be greater than the link supervision timeout.

nConnHandle

nintervalUs

nSuprToutUs

nSlavelLatency

Note: See Note on Slave Latency.

See previous example.

5.6.8 BleConnMngrUpdCfg

FUNCTION

This function is used to initialise the connection manager for slave/peripheral role.

BLECONNMNGRUPDCFG (nConnUpdateFirstDelay, nConnUpdateNextDelay, nConnUpdateMaxRetry)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful
operation.

Arguments:

byVal nConnUpdateFirstDelay AS INTEGER.

In milliseconds 100 to 32000

BYVAL nConnUpdateNextDelay AS INTEGER
In milliseconds 100 to 32000

BYVAL nConnUpdateMaxRetry AS INTEGER

In number of retries

nConnUpdateFirstDelay

nConnUpdateNextDelay

nConnUpdateMaxRetry

Example:

dim rc

#define CONN_UPD FIRST DELAY 500
#define CONN_UPD NEXT DELAY 800
#define CONN UPD MAX RETRY 800

rc=BleConnMngrUpdCfg (CONN UPD FIRST DELAY, CONN UPD NEXT DELAY, CONN UPD MAX RETRY)

https://connectivity.lairdtech.com 145 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

il“ NNECTIVITY
User Guide _d) €0 CTIV

if rc == 0 then

print "\nConnection manager successfully initialised"
else

print "\nError: ";integer.h'rc

endif

Expected Output:

| Connection manager successfully initialised

5.6.9 BleGetConnHandleFromAddr
FUNCTION

This function is used to get the connection handle from a specified Bluetooth address.

BLEGETCONNHANDLEFROMADDR (BtAddrBES, nConnHandle)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byRef BtAddrBE$ AS STRING.

The Bluetooth address of the connected remote device.
byRef nConnHandle AS INTEGER.

Returned connection handle.

BtAddrBE$

nConnHandle

Example:

// Example :: BleGetConnHandleFromAddr.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

DIM rc, periphAddr$

'//Scan indefinitely
rc=BleScanStart (0, 0)

IF rc==0 THEN

PRINT "\nScanning"
ELSE

PRINT "\nError: "; INTEGER.H'rc
ENDIF

'//This handler will be called when an advert is received
FUNCTION HndlrAdvRpt ()

DIM advData$, nDiscarded, nRssi

'//Read an advert report and connect to the sender

rc=BleScanGetAdvReport (periphAddr$, advData$, nDiscarded, nRssi)

https://connectivity.lairdtech.com 146 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird

) CONNECTIVITY
User Guide _)

rc=BleScanStop ()

'//Connect to device with MAC address obtained above with 5s connection timeout,
'//20ms min connection interval, 75 max, 5 second supervision timeout.
rc=BleConnect (periphAddr$, 5000, 20000, 75000, 5000000)

IF rc==0 THEN

PRINT "\n--- Connecting"
ELSE
PRINT "\nError: "; INTEGER.H'rc
ENDIF
ENDFUNC 1

'//This handler will be called in the event of a connection timeout
FUNCTION HndlrConnTO ()

PRINT "\n--- Connection timeout"

rc=BleScanStart (0, 0)
ENDFUNC 1

'//This handler will be called when there is a BLE message
FUNCTION HndlrBleMsg (nMsgId, nCtx)
IF nMsgId == 0 THEN
dim h
rc=BleGetConnHandleFromAddr (periphAddr$, h)

PRINT "\n--- Connected to device with MAC address "; StrHexize$ (periphAddr$) ;"
Handle: ":;h

PRINT "\n--- Disconnecting now"
rc=BleDisconnect (nCtx)
ENDIF
ENDFUNC 1

'//This handler will be called when a disconnection happens

FUNCTION HndlrDiscon (nCtx, nRsn)

ENDFUNC 0
ONEVENT EVBLEMSG CALL HndlrBleMsg
ONEVENT EVDISCON CALL HndlrDiscon

ONEVENT EVBLE ADV REPORT CALL HndlrAdvRpt
ONEVENT EVBLE CONN TIMEOUT CALL HndlrConnTO

WAITEVENT

https://connectivity.lairdtech.com 147 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird CONNECTIVITY

User Guide

Expected Output:

Scanning

--- Connecting

--- Connected to device with MAC address 000016A4093A64 Handle: 261888
--- Disconnecting now

00

5.6.10BleGetAddrFromConnHandle

FUNCTION
This function is used to get the Bluetooth address of a device from a connection handle.
BLEGETADDRFROMCONNHANDLE (nConnHandle, BtAddrBE$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byRef nConnHandle AS INTEGER.
Connection handle from which to get Bluetooth address
byRef BtAddrBE$ AS STRING.

nConnHandle

BtAddrBE
$ Returned Bluetooth address.
Example:

// Example :: BleGetAddrFromConnHandle.sb

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

DIM rc, periphAddr$

'//Scan indefinitely

rc=BleScanStart (0, 0)

IF rc==0 THEN
PRINT "\nScanning"
ELSE
PRINT "\nError: "; INTEGER.H'rc

ENDIF

'//This handler will be called when an advert is received
FUNCTION HndlrAdvRpt ()

DIM advData$, nDiscarded, nRssi

'//Read an advert report and connect to the sender
rc=BleScanGetAdvReport (periphAddr$, advData$, nDiscarded, nRssi)

rc=BleScanStop ()

'//Connect to device with MAC address obtained above with 5s connection timeout,

'//20ms min connection interval, 75 max, 5 second supervision timeout.

https://connectivity.lairdtech.com 148 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird

) CONNECTIVITY
User Guide _)

rc=BleConnect (periphAddr$, 5000, 20000, 75000, 5000000)
IF rc==0 THEN

PRINT "\n--- Connecting"
ELSE
PRINT "\nError: "; INTEGER.H'rc
ENDIF
ENDFUNC 1

'//This handler will be called in the event of a connection timeout
FUNCTION HndlrConnTO ()

PRINT "\n--- Connection timeout"

rc=BleScanStart (0, 0)
ENDFUNC 1

'//This handler will be called when there is a BLE message
FUNCTION HndlrBleMsg (nMsgId, nCtx)
IF nMsgId == 0 THEN
dim addr$
rc=BleGetAddrFromConnHandle (nCtx, addr$)
PRINT "\n--- Connected to device with MAC address "; StrHexize$ (addr$)
PRINT "\n--- Disconnecting now"
rc=BleDisconnect (nCtx)
ENDIF
ENDFUNC 1

'//This handler will be called when a disconnection happens

FUNCTION HndlrDiscon (nCtx, nRsn)

ENDFUNC 0
ONEVENT EVBLEMSG CALL HndlrBleMsg
ONEVENT EVDISCON CALL HndlrDiscon

ONEVENT EVBLE ADV_ REPORT CALL HndlrAdvRpt
ONEVENT EVBLE CONN TIMEOUT CALL HndlrConnTO

WAITEVENT

Expected Output:

Scanning

--— Connecting

--— Connected to device with MAC address 000016A4093A64
--- Disconnecting now

00

https://connectivity.lairdtech.com 149 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions l_ailﬂ-(:lw CONNECTIVITY

User Guide

5.6.11 BleConnRssiStart

FUNCTION

This function is used to enable RSSI reporting for a particular connection. Given an RSSI value is generated for every
connection event, this can result in a flood of events which will result in increased power consumption as the CPU will need to
be in active mode for longer to process them. To mitigate this, this function also takes a threshold dBm value and a skipcount
to reduce and manage these events.

The threshold dBm parameter ensures that a report is only generated if the change in detected RSSI value is greater or less
than the most reported value by this amount and the skipcount is how many times this condition has to occur for the event to
be thrown to the application.

BLECONNRSSISTART (nConnHandle, nThresholdDbm, nSkipCount)

INTEGER, a result code.

Returns . - .
Typical value: 0x0000 (indicates a successful operation)

Arguments

byVal nConnHandle AS INTEGER.
Specifies the handle of the connection for which rssi reporting is to be enabled

byVal nThresholdDbm AS INTEGER.
The minimum change in dBm before triggering the EVCONNRSSI event
byRef nSkipCount AS INTEGER.

nSkipCount | The number of RSSI samples with a change of nThresholdDbm or more before triggering
the EVCONNRSSI event

nConnHandle

nThresholdDbm

Example:

// Example :: BleConnRssiStart.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

DIM rc,conHndl

DIM addr$: addrs$=""
//
// Initialise
//
FUNCTION OnStartup ()

rc=BleAdvertStart (0,addr$,50,0,0)

ENDFUNC rc

//

// Ble event handler
//

FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)
conHndl=nCtx
IF nMsgID==1 THEN
PRINT "\n\n--- Disconnected from client"
EXITEFUNC O
ELSEIF nMsgID==0 THEN

https://connectivity.lairdtech.com 150 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

PRINT "\n--- Connected to client"
rc=BleConnRssiStart (conHndl, 4,10)
ENDIF
ENDFUNC 1
//
// Connection related RSSI events
//

FUNCTION HndlrConnRssi (BYVAL charHandle, BYVAL rssi) AS INTEGER

PRINT "\nRSSI=";rssi;" for connection "; integer.h' charHandle
IF rssi < -80 then
//too far away so stop monitoring the rssi (this is just an example)
//in reality use some other reason to stop
rc=BleConnRssiStop (conHndl)
ENDIF
ENDFUNC 1
//
//
ONEVENT EVBLEMSG CALL HndlrBleMsg

ONEVENT EVCONNRSSI CALL HndlrConnRssi

IF OnStartup () !=0 THEN
PRINT "\nFailure OnStartup"
ENDIF

//Wait for events

WAITEVENT

5.6.12BleConnRssiStop
FUNCTION

This function is used to disable RSSI reporting for a particular connection which was enabled using the function
BleConnRssiStart described above.

On disconnection, reporting will automatically stop.

BLECONNRSSISTOP (nConnHandle)

INTEGER, a result code.
Typical value: 0x0000 (indicates a successful operation)

Returns

Arguments

byVal nConnHandle AS INTEGER.

nConnHandle Specifies the handle of the connection for which rssi reporting is to be enabled

For example, see description of BleConnRssiStart() above.

https://connectivity.lairdtech.com 151 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

5.7 Whitelist Management Functions

This section describes routines which are used to manage whitelists.

A whitelist is a list of Bluetooth addresses and Identity Resolving Keys (IRKs) which the baseband radio will use to gate
incoming packets upwards to the stack as they are received.

If the whitelist is active, then any radio packet whose source Bluetooth address is not in the list will be rejected. However, note
that in BLE for privacy reasons, resolvable Bluetooth addresses can be used and so the address will not match with one in the
list and so for that type of address the list of Indentity Resolving Keys in the whitelist is also consulted to see if the resolvable
address is a trusted device.

A trusted device by definition will have supplied its IRK key when the pairing and bonding happened in the past.
Hence treat this group of functions as a means of creating, maintaining and destroying that list of addresses and IRKs.

The operation that enables whitelisting is the function that starts advertising and scanning. So refer to the functions
BleAdvertStart() and BleScanStart().

5.7.1 BleWhitelistCreate
FUNCTION

This function is used to create a new whitelist to which addresses and identity resolving keys can be added using
BleWhitelistAddAddr() or BleWhitelistAddIndex().

BLEWHITELISTCREATE (hWIist, nMaxAddrs, nMaxiIrks, nPktFilterMask)

INTEGER, a result code.

Typical value:

0x0000 indicates a successful operation

0x605E indicates too many whitelists already created.

Returns

Arguments

byRef hWlist AS INTEGER.
hWilist | If an empty whitelist is successfully created then this will be updated with a valid handle. If not
then this will contain -1 (OXFFFFFFFF)
byVal nMaxAddrs AS INTEGER.

Maximum addresses that will be stored in this whitelist
byVal nMaxirks AS INTEGER.

Maximum ldentity Resolving Keys (IRKs) that will be stored in this whitelist
byVal nPktFilterMask AS INTEGER.
This is a bit mask which specifies what type of incoming packets this list will apply to, as
follows:

= Bit0 : Setto 1 for Scan Request packets

Bit 1 : Set to 1 for Connection Request packets

= Bit2 : Setto 1 for Advert Report Packets
= Bits 3to 31 : reserved for future use

nMaxAddrs

nMaxlIrks

nPktFilterMask

Note: If all bits are 0, then a default mask of 7 is used for the BL654.

https://connectivity.lairdtech.com 152 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird

) CONNECTIVITY
User Guide _)

Example:

// Example :: BleWhitelist.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

DIM rc,conHndl,hWlist, wval

DIM addr$: addr$=""

//
//

sub AssertRC (byval tag as integer)

if rc!=0 then
print "\nFailed with ";integer.h' rc;" at tag ";tag
endif

endsub

//
// Ble event handler
//
FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)

conHndl=nCtx

IF nMsgID==1 THEN
PRINT "\n\n--- Disconnected from client"
EXITFUNC O

ELSEIF nMsgID==0 THEN
PRINT "\n--- Connected to client"

ENDIF

ENDFUNC 1

//
// This handler is called when there is an advert report waiting to be read
//
function HandlerAdvRpt () as integer

dim ad$,dta$,ndisc, rsi

rc = BleScanGetAdvReport (ad$,dta$,ndisc, rsi)

while rc==
print "\nADV:";strhexize$ (ad$);" ";strhexize$ (dta$);" ";ndisc;" ";rsi
rc = BleScanGetAdvReport (ad$,dta$,ndisc, rsi)

endwhile

endfunc 1

https://connectivity.lairdtech.com 153 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird

) CONNECTIVITY
User Guide _)

//
// This handler is called when there is an advert report waiting to be read
//
sub WhiteListInit ()

//set invalid whitelist handle

hWwlist=-1

//now check maximum whitelists that can be defined and for that valid handle
//is not required

rc=BleWhiteListInfo (hWlist,0, val) //get max number of whitelists allowes
AssertRC(100)

print "\n Max allowed whitelists = "; val

//create a whitelist
rc=BleWhitelistCreate (hWlist,8,8,0)
IF rc==0 THEN
//Add address we want to specifically look for
addr$="000016A40B1623"
rc=BleWhitelistAddAddr (hWlist,addr$)
AssertRC(110)
//Made a mistake so clear it
rc=BleWhitelistClear (hWlist)
AssertRC(120)
//now add the correct address
addr$="000016A40B1642"
rc=BleWhitelistAddAddr (hWlist, addr$)
AssertRC (130)
//now add first one in the trusted database
rc=BleWhitelistAddIndex (hWlist,0)
AssertRC (140)
//Change the filter property from default used in the create function
//so that connection requests are disallowed
rc=BleWhitelistSetFilter (hWlist, 1)
AssertRC (150)
//now check the whitelist by interogating the whitelist handle
rc=BleWhitelListInfo (hWlist,101, wval) //get current number of mac addresses

AssertRC (160)

print "\n Current number of addresses = "; val
ENDIF
https://connectivity.lairdtech.com 154 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird CONNECTIVITY

User Guide

endsub

//

//

ONEVENT EVBLEMSG CALL HndlrBleMsg
OnEvent EVBLE ADV REPORT CALL HandlerAdvRpt

//Initiliase a whitelist

WhiteListInit ()

//start adverts with whitelisting
addrs=""

rc=BleAdvertStart (0,addr$, 50,0, hWlist)
AssertRC (910)

//Wait for events

WAITEVENT

//destroy the whitelist
BleWhitelistDestroy (hWlist)

5.7.2 BleWhitelistDestroy
FUNCTION

This function is used to destroy an existing whitelist identified by a valid handle previously returned from BleWhitelistCreate()
so that new addresses and ldentity Resolving Keys (IRKs) can be added. This function completely destroys the whitelist of the
given handle, and a new one will need to be created if necessary (using BleWhitelistCreate).

BLEWHITELISTDESTROY (hWilist)

INTEGER, a result code.

Returns . - .
Typical value: 0x0000 (indicates a successful operation)

Arguments

byRef hWlist AS INTEGER.

This is the handle of the whitelist and is passed as a reference so that on exit it will have an
invalid handle value so cannot be used inadvertently. The handle will have been returned by
BleWhitelistCreate()

hWilist

For example, see description of BleWhitelistCreate() above.

https://connectivity.lairdtech.com 155 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird CONNECTIVITY

User Guide

5.7.3 BleWhitelistClear

FUNCTION

This function is used to clear an existing whitelist identified by a valid handle previously returned from BleWhitelistCreate() so
that new addresses and Identity Resolving Keys (IRKs) can be added. The handle of the whitelist is still valid so data can be
added to the whitelist without having to call BleWhitelistCreate again.

BLEWHITELISTCLEAR (hWIlist)

INTEGER, a result code.

Returns . — .
Typical value: 0x0000 (indicates a successful operation)

Arguments

byVal hWlist AS INTEGER.
hWilist | This is the handle of the whitelist to clear and will have been returned by
BleWhitelistCreate()

For example, see description of BleWhitelistCreate() above.

5.7.4 BleWhitelistSetFilter

FUNCTION
This function is used to change the filter policy mask associated with the whitelist object identified by the handle.

BLEWHITELISTSETFILTER (hWlist, nPktFilterMask)

INTEGER, a result code.

Returns Typical value: 0x0000 (indicates a successful operation)

Arguments

byRef hWlist AS INTEGER.
This is the handle of the whitelist and will have been returned by BleWhitelistCreate()
byVal nPktFilterMask AS INTEGER.
This is a bit mask which specifies what type of incoming packets this list will apply to, as
follows:
= Bit0 : Setto 1 for Scan Request packets
nPktFilterMask | = Bit1 : Setto 1 for Connection Request packets
= Bit2 : Setto 1 for Advert Report Packets
= Bits 3to 31 : reserved for future use

hWilist

Note: If all bits are 0, then a default mask of 7 is used for the BL654.

For example, see description of BleWhitelistCreate() above.

https://connectivity.lairdtech.com 156 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird CONNECTIVITY

User Guide

5.7.5 BleWhitelistAddAddr

FUNCTION

This function is used to add a 7 byte BT address to the whitelist identified by the handle supplied. The function will
automatically check if the BT address is trusted by interrogating the trusted device database and if it is, then the address
stored there along with the IRK is added instead of the address supplied. This means that in smartphones with Android and
iOS (which make heavy use of resolvable addresses) there is seemless and hassle free integration.

BLEWHITELISTADDADDR (hWIist, addr$)

INTEGER, a result code.

Returns Typical value: 0x0000 (indicates a successful operation)

Arguments

byVal hWlist AS INTEGER.

hwii S o . oo
Ist This is the handle of the whitelist and will have been returned by BleWhitelistCreate()
byRef addr$ AS STRING.
addrs This is the address that is to be added to the whitelist. It will be checked for presence in

trusted device database and if trusted, the IRK will also be added automatically to the
whitelist

For example, see description of BleWhitelistCreate() above.

5.7.6 BleWhitelistAddIndex

FUNCTION
This function is used to add the Nth indexed device in the trusted device database to the whitelist identified by the handle

supplied. If that Nth record exists in the database then the Identity Resolving Key will also be added automatically.

BLEWHITELISTADDINDEX (hWIlist, nindex)

INTEGER, a result code.

R ; - .
eturns Typical value: 0x0000 (indicates a successful operation)

Arguments

byVal hWlist AS INTEGER.

hwiist This is the handle of the whitelist and will have been returned by BleWhitelistCreate()
byVal nindex AS INTEGER.
nindex This is the Nth index (zero based) of the record in the trusted device database to add to the

whitelist. The IRK will also be added automatically to the whitelist.
The index is the same entity per the function BleBondMngrGetinfo()

For example, see description of BleWhitelistCreate() above.

https://connectivity.lairdtech.com 157 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

p NNECTIVITY
User Guide Lalrd co CTIV

5.7.7 BleWhitelistIinfo

FUNCTION

This function is used to return information about the whitelist provided. This may be invalid for certain ninfolD values, as that is
information about the whitelist manager in general.

BLEWHITELISTINFO (hWIlist, ninfolD, nValue)

INTEGER, a result code.

Returns Typical value: 0x0000 (indicates a successful operation)

Arguments

byVal hWlist AS INTEGER.
This is the handle of the whitelist and will have been returned by BleWhitelistCreate()
byVal ninfolD AS INTEGER.
This is ID of the information to be returned as follows:
= 0 :maximum number of whitelists (hWiIist is ignored)
= 1 :maximum number of Bluetooth addresses (hWilist is ignored)
ninfolD | = 2 :maximum number of IRKs (hWilist is ignored)
= 101 : current number of addresses added
= 102 : current number of IRKs added

hWilist

Note: For 101 and 102, the values will be cleared to 0 if BleWhitelistClear() is called.

byRef nValue AS INTEGER.

nValue)
The information value is returned in this variable

For example, see description of BleWhitelistCreate() above.

5.8 GATT Server Functions

This section describes all functions related to creating and managing services that collectively define a GATT table from a
GATT server role perspective. These functions allow the developer to create any service that has is described and adopted by
the Bluetooth SIG or any custom service that implements some custom unique functionality, within resource constraints such
as the limited RAM and FLASH memory that is exist in the module.

A GATT table is a collection of adopted or custom services which, in turn, are a collection of adopted or custom
characteristics. By definition, an adopted service cannot contain custom characteristics but the reverse is possible where a
custom service can include both adopted and custom characteristics.

Descriptions of services and characteristics are available in the Bluetooth Specification v4.0 or newer. Because these
descriptions are concise and difficult to understand, the following section attempts to familiarise you with these concepts using
the smartBASIC programming environment perspective.

To help understand service and characteristic better, think of a characteristic as a container (or a pot) of data where the pot
comes with space to store the data and a set of properties that are officially called Descriptors in the BT spec. In the pot
analogy, think of a descriptor as the color of the pot, whether it has a lid, whether the lid has a lock, whether it has a handle or
a spout, etc. For a full list of these descriptors online, see
http://developer.Bluetooth.org/GATT/descriptors/Pages/DescriptorsHomePage.aspx . These descriptors are assigned 16-bit
UUIDs (value 0x29xx) and are referenced in some of the smartBASIC API functions if you decide to add those to your
characteristic definition.

You can consider a service as a carrier bag to hold a group of related characterisics together where the printing on the carrier
bag is a UUID. From a smartBASIC developer’s perspective, a set of characteristics is what you need to manage and the
concept of service is only required at GATT table creation time.

A GATT table can have many services, each containing one or more characteristics. The difference between services and
characteristics is expedited using an identification number called a UUID (Universally Unique Identifier) which is a 128-bit (16-
byte) number. Adopted services or characteristics have a 16-bit (2-byte) shorthand identifier (which is an offset plus a base
128-bit UUID defined and reserved by the Bluetooth SIG); custom service or characteristics have the full 128-bit UUID. The
logic behind this is that a 16-bit UUID implies that a specification has been published by the Bluetooth SIG whereas using a
128-bit UUID does NOT require any central authority to maintain a register of those UUIDs or specifications describing them.

https://connectivity.lairdtech.com 158 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

http://developer.bluetooth.org/gatt/descriptors/Pages/DescriptorsHomePage.aspx

BL654 smartBASIC Extensions Laird“‘ CONNECTIVITY

User Guide

The lack of the requirement for a central register is important to understand in the sense that, if a custom service or
characteristic must be created, the developer can use any publicly available UUID (sometimes also known as GUID)
generation utility.

These utilities use entropy from the real world to generate a 128-bit random number that has an extremely low probability to be
the same as that generated by someone else at the same time or in the past or future.

As an example, at the time of writing this document, the following website http://www.guidgenerator.com/online-guid-
generator.aspx offers an immediate UUID generation service, although it uses the term GUID. From the GUID Generator
website:

How unique is a GUID?

128-bits is big enough and the generation algorithm is unique enough that if 1,000,000,000 GUIDs per second
were generated for 1 year the probability of a duplicate would be only 50%. Or if every human on Earth
generated 600,000,000 GUIDs there would only be a 50% probability of a duplicate.

This extremely low probability of generating the same UUID is why there is no need for a central register maintained by the
Bluetooth SIG for custom UUIDs.

Please note that Laird does not guarantee that the UUID generated by this website or any other utility is unique. It is left to the
judgement of the developer whether to use it or not.

Note: If the developer intends to create custom services and/or characteristics then it is recommended that a single UUID
is generated and used from then on as a 128-bit (16 byte) company/developer unique base along with a 16-bit (2-
byte) offset, in the same manner as the Bluetooth SIG.

This allows up to 65536 custom services and characteristics to be created, with the added advantage that it is
easier to maintain a list of 16-bit integers.

The main reason for avoiding more than one long UUID is to keep RAM usage down given that 16 bytes of RAM is
used to store a long UUID. smart BASIC functions have been provided to manage these custom 2-byte UUIDs
along with their 16-byte base UUIDs.

In this document, when a service or characteristic is described as adopted, it implies that the Bluetooth SIG published a
specification which defines that service or characteristic and there is a requirement that any device claiming to support them
has proof that the functionality has been tested and verified to behave as per that specification.

Currently there is no requirement for custom service and/or characteristics to have any approval. By definition, interoperability
is restricted to the provider and implementer.

A service is an abstraction of some collectivised functionality which, if broken down further, would cease to provide the
intended behaviour. Two examples in the BLE domain that have been adopted by the Bluetooth SIG are Blood Pressure
Service and Heart Rate Service. Each have sub-components that map to characteristics.

Blood pressure is defined by a collection of data entities such as Systolic Pressure, Diastolic Pressure, and Pulse Rate.
Likewise, a Heart Rate service has a collection which includes entities such as the Pulse Rate and Body Sensor Location.

A list of all the adopted services is at: http://developer.Bluetooth.org/GATT/services/Pages/ServicesHome.aspx. Laird
recommends that, if you decide to create a custom service, it should be defined and described in a similar fashion; your goal
should be to get the Bluetooth SIG to adopt it for everyone to use in an interoperable manner.

These services are also assigned 16-bit UUIDs (value 0x18xx) and are referenced in some of the smart BASIC API functions
described in this section.

Services, as described above, are a collection of one or more characteristics. A list of all adopted characteristics is found at:
http://developer.Bluetooth.org/GATT/characteristics/Pages/CharacteristicsHome.aspx. You should note that these descriptors
are also assigned 16-bit UUIDs (value 0x2Axx) and are referenced in some of the API functions described in this section.
Custom characteristics have 128-bit (16-byte) UUIDs and API functions are provided to handle those.

Note: If you intend to create a custom service or characteristic and adopt the recommendation of a single 16-byte base
UUID so that the service can be identified using a 2-byte UUID, then allocate a 16-bit value which is not going to

https://connectivity.lairdtech.com 159 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

http://www.guidgenerator.com/online-guid-generator.aspx
http://www.guidgenerator.com/online-guid-generator.aspx
http://developer.bluetooth.org/gatt/services/Pages/ServicesHome.aspx
http://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicsHome.aspx

BL654 smartBASIC Extensions Laird 2> CONNECTIVITY

User Guide

coincide with any adopted values to minimise confusion. Selecting a similar value is possible and legal given that
the base UUID is different.

The remainder of this introduction focuses on the specifics of how to create and manage a GATT table from a perspective of
the smart BASIC API functions in the module.

Recall that a service was described as a carrier bag that groups related characteristics together and a characteristic is a data
container (pot). Therefore, a remote GATT client looking at the server which is presented in your GATT table, sees multiple
carrier bags each containing one or more pots of data.

The GATT client (remote end of the wireless connection) msut see those carrier bags to determine the groupings and, once it
has identified the pots, it only needs to keep a list of references to the pots it is interested in. Once that list is made at the client
end, it can ‘throw away the carrier bag'.

https://connectivity.lairdtech.com 160 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions
User Guide

La 2» CONNECTIVITY

Similarly in the module, once the GATT table is
created and after each service is fully populated
with one or more characteristics, there is no
need to keep that ‘carrier bag’. However, as each
characterstic is ‘placed in the carrier bag’ using
the appropriate smartBASIC API function, a
receipt is returned and is referred to as a
char_handle. The developer must then keep
those handles to be able to interact with that
characteristic. The handle does not care whether
the characteristic is adopted or custom because,
from then on the firmware managing it behind the
scenes in smartBASIC does not care.

From the smartBASIC application developer’s
logical perspective, a GATT table looks nothing
like the table that is presented in most BLE
literature. Instead, the GATT table is simply a
collection of char_handles that reference the
characteristics (data containers) which have
been registered with the underlying GATT table
in the BLE stack.

A particular char_handle is used to make
something happen to the referenced
characteristic (data container) using a smart
BASIC function and conversely, if data is written
into that characteristic (data container) by a
remote GATT client, then an event is thrown in
the form of a message, into the smart BASIC
runtime engine which is processed if and only if
a handler function has been registered by the
apps developer using the ONEVENT statement.

With this simple model in mind, an overview of
how the smart BASIC functions are used to
register services and characteristics is illustrated
in the flowchart on the right and sample code
follows on the next page.

https://connectivity.lairdtech.com

[Create a UUID Handle for Service (16/128) |
| BleHandleUuid () |

Commit a PRIMARY or SECONDARY
service which returns a service handle
BleSvcCommit ()

[create a UUID Handle for Characterisitic (16/128) |
BleHandleUuid () |

Create a metadata object which
defines the permissions for the
characteristic value attribute
BleAttrMetadata ()

Notifiable OR
Indicatable

Create a metadata object which
defines the permissions for the
characteristic CCCD attribute

BleAttrMetadata ()

Broadcastable Yes

Create a metadata object which
defines the permissions for the
characteristic SCCD attribute

BleAttrMetadata ()

Start the definition of a new characteristic
hich will be later commited to the GATT|

table in a single transaction
BleCharNew ()

User Desc Yes

Descriptor?

Create a metadata object which
defines the permissions for the
User Desc Descriptor

BleAttrMetadata ()

Add parameters for creation of
User Desc Descriptor

BleCharDescUserDesc ()

res'tion Formai

Add parameters for creation of
Presentation Format Descriptor

Descriptor?

BleCharDescPrstnFrmt ()

Add parameters for creation of
other Descriptor

BleCharDescAdd ()

Add other
Descriptor?

Yes

Create a metadata object which
defines the permissions for the
other Descriptor

BleAttrMetadata()

Commit the Characteristic to the
Gatt ServerTable in single transaction
BleCharCommit () ~.

More
haracteristics2

Yes

Yes More

Services?

© Copyright 2019 Laird. All Rights Reserved

Save the handle
thatis returned
asitis used to

interact with the
characteristic

Americas: +1-800-492-2320
Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird

) CONNECTIVITY
User Guide _)

Example:

// Example :: ServicesAndCharacteristics.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

//
//Register two Services in the GATT Table. Service 1 with 2 Characteristics and
//Service 2 with 1 characteristic. This implies a total of 3 characteristics to
//manage.

//The characteristic 2 in Service 1 will not be readable or writable but only
//indicatable

//The characteristic 1 in Service 2 will not be readable or writable but only
//notifyable

//

DIM rc //result code
DIM hSvc //service handle
DIM mdAttr

DIM mdCccd

DIM mdSccd

DIM chProp

DIM attr$

DIM hCharll // handles for characteristic 1 of Service 1
DIM hChar2l // handles for characteristic 2 of Service 1

DIM hCharl2 // handles for characteristic 1 of Service 2

DIM hUuidSl // handles for uuid of Service 1
DIM hUuidS2 // handles for uuid of Service 2
DIM hUuidCll // handles for uuid of characteristic 1 in Service 1
DIM hUuidCl2 // handles for uuid of characteristic 2 in Service 1

DIM hUuidC21 // handles for uuid of characteristic 1 in Service 2

//-—--Register Service 1
hUuidS1l = BleHandleUuidlo6 (0x180D)

rc = BleServiceNew (BLE SERVICE PRIMARY, hUuidS1l, hSvc)

//-—-Register Characteristic 1 in Service 1
mdAttr = BleAttrMetadata (BLE ATTR ACCESS OPEN,BLE ATTR ACCESS OPEN, 10,0, rc)
mdCccd = BLE_CHAR METADATA ATTR NOT PRESENT

https://connectivity.lairdtech.com 162 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

>» NNECTIVITY
User Guide Lalrd co CTIV

mdSccd

BLE CHAR METADATA ATTR NOT PRESENT

chProp = BLE CHAR PROPERTIES READ + BLE CHAR PROPERTIES WRITE
hUuidCll = BleHandleUuidl6 (0x2A37)

rc = BleCharNew (chProp, hUuidCll,mdAttr,mdCccd,mdSccd)

rc = BleCharCommit (shHrs,hrs$,hCharll)

//-—-Register Characteristic 2 in Service 1

mdAttr = BleAttrMetadata (BLE ATTR ACCESS OPEN,BLE ATTR ACCESS OPEN, 10,0, rc)
mdCccd = BleAttrMetadata (BLE ATTR ACCESS OPEN,BLE ATTR ACCESS OPEN, 2,0, rc)
mdSccd = BLE CHAR METADATA ATTR NOT PRESENT

chProp = BLE CHAR PROPERTIES INDICATE

hUuidCl2 = BleHandleUuidl6 (0x2A39)

rc = BleCharNew (chProp, hUuidCl2,mdAttr,mdCccd,mdSccd)

attrs$="\00\00"

rc = BleCharCommit (hSvc,attr$,hChar2l)

rc = BleServiceCommit (hSvc)

//-—-Register Service 2 (can now reuse the service handle)
hUuidS2 = BleHandleUuidl6 (0x1856)

rc = BleServiceNew (BLE SERVICE PRIMARY, hUuidS2, hSvc)

//---Register Characteristic 1 in Service 2

mdAttr = BleAttrMetadata (BLE ATTR ACCESS NONE,BLE ATTR ACCESS NONE, 10,0, rc)
mdCccd = BleAttrMetadata (BLE ATTR ACCESS OPEN,BLE ATTR ACCESS OPEN, 2,0,rc)
mdSccd

BLE CHAR METADATA ATTR NOT PRESENT

chProp = BLE CHAR PROPERTIES NOTIFY

hUuidC21 = BleHandleUuidlo6 (0x2A54)

rc = BleCharNew (chProp, hUuidC21,mdAttr,mdCccd,mdSccd)
attr$="\00\00\00\00"

rc = BleCharCommit (hSvc,attr$,hCharl2)

rc BleServiceCommit (hSvc)
//===The 2 services are now visible in the gatt table

Writes into a characteristic from a remote client are detected and processed as follows:

// To deal with writes from a GATT client into characteristic 1 of Service 1

// which has the handle hCharll

// This handler is called when there is a EVCHARVAL message

https://connectivity.lairdtech.com 163 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird

) CONNECTIVITY
User Guide _)

FUNCTION HandlerCharVal (BYVAL hChar AS INTEGER) AS INTEGER
DIM attr$
IF hChar == hCharll THEN
rc = BleCharValueRead (hCharll,attr$)

print "Svcl/Charl has been writen with = ";attr$

ENDIF
ENDFUNC 1

//enable characteristic value write handler

OnEvent EVCHARVAL call HandlerCharVal

WAITEVENT

Assuming there is a connection and notify has been enabled, a value notification is expedited as follows:

attr$="somevalue"
rc = BleCharValueNotify (hCharl2,attr$)

Assuming there is a connection and indicate has been enabled, a value indication is expedited as follows:

// indicate a value for characteristic 2 in service 1

// This handler is called when there is a EVCHARHVC message
FUNCTION HandlerCharHvc (BYVAL hChar AS INTEGER) AS INTEGER
IF hChar == hCharl2 THEN
PRINT "Svcl/Char2 indicate has been confirmed"
ENDIF
ENDFUNC 1

//enable characteristic value indication confirm handler

OnEvent EVCHARHVC CALL HandlerCharHvc

attr$="somevalue"

rc = BleCharValueIndicate (hCharl2,attr$)

The rest of this section details all the smartBASIC functions that help create that framework.

https://connectivity.lairdtech.com 164 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

User Guide La"'d 2» CONNECTIVITY

5.8.1 Events and Messages

See also Events and Messages for the messages that are thrown to the application which are related to the generic
characteristics API. The relevant messages are those that start with EVCHARXXX.

5.8.2 BleGapSvclinit

FUNCTION

This function updates the GAP service, which is mandatory for all approved devices to expose, with the information provided.
If it is not called before adverts are started, default values are exposed. Given this is a mandatory service, unlike other
services which must be registered, this one must only be initialised as the underlying BLE stack unconditionally registers it
when starting up.

The GAP service contains five characteristics as listed at the following site:
http://developer.Bluetooth.org/GATT/services/Pages/ServiceViewer.aspx?u=org.Bluetooth.service.generic_access.xml

BLEGAPSVCINIT (deviceName, nameWritable, nAppearance, nMinConninterval, nMaxConninterval, nSupervisionTout, nSlavelLatency)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation

Arguments:

byRef deviceName AS STRING
The name of the device (such as Laird_Thermometer) to store in the Device Name
characteristic of the GAP service.

Note: When an advert report is created using BLEADVRPTINIT(), this field is read from
the service and an attempt is made to append it in the Device Name AD. If the
name is too long, that function fails to initialise the advert report and a default
name is transmitted. We recommend that the device name submitted in this call
be as short as possible.

deviceName

byVal nameWritable AS INTEGER

nameWritable | If non-zero, the peer device is allowed to write the device name. Some profiles allow this to
be made optional.

byVal nAppearance AS INTEGER

nAppearance | Field lists the external appearance of the device and updates the Appearance characteristic
of the GAP service. Possible values: org.Bluetooth.characteristic.gap.appearance

byVal nMinConninterval AS INTEGER

The preferred minimum connection interval, updates the ‘Peripheral Preferred Connection
nMinConninterval | Parameters’ characteristic of the GAP service.

Range is between 7500 and 4000000 microseconds (rounded to the nearest 1250
microseconds). This must be smaller than nMaxConninterval.

byVal nMaxConninterval AS INTEGER

The preferred maximum connection interval, updates the ‘Peripheral Preferred Connection
nMaxConnlnterval | Parameters’ characteristic of the GAP service.

Range is between 7500 and 4000000 microseconds (rounded to the nearest 1250
microseconds). This must be larger than nMinConnlnterval.

https://connectivity.lairdtech.com 165 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

http://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.generic_access.xml
https://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicViewer.aspx?u=org.bluetooth.characteristic.gap.appearance.xml

BL654 smartBASIC Extensions

il“ NNECTIVITY
User Guide _d) €0 CTIV

byVal nSupervisionTimeout AS INTEGER

The preferred link supervision timeout and updates the ‘Peripheral Preferred Connection
nSupervisionTimeout | Parameters’ characteristic of the GAP service.

Range is between 100000 to 32000000 microseconds (rounded to the nearest 10000
microseconds).

byVal nSlaveLatency AS INTEGER

The preferred slave latency is the number of communication intervals that a slave may
ignore without losing the connection and updates the ‘Peripheral Preferred Connection
Parameters’ characteristic of the GAP service.

This value must be smaller than (nSupervisionTimeout/ nMaxConninterval) -1. i.e.
nSlavelLatency < (nSupervisionTimeout / nMaxConnlnterval) -1

nSlavelLatency

Example:

// Example :: BleGapSvcInit.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

DIM rc,dvcNme$, nmeWrtble, apprnce,MinConnInt,MaxConnInt, ConnSupTO, sL, s$

dvcNme$= "Laird TS"

nmeWrtble = 0 //Device name will not be writable by peer

apprnce = 768 //The device will appear as a Generic Thermometer
MinConnInt = 500000 //Minimum acceptable connection interval is 0.5 seconds
MaxConnInt = 1000000 //Maximum acceptable connection interval is 1 second
ConnSupTO = 4000000 //Connection supervisory timeout is 4 seconds

sL = 0 //Slave latency--number of conn events that can be missed

rc=BleGapSvcInit (dvcNme$, nmeWrtble, apprnce,MinConnInt,MaxConnInt, ConnSupTO, sL)

IF !rc THEN
PRINT "\nSuccess"
ELSE
PRINT "\nFailed 0x"; INTEGER.H'rc //Print result code as 4 hex digits

ENDIF

Expected Output:

Success

https://connectivity.lairdtech.com 166 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

5.8.3 BleGetDeviceName$

FUNCTION

This function reads the device name characteristic value from the local GATT table. This value is the same as that supplied in
BleGapSvclnit() if the ‘nameWritable’ parameter was 0, otherwise it may be different.

EVBLEMSG event is thrown with ‘msgid’ == 21 when the GATT client writes a new value and is the best time to call this

function.
BLEGETDEVICENAMES ()
Returns STRING, the current device name in the local GATT table. It is the same as that supplied in
BleGapSvcinit() if the ‘nameWritable’ parameter was 0, otherwise it can be different.
EVBLEMSG event is thrown with ‘msgid’ == 21 when the GATT client writes a new value.
Arguments None
Example:
// Example :: BleGetDeviceName$.sb

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

DIM rc,dvcNme$,nmeWrtble, apprnce,MinConnInt,MaxConnInt, ConnSupTO, sL

PRINT "\n --- DevName : "; BleGetDeviceNames$ ()

// Changing device name manually
dvcNme$= "My BL654"

nmeWrtble = 0

apprnce = 768

500000

MinConnInt

MaxConnInt 1000000
ConnSupTO = 4000000

sL = 0

rc = BleGapSvcInit (dvcNme$, nmeWrtble, apprnce,MinConnInt,MaxConnInt, ConnSupTO, sL)

PRINT "\n --- New DevName : "; BleGetDeviceName$ ()

Expected Output:

—-—— DevName : LAIRD BL654
--- New DevName : My BL654

https://connectivity.lairdtech.com 167 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird CONNECTIVITY

User Guide

5.8.4 BleSvcRegDevinfo

FUNCTION

This function is used to register the Device Information service with the GATT server. The Device Information service contains
nine characteristics as listed at the following website:
http://developer.Bluetooth.org/GATT/services/Pages/ServiceViewer.aspx?u=org.Bluetooth.service.device_information.xml

The firmware revision string is always set to BL654:vW.X.Y.Z where W,X,Y,Z are as per the revision information which is
returned to the command AT | 4.

BLESVCREGDEVINFO (manfName$, modelNum$, serialNum$, hwRev$, swRev$, sysld$, regDatalist$, pnpld$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
Arguments:
manfNames byVal manfName$ AS STRING
The device manufacturer. Can be set empty to omit submission.
byVal modelNum$ AS STRING
modelNum$. . .
The device model number. Can be set empty to omit submission.
) byVal serialNum$ AS STRING
serialNum$. . . L
The device serial number. Can be set empty to omit submission.
byVal hwRev$ AS STRING
hwRev$. - . . .
The device hardware revision string. Can be set empty to omit submission.
byVal swRev$ AS STRING
swRev$)
The device software revision string. Can be set empty to omit submission.
byVal sysld$ AS STRING
The device system ID as defined in the specifications. Can be set empty to omit submission.
Otherwise it shall be a string exactly eight octets long, where:
syslds Byte 0..4 := Manufacturer Identifier

Byte 5..7 := Organisationally Unique Identifier
If the string is one character long and contains @, the system ID is created from the Bluetooth address if
(and only if) an IEEE public address is set. If the address is the random static variety, this characteristic
is omitted.

byVal regDataList$ AS STRING

regDatalList$ | The device’s regulatory certification data list as defined in the specification. It can be set as an empty
string to omit submission.

byVal pnpld$ AS STRING

The device’s plug and play ID as defined in the specification. Can be set empty to omit submission.
Otherwise, it shall be exactly 7 octets long, where:

pnpld$ | = Byte0 :=VendorId Source

= Byte 1,2 := Vendor Id (Byte 1 is LSB)

= Byte 3,4 := Product Id (Byte 3 is LSB)

= Byte 5,6 := Product Version (Byte 5 is LSB)

https://connectivity.lairdtech.com 168 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

http://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.device_information.xml

BL654 smartBASIC Extensions

il“ NNECTIVITY
User Guide _d) €0 CTIV

Example:

// Example :: BleSvcRegDevInfo.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

DIM rc,manfNme$,mdlNum$, sr1Num$, hwRev$, swRev$, sysIdS$, regDtalst$, pnpId$

manfNme$ = "Laird Technologies"

md1lNum$ = "BL654"

srlNum$ = "" //empty to omit submission
hwRev$ = "1.0"

swRevs$ = "1.0"

sysIds = "" //empty to omit submission
regDtalst$ = "" //empty to omit submission
pnpId$ = "" //empty to omit submission

rc=BleSvcRegDevInfo (manfNme$, mdlNum$, sr1lNum$, hwRev$, swRev$, sysId$, regDtalst$, pnpId$)

IF !rc THEN
PRINT "\nSuccess"
ELSE
PRINT "\nFailed Ox"; INTEGER.H'rc

ENDIF

Expected Output:

| Success

5.8.5 BleHandleUuidl6

FUNCTION

This function takes an integer in the range 0 to 65535 and converts it into a 32-bit integer handle that associates the integer as
an offset into the Bluetooth SIG 128-bit (16-byte) base UUID which is used for all adopted services, characteristics, and
descriptors.

If the input value is not in the valid range, then an invalid handle (0) is returned.
The returned handle is treated by the developer as an opaque entity and no further logic is based on the bit content, apart from
all zeros which represent an invalid UUID handle.

BLEHANDLEUUID16 (nUuid16)

Returns INTEGER, a nonzero handle shorthand for the UUID. Zero is an invalid UUID handle

Arguments:

byVal nUuid16 AS INTEGER
nUuid16 | nUuid16 is first bitwise ANDed with OxFFFF and the result is treated as an offset into the Bluetooth SIG
128 bit base UUID

https://connectivity.lairdtech.com 169 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

Example:

// Example :: BleHandleUuidlé6.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

DIM uuid

DIM hUuidHRS

uuid = 0x180D //this is UUID for Heart Rate Service
hUuidHRS = BleHandleUuidl6 (uuid)
IF hUuidHRS == 0 THEN .
PRINT "\nFailed to create a handle"
ELSE
PRINT "Handle for HRS Uuid is "; integer.h' hUuidHRS;" (";hUuidHRS;")"
ENDIF

Expected Output:

| Handle for HRS Uuid is FE01180D (-33482739)

5.8.6 BleHandleUuid128
FUNCTION

This function takes a 16-byte string and converts it into a 32-bit integer handle. The handle consists of a 16-bit (2-byte) offset
into a new 128-bit base UUID.

The base UUID is created by taking the 16-byte input string and setting bytes 12 and 13 to zero after extracting those bytes
and storing them in the handle object. The handle also contains an index into an array of these 16-byte base UUIDs which are
managed opaquely in the underlying stack.

The returned handle shall be treated by the developer as an opaque entity and no further logic shall be based on the bit
content. However, note that a string of zeroes represents an invalid UUID handle.

Note: Ensure that you use a 16-byte UUID that has been generated using a random number generator with sufficient
entropy to minimise duplication and that the first byte of the array is the most significant byte of the UUID.

BLEHANDLEUUID128 (stUuid$)

Returns INTEGER, A handle representing the shorthand UUID.
If zero, which is an invalid UUID handle, there is either no spare RAM memory to save the 16-byte base or
more than 253 custom base UUIDs have been registered.

Arguments:

byRef stUuid$ AS STRING
stUuid$ | Any 16-byte string that was generated using a UUID generation utility that has enough entropy to ensure
that it is random. The first byte of the string is the MSB of the UUID (big endian format).

Example:

//Example :: BleHandleUuidl128.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

https://connectivity.lairdtech.com 170 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions l_ailﬂ-‘:lw CONNECTIVITY

User Guide

DIM uuid$, hUuidCustom

//create a custom uuid for my ble widget
uuid$ = "ced9d91366924a1287d56£2764762b2a"
uuid$ = StrDehexize$ (uuid$)
hUuidCustom = BleHandleUuidl28 (uuid$)
IF hUuidCustom == 0 THEN
PRINT "\nFailed to create a handle"
ELSE
PRINT "Handle for custom Uuid is ";integer.h’ hUuidCustom; " (";hUuidCustom;")"
ENDIF
// hUuidCustom now references an object which points to
// a base uuid = ced9d91366924a1287d56f2747622b2a (note 0's in byte position 2/3)
// and an offset = 0xd913

Expected Output:

| Handle for custom Uuid is FCO3D913 (-66856685)

5.8.7 BleHandleUuidSibling

FUNCTION

This function takes an integer in the range 0 to 65535 along with a UUID handle which had been previously created using
BleHandleUuid16() or BleHandleUuid128() to create a new UUID handle. This handle references the same 128 base UUID as
the one referenced by the UUID handle supplied as the input parameter.

The returned handle shall be treated by the developer as an opague entity and no further logic shall be based on the bit
content, apart from all zeroes (which represents an invalid UUID handle).

BLEHANDLEUUIDSIBLING (nUuidHandle, nUuid16)

Returns INTEGER, a handle representing the shorthand UUID and can be zero which is an invalid UUID handle,
if nUuidHandle is an invalid handle in the first place.
Arguments:
nUuidHandle byVal nUuidHandle AS INTEGER

A handle that was previously created using either BleHandleUui16() or BleHandleUuid128().

byVal nUuid16 AS INTEGER
nUuid16 | A UUID value in the range 0 t0 65535 which is treated as an offset into the 128-bit base UUID
referenced by nUuidHandle.

Example:

// Example :: BleHandleUuidSibling.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

DIM uuid$,hUuidl, hUuid2 //hUuid2 will have the same base uuid as hUuidl

//create a custom uuid for my ble widget

uuid$ = "ced9d91366924a1287d56£2764762b2a"
https://connectivity.lairdtech.com 171 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

p NNECTIVITY
User Guide Lalrd co CTIV

uuid$ = StrDehexize$ (uuid$)
hUuidl = BleHandleUuidl28 (uuid$)
IF hUuidl == 0 THEN
PRINT "\nFailed to create a handle"
ELSE
PRINT "Handle for custom Uuid is ";integer.h' hUuidl;" (";hUuidl;")"
ENDIF
// hUuidl now references an object which points to
// a base uuid = ced9000066924a1287d56f2747622b2a (note 0's in byte position 2/3)
// and an offset = 0xd913

hUuid2 = BleHandleUuidSibling (hUuidl, 0x1234)
IF hUuid2 == 0 THEN
PRINT "\nFailed to create a handle"
ELSE
PRINT "\nHandle for custom sibling Uuid is ";integer.h'hUuid2;" (";hUuid2;")"
ENDIF
// hUuid2 now references an object which also points to
// the base uuid = ced9000066924a1287d56£f2700004762 (note 0's in byte position 2/3)
// and has the offset = 0x1234

Expected Output:

Handle for custom Uuid is FCO3D913 (-66856685)
Handle for custom sibling Uuid is FC031234 (-66907596)

5.8.8 BleServiceNew

FUNCTION

As explained in GATT Server Functions, a service in the context of a GATT table is a collection of related characteristics. This
function is used to inform the underlying GATT table manager that one or more related characteristics are going to be created
and installed in the GATT table and that, until the next call of this function, they will be associated with the service handle that
it provides upon return of this call.

Under the hood, this call results in a single attribute being installed in the GATT table with a type signifying a PRIMARY or a
SECONDARY service. The value for this attribute is the UUID that identifies this service and in turn have been precreated
using one of the functions: BleHandleUuid16(), BleHandleUuid128(), or BleHandleUuidSibling().

Note: When a GATT client queries a GATT server for services over a BLE connection, it only receives a list of PRIMARY
services. SECONDARY services are a mechanism for multiple PRIMARY services to reference single instances of
shared characteristics that are collected in a SECONDARY service. This referencing is expedited within the
definition of a service using the concept of INCLUDED SERVICE which is an attribute that is grouped with the
PRIMARY service definition. An Included Service is expedited using the function BleSvcAddincludeSvc() which is
described immediately after this function.

This function now replaces BleSvcCom() and marks the beginning of a service definition in the GATT server table. When the
last descriptor of the last characteristic has been registered the service definition should be terminated by calling
BleServiceCommit().

https://connectivity.lairdtech.com 172 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

p NNECTIVITY
User Guide Lalrd co CTIV

BLESERVICENEW (nSvcType, nUuidHandle, hService)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byVal nSvcType AS INTEGER
nSvcType | This is zero for a SECONDARY service and 1 for a PRIMARY service. All other values are reserved
for future use and result in this function failing with an appropriate result code.

byVal nUuidHandle AS INTEGER

nUuidHandle This is a handle to a 16-bit or 128-bit UUID that identifies the type of service function provided by all
the characteristics collected under it. It has been pre-created using one of the three functions:
BleHandleUuid16(), BleHandleUuid128(), or BleHandleUuidSibling().

byRef hService AS INTEGER

If the service attribute is created in the GATT table, then this contains a composite handle which
hService | references the actual attribute handle. This is then subsequently used when adding characteristics to
the GATT table. If the function fails to install the service attribute for any reason, this variable will
contain 0 and the returned result code will be non-zero.

Example:

// Example :: BleServiceNew.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

#DEFINE BLE SERVICE SECONDARY 0

#DEFINE BLE SERVICE PRIMARY 1

A e Rt e e it S E Rt
//Create a Health Thermometer PRIMARY service attribute which has a uuid of 0x1809
A R e e Rt e it i i e GS o
DIM hHtsSvc //composite handle for hts primary service

DIM hUuidHT : hUuidHT = BleHandleUuidl6 (0x1809) //HT Svc UUID Handle

IF BleServiceNew (BLE SERVICE PRIMARY, hUuidHT, hHtsSvc)==0 THEN
PRINT "\nHealth Thermometer Service attribute written to GATT table"
PRINT "\nUUID Handle value: ";hUuidHT
PRINT "\nService Attribute Handle value: ";hHtsSvc

ELSE

PRINT "\nService Commit Failed"

ENDIF

A iy

//Create a Battery PRIMARY service attribute which has a uuid of 0x180F

A iy

DIM hBatSvc //composite handle for battery primary service

//or we could have reused nHtsSvc

DIM hUuidBatt : hUuidBatt = BleHandleUuidl6 (0x180F) //Batt Svc UUID Handle

https://connectivity.lairdtech.com 173 Americas: +1-800-492-2320

© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird CONNECTIVITY

User Guide

IF BleServiceNew (BLE SERVICE PRIMARY,hUuidBatt,hBatSvc)==0 THEN
PRINT "\n\nBattery Service attribute written to GATT table"
PRINT "\nUUID Handle value: ";hUuidBatt
PRINT "\nService Attribute Handle value: ";hBatSvc

ELSE
PRINT "\nService Commit Failed"

ENDIF

Expected Output:

Health Thermometer Service attribute written to GATT table
UUID Handle value: -33482743
Service Attribute Handle value: 16

Battery Service attribute written to GATT table
UUID Handle value: -33482737
Service Attribute Handle value: 17

5.8.9 BleServiceCommit

This function in the BL654 is used to commit a defined service using BleServiceNew() to the GATT table and should be called
after the last characteristic/description has been created/commited for that service.

BLESERVICECOMMIT (hService)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byVal hService AS INTEGER

hService This handle is returned from BleServiceNew().

See example for BleCharCommit().

5.8.10BleSvcAddIincludeSvc

FUNCTION

Note: This function is currently not available for use on this module

This function is used to add a reference to a service within another service. This is usually, but not necessarily, a
SECONDARY service which is virtually identical to a PRIMARY service from the GATT server perspective. The only difference
is that, when a GATT client queries a device for all services, it does not receive mention of SECONDARY services.

When a GATT client encounters an INCLUDED SERVICE object when querying a particular service it performs a sub-
procedure to get handles to all the characteristics that are part of that INCLUDED service.

This mechanism is provided to allow for a single set of characteristics to be shared by multiple primary services. This is most
relevant if a characteristic is defined so that it can have only one instance in a GATT table but needs to be offered in multiple
PRIMARY services. A typical implementation, where a characteristic is part of many PRIMARY services, installs that
characteristic in a SECONDARY service (see BleSvcCommit()) and then uses the function defined in this section to add it to
all the PRIMARY services that want to have that characteristic as part of their group.

It is possible to include a service which is also a PRIMARY or SECONDARY service, which in turn can include further
PRIMARY or SECONDARY services. The only restriction to nested includes is that there cannot be recursion.

https://connectivity.lairdtech.com 174 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird

) CONNECTIVITY
User Guide _)

Note: If a service has INCLUDED services, then they is installed in the GATT table immediately after a service is created
using BleSvcCommit() and before BleCharCommit(). The BT 4.0 specification mandates that any ‘included service’
attribute be present before any characteristic attributes within a particular service group declaration.

BleSvcAddincludeSvc (hService)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation
Arguments:
hService by_\/al hService AS.INTEGER _ . _ _
This argument contains a handle that was previously created using the function BleSvcCommit().
Example:
// Example :: BleSvcAddIncludeSvc.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples
#define BLE SERVICE SECONDARY 0
#define BLE SERVICE PRIMARY 1
A it it
//Create a Battery SECONDARY service attribure which has a uuid of 0x180F
A it it
dim hBatSvc //composite handle for batteru primary service
dim rc //or we could have reused nHtsSvc

dim metaSuccess
DIM charMet : charMet = BleAttrMetaData(l,1,10,1,metaSuccess)
DIM s$: s$ = "Hello" //initial value of char in Battery Service

DIM hBatChar

rc = BleServiceNew (BLE SERVICE SECONDARY, BleHandleUuidl6 (0x180F), hBatSvc)

rc = BleCharNew (3,BleHandleUuidl6 (0x2A1C), charMet,0,0)

rc = BleCharCommit (hBatSve, s$,hBatChar)

rc = BleServiceCommit (hBatSvc)

[] =m0 0 0 5 0 0 5 0 0 0 0 0 0 5 2 o D e e
//Create a Health Thermometer PRIMARY service attribure which has a uuid of 0x1809
[] =m0 0 0 5 0 0 5 0 0 0 0 0 0 5 2 o D e e

DIM hHtsSvc //composite handle for hts primary service

rc = BleServiceNew (BLE SERVICE PRIMARY, BleHandleUuidl6 (0x1809), hHtsSvc)

rc = BleServiceCommit (hHtsSvc)

//Have to add includes before any characteristics are committed

PRINT INTEGER.h'BleSvcAddIncludeSvc (hBatSvc)

https://connectivity.lairdtech.com 175 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Lairdw CONNECTIVITY

User Guide

5.8.11 BleAttrMetadataEx

FUNCTION

A GATT Table is an array of attributes which are grouped into Characteristics which in turn are further grouped into Services.
Each attribute consists of a data value which can be anything from 1 to 512 bytes long according to the specification and
properties such as read and write permissions, authentication and security properties. When Services and Characteristics are
added to a GATT server table, multiple attributes with appropriate data and properties get added.

This function allows a 32 bit integer to be created, which is an opaque object, which defines those properties and is then
submitted along with other information to add the attribute to the GATT table.

When adding a Service attribute (not the whole service, in this present context), the properties are defined in the BT
specification so that it is open for reads without any security requirements but cannot be written and always has the same data
content structure. This implies that a metadata object does NOT need to be created.

However, when adding Characteristics, which consists of a minimum of 2 attributes, one similar in function as the
aforementioned Service attribute and the other the actual data container, then properties for the value attribute must be
specified. Here, ‘properties’ refers to properties for the attribute, not properties for the Characteristic container as a whole.
These also exist and must be specified, but that is done in a different manner as explained later.

For example, the value attribute must be specified for read/write permission and whether it needs security and authentication
to be accessed.

If the Characteristic is capable of naotification and indication, the client implicitly must be able to enable or disable that. This is
done through a Characteristic Descriptor which is also another attribute. The attribute will also need to have a metadata
supplied when the Characteristic is created and registered in the GATT table. This attribute, if it exists, is called a Client
Characteristic Configuration Descriptor or CCCD for short. A CCCD always has two bytes of data and currently only two bits
are used as on/off settings for notification and indication.

A Characteristic can also optionally be capable of broadcasting its value data in advertisements. For the GATT client to be
able to control this, there is yet another type of Characteristic Descriptor which also needs a metadata object to be supplied
when the Characteristic is created and registered in the GATT table. This attribute, if it exists, is called a Server Characteristic
Configuration Descriptor or SCCD for short. A SCCD always has two bytes of data and currently only one bit is used as on/off
settings for broadcasts.

Finally if the Characteristic has other Descriptors to qualify its behaviour, a separate API function is also supplied to add that to
the GATT table and when setting up a metadata object will also need to be supplied.

In a nutshell, think of a metadata object as a note to define how an attribute will behave and the GATT table manager will need
that before it is added. Some attributes have those ‘notes’ specified by the BT specification and so the GATT table manager
will not need to be provided with any, but the rest require it.

This function helps write that metadata.

BLEATTRMETADATAEX (nReadRights, nWriteRights, nMaxDatalen, nFlags, resCode)

Returns INTEGER, a 32-bit opaque data object to be used in subsequent calls when adding
Characteristics to a GATT table.

Arguments:

byVal nReadRights AS INTEGER
This specifies the read rights and shall have one of the following values:

0 No access
. 1 Open
nReadRights P - ; -
2 Encrypted with No Man-In-The-Middle (MITM) protection
3 Encrypted with Man-In-The-Middle (MITM) protection
4 Signed with No Man-In-The-Middle (MITM) protection (not available)
5 Signed with Man-In-The-Middle (MITM) protection (not available)
https://connectivity.lairdtech.com 176 Americas: +1-800-492-2320

© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

p NNECTIVITY
User Guide Lalrd co CTIV

byVal nWriteRights AS INTEGER
This specifies the write rights and shall have one of the following values:

0 No access

Open

Encrypted with No Man-In-The-Middle (MITM) protection

Encrypted with Man-In-The-Middle (MITM) protection

Signed with No Man-In-The-Middle (MITM) protection (not available)
Signed with Man-In-The-Middle (MITM) protection (not available)
byVal nMaxDataLen AS INTEGER

This specifies the maximum data length of the VALUE attribute.

Range is from 1 to 512 bytes according to the BT specification; the stack implemented in the
module may limit it for early versions.
byVal nFlags AS INTEGER

nWriteRights

AW N|F

nMaxDatalLen

This is a bit mask where the bits are defined as follows:

= Bit 0: Set this to 1 only if you want the attribute to automatically shorten it’s length
according to the number of bytes written by the client. For example, if the initial length is 2
and the client writes only 1 byte, then if this is 0, then only the first byte gets updated and
the rest remain unchanged. If this parameter is set to 1, then when a single byte is written
the attribute will shorten it’s length to accommodate. If the client tries to write more bytes
than the initial maximum length, then the client will get an error response.

= Bit 1: Set this to 1 to ensure that the memory for the attribute is allocated from User space
(and hence less memory available for smartBASIC) so that a larger gatt table can be

nFlags created. This bit is ignored for all attributes other than for characteristic value.

= Bit 2: Set this to 1 to require authorisation for reads. When an attempt to read is made by
the client then one of the events EVAUTHVAL, EVAUTHCCCD, EVAUTHSCCD or
EVAUTHDESC is thrown to the app and in the handler for that event, either
BleAuthorizeChar() or BleAuthorizeDesc() is called with appropriate parameters to grant or
deny access.

= Bit 3: Set this to 1 to require authorisation for writes. When an attempt to write is made by
the client then one of the events EVAUTHVAL, EVAUTHCCCD, EVAUTHSCCD or
EVAUTHDESC is thrown to the app and in the handler for that event, either
BleAuthorizeChar() or BleAuthorizeDesc() is called with appropriate parameters to grant or
deny access.

byRef resCode AS INTEGER

resCode | This variable is updated with a result code which is 0 if a metadata object was successfully
returned by this call. Any other value implies a metadata object did not get created.

Example:

// Example :: BleAttrMetadata.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

DIM mdVal //metadata for value attribute of Characteristic
DIM mdCccd //metadata for CCCD attribute of Characteristic
DIM mdSccd //metadata for SCCD attribute of Characteristic

DIM rc

https://connectivity.lairdtech.com 177 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

User Guide La"'d 2» CONNECTIVITY

[/ ++++
// Create the metadata for the value attribute in the characteristic

// and Heart Rate attribute has variable length

[/ ++++

//There is always a Value attribute in a characteristic
mdVal=BleAttrMetadatakEx(17,0,20,0,rc)

//There is a CCCD and SCCD in this characteristic
mdCccd=BleAttrMetadatakEx(1,2,2,0,rc)

mdSccd=BleAttrMetadatakEx(0,0,2,0,rc)

//Create the Characteristic object

IF BleCharNew (3,BleHandleUuidl6 (0x2A1C),mdVal, mdCccd,mdSccd)==0 THEN
PRINT "\nSuccess"

ELSE
PRINT "\nFailed"

ENDIF

Expected Output:

| Success

5.8.12BleCharNew

FUNCTION

When a characteristic is to be added to a GATT table, multiple attribute objects must be precreated. After they are created
successfully, they are committed to the GATT table in a single atomic transaction.

This function is the first function that is called to start the process of creating those multiple attribute objects. It is used to select
the characteristic properties (which are distinct and different from attribute properties), the UUID to be allocated for it and then
up to three metadata objects for the value attribute, and CCCD/SCCD Descriptors respectively.

BLECHARNEW (nCharProps, nUuidHandle, mdVal, mdCccd, mdSccd)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
Arguments:
https://connectivity.lairdtech.com 178 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird CONNECTIVITY

User Guide

byVal nCharProps AS INTEGER

This variable contains a bit mask to specify the following high level properties for the
characteristic that is added to the GATT table:

Broadcast capable (SCCD descriptor must be present)

Can be read by the client

nCharProps Can be written by the client without a response

Can be written

Can be notifiable (CCCD descriptor must be present)

Can be indicatable (CCCD descriptor must be present)

o 0|~ | W N || O

Can accept signed writes

7 Reliable writes

byVal nUuidHandle AS INTEGER

This specifies the UUID that is allocated to the characteristic, either 16 or 128 bits. This variable
is a handle, pre-created using one of the following functions:

BleHandleUuid16(), BleHandleUuid128(), BleHandleUuidSibling().

byVal mdVal AS INTEGER

mdVal | This is the mandatory metadata used to define the properties of the Value attribute that is
created in the characteristic and is pre-created with help from function BleAttrMetadata().

byVal mdCccd AS INTEGER

This is an optional metadata that is used to define the properties of the CCCD descriptor
attribute that is created in the characteristic and is pre-created using the help of the function

nUuidHandle

mdCccd .)
BleAttrMetadata() or set to O if CCCD is not to be created.
If nCharProps specifies that the characteristic is notifiable or indicatable and this value contains
0, this function will treat the descriptor so that read and write access is open.
byVal mdSccd AS INTEGER
This is an optional metadata that is used to define the properties of the SCCD descriptor

mdSced attribute that is created in the characteristic and is pre-created using the help of the function
BleAttrMetadata() or set to O if SCCD is not to be created.
If nCharProps specifies that the characteristic is broadcastable and this value contains 0, this
function will treat the descriptor so that read and write access is open.

Example:
// Example :: BleCharNew.sb

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

DIM rc
DIM charUuid : charUuid = BleHandleUuidl6 (2) //Characteristic's UUID
DIM mdVal : mdVal = BleAttrMetadataEx(1,0,20,0,rc) //Metadata for value attribute

DIM mdCccd : mdCccd = BleAttrMetadataEx(1l,1,2,0,rc) //Metadata for CCCD attribute of
Characteristic

//

https://connectivity.lairdtech.com 179 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions l_ailﬂ-(:lw CONNECTIVITY

User Guide

// Create a new char:

// —--- Indicatable, not Broadcastable (so mdCccd is included, but not mdSccd)
// --—- Can be read, not written (shown in mdval as well)
//

IF BleCharNew (0x22,charUuid, mdval, mdCccd, 0)==0 THEN
PRINT "\nNew Characteristic created"

ELSE
PRINT "\nFailed"

ENDIF

Expected Output:

| New Characteristic created

5.8.13BleCharDescUserDesc

FUNCTION

This function adds an optional User Description Descriptor to a Characteristic and can only be called after BleCharNew() starts
the process of describing a new characteristic.

The BT 4.0 specification describes the User Description Descriptor as “.. a UTF-8 string of variable size that is a textual
description of the characteristic value.” It further stipulates that this attribute is optionally writable and so a metadata argument
exists to configure it as such. The metadata automatically updates the Writable Auxilliaries properties flag for the
characteristic. This is why that flag bit is NOT specified for the nCharProps argument to the BleCharNew() function.

BLECHARDESCUSERDESC (userDescS, mdUser)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byRef userDesc$ AS STRING
userDesc$ | The user description string with which to initiliase the descriptor. If the length of the string exceeds the
maximum length of an attribute then this function aborts with an error result code.

byVal mdUser AS INTEGER

This is a mandatory metadata that defines the properties of the User Description Descriptor attribute
mdUser | created in the characteristic and pre-created using the help of BleAttrMetadata(). If the write rights are set
to 1 or greater, the attribute is marked as writable and the client is able to provide a user description that
overwrites the one provided in this call.

Example:

// Example :: BleCharDescUserDesc.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

DIM rc, metaSuccess,usrDesc$: usrDesc$="A description"
DIM charUuid : charUuid = BleHandleUuidl6 (1)
DIM charMet : charMet = BleAttrMetaData(l,1,20,0,metaSuccess)

DIM mdUsrDsc : mdUsrDsc = BleAttrMetaData(l,1,20,0,metaSuccess)

DIM mdSccd : mdSccd = BleAttrMetadata(l,1,2,0,rc) //CCCD metadata for char
https://connectivity.lairdtech.com 180 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird CONNECTIVITY

User Guide

//initialise char, write/read enabled, accept signed writes, indicatable
rc=BleCharNew (0x4B, charUuid, charMet, 0, mdSccd)

rc=BleCharDescUserDesc (usrDesc$, mdUsrDsc)

IF rc==0 THEN

PRINT "\nChar created and User Description '";usrDesc$;"' added"
ELSE

PRINT "\nFailed"

ENDIF

Expected Output:

| Char created and User Description 'A description' added

5.8.14BleCharDescPrstnFrmt

FUNCTION

This function adds an optional Presentation Format Descriptor to a characteristic and can only be called after BleCharNew()
has started the process of describing a new characteristic. It adds the descriptor to the GATT table with open read permission
and no write access, which means a metadata parameter is not required.

The BT 4.0 specification states that one or more presentation format descriptors can occur in a characteristic and that if more
than one, then an Aggregate Format description is also included.

The book Bluetooth Low Energy: The Developer's Handbook by Robin Heydon, says the following on the subject of the
Presentation Format Descriptor:

“One of the goals for the Generic Attribute Profile was to enable generic clients. A generic client is defined as a
device that can read the values of a characteristic and display them to the user without understanding what they
mean.

The most important aspect that denotes if a characteristic can be used by a generic client is the Characteristic

Presentation Format descriptor. If this exists, it’s possible for the generic client to display its value, and it is safe to
read this value.”

BLECHARDESCPRSTNFRMT (nFormat, nExponent, nUnit, nNameSpace, nNSdesc)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byVal nFormat AS INTEGER

Valid range 0 to 255.

The format specifies how the data in the Value attribute is structured. A list of valid values for this
argument is found at http://developer.Bluetooth.org/GATT/Pages/FormatTypes.aspx and the
enumeration is described in the BT 4.0 spec, section 3.3.3.5.2.

The following is the enumeration list at the time of writing:

0x00 RFU 0x01 boolean
nFormat 0x02 2bit 0x03 nibble
0x04 unit8 0x05 uint12
0x06 uint16 0x07 uint24
0x08 uint32 0x09 uint48
Ox0A uint64 0x0B uint128
0x0C sint8 0x0D sint12
OxOE sint16 OxOF sint24
https://connectivity.lairdtech.com 181 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

http://developer.bluetooth.org/gatt/Pages/FormatTypes.aspx

BL654 smartBASIC Extensions Laird CONNECTIVITY

User Guide

0x10 sint32 0x11 sint48

0x12 sint64 0x13 sint128

0x14 float32 0x15 float64

0x16 SFLOAT 0x17 FLOAT

0x18 duintl6 0x19 utf8s

Ox1A utfl6s 0x1B struct
0x1C-0xFF RFU

byVal nExponent AS INTEGER

This value is used with integer data types given by the enumeration in nFormat to further qualify the
nExponent | value so that the actual value is:

actual value = Characteristic Value * 10 to the power of nExponent.

Valid range -128 to 127

byVal nUnit AS INTEGER

This value is a 16-bit UUID used as an enumeration to specify the units which are listed in the Assigned
nUnit | Numbers document published by the Bluetooth SIG, found at:
http://developer.Bluetooth.org/GATT/units/Pages/default.aspx

Valid range 0 to 65535.

byVal nNameSpace AS INTEGER

The value identifies the organization, defined in the Assigned Numbers document published by the
nNameSpace | Bluetooth SIG, found at:
https://developer.Bluetooth.org/GATT/Pages/GATTNamespaceDescriptors.aspx

Valid range 0 to 255.

byVal nNSdesc AS INTEGER

nNSdesc | This value is a description of the organisation specified by nNameSpace.

Valid range 0 to 65535.

Example:

// Example :: BleCharDescPrstnFrmt.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

DIM rc, metaSuccess,usrDesc$: usrDesc$="A description"

DIM charUuid : charUuid = BleHandleUuidl6 (1)

DIM charMet : charMet = BleAttrMetaData(l,1,20,0,metaSuccess)
DIM mdUsrDsc : mdUsrDsc = BleAttrMetaData(l,1,20,0,metaSuccess)

DIM mdSccd : mdSccd = BleAttrMetadata(l,1,2,0,rc) //CCCD metadata for char

//initialise char, write/read enabled, accept signed writes, indicatable
rc=BleCharNew (0x4B, charUuid, charMet, 0, mdSccd)

rc=BleCharDescUserDesc (usrDesc$, mdUsrDsc)

IF rc==0 THEN

PRINT "\nChar created and User Description '";usrDesc$;"' added"
ELSE

PRINT "\nFailed"

ENDIF

https://connectivity.lairdtech.com 182 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

http://developer.bluetooth.org/gatt/units/Pages/default.aspx
https://developer.bluetooth.org/gatt/Pages/GattNamespaceDescriptors.aspx

BL654 smartBASIC Extensions l_ailﬂ-‘:lw CONNECTIVITY

User Guide

1) ~ ~ =
// other optional descriptors

/]~~~

// 16 bit signed integer = 0x0E

// exponent = 2

// unit = 0x271A (amount concentration (mole per cubic metre))

// namespace = 0x01 == Bluetooth SIG

// description = 0x0000 == unknown

IF BleCharDescPrstnFrmt (0x0E,2,0x271A,0x01,0x0000)==0 THEN
PRINT "\nPresentation Format Descriptor added"

ELSE
PRINT "\nPresentation Format Descriptor not added"

ENDIF

Expected Output:

Char created and User Description 'A description' added
Presentation Format Descriptor added

5.8.15BleCharDescAdd

FUNCTION

This function is used to add any Characteristic Descriptor as long as its UUID is not in the range 0x2900 to 0x2904 inclusive,
as they are treated specially using dedicated API functions. For example, 0x2904 is the Presentation Format Descriptor and it
is catered for by the API function BleCharDescPrstnFrmt().

Since this function allows existing /future defined Descriptors to be added that may or may not have write access or require
security requirements, a metadata object must be supplied allowing that to be configured.

BLECHARDESCADD (nUuid16, attr$, mdDesc)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byVal nUuid16 AS INTEGER
This is a value in the range 0x2905 to 0x2999
Note: This is the actual UUID value, NOT the handle.

nUuid16
The highest value at the time of writing is 0x290E, defined for the Report Reference Descriptor.
See http://developer.Bluetooth.org/GATT/descriptors/Pages/DescriptorsHomePage.aspx for a list of
Descriptors defined and adopted by the Bluetooth SIG.
attrs byRef attr$ AS STRING

This is the data that is saved in the Descriptor’s attribute

byVal n AS INTEGER

This is mandatory metadata that is used to define the properties of the Descriptor attribute that is
mdDesc | created in the Characteristic and was pre-created using the help of the function BleAttrMetadata(). If the
write rights are set to 1 or greater, then the attribute is marked as writable and the client is able to
modify the attribute value.

https://connectivity.lairdtech.com 183 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

http://developer.bluetooth.org/gatt/descriptors/Pages/DescriptorsHomePage.aspx

BL654 smartBASIC Extensions Laird

) J» CONNECTIVITY
User Guide

Example:

// Example :: BleCharDescAdd.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

DIM rc, metaSuccess,usrDesc$: usrDesc$="A description"

DIM charUuid : charUuid = BleHandleUuidl6 (1)

DIM charMet : charMet = BleAttrMetaData(l,1,20,0,metaSuccess)
DIM mdUsrDsc : mdUsrDsc = charMet

DIM mdSccd : mdSccd = charMet

//initialise char, write/read enabled, accept signed writes, indicatable
rc=BleCharNew (0x4B, charUuid, charMet, 0, mdSccd)
rc=BleCharDescUserDesc (usrDesc$,mdUsrDsc)

rc=BleCharDescPrstnFrmt (0x0E, 2,0x271A,0x01,0x0000)

/) =~ = =
// other descriptors

/]~~~

[/ ++++

//Add the other Descriptor 0x29XX -- first one

[/ ++++

DIM mdChrDsc : mdChrDsc = BleAttrMetadata(l,0,20,0,metaSuccess)
DIM attr$: attr$="some valuel"

rc=BleCharDescAdd (0x2905,attr$, mdChrDsc)

[/ ++++

//Add the other Descriptor 0x29XX -- second one
[/ ++++

attr$="some value2"

rc=rc+BleCharDescAdd (0x2906,attr$, mdChrDsc)

[/ ++++

//Add the other Descriptor 0x29XX -- last one
[/ ++++

attr$="some value3"

rc=rc+BleCharDescAdd (0x2907, attr$, mdChrDsc)

IF rc==0 THEN

https://connectivity.lairdtech.com 184 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird CONNECTIVITY

User Guide

PRINT "\nOther descriptors added successfully"
ELSE
PRINT "\nFailed"

ENDIF

Expected Output:

| Other descriptors added successfully

5.8.16 BleCharCommit

FUNCTION

This function commits a characteristic which was prepared by calling BleCharNew() and optionally
BleCharDescUserDesc(),BleCharDescPrstnFrmt() or BleCharDescAdd().

It is an instruction to the GATT table manager that all relevant attributes that make up the characteristic should appear in the
GATT table in a single atomic transaction. If it successfully created, a single composite characteristic handle is returned which
should not be confused with GATT table attribute handles. If the Characteristic was not accepted then this function returns a
non-zero result code which conveys the reason and the handle argument that is returned has a special invalid handle of 0.

The characteristic handle that is returned references an internal opaque object that is a linked list of all the attribute handles in
the characteristic which by definition implies that there is a minimum of 1 (for the characteristic value attribute) and more as
appropriate. For example, if the characteristic’s property specified is notifiable then a single CCCD attribute also exists.

Note: In the GATT table, when a characteristic is registered, there are actually a minimum of two attribute handles, one
for the Characteristic Declaration and the other for the Value. However there is no need for the smart BASIC apps
developer to access it, so it is not exposed. Access is not required because the characteristic was created by the
application developer and so shall already know its content — which never changes once created.

BLECHARCOMMIT (hService, attr$, charHandle)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byVal hService AS INTEGER
hService | This is the handle of the service to which the characteristic belongs, which in turn was created using the
function BleSvcCommit().

byRef attr$ AS STRING
attr$ | This string contains the initial value of the value attribute in the characteristic. The content of this string is
copied into the GATT table and the variable can be reused after this function returns.

byRef charHandle AS INTEGER

The composite handle for the newly created characteristic is returned in this argument. It is zero if the
function fails with a non-zero result code. This handle is then used as an argument in subsequent
function calls to perform read/write actions, so it is must be placed in a global smartBASIC variable.
charHandle | When a significant event occurs as a result of action by a remote client, an event message is sent to the
application which can be serviced using a handler. That message contains a handle field corresponding
to this composite characteristic handle. Standard procedure is to select on that value to determine for
which characteristic the message is intended.

See event messages: EVCHARHVC, EVCHARVAL, EVCHARCCCD, EVCHARSCCD, EVCHARDESC.

Example:
// Example :: BleCharCommit.sb
https://connectivity.lairdtech.com 185 Americas: +1-800-492-2320

© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird

) CONNECTIVITY
User Guide _)

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

#DEFINE BLE SERVICE SECONDARY 0
#DEFINE BLE SERVICE PRIMARY 1
DIM rc

DIM attr$,usrDesc$: usrDesc$="A description"

DIM hHtsSvc //composite handle for hts primary service

DIM mdCharVal : mdCharVal = BleAttrMetaData(l,1,20,0,rc)
DIM mdCccd : mdCccd = BleAttrMetadata(l,1,2,0,rc)

DIM mdUsrDsc : mdUsrDsc = BleAttrMetaData(l,1,20,0,rc)

DIM hHtsMeas //composite handle for htsMeas characteristic

/==
//Create a Health Thermometer PRIMARY service attribute which has a uuid of 0x1809
/==

//Create the Measurement Characteristic object, add user description descriptor

rc=BleCharNew (0x2A,BleHandleUuidl6 (0x2A1C) ,mdCharVal, mdCccd, 0)

rc=BleCharDescUserDesc (usrDesc$, mdUsrDsc)

attr$="hello\0Oworl\64"

IF BleCharCommit (hHtsSvc,attr$, hHtsMeas)==0 THEN
PRINT "\nCharacteristic Commited"

ELSE
PRINT "\nFailed"

ENDIF

rc=BleServiceCommit (hHtsSvc)

//the characteristic will now be visible in the GATT table

//and is refrenced by ‘hHtsMeas’for subsequent calls

Expected Output:

| Characteristic Commited

https://connectivity.lairdtech.com 186 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions l_ailﬂ-‘:lw CONNECTIVITY

User Guide

5.8.17 BleCharValueRead

FUNCTION

This function reads the current content of a characteristic identified by a composite handle that was previously returned by the
function BleCharCommit().

In most cases a read will be performed when a GATT client writes to a characteristic value attribute. The write event is
presented asynchronously to the smart BASIC application in the form of EVCHARVAL event. This function will most often be
accessed from the handler that services that event.

BLECHARVALUEREAD (charHandle, attrS)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byVal charHandle AS INTEGER

charHandle | Thjs is the handle to the characteristic whose value must be read which was returned when
BleCharCommit() was called.

byRef attr$ AS STRING

attr$ This string variable contains the new value from the characteristic.

Example:

// Example :: BleCharValueRead.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

DIM hMyChar,rc, conHndl

//

// Initialise and instantiate service, characteristic,

//
FUNCTION OnStartup ()

DIM rc, hSvc, scRpt$, adRpt$, addr$, attr$: attr$="Hi"

//commit service

rc=BleServiceNew (1, BleHandleUuidl6 (0x18EE), hSvc)

//initialise char, write/read enabled, accept signed writes

rc=BleCharNew (0x0A,BleHandleUuidl6 (1) ,BleAttrMetabData(1,1,20,0,rc),0,0)
//commit char initialised above, with initial value "hi" to service 'hSvc'
rc=BleCharCommit (hSvc,attr$, hMyChar)

//commit changes to service

rc=BleServiceCommit (hSvc)

//initialise scan report

rc=BleScanRptInit (scRpt$)

//Add 1 service handle to scan report

https://connectivity.lairdtech.com 187 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird

) CONNECTIVITY
User Guide _)

rc=BleAdvRptAddUuidlé6 (scRpt$, 0x18EE,-1,-1,-1,-1,-1)
//commit reports to GATT table - adRpt$ is empty
rc=BleAdvRptsCommit (adRpt$, ScRpt$S)
rc=BleAdvertStart (0,addr$,150,0,0)

ENDFUNC rc

//

// New char value handler

//

FUNCTION HndlrChar (BYVAL chrHndl, BYVAL offset, BYVAL len)
dim s$

IF chrHndl == hMyChar THEN

PRINT "\n";len;" byte(s) have been written to char value attribute from offset
";offset

rc=BleCharValueRead (hMyChar, s$)
PRINT "\nNew Char Value: ";s$
ENDIF
rc=BleAdvertStop ()
rc=BleDisconnect (conHndl)

ENDFUNC 0

//
// Get the connnection handle
//
FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtn)

conHndl=nCtn

ENDFUNC 1

IF OnStartup ()==0 THEN
DIM at$: rc = BleCharValueRead (hMyChar,at$)

PRINT "\nCharacteristic value attribute: ";at$;"\nConnect to BL654 and send a new
value\n"

ELSE
PRINT "\nFailure OnStartup"
ENDIF

ONEVENT EVCHARVAL CALL HndlrChar
ONEVENT EVBLEMSG CALL HndlrBleMsg

https://connectivity.lairdtech.com 188 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

il“ NNECTIVITY
User Guide _d) €0 CTIV

WAITEVENT

PRINT "\nExiting..."

Expected Output:

Characteristic value attribute: Hi
Connect to BL654 and send a new value

New characteristic value: Laird
Exiting...

5.8.18 BleCharValueWrite
FUNCTION

This function writes new data into the VALUE attribute of a Characteristic, which is in turn identified by a composite handle
returned by the function BleCharCommit().

BLECHARVALUEWRITE (charHandle, attr$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byVal charHandle AS INTEGER
charHandle | This is the handle to the characteristic whose value must be updated which was returned when
BleCharCommit() was called.

byRef attr$ AS STRING
String variable, contains new value to write to the characteristic.

attr$

Example:

// Example :: BleCharValueWrite.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

DIM hMyChar, rc

//
// Initialise and instantiate service, characteristic,
//
FUNCTION OnStartup ()

DIM rc, hSvc, attr$: attr$="Hi"

//commit service
rc = BleServiceNew(l, BleHandleUuidl6 (0x18EE), hSvc)
//initialise char, write/read enabled, accept signed writes
rc=BleCharNew (0x4A,BleHandleUuidl6 (1) ,BleAttrMetabata(1,1,20,0,rc),0,0)
//commit char initialised above, with initial value "hi" to service 'hSvc'
rc=BleCharCommit (hSvc,attr$, hMyChar)
//commit changes to service
rc = BleServiceCommit (hSvc)
ENDFUNC rc

//
// Uart Rx handler - write input to characteristic
//
FUNCTION HndlrUartRx ()

TimerStart (0,10,0)
ENDFUNC 1

https://connectivity.lairdtech.com 189 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird 2> CONNECTIVITY

User Guide

//
// TimerO timeout handler
//
FUNCTION HndlrTmrO ()
DIM t$: rc=UartRead (t$)
rc = BleCharValueWrite (hMyChar, t$)
IF rc==0 THEN
PRINT "\nNew characteristic value: ";t$
ELSE
PRINT "\nFailed to write new characteristic value ";integer.h'rc;"\n"
ENDIF
ENDFUNC 0

IF OnStartup ()==0 THEN
DIM at$: rc = BleCharValueRead (hMyChar,at$)
PRINT "\nCharacteristic value attribute: ";at$;"\nType a new value\n"

ELSE

PRINT "\nFailure OnStartup"
ENDIF
ONEVENT EVUARTRX CALL HndlrUartRx
ONEVENT EVTMRO CALL HndlrTmrO
WAITEVENT

PRINT "\nExiting..."

Expected Output:

Characteristic value attribute: Hi
Send a new value
Laird

New characteristic value: Laird
Exiting...

5.8.19BleCharValueWriteEx

FUNCTION

This function writes new data into the VALUE attribute of a Characteristic, which is in turn identified by a composite handle
returned by the function BleCharCommit(). It differs from the original BleCharValueWrite in that the offset at which to write the
data can now be specified.

BLECHARVALUEWRITEEX (charHandle, offset, attr$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byVal charHandle AS INTEGER

charHandle | This is the handle to the characteristic whose value must be updated which was returned when
BleCharCommit() was called.

byVal charHandle AS INTEGER

This is the offset at which to write the characteristic value.

byRef attr$ AS STRING
String variable, contains new value to write to the characteristic.

offset

attr$

See example for EVAUTHVALEX

https://connectivity.lairdtech.com 190 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

p NNECTIVITY
User Guide Lalrd co CTIV

5.8.20 BleCharValueNotify

FUNCTION

If there is BLE connection, this function writes new data into the VALUE attribute of a characteristic so that it can be sent as a
notification to the GATT client. The characteristic is identified by a composite handle that is returned by the function
BleCharCommit().

A notification does not result in an acknowledgement from the client.

BLECHARVALUENOTIFY (charHandle, attr$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byVal charHandle AS INTEGER

charHandle | This is the handle to the characteristic whose value must be updated which is returned when
BleCharCommit() is called.

byRef attr$ AS STRING

attr$ | String variable containing new value to write to the characteristic and then send as a notification to the
client. If there is no connection, this function fails with an appropriate result code.

Example:

// Example :: BleCharValueNotify.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

DIM hMyChar,rc,at$,conHndl
//
// Initialise and instantiate service, characteristic, start adverts
//
FUNCTION OnStartup ()

DIM rc, hSvc, at$, attr$, adRpt$, addr$, scRpt$

attr$="Hi"

DIM mdCccd : mdCccd = BleAttrMetadata(1,1,2,0,rc) //CCCD metadata for char

//Commit svc with handle 'hSvcUuid'

rc=BleServiceNew (1, BleHandleUuidlé6 (0x18EE), hSvc)

//initialise char, write/read enabled, accept signed writes, notifiable
rc=BleCharNew (0x12,BleHandleUuidl6 (1) ,BleAttrMetabData(1,0,20,0,rc),mdCccd, 0)
//commit char initialised above, with initial value "hi" to service 'hMyChar'
rc=BleCharCommit (hSvc,attr$, hMyChar)

//commit changes to service

rc=BleServiceCommit (hSvc)

rc=BleScanRptInit (scRpt$)

//Add 1 service handle to scan report
rc=BleAdvRptAddUuidl6 (scRpt$, 0x18EE,-1,-1,-1,-1,-1)

//commit reports to GATT table - adRpt$ is empty
rc=BleAdvRptsCommit (adRpt$, scRpt$S)

rc=BleAdvertStart (0,addr$,50,0,0)

ENDFUNC rc

//

// Close connections so that we can run another app without problems
//

SUB CloseConnections ()
rc=BleDisconnect (conHndl)
rc=BleAdvertStop ()

ENDSUB

//
// Ble event handler

https://connectivity.lairdtech.com 191 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

p NNECTIVITY
User Guide Lalrd co CTIV

//
FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)
conHndl=nCtx
IF nMsgID==1 THEN
PRINT "\n\n--- Disconnected from client"
EXITFUNC O
ELSEIF nMsgID==0 THEN
PRINT "\n--- Connected to client"
ENDIF
ENDFUNC 1
//
// CCCD descriptor written handler
//
FUNCTION HndlrCharCccd (BYVAL charHandle, BYVAL nVal) AS INTEGER
DIM value$
IF charHandle==hMyChar THEN
PRINT "\nCCCD Val: ";nVal
IF nVal THEN
PRINT " : Notifications have been enabled by client"
value$="hello"
IF BleCharValueNotify (hMyChar,value$) !=0 THEN
PRINT "\nFailed to notify new value :";INTEGER.H'rc
ELSE
PRINT "\nSuccessful notification of new value"
EXITFUNC O
ENDIF
ELSE
PRINT " : Notifications have been disabled by client"
ENDIF
ELSE
PRINT "\nThis is for some other characteristic"
ENDIF
ENDFUNC 1
ONEVENT EVBLEMSG CALL HndlrBleMsg
ONEVENT EVCHARCCCD CALL HndlrCharCccd
IF OnStartup ()==0 THEN
rc = BleCharValueRead (hMyChar,at$)
PRINT "\nCharacteristic Value: ";at$
PRINT "\nYou can connect and write to the CCCD characteristic."
PRINT "\nThe BL654 will then notify your device of a new characteristic value\n"
ELSE
PRINT "\nFailure OnStartup"
ENDIF
WAITEVENT
CloseConnections ()
PRINT "\nExiting..."

Expected Output:

Characteristic Value: Hi
You can connect and write to the CCCD characteristic.
The BL654 will then notify your device of a new characteristic value

--— Connected to client

CCCD Val: 0 : Notifications have been disabled by client
CCCD Val: 1 : Notifications have been enabled by client
Successful notification of new value

Exiting...

https://connectivity.lairdtech.com 192 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

p NNECTIVITY
User Guide Lalrd co CTIV

5.8.21BleCharValuelndicate
FUNCTION

If there is BLE connection, this function is used to write new data into the VALUE attribute of a characteristic so that it can be
sent as an indication to the GATT client. The characteristic is identified by a composite handle returned by the function
BleCharCommit().

An indication results in an acknowledgement from the client and that is presented to the smartBASIC application as the
EVCHARHVC event.

BLECHARVALUEINDICATE (charHandle, attr$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byVal charHandle AS INTEGER

charHandle | This is the handle to the characteristic whose value must be updated which is returned when
BleCharCommit() was called.

byRef attr$ AS STRING

attr$ | String variable containing new value to write to the characteristic and then to send as a notification to the
client. If there is no connection, this function fails with an appropriate result code.

Example:

// Example :: BleCharValuelIndicate.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples
DIM hMyChar, rc,at$, conHndl

//
// Initialise and instantiate service, characteristic, start adverts
//
FUNCTION OnStartup ()

DIM rc, hSvc, at$, attr$, adRpt$, addr$, scRpt$

attr$="Hi"

DIM mdCccd : mdCccd = BleAttrMetadata(l,1,2,0,rc) //CCCD metadata for char

//Commit svc with handle 'hSvcUuid'

rc=BleServiceNew (1, BleHandleUuidl6 (0x18EE), hSvc)

//initialise char, write/read enabled, accept signed writes, notifiable
rc=BleCharNew (0x22,BleHandleUuidl6 (1) ,BleAttrMetaData (1,0,20,0,rc),mdCccd, 0)
//commit char initialised above, with initial value "hi" to service 'hMyChar'
rc=BleCharCommit (hSvc,attr$, hMyChar)

//commit changes to service

rc=BleServiceCommit (hSvc)

rc=BleScanRptInit (scRpt$)

//Add 1 service handle to scan report

rc=BleAdvRptAddUuidlé (scRpt$, 0x18EE,-1,-1,-1,-1,-1)

//commit reports to GATT table - adRpt$ is empty
rc=BleAdvRptsCommit (adRpt$, scRptS$)

rc=BleAdvertStart (0,addr$,50,0,0)

ENDFUNC rc

//

// Ble event handler
//

FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)
conHndl=nCtx
IF nMsgID==1 THEN
PRINT "\n\n--- Disconnected from client"
EXITFUNC O
ELSEIF nMsgID==0 THEN

https://connectivity.lairdtech.com 193 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

p NNECTIVITY
User Guide Lalrd co CTIV

PRINT "\n--- Connected to client"
ENDIF
ENDFUNC 1

//
// CCCD descriptor written handler
//
FUNCTION HndlrCharCccd (BYVAL charHandle, BYVAL nVal)
DIM value$
IF charHandle==hMyChar THEN
PRINT "\nCCCD Val: ";nVal
IF nVal THEN
PRINT " : Indications have been enabled by client"
value$="hello"
rc=BleCharValueIndicate (hMyChar,value$)
IF rc!=0 THEN
PRINT "\nFailed to indicate new value :";INTEGER.H'rc
ELSE
PRINT "\nSuccessful indication of new value"
EXITFUNC 1
ENDIF
ELSE
PRINT " : Indications have been disabled by client"
ENDIF
ELSE
PRINT "\nThis is for some other characteristic"
ENDIF
ENDFUNC 1

//
// Indication Acknowledgement Handler
//
FUNCTION HndlrChrHvc (BYVAL charHandle)
IF charHandle == hMyChar THEN
PRINT "\n\nGot confirmation of recent indication"
ELSE
PRINT "\n\nGot confirmation of some other indication: ";charHandle
ENDIF
ENDFUNC 0

ONEVENT EVBLEMSG CALL HndlrBleMsg
ONEVENT EVCHARCCCD CALL HndlrCharCccd
ONEVENT EVCHARHVC CALL HndlrChrHvc

IF OnStartup ()==0 THEN
rc = BleCharValueRead (hMyChar,at$)
PRINT "\nCharacteristic Value: ";at$
PRINT "\nYou can connect and write to the CCCD characteristic."
PRINT "\nThe BL654 will then indicate a new characteristic value\n"
ELSE

PRINT "\nFailure OnStartup"
ENDIF

WAITEVENT
rc=BleDisconnect (conHndl)

rc=BleAdvertStop ()
PRINT "\nExiting..."

https://connectivity.lairdtech.com 194 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

Expected Output:

Characteristic Value: Hi
You can connect and write to the CCCD characteristic.
The BL654 will then indicate a new characteristic value

--- Connected to client

CCCD Val: 0 : Indications have been disabled by client
CCCD Val: 2 : Indications have been enabled by client
Successful indication of new value

Got confirmation of recent indication
Exiting...

5.8.22 BleCharDescRead

FUNCTION

This function reads the current content of a writable Characteristic Descriptor identified by the two parameters supplied in the
EVCHARDESC event message after a GATT client writes to it.

In most cases a local read is performed when a GATT client writes to a characteristic descriptor attribute. The write event is
presented asynchronously to the smartBASIC application in the form of an EVCHARDESC event and so this function is most
often accessed from the handler that services that event.

BLECHARDESCREAD (charHandle, nDescHandle, nOffset, nLength, nDescUuidHandle, attr$)

Returns INTEGER, a result code. The typical value is 0x0000, indicating a successful operation.

Arguments:

byVal charHandle AS INTEGER
charHandle | This is the handle to the characteristic whose descriptor must be read which is returned when
BleCharCommit() is called and is been supplied in the EVCHARDESC event message.

byVal nDescHandle AS INTEGER
nDescHandle | This is an index into an opaque array of descriptor handles inside the charHandle and is supplied
as the second parameter in the EVCHARDESC event message.

byVal nOffset AS INTEGER
nOffset | This is the offset into the descriptor attribute from which the data shoud be read and copied into
attrs$.

byVal nLength AS INTEGER
nLength | This is the number of bytes to read from the descriptor attribute from offset nOffset and copied into
attr$.

byRef nDescUuidHandle AS INTEGER
On exit, this is updated with the uuid handle of the descriptor that got updated.

byRef attr$ AS STRING
On exit, this string variable contains the new value from the characteristic descriptor.

nDescUuidHandle

attr$

Example:

// Example :: BleCharDescRead.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples
DIM rc,conHndl, hMyChar

SUB OnStartup ()
DIM hSvc,attr$, scRpt$, adRpt$, addr$

https://connectivity.lairdtech.com 195 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird

) CONNECTIVITY
User Guide _)

rc=BleSvcCommit (1,BleHandleUuidl6 (0x18FF),hSvc)
// Add one or more characteristics
rc=BleCharNew (0x0a,BleHandleUuidl6 (0x2AFF),BleAttrMetadata(l,1,20,1,rc),0,0)

//Add a user description
DIM s$: s$="You can change this"
rc=BleCharDescAdd (0x2999, s$,BleAttrMetadata(1,1,20,1,rc))

//commit characteristic
attr$="\00" //no initial alert
rc = BleCharCommit (hSvc,attr$, hMyChar)
rc=BleScanRptInit (scRpt$)
//Add 1 char handle to scan report
rc=BleAdvRptAddUuidl6 (scRpt$, 0x2AFF,-1,-1,-1,-1,-1)
//commit reports to GATT table - adRpt$ is empty
rc=BleAdvRptsCommit (adRpt$, scRpt$)
rc=BleAdvertStart (0,addr$,200,0,0)

ENDSUB

//

// Close connections so that we can run another app without problems

//

SUB CloseConnections ()
rc=BleDisconnect (conHndl)
rc=BleAdvertStop ()

ENDSUB

//

// Ble event handler - Just to get the connection handle

//

FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)
conHndl=nCtx

ENDFUNC 1

//

// Handler to service writes to descriptors by a GATT client

//

FUNCTION HandlerCharDesc (BYVAL hChar AS INTEGER, BYVAL hDesc AS INTEGER)
DIM instnc,nUuid,a$, offset,duid

IF hChar == hMyChar THEN
rc = BleCharDescRead (hChar, hDesc,0,20,duid, a$)
IF rc==0 THEN
PRINT "\nRead 20 bytes from index ";offset;" in new char value."

PRINT "\n ::New Descriptor Data: ";StrHexize$ (a$);
PRINT "\n ::Length=";StrLen (a$)
PRINT "\n ::Descriptor UUID ";integer.h' duid
EXITFUNC O
ELSE
PRINT "\nCould not access the uuid"
ENDIF
ELSE
PRINT "\nThis is for some other characteristic"
ENDIF
ENDFUNC 1

//install a handler for writes to characteristic values
ONEVENT EVCHARDESC CALL HandlerCharDesc
ONEVENT EVBLEMSG CALL HndlrBleMsg

OnStartup ()
PRINT "\nWrite to the User Descriptor with UUID 0x2999"

https://connectivity.lairdtech.com 196 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird CONNECTIVITY

User Guide

//wait for events and messages
WAITEVENT

CloseConnections ()
PRINT "\nExiting..."

Expected Output:

Write to the User Descriptor with UUID 0x2999
Read 20 bytes from index 0 in new char value.
::New Descriptor Data: 4C61697264

::Length=5

::Descriptor UUID FE012999
Exiting...
5.8.23 BleAuthorizeChar
FUNCTION

This function is used to grant or deny a read or write access of characteristic and is called in the handler for the event
EVAUTHVAL. When the function returns and if write access was requested and granted then the characteristic value is
deemed to be updated and so function BleCharValueRead() can be used to get the new value.

BLEAUTHORIZECHAR (connHandle, charHandle, readWrite)

INTEGER, aresult code.

Returns . - .
Typical value: 0x0000 (indicates a successful operation)

Arguments

byVal connHandle AS INTEGER

connHandle | This is the connection handle of the gatt client requesting the read or write access and will
have been supplied in the EVAUTHVAL message.

byVal charHandle AS INTEGER

This is the handle to the characteristic whose value must be read which was returned when
BleCharCommit() was called and will have been supplied in the EVAUTHVAL event
message.

byVal readWrite AS INTEGER
This will be to

readWrite | ¢ 0O todeny read access
e 1to allow read access
e 2 to deny write access
e 3to allow write access

charHandle

//Example :: See description for EVAUTHVAL
https://connectivity.lairdtech.com 197 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

User Guide La"'d 2» CONNECTIVITY

5.8.24 BleAuthorizeDesc

FUNCTION

This function is used to grant or deny a read or write access of characteristic descriptor and is called in the handler for the
three events EVAUTHCCCD, EVAUTHSCCD and EVAUTHDESC. When the function returns and if write access was
requested and granted then the characteristic descriptor value is deemed to be updated and so function BleCharDescRead()
can be used to get the new value of the descriptor when the event is EVAUTHDESC. For events EVAUTHCCCD and
EVAUTHSCCD the event itself will have supplied the new value.

BLEAUTHORIZEDESC (connHandle, charHandle, nDescType, readWrite)

INTEGER, a result code.
Typical value: 0x0000 (indicates a successful operation)

Returns

Arguments

byVal connHandle AS INTEGER

connHandle | This is the connection handle of the gatt client requesting the read or write access and will
have been supplied in the EVAUTHVAL message.

byVal charHandle AS INTEGER
This is the handle to the characteristic whose descriptor must be read which was returned

charHandle) . L
when BleCharCommit() was called and will have been supplied in the EVAUTHVAL event
message.
byVal nDescType AS INTEGER

nDescType

This is as was supplied in the EVAUTHDESC event

byVal readWrite AS INTEGER
This will be to

readWrite | ® 0 todeny read access

e 1to allow read access

e 2to deny write access

e 3 to allow write access

//Example :: See description for EVAUTHCCCD, EVAUTHSCCD or EVAUTHDESC
5.8.25 BleServiceChangedNtfy
FUNCTION

This function causes an indication of the Service Changed Characteristic of the GATT Service and specifies a start attribute
handle and an end attribute handle, which the client shall mark as changed so that it can update it's cache if need be.

The EVBLEMSG event will be thown with subevent ID set to BLE_EVBLEMSGID_SRVCCHNG_IND_CNF when other
indications can be sent.

Note that if on connection to a bonded device the CCCD CRC does not match with the current GATT table then a Service
Change Indication is automatically sent to the client. Additionally, the local application is sent the event
BLE_EVBLEMSGID_SRVCCHNG_IND_SENT.

BLESERVICECHANGEDNTFY (nConnHandle, nStartHandle, nEndHandle)

INTEGER, a result code.

Returns . - .
Typical value: 0x0000 (indicates a successful operation)
Arguments
https://connectivity.lairdtech.com 198 Americas: +1-800-492-2320

© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

p NNECTIVITY
User Guide Lalrd co CTIV

byVal nConnHandle AS INTEGER.
Specifies the handle of the connection that must be disconnected.

byVal nStartHandle AS INTEGER.
nStartHandle | Specifies the start attribute handle of GATT table that has changed. Set to 0 to mark the entire
table as changed.

byVal nEndHandle AS INTEGER.
nEndHandle | Specifies the end attribute handle of GATT table that has changed. Set to 0 to mark the entire
table as changed.

nConnHandle

5.9 GATT Client Functions

This section describes all functions related to GATT client capability which enables interaction with GATT servers of a
connected BLE device. The Bluetooth Specification 4.0 and newer allows for a device to be a GATT server and/or GATT client
simultaneously; the fact that a peripheral mode device accepts a connection and has a GATT server table does not preclude it
from interacting with a GATT table in the central role device with which it is connected.

These GATT client functions allow the developer to discover services, characteristics and descriptors, read and write to
characteristics and descriptors, and handle either notifications or indications.

To interact with a remote GATT server, it is important to have a good understanding of how it is constructed. It is best to see it
as a table consisting of many rows and three visible columns (handle, type, value) and at least one more invisible column
whose content affects access to the data column.

16 bit Handle Type (16 or 128 bit) Value (1 to 512 bytes) Permissions

These rows are grouped into collections called services and characteristics. The grouping is achieved by creating a row with
Type = 0x2800 or 0x2801 for services (primary and secondary respectively) and 0x2803 for characteristics.

A table should be scanned from top to bottom; the specification stipulates that the 16-bit handle field contains values in the
range 1 to 65535 and SHALL be in ascending order. Gaps are allowed.

When scanning, if a row is encountered with the value 0x2800 or 0x2801 in the Type column, then it is understood as the start
of a primary or secondary service which in turn contains at least one charactestic or one ‘included service’ which have
Type=0x2803 and 0x2802 respectively.

When a row with Type = 0x2803 (a characteristic) is encountered, then the next row contains the value for that characteristic;
afterwards, there may be zero or more descriptors.

This means each characteristic consists of at least two rows in the table; and if descriptors exist for that characteristic, then a
single row per descriptor.

0x0001 0x2800 UUID of the Service Primary Service 1 Start

0x0002 0x2803 Properties, Value Handle, Value UUID1 Characteristic 1 Start

0x0003 Value UUID1 Value : 1 to 512 bytes Actual data

0x0004 0x2803 Properties, Value Handle, Value UUID2 Characteristic 2 Start

0x0005 Value UUID2 Value : 1 to 512 bytes Actual data

0x0006 0x2902 Value Descriptor 1(CCCD)

0x0007 0x2903 Value Descriptor 2 (SCCD)

0x0008 0x2800 UUID of the Service Primary Service 2 Start

0x0009 0x2803 Properties, Value Handle, Value UUID3 Characteristic 1 Start
https://connectivity.lairdtech.com 199 Americas: +1-800-492-2320

© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

p NNECTIVITY
User Guide Lalrd co CTIV

0x000A Value UUID3 Value : 1 to 512 bytes Actual data

0x000B 0x2800 UUID of the Service Primary Service 3 Start
0x000C 0x2803 Properties, Value Handle, Value UUID3 Characteristic 3 Start
0x000D Value UUID3 Value : 1to 512 bytes Actual data

0x000E 0x2902 Value Descriptor 1(CCCD)
O0X000F 0x2903 Value Descriptor 2 (SCCD)
0x0010 0x2904 Value (presentation format data) Descriptor 3

0x00111 0x2906 Value (valid range) Descriptor 4 (Range)

A colour highlighted example of a GATT server table is shown above. There are three services (at handles 0x0001,0x0008
and 0x000B) because there are three rows where the Type = 0x2800. All rows up to the next instance of a row with
Type=0x2800 or 2801 belong to that service.

In each group of rows for a service, there is one or more characteristics where Type=0x2803. For example the service
beginning at handle 0x0008 has one characteristic which contains two rows identified by handles 0x0009 and 0x000A and the
actual value for the characteristic starting at 0x0009 is in the row identified by 0x000A.

Likewise, each characteristic starts with a row with Type=0x2803 and all rows following it (up to a row with type =
0x2800/2801/2803) are considered belonging to that characteristic. For example, the characteristic at row with handle =
0x0004 has the mandatory value row and then two descriptors.

The Bluetooth specification allows for multiple instances of the same service or characteristics or descriptors and they are
differentiated by the unique handle. This ensures no ambiguity.

Each GATT server table allocates the handle numbers, the only stipulation being that they be in ascending order (gaps are
allowed). This is important to understand because two devices containing the same services and characteristic and in
EXACTLY the same order may NOT allocate the same handle values, especially if one device increments handles by 1 and
another with some other arbitrary random value. The specification does stipulate that once the handle values are allocated,
they are fixed for all subsequent connections unless the device exposes a GATT service which allows for indications to the
client that the handle order has changed and thus force it to flush its cache and rescan the GATT table.

When a connection is first established, there is no prior knowledge as to which services exist or their handles. Therefore, the
GATT protocol which is used to interact with GATT servers, provides procedures that allow for the GATT table to be scanned
so that the client can ascertain which services are offered. This section describes smartBASIC functions which encapsulate
and manage those procedures to enable a smartBASIC application to map the table.

These helper functions have been written to help gather the handles of all the rows which contain the value type for
appropriate characteristics as those are the ones that will be read or written to. The smartBASIC internal engine also maintains
data objects so that it is possible to interact with descriptors associated with the characteristic.

Basically, the table scanning process reveals characteristic handles (as handles of handles) which are used in other GATT
client related smartBASIC functions to interact with the table to, for example, read/write or accept and process incoming
notifications and indications.

This approach ensures that the least amount of RAM resource is required to implement a GATT client and, given that these
procedures operate at speeds many orders of magnitude slower compared to the speed of the CPU and energy consumption
is to be kept as low as possible, the response to a command is delivered asynchronously as an event for which a handler must
be specified in the user smartBASIC application.

The rest of this chapter details all GATT client commands, responses, and events along with example code demonstrating
usage and expected output.

https://connectivity.lairdtech.com 200 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

p NNECTIVITY
User Guide Lalrd co CTIV

5.9.1 Events and Messages

The nature of GATT client operation consists of multiple queries and acting on the responses. Because the connection
intervals are slower than the CPU speed, responses can arrive many tens of milliseconds after the procudure is triggered,;
these are delivered to an application using an event or message. Since these event/messages are tightly coupled with the
appropriate commands, all but one is described when the command that triggers them is described.

The event EVGATTCTOUT is applicable for all GATT client-related functions which result in transactions over the air. The
Bluetooth specification states that if an operation is initiated and is not completed within 30 seconds then the connection is
dropped as no further GATT client transaction can be initiated.

5.9.1.1 EVGATTCTOUT
This event message is thrown if a GATT client transaction takes longer than 30 seconds. It contains one INTEGER parameter:
= Connection Handle

Example:

// Example :: EVGATTCTOUT.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

DIM rc,conHndl

//
// Initialise and instantiate service, characteristic, start adverts
//
FUNCTION OnStartup ()
DIM rc, adRpt$, addr$, scRpt$
rc=BleAdvRptInit (adRpt$, 2, 0, 10)

IF rc==0 THEN : rc=BleScanRptInit (scRpt$) : ENDIF

IF rc==0 THEN : rc=BleAdvRptsCommit (adRpt$,scRpt$) : ENDIF

IF rc==0 THEN : rc=BleAdvertStart (0,addr$,50,0,0) : ENDIF

//open the GATT client with default notify/indicate ring buffer size
IF rc==0 THEN : rc = BleGATTcOpen(0,0) : ENDIF

ENDFUNC rc

//
// Ble event handler
//
FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)
conHndl=nCtx
IF nMsgID==1 THEN
PRINT "\n\n- Disconnected"
EXITFUNC O
ELSEIF nMsgID==0 THEN
PRINT "\n- Connected"
ENDIF
ENDFUNC 1

'//
'/
FUNCTION HandlerGATTcTout (cHndl) AS INTEGER

PRINT "\nEVGATTCTOUT connHandle=";cHndl

ENDFUNC 1

//

// Main () equivalent

//

ONEVENT EVBLEMSG CALL HndlrBleMsg
OnEvent EVGATTCTOUT call HandlerGATTcTout

rc = OnStartup ()

https://connectivity.lairdtech.com 201 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird CONNECTIVITY

User Guide

WAITEVENT

Expected Output:

EVGATTCTOUT connHandle=123

5.9.1.2 EVDISCPRIMSVC

This event message is thrown if either BleDiscServiceFirst() or BleDiscServiceNext() returns a success. The message
contains the following four INTEGER parameters:

= Connection Handle

= Service UUID Handle

= Start Handle of the service in the GATT table

= End Handle for the service

If no additional services were discovered because the end of the table was reached, then all parameters contain zero apart
from the Connection Handle.

5.9.1.3 EVDISCCHAR

This event message is thrown if either BleDiscCharFirst() or BleDiscCharNext() returns a success. The message contains the
following INTEGER parameters:

= Connection Handle

= Characteristic UUID Handle

= Characteristic properties

= Handle for the value attribute of the characteristic

= Included Service UUID Handle

If no more characteristics were discovered because the end of the table was reached, then all parameters contain zero apart
from the Connection Handle.

‘Characteristic Uuid Handle’ contains the UUID of the characteristic and supplied as a handle.

‘Characteristic Properties’ contains the properties of the characteristic and is a bit mask as follows:

Bit0 Setif BROADCAST is enabled

Bit1 Setif READ is enabled

Bit 2 Set if WRITE_WITHOUT_RESPONSE is enabled
Bit 3 Set if WRITE is enabled

Bit4 Setif NOTIFY is enabled

Bit5 Setif INDICATE is enabled

Bit 6 Set if AUTHENTICATED_SIGNED_WRITE is enabled
Bit 7 Set if RELIABLE_WRITE is enabled

‘Handle for the Value Attribute of the Characteristic’ is the handle for the value attribute and is the value to store to keep
track of important characteristics in a GATT server for later read/write operations.

‘Included Service Uuid Handle' is for future use and is always 0.

https://connectivity.lairdtech.com 202 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

User Guide La"'d 2» CONNECTIVITY

5.9.1.4 EVDISCDESC

This event message is thrown if either BleDissDescFirst() or BleDiscDescNext() returns a success. The message contains the
following INTEGER parameters:

= Connection Handle
= Descriptor Uuid Handle
= Handle for the Descriptor in the remote GATT Table

If no more descriptors were discovered because the end of the table was reached, then all parameters contain zero apart from
the Connection Handle.

‘Descriptor Uuid Handle’ contains the UUID of the descriptor and is supplied as a handle.

‘Handle for the Descriptor in the remote GATT Table’ is the handle for the descriptor as well as the value to store to keep
track of important characteristics in a GATT server for later read/write operations.

5.9.1.5 EVFINDCHAR

This event message is thrown if BleGATTcFindChar() returns a success. The message contains the following INTEGER
parameters:

= Connection Handle

= Characteristic Properties

= Handle for the Value Attribute of the Characteristic
= Included Service Uuid Handle

If the specified instance of the service/characteristic is not present in the remote GATT server table, then all parameters
contain zero apart from the Connection Handle.

‘Characteristic Properties’ contains the properties of the characteristic and is a bit mask as follows:
ooBt Description
Set if BROADCAST is enabled

Set if READ is enabled

Set if WRITE_WITHOUT_RESPONSE is enabled

Set if WRITE is enabled

Set if NOTIFY is enabled

Set if INDICATE is enabled

Set if AUTHENTICATED_SIGNED_WRITE is enabled

Set if RELIABLE_WRITE is enabled

~N o oW N |- | O

[Eny
()]

Set if the characteristic has extended properties

‘Handle for the Value Attribute of the Characteristic’ is the handle for the value attribute and is the value to store to keep
track of important characteristics in a GATT server for later read/write operations.

‘Included Service Uuid Handle' is for future use and is always 0.

5.9.1.6 EVFINDDESC

This event message is thrown if BleGATTcFindDesc() returned a success. The message contains the following INTEGER
parameters:

= Connection Handle
= Handle of the Descriptor

If the specified instance of the service/characteristic/descriptor is not present in the remote GATT server table, then all
parameters contain zero apart from the Connection Handle.

https://connectivity.lairdtech.com 203 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

>» NNECTIVITY
User Guide Lalrd co CTIV

‘Handle of the Descriptor’ is the handle for the descriptor and is the value to store to keep track of important descriptors in a
GATT server for later read/write operations — for example, CCCDs to enable natifications and/or indications.

5.9.1.7 EVATTRREAD

This event message is thrown if BleGattcRead() returns a success. The message contains the following INTEGER
parameters:

= Connection Handle

= Handle of the Attribute

= GATT status of the read operation

‘GATT status of the read operation’ is one of the following values, where 0 implies the read was successfully expedited and
the data can be obtained by calling BlePubGattClientReadData().

Hex Dec Description
0x0000 O Success
0x0001 1 Unknown or not applicable status

0x0100 256 ATT Error: Invalid Error Code

0x0101 257 ATT Error: Invalid Attribute Handle

0x0102 258 ATT Error: Read not permitted

0x0103 259 ATT Error: Write not permitted

0x0104 260 ATT Error: Used in ATT as Invalid PDU

0x0105 261 ATT Error: Authenticated link required

0x0106 262 ATT Error: Used in ATT as Request Not Supported

0x0107 263 ATT Error: Offset specified was past the end of the attribute

0x0108 264 ATT Error: Used in ATT as Insufficient Authorisation

0x0109 265 ATT Error: Used in ATT as Prepare Queue Full

0x010A 266 ATT Error: Used in ATT as Attribute not found

0x010B 267 ATT Error: Attribute cannot be read or written using read/write blob requests

0x010C 268 ATT Error: Encryption key size used is insufficient

0x010D 269 ATT Error: Invalid value size

0x010E 270 ATT Error: Very unlikely error

0x010F 271 ATT Error: Encrypted link required

0x0110 272 ATT Error: Attribute type is not a supported grouping attribute

0x0111 273 ATT Error: Encrypted link required

0x0112 274 ATT Error: Reserved for Future Use range #1 begin

0x017F 383 ATT Error: Reserved for Future Use range #1 end

0x0180 384 ATT Error: Application range begin

0x019F 415 ATT Error: Application range end

0x01A0 416 ATT Error: Reserved for Future Use range #2 begin

0x01DF 479 ATT Error: Reserved for Future Use range #2 end

0x01EO0 480 ATT Error: Reserved for Future Use range #3 begin

0x01FC 508 ATT Error: Reserved for Future Use range #3 end

0x01FD 509 ATT Common Profile and Service Error: Client Characteristic Config Descriptor
(CCCD) improperly configured

0x01lFE 510 ATT Common Profile and Service Error:Procedure Already in Progress

Ox01lFF 511 ATT Common Profile and Service Error: Out Of Range

5.9.1.8 EVATTRWRITE

This event message is thrown if BleGattcWrite() returns a success. The message contains the following INTEGER
parameters:

= Connection Handle
= Handle of the Attribute
= GATT status of the write operation

‘GATT status of the write operation’ is one of the following values, where 0 implies the write was successfully expedited.

Hex Dec Description
0x0000 O Success

https://connectivity.lairdtech.com 204 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions |_a I"d

) CONNECTIVITY
User Guide _)

0x0001 1 Unknown or not applicable status

0x0100 256 ATT Error: Invalid Error Code

0x0101 257 ATT Error: Invalid Attribute Handle

0x0102 258 ATT Error: Read not permitted

0x0103 259 ATT Error: Write not permitted

0x0104 260 ATT Error: Used in ATT as Invalid PDU

0x0105 261 ATT Error: Authenticated link required

0x0106 262 ATT Error: Used in ATT as Request Not Supported

0x0107 263 ATT Error: Offset specified was past the end of the attribute

0x0108 264 ATT Error: Used in ATT as Insufficient Authorisation

0x0109 265 ATT Error: Used in ATT as Prepare Queue Full

0x010A 266 ATT Error: Used in ATT as Attribute not found

0x010B 267 ATT Error: Attribute cannot be read or written using read/write blob requests

0x010C 268 ATT Error: Encryption key size used is insufficient

0x010D 269 ATT Error: Invalid value size

0x010E 270 ATT Error: Very unlikely error

0x010F 271 ATT Error: Encrypted link required

0x0110 272 ATT Error: Attribute type is not a supported grouping attribute

0x0111 273 ATT Error: Encrypted link required

0x0112 274 ATT Error: Reserved for Future Use range #1 begin

0x017F 383 ATT Error: Reserved for Future Use range #1 end

0x0180 384 ATT Error: Application range begin

O0x019F 415 ATT Error: Application range end

0x01A0 416 ATT Error: Reserved for Future Use range #2 begin

0x01DF 479 ATT Error: Reserved for Future Use range #2 end

0x01EO0 480 ATT Error: Reserved for Future Use range #3 begin

0x01FC 508 ATT Error: Reserved for Future Use range #3 end

O0x01lFD 509 ATT Common Profile and Service Error: Client Characteristic Config Descriptor
(CCCD) improperly configured

Ox01lFE 510 ATT Common Profile and Service Error:Procedure Already in Progress

Ox01lFF 511 ATT Common Profile and Service Error: Out Of Range

5.9.1.9 EVNOTIFYBUF

This event message is thrown if BleGattcWriteCmd() returned a success. The message contains no parameters.

5.9.1.10 EVATTRNOTIFY

This event is thrown when an natification or an indication arrives from a GATT server. The event contains no parameters.
Please note that if one notification/indication arrives or many, like in the case of UART events, the same event mask bit is
asserted. The smartBASIC application is informed that it must go and service the ring buffer using the function
BleGattcNotifyRead. This event is only thrown if at+cfg 213=0. See BleGattcNotifyRead for usage.

5.9.1.11 EVATTRNOTIFYEX

This message from the underlying BLE manager informs the app that the remote has sent characteristic
notifications/indications. The difference between this event and EVATTRNOTIFY is that this event contains the paramers such
as the connection handle and the notification data. Data_length and strLen(Data$) should be of equal length. This event is
only thrown if at+cfg 213=1. See BleGattcNotifyRead for usage.

The event comes with the following parameters:

= Connection Handle — The handle of the connection that wrote to the characteristic value.

= Char Handle — Characteristic handle for which the value is being notified.

= Type - 0: Invalid, 1: Notification, 2: Indication.

= Data_Length — The length of the data that was notified. If negative, then this value indicates the amount of data lost.
= Data$ - The string data that was notified from the attribute.

https://connectivity.lairdtech.com 205 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions l_ailﬂ-(:lw CONNECTIVITY

User Guide

5.9.2 BleGattcOpen

FUNCTION

This function is used to initialise the GATT client functionality for immediate use so that appropriate buffers for caching GATT
responses are created in the heap memory. About 300 bytes of RAM is required by the GATT client manager; given that a
majority of BL654 use cases do not use it, the sacrifice of 300 bytes is not worth the permament allocation of memory.

There are various buffers that are needed for scanning a remote GATT table which are of fixed size. The ring buffer can be
configured by the smartBASIC apps developer; this buffer is used to store incoming notifiable and indicatable characteristics.
At the time of writing this user guide, the default minimum size is 64 unless a bigger one is desired; in that case, the input
parameter to this function specifies that size. A maximum of 2048 bytes is allowed, but this can result in unreliable operation
as the smartBASIC runtime engine is quickly starved of memory.

Use SYSINFO(2019) to obtain the actual default size and SYSINFO(2020) to obtain the maximum allowed. The same
information can be obtained in interactive mode using the commands AT | 2019 and 2020 respectively.

Note: When the ring buffer for the notifiable and indicatable characteristics is full, then any new messages are discarded.
Depending on the flags parameter, the indicates are or are not confirmed.

This function is safe to call when the GATT client manager is already open. However, in that case, the parameters are ignored
and existing values are retained. Existing GATT client operations are not interrupted.

It is recommended that this function NOT be called when in a connection.

BLEGATTCOPEN (nNotifyBufLen, nFlags)

Returns INTEGER, a result code. The typical value is 0x0000, indicating a successful operation.

Arguments:

byVal nNotifyBufLen AS INTEGER
nNotifyBufLen | This is the size of the ring buffer used for incoming notifiable and indicatable characteristic data. Set
to 0 to use the default size.

byVal nFlags AS INTEGER
Bit 0 — Set to 1 to disable automatic indication confirmations. If the buffer is full then the Handle

nFlags) o . . .
9 Value Confirmation is only sent when BleGattcNotifyRead() is called to read the ring buffer.
Bit 1..31 — Reserved for future use and must be set to 0Os.
Example:
// Example :: BleGattcOpen.sb

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples
DIM rc

//open the GATT client with default notify/indicate ring buffer size

rc = BleGATTcOpen (0,0)

IF rc == 0 THEN
PRINT "\nGATT Client is now open"
ENDIF

//open the client with default notify/indicate ring buffer size - again
rc = BleGattcOpen (128,1)

IF rc == 0 THEN
PRINT "\nGATT Client is still open, because already open"
ENDIF

Expected Output:

GATT Client is now open
GATT Client is still open, because already open

https://connectivity.lairdtech.com 206 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions l_ailﬂ-‘:lw CONNECTIVITY

User Guide

5.9.3 BleGattcClose

SUBROUTINE
This function is used to close the GATT client manager and is safe to call if it is already closed.

It is recommended that this function NOT be called when in a connection.

BLEGATTCCLOSE ()

Returns

Arguments None
Example:

// Example :: BleGattcClose.sb

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

DIM rc
//open the GATT client with default notify/indicate ring buffer size
rc = BleGattcOpen (0,0)
IF rc == 0 THEN
PRINT "\nGATT Client is now open"
ENDIF
BleGattcClose ()
PRINT "\nGATT Client is now closed"
BleGattcClose ()
PRINT "\nGATT Client is closed - was safe to call when already closed"

Expected Output:

GATT Client is now open
GATT Client is now closed
GATT Client is closed - was safe to call when already closed

5.9.4 BleDiscServiceFirst / BleDiscServiceNext

FUNCTIONS

This pair of functions is used to scan the remote GATT server for all primary services with the help of the EVDISCPRIMSVC
message event. When called, a handler for the event message must be registered as the discovered primary service
information is passed back in that message.

A generic or UUID-based scan can be initiated. The former scans for all primary services and the latter scans for a primary
service with a particular UUID, the handle of which must be supplied and is generated by using either BleHandleUuid16() or
BleHandleUuid128().

While the scan is in progress and waiting for the next piece of data from a GATT server, the module enters low power state as
the WAITEVENT statement is used as normal to wait for events and messages.

Depending on the size of the remote GATT server table and the connection interval, the scan of all primary may take many
hundreds of milliseconds. While this is in progress, it is safe to do other non-GATT-related operations such as servicing
sensors and displays or any of the onboard peripherals.

BLEDISCSERVICEFIRST (connHandle, startAttrHandle, uuidHandle)

A typical pseudo code for discovering primary services involves first calling BleDiscServiceFirst(), then waiting for the
EVDISCPRIMSVC event message and depending on the information returned in that message calling BleDiscServiceNext(),
which in turn will result in another EVDISCPRIMSVC event message and typically is as follows:

Register a handler for the EVDISCPRIMSVC event message

On EVDISCPRIMSVC event message

If Start/End Handle == 0 then scan is complete
https://connectivity.lairdtech.com 207 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

p NNECTIVITY
User Guide Lalrd co CTIV

Else Process information then
call BleDiscServiceNext ()
if BleDiscServiceNext () not OK then scan complete

Call BleDiscServiceFirst ()
If BleDiscServiceFirst() ok then Wait for EVDISCPRIMSVC

Returns INTEGER, a result code. The typical value is 0x0000, indicating a successful operation. This means
an EVDISCPRIMSVC event message is thrown by the smartBASIC runtime engine containing the
results. A non-zero return value implies an EVDISCPRIMSVC message is NOT thrown.

Arguments:

byVal nConnHandle AS INTEGER

This is the connection handle as returned in the on-connect event for the connection on which the
remote GATT server can be accessed. This is returned in the EVBLEMSG event message with
msgld == 0 and msgCtx is the connection handle.

byVal startAttrHandle AS INTEGER
startAttrHandle | This is the attribute handle from where the scan for primary services will be started and you can
typically set it to O to ensure that the entire remote GATT Server is scanned

byVal uuidHandle AS INTEGER
uuidHandle | Set this to 0 if you want to scan for any service, otherwise this value will have been generated either
by BleHandleUuid16() or BleHandleUuid128() or BleHandleUuidSibling().

connHandle

BLEDISCSERVICENEXT (connHandle)

Calling this assumes that BleDiscServiceFirst() was called at least once to set up the internal primary services scanning state

machine.
Returns INTEGER, aresult code.
The typical value is 0x0000, indicating a successful operation and it means an EVDISCPRIMSVC event
message is thrown by the smartBASIC runtime engine containing the results. A non-zero return value
implies an EVDISCPRIMSVC message is not thrown.
Arguments:
byVal nConnHandle AS INTEGER
connHandle This is the connection handle as returned in the on-connect event for the connection on which the remote
GATT server can be accessed. This is returned in the EVBLEMSG event message with msgld == 0 and
msgCitx is the connection handle
Example:
// Example :: BleDiscServiceFirst.Next.sb

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

//

//Remote server has 5 prim services with 16 bit uuid and 3 with 128 bit uuids
// 3 of the 16 bit uuid are the same value 0xDEAD and

// 2 of the 128 bit uuids are also the same 112233445566778899AABBCCDDEEFF
//

// Server created using BleGATTcTblDiscPrimSvc.sub invoked in OpenMcp.scr

// using Nordic Usb Dongle PC10000

DIM rc,at$,conHndl, uHndl,uuids

//
// Initialise and instantiate service, characteristic, start adverts
//
FUNCTION OnStartup ()
https://connectivity.lairdtech.com 208 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird

) CONNECTIVITY
User Guide _)

DIM rc, adRpt$, addr$, scRpt$
rc=BleAdvRptInit (adRpt$, 2, 0, 10)

IF rc==0 THEN : rc=BleScanRptInit (scRpt$) : ENDIF

IF rc==0 THEN : rc=BleAdvRptsCommit (adRpt$,scRpt$) : ENDIF

IF rc==0 THEN : rc=BleAdvertStart (0,addr$,50,0,0) : ENDIF

//open the GATT client with default notify/indicate ring buffer size
IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF

ENDFUNC rc

//

// Close connections so that we can run another app without problems

//

SUB CloseConnections ()
rc=BleDisconnect (conHndl)
rc=BleAdvertStop ()

ENDSUB

//
// Ble event handler
//
FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)
DIM uu$
conHndl=nCtx
IF nMsgID==1 THEN
PRINT "\n\n- Disconnected"
EXITFUNC O
ELSEIF nMsgID==0 THEN

PRINT "\n- Connected, so scan remote GATT Table for ALL services"
rc = BleDiscServiceFirst (conHndl,0,0)
IF rc==0 THEN
//HandlerPrimSvc () will exit with O when operation is complete
WAITEVENT

PRINT "\nScan for service with uuid = OxDEAD"

uHndl = BleHandleUuidl6 (OxDEAD)

rc = BleDiscServiceFirst (conHndl, 0, uHndl)

IF rc==0 THEN
//HandlerPrimSvc () will exit with O when operation is complete
WAITEVENT

uu$ = "112233445566778899AABBCCDDEEFFOO0O"
PRINT "\nScan for service with custom uuid ";uu$
uu$S = StrDehexize$ (uu$)
uHndl = BleHandleUuidl28 (uu$)
rc = BleDiscServiceFirst (conHndl, 0, uHndl)
IF rc==0 THEN
//HandlerPrimSvc () will exit with 0 when operation is complete
WAITEVENT
ENDIF
ENDIF
ENDIF
CloseConnections ()
ENDIF
ENDFUNC 1

//
// EVDISCPRIMSVC event handler
//
FUNCTION HandlerPrimSvc (cHndl, svcUuid, sHndl,eHndl) AS INTEGER
PRINT "\nEVDISCPRIMSVC :"
PRINT " cHndl=";cHndl

https://connectivity.lairdtech.com 209 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions
User Guide

La i rdT J» CONNECTIVITY

PRINT " svcUuid=";integer.h' svcUuid
PRINT " sHndl=";sHndl
PRINT " eHndl=";eHndl
IF sHndl == 0 THEN
PRINT "\nScan complete"

EXITFUNC O
ELSE
rc = BleDiscServiceNext (cHndl)
IF rc != 0 THEN
PRINT "\nScan abort"

EXITFUNC O
ENDIF
ENDIF
endfunc 1

//
// Main () equivalent
//
ONEVENT EVBLEMSG

OnEvent EVDISCPRIMSVC

CALL HndlrBleMsg
call HandlerPrimSvc

//Register base uuids with the underlying stack, otherwise the services with the
//128bit uuid's will be delivered with a uuid handle == FF000000 == UNKNOWN
uuid$ = "112233445566778899AABBCCDDEEFF0O0"

uuid$ = StrDehexize$ (uuid$)

uHndl = BleHandleUuidl28 (uuid$)

uuid$ = "1122DEAD5566778899AABBCCDDBEEF00"
uuid$ StrDehexize$ (uuid$)
uHndl = BleHandleUuidl28 (uuid$)

IF OnStartup ()==0 THEN

PRINT "\nAdvertising, and GATT Client is open\n"
ELSE

PRINT "\nFailure OnStartup"
ENDIF

WAITEVENT
PRINT "\nExiting..."

Expected Output:

Advertising, and GATT Client is open

- Connected, so scan remote GATT Table for ALL services

Scan complete
Scan for service with uuid

Scan abort

https://connectivity.lairdtech.com

= OxDEAD

210

EVDISCPRIMSVC cHnd1=2804 svcUuid=FE01FEO1l sHndl=1 eHndl=3
EVDISCPRIMSVC cHnd1=2804 svcUuid=FC033344 sHndl=4 eHndl=6
EVDISCPRIMSVC cHnd1=2804 svcUuid=FEO1DEAD sHndl=7 eHndl=9
EVDISCPRIMSVC cHnd1=2804 svcUuid=FBO4BEEF sHndl=10 eHndl=12
EVDISCPRIMSVC cHnd1=2804 svcUuid=FC033344 sHndl=13 eHndl=15
EVDISCPRIMSVC cHnd1=2804 svcUuid=FEO1DEAD sHndl=16 eHndl=18
EVDISCPRIMSVC cHnd1=2804 svcUuid=FEO1FEO3 sHndl=19 eHndl=21
EVDISCPRIMSVC cHnd1=2804 svcUuid=FEO1DEAD sHndl=22 eHndl=24
EVDISCPRIMSVC cHnd1=2804 svcUuid=00000000 sHndl=0 eHndl=0

EVDISCPRIMSVC cHnd1=2804 svcUuid=FEO1DEAD sHndl=7 eHndl=9
EVDISCPRIMSVC cHnd1=2804 svcUuid=FEO1DEAD sHndl=16 eHndl=18
EVDISCPRIMSVC cHnd1=2804 svcUuid=FEO1DEAD sHndl=22 eHndl=65535

© Copyright 2019 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird CONNECTIVITY

User Guide

Scan for service with custom uuid 112233445566778899AABBCCDDEEFF00
EVDISCPRIMSVC : cHndl=2804 svcUuid=FC033344 sHndl=4 eHndl=6
EVDISCPRIMSVC : cHndl=2804 svcUuid=FC033344 sHndl=13 eHndl=15
EVDISCPRIMSVC : cHndl=2804 svcUuid=00000000 sHndl=0 eHndl=0

Scan complete

- Disconnected
Exiting...

5.9.5 BleDiscCharFirst / BleDiscCharNext

FUNCTIONS

These pair of functions are used to scan the remote GATT server for characteristics in a service with the help of the
EVDISCCHAR message event. When called, a handler for the event message must be registered because the discovered
characteristics information is passed back in that message.

A generic or UUID based scan can be initiated. The generic version scans for all characteristics; the UUID version scans for a
characteristic with a particular UUID, the handle of which must be supplied and is generated by using either
BleHandleUuid16() or BleHandleUuid128().

If a GATT table has a specific service and a specific characteristic, then it is more efficient to locate details of that
characteristic by using the function BleGATTcFindChar(). This function is described later.

While the scan is in progress and waiting for the next piece of data from a GATT server, the module enters low power state as
the WAITEVENT statement is used as normal to wait for events and messages.

Depending on the size of the remote GATT server table and the connection interval, the scan of all characteristics may take
many hundreds of milliseconds. While this is in progress, it is safe to do other non- GATT-related operations such as servicing
sensors and displays or any of the onboard peripherals.

Note: It is not currently possible to scan for characteristics in included services. This is planned for a future release.

BLEDISCCHARFIRST (connHandle, charUuidHandle, startAttrHandle, endAttrHandle)

A typical pseudo code for discovering characteristic involves first calling BleDiscCharFirst() with information obtained from a
primary services scan, waiting for the EVDISCCHAR event message, and (depending on the information returned in that
message) calling BleDiscCharNext(). This in turn results in another EVDISCCHAR event message and typically is as follows:

Register a handler for the EVDISCCHAR event message

On EVDISCCHAR event message
If Char Value Handle == 0 then scan is complete
Else Process information then
call BleDiscCharNext()
if BleDiscCharNext() not OK then scan complete

Call BleDiscCharFirst(--information from EVDISCPRIMSVC)
If BleDiscCharFirst() ok then Wait for EVDISCCHAR

Returns INTEGER, a result code.

The typical value is 0x0000, indicating a successful operation and it means an EVDISCCHAR event
message is thrown by the smartBASIC runtime engine containing the results. A non-zero return
value implies an EVDISCCHAR message is not thrown.

Arguments:
byVal nConnHandle AS INTEGER
connHandle This is the connection handle as returned i_n _the on-conqect event for the connection on Which the
remote GATT server can be accessed. This is returned in the EVBLEMSG event message with
msgld == 0 and msgCtx is the connection handle.
https://connectivity.lairdtech.com 211 Americas: +1-800-492-2320

© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

p NNECTIVITY
User Guide Lalrd co CTIV

byVal charUuidHandle AS INTEGER

charUuidHandle | Set this to 0 if you want to scan for any characteristic in the service, otherwise this value is
generated either by BleHandleUuid16() or BleHandleUuid128() or BleHandleUuidSibling().

byVal startAttrHandle AS INTEGER

startAttrHandle | This is the attribute handle from where the scan for characteristic is started and is acquired by doing
a primary services scan, which returns the start and end handles of services.

byVal endAttrHandle AS INTEGER

endAttrHandle | This is the end attribute handle for the scan and is acquired by doing a primary services scan, which
returns the start and end handles of services.

BLEDISCCHARNEXT (connHandle)

Calling this assumes that BleDiscCharFirst() has been called at least once to set up the internal characteristics scanning state
machine. It scans for the next characteristic.

Returns INTEGER, a result code.

The typical value is 0x0000, indicating a successful operation. It means an EVDISCCHAR event
message is thrown by the smartBASIC runtime engine containing the results. A non-zero return value
implies an EVDISCCHAR message is not thrown.

Arguments:
byVal nConnHandle AS INTEGER
connHandle This is the connection handle as returned i.n Fhe on-conr?ect event for the connection on which the
remote GATT server can be accessed. This is returned in the EVBLEMSG event message with msgld ==
0 and msgCitx is the connection handle.
Example:
// Example :: BleDiscCharFirst.Next.sb

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

//

//Remote server has 1 prim service with 16 bit uuid and 8 characteristics where
// 5 uuids are 16 bit and 3 are 128 bit

// 3 of the 16 bit uuid are the same value O0xDEAD and

// 2 of the 128 bit uuids are also the same 112233445566778899AABBCCDDEEFF

//

// Server created using BleGATTcTblDiscChar.sub invoked in OpenMcp.scr

// using Nordic Usb Dongle PC10000

DIM rc,at$,conHndl, uHndl,uuid$, sAttr, eAttr

//
// Initialise and instantiate service, characteristic, start adverts
//
FUNCTION OnStartup ()

DIM rc, adRpt$, addr$, scRpt$

rc=BleAdvRptInit (adRptS$, 2, 0, 10)

IF rc==0 THEN : rc=BleScanRptInit (scRpt$) : ENDIF

IF rc==0 THEN : rc=BleAdvRptsCommit (adRpt$,scRpt$) : ENDIF

IF rc==0 THEN : rc=BleAdvertStart (0,addr$,50,0,0) : ENDIF

//open the GATT client with default notify/indicate ring buffer size

IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF
ENDFUNC rc

//
// Close connections so that we can run another app without problems
//
SUB CloseConnections ()
rc=BleDisconnect (conHndl)

https://connectivity.lairdtech.com 212 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

p NNECTIVITY
User Guide Lalrd co CTIV

rc=BleAdvertStop ()
ENDSUB

//
// Ble event handler
//
FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)
DIM uu$
conHndl=nCtx
IF nMsgID==1 THEN
PRINT "\n\n- Disconnected"
EXITFUNC O
ELSEIF nMsgID==0 THEN
PRINT "\n- Connected, so scan remote GATT Table for first service"
PRINT "\n- and a characeristic scan will be initiated in the event"
rc = BleDiscServiceFirst (conHndl, 0, 0)
IF rc==0 THEN
//wait for start and end handles for first primary service
WAITEVENT
PRINT "\n\nScan for characteristic with uuid = OxDEAD"
uHndl = BleHandleUuidl6 (0xDEAD)
rc = BleDiscCharFirst (conHndl, uHndl, sAttr,eAttr)

IF rc == 0 THEN
//HandlerCharDisc () will exit with 0 when operation is complete
WAITEVENT
uu$ = "112233445566778899AABBCCDDEEFFO0"
PRINT "\n\nScan for service with custom uuid ";uu$
uu$S = StrDehexize$ (uu$)

uHndl = BleHandleUuidl28 (uu$)
rc = BleDiscCharFirst (conHndl,uHndl, sAttr,eAttr)
IF rc==0 THEN
//HandlerCharDisc () will exit with 0 when operation is complete
WAITEVENT
ENDIF
ENDIF
ENDIF
CloseConnections ()
ENDIF
ENDFUNC 1

//
// EVDISCPRIMSVC event handler
//
FUNCTION HandlerPrimSvc (cHndl, svcUuid, sHndl, eHndl) AS INTEGER

PRINT "\nEVDISCPRIMSVC :"

PRINT " cHndl=";cHndl

PRINT " svcUuid=";integer.h' svcUuid

PRINT " sHndl=";sHndl

PRINT " eHndl=";eHndl

IF sHndl == 0 THEN
PRINT "\nPrimary Service Scan complete"
EXITFUNC O

ELSE

PRINT "\nGot first primary service so scan for ALL characteristics"
sAttr = sHndl

eAttr = eHndl

rc = BleDiscCharFirst (conHndl, 0, sAttr,eAttr)

IF rc != 0 THEN
PRINT "\nScan characteristics failed"
EXITFUNC O
ENDIF
ENDIF
https://connectivity.lairdtech.com 213 Americas: +1-800-492-2320

© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird

) CONNECTIVITY
User Guide _)

endfunc 1

'//
// EVDISCCHAR event handler
'//
function HandlerCharDisc (cHndl, cUuid, cProp,hVal,isUuid) as integer
print "\nEVDISCCHAR :"
print " cHndl=";cHndl
print " chUuid=";integer.h' cUuid
print " Props=";cProp
print " valHndl=";hval
print " ISvcUuid=";isUuid
IF hval == 0 THEN
PRINT "\nCharacteristic Scan complete"
EXITFUNC O
ELSE
rc = BleDiscCharNext (conHndl)
IF rc !'= 0 THEN
PRINT "\nCharacteristics scan abort"
EXITFUNC O
ENDIF
ENDIF
endfunc 1

//

// Main () equivalent

//

ONEVENT EVBLEMSG CALL HndlrBleMsg
OnEvent EVDISCPRIMSVC call HandlerPrimSvc
OnEvent EVDISCCHAR call HandlerCharDisc

//Register base uuids with the underlying stack, otherwise the services with the
//128bit uuid's will be delivered with a uuid handle == FF000000 == UNKNOWN
uuid$ = "112233445566778899AABBCCDDEEFF00"

uuid$ = StrDehexize$ (uuid$)

uHndl = BleHandleUuidl128 (uuid$)

uuids$ "1122DEAD5566778899AABBCCDDBEEF00"

uuids StrDehexize$ (uuid$)

uHndl = BleHandleUuidl28 (uuid$)

IF OnStartup ()==0 THEN
PRINT "\nAdvertising, and GATT Client is open\n"
ELSE
PRINT "\nFailure OnStartup"
ENDIF
WAITEVENT

PRINT "\nExiting..."

Expected Output:

Advertising, and GATT Client is open

- Connected, so scan remote GATT Table for first service

- and a characeristic scan will be initiated in the event
EVDISCPRIMSVC : cHndl=3549 svcUuid=FEO1lFEO2 sHndl=1 eHndl=17

Got first prlmary service so scan for ALL characteristics

EVDISCCHAR : cHndl=3549 chUuid=FEQO1lFC21 Props=2 valHndl=3 ISvcUuid=0
EVDISCCHAR : cHndl=3549 chUuid=FC033344 Props=2 valHndl=5 ISvcUuid=0
EVDISCCHAR : cHndl=3549 chUuid=FEO1DEAD Props=2 valHndl=7 ISvcUuid=0
EVDISCCHAR : cHndl=3549 chUuid=FBO4BEEF Props=2 valHndl=9 ISvcUuid=0
EVDISCCHAR : cHndl=3549 chUuid=FC033344 Props=2 valHndl=11] ISvcUuid=0
EVDISCCHAR : cHndl=3549 chUuid=FEQ1FC23 Props=2 valHndl=13 ISvcUuid=0
EVDISCCHAR : cHndl=3549 chUuid=FEQO1DEAD Props=2 valHndl=15 ISvcUuid=0

https://connectivity.lairdtech.com 214 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

p NNECTIVITY
User Guide Lalrd co CTIV

EVDISCCHAR : cHndl=3549 chUuid=FEQO1DEAD Props=2 valHndl=17 ISvcUuid=0
EVDISCCHAR : cHndl=3549 chUuid=00000000 Props=0 valHndl=0 ISvcUuid=0
Characteristic Scan complete

Scan for characteristic with uuid = OxDEAD

EVDISCCHAR : cHndl=3549 chUuid=FEO1DEAD Props=2 valHndl=7 ISvcUuid=0
EVDISCCHAR : cHndl=3549 chUuid=FEO1DEAD Props=2 valHndl=15 ISvcUuid=0
EVDISCCHAR : cHndl=3549 chUuid=FEQO1DEAD Props=2 valHndl=17 ISvcUuid=0
EVDISCCHAR : cHndl=3549 chUuid=00000000 Props=0 valHndl=0 ISvcUuid=0
Characteristic Scan complete

Scan for service with custom uuid 112233445566778899AABBCCDDEEFF00
EVDISCCHAR : cHndl=3549 chUuid=FC033344 Props=2 valHndl=5 ISvcUuid=0
EVDISCCHAR : cHndl=3549 chUuid=FC033344 Props=2 valHndl=11 ISvcUuid=0
EVDISCCHAR : cHndl=3549 chUuid=00000000 Props=0 valHndl=0 ISvcUuid=0
Characteristic Scan complete

- Disconnected
Exiting...

5.9.6 BleDiscDescFirst /BleDiscDescNext

FUNCTIONS

This pair of functions is used to scan the remote GATT server for descriptors in a characteristic with the help of the
EVDISCDESC message event. When called, a handler for the event message must be registered because the discovered
descriptor information is passed back in that message.

A generic or UUID-based scan can be initiated. The generic version scans for all descriptors; The UUID version scans for a
descriptor with a particular UUID, the handle of which must be supplied and is generated by using either BleHandleUuid16() or
BleHandleUuid128().

If a GATT table has a specific service, characteristic, and a specific descriptor, then it is more efficient to locate the
characteristic’s details by using the function BleGATTcFindDesc(). This is described later.

While the scan is in progress and waiting for the next piece of data from a GATT server, the module enters low power state as
the WAITEVENT statement is used as normal to wait for events and messages.

Depending on the size of the remote GATT server table and the connection interval, the scan of all descriptors may take many
hundreds of milliseconds. While this is in progress, it is safe to do other non-GATT-related operations such as servicing
sensors and displays or any of the onboard peripherals.

BLEDISCDESCFIRST (connHandle, descUuidHandle, charValHandle)

A typical pseudo code for discovering descriptors involves first calling BleDiscDescFirst() with information obtained from a
characteristics scan and then waiting for the EVDISCDESC event message. Depending on the information returned in that
message, calling BleDiscDescNext() results in another EVDISCDESC event message and typically is as follows:

Register a handler for the EVDISCDESC event message

On EVDISCDESC event message
If Descriptor Handle == 0 then scan is complete
Else Process information then
call BleDiscDescNext ()
if BleDiscDescNext () not OK then scan complete

Call BleDiscDescFirst(—--information from EVDISCCHAR)
If BleDiscDescFirst () ok then Wait for EVDISCDESC

Returns INTEGER, a result code.

The typical value is 0x0000, indicating a successful operation and it means an EVDISCDESC
event message is thrown by the smartBASIC runtime engine containing the results. A non-

https://connectivity.lairdtech.com 215 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

p NNECTIVITY
User Guide Lalrd co CTIV

zero return value implies an EVDISCDESC message is not thrown.

Arguments:

byVal nConnHandle AS INTEGER

This is the connection handle as returned in the on-connect event for the connection on which
the remote GATT server can be accessed. This is returned in the EVBLEMSG event message
with msgld == 0 and msgCitx is the connection handle.

byVal descUuidHandle AS INTEGER
descUuidHandle | Set this to 0 if you want to scan for any descriptor in the characteristic, otherwise this value is
generated either by BleHandleUuid16() or BleHandleUuid128() or BleHandleUuidSibling().

byVal charValHandle AS INTEGER
charValHandle | This is the value attribute handle of the characteristic on which the descriptor scan is to be
performed. It will have been acquired from an EVDISCCHAR event.

connHandle

BLEDISCDESCNEXT (connHandle)

Calling this assumes that BleDiscCharFirst() has been called at least once to set up the internal characteristics scanning state
machine and that BleDiscDescFirst() has been called at least once to start the descriptor discovery process.

Returns INTEGER, a result code.

The typical value is 0x0000, indicating a successful operation and it means an EVDISCDESC
event message is thrown by the smartBASIC runtime engine containing the results. A non-zero
return value implies an EVDISCDESC message is not thrown.

Arguments:
byVal nConnHandle AS INTEGER
connHandle This is the connection handle as returned in the on-connect event for the connection on which the
remote GATT server can be accessed. This is returned in the EVBLEMSG event message with
msgld == 0 and msgCtx is the connection handle.
Example:
// Example :: BleDiscDescFirst.Next.sb

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

//

//Remote server has 1 prim service with 16 bit uuid and 1 characteristics
// which contains 8 descriptors, that are

// 5 uuids are 16 bit and 3 are 128 bit

// 3 of the 16 bit uuid are the same value O0xDEAD and

// 2 of the 128 bit uuids are also the same 112233445566778899AABBCCDDEEFF
//

// Server created using BleGATTcTblDiscDesc.sub invoked in OpenMcp.scr

// using Nordic Usb Dongle PC10000

DIM rc,at$,conHndl, uHndl,uuid$, sAttr,eAttr, cValAttr

//
// Initialise and instantiate service, characteristic, start adverts
//
FUNCTION OnStartup ()

DIM rc, adRpt$, addr$, scRpt$

rc=BleAdvRptInit (adRptS$, 2, 0, 10)

IF rc==0 THEN : rc=BleScanRptInit (scRpt$) : ENDIF

IF rc==0 THEN : rc=BleAdvRptsCommit (adRpt$,scRpt$) : ENDIF

IF rc==0 THEN : rc=BleAdvertStart (0,addr$,50,0,0) : ENDIF

//open the GATT client with default notify/indicate ring buffer size

https://connectivity.lairdtech.com 216 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

p NNECTIVITY
User Guide Lalrd co CTIV

IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF
ENDFUNC rc
//
// Close connections so that we can run another app without problems
//
SUB CloseConnections ()
rc=BleDisconnect (conHndl)
rc=BleAdvertStop ()
ENDSUB

//
// Ble event handler
//
FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)
DIM uu$
conHndl=nCtx
IF nMsgID==1 THEN
PRINT "\n\n- Disconnected"
EXITFUNC O
ELSEIF nMsgID==0 THEN
PRINT "\n- Connected, so scan remote GATT Table for first service"
PRINT "\n- and a characeristic scan will be initiated in the event"
rc = BleDiscServiceFirst (conHndl,0,0)
IF rc==0 THEN
//wait for start and end handles for first primary service
WAITEVENT
PRINT "\n\nScan for descritors with uuid = OxDEAD"
uHndl = BleHandleUuidl6 (0xXDEAD)
rc = BleDiscDescFirst (conHndl, uHndl,cValAttr)

IF rc == 0 THEN
//HandlerDescDisc () will exit with 0 when operation is complete
WAITEVENT
uu$ = "112233445566778899AABBCCDDEEFF00"
PRINT "\n\nScan for service with custom uuid ";uu$
uu$ = StrDehexize$ (uu$)

uHndl = BleHandleUuidl28 (uu$)
rc = BleDiscDescFirst (conHndl, uHndl,cValAttr)
IF rc==0 THEN
//HandlerDescDisc () will exit with 0 when operation is complete
WAITEVENT
ENDIF
ENDIF
ENDIF
CloseConnections ()
ENDIF
ENDFUNC 1

//
// EVDISCPRIMSVC event handler
//
FUNCTION HandlerPrimSvc (cHndl, svcUuid, sHndl,eHndl) AS INTEGER

PRINT "\nEVDISCPRIMSVC :"

PRINT " cHndl=";cHndl

PRINT " svcUuid=";integer.h' svcUuid

PRINT " sHndl=";sHndl

PRINT " eHndl=";eHndl

IF sHndl == 0 THEN
PRINT "\nPrimary Service Scan complete"
EXITEFUNC O

ELSE

PRINT "\nGot first primary service so scan for ALL characteristics"
sAttr = sHndl

https://connectivity.lairdtech.com 217 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions
User Guide

La i rd“ 2» CONNECTIVITY

eAttr = eHndl
rc = BleDiscCharFirst (conHndl, 0, sAttr,eAttr)
IF rc != 0 THEN
PRINT "\nScan characteristics failed"
EXITFUNC O
ENDIF
ENDIF
endfunc 1

'/

// EVDISCCHAR event handler
'/

function HandlerCharDisc (cHndl,cUuid, cProp,hVal,isUuid) as integer
print "\nEVDISCCHAR :"
print " cHndl=";cHndl
print " chUuid=";integer.h' cUuid
print " Props=";cProp
print " valHndl=";hVal
print " ISvcUuid=";isUuid

IF hVal == 0 THEN
PRINT "\nCharacteristic Scan complete"
EXITFUNC O

ELSE

PRINT "\nGot first characteristic service at handle ";hVal
PRINT "\nScan for ALL Descs"
cValAttr = hvVal
rc = BleDiscDescFirst (conHndl, 0, cValAttr)
IF rc != 0 THEN
PRINT "\nScan descriptors failed"
EXITFUNC O
ENDIF
ENDIF
endfunc 1

'/

// EVDISCDESC event handler
v/

function HandlerDescDisc (cHndl,cUuid,hndl) as integer
print "\nEVDISCDESC"
print " cHndl=";cHndl
print " dscUuid=";integer.h' cUuid
print " dscHndl=";hndl
IF hndl == 0 THEN
PRINT "\nDescriptor Scan complete"
EXITFUNC O
ELSE
rc = BleDiscDescNext (cHndl)
IF rc '= 0 THEN
PRINT "\nDescriptor scan abort"
EXITFUNC O
ENDIF
ENDIF
endfunc 1

//
// Main () equivalent
//
ONEVENT EVBLEMSG CALL HndlrBleMsg
OnEvent EVDISCPRIMSVC call HandlerPrimSvc
OnEvent EVDISCCHAR call HandlerCharDisc
OnEvent EVDISCDESC call HandlerDescDisc
https://connectivity.lairdtech.com 218 Americas: +1-800-492-2320

© Copyright 2019 Laird. All Rights Reserved

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

User Guide

La i rdT J» CONNECTIVITY

//Register base uuids with the underlying stack,

otherwise the services with the
//128bit uuid's will be delivered with a uuid handle

uuid$ = "112233445566778899AABBCCDDEEFF0O0"
uuid$ = StrDehexize$ (uuid$)
uHndl = BleHandleUuidl28 (uuid$)
uuid$ = "1122DEAD5566778899AABBCCDDBEEF00"
uuid$ = StrDehexize$ (uuid$)
uHndl = BleHandleUuidl28 (uuid$)
IF OnStartup ()==0 THEN
PRINT "\nAdvertising, and GATT Client is open\n"
ELSE
PRINT "\nFailure OnStartup"
ENDIF
WAITEVENT

PRINT "\nExiting..."

FF000000 == UNKNOWN

Expected Output:

Advertising,

and GATT Client is open

- Connected, so scan remote GATT Table for first service

- and a characeristic scan will be initiated in the event
EVDISCPRIMSVC cHnd1=3790 svcUuid=FEO1FEO2 sHndl=1 eHndl=11

Got first primary service so scan for ALL characteristics
EVDISCCHAR cHnd1=3790 chUuid=FE01FC21 Props=2 valHndl=3 ISvcUuid=0
Got first characteristic service at handle 3

Scan for ALL Descs

EVDISCDESC
EVDISCDESC
EVDISCDESC
EVDISCDESC
EVDISCDESC
EVDISCDESC
EVDISCDESC
EVDISCDESC
EVDISCDESC
Descriptor

Scan for descritors with uuid =

EVDISCDESC
EVDISCDESC
EVDISCDESC
EVDISCDESC
Descriptor

Scan for service with

EVDISCDESC
EVDISCDESC
EVDISCDESC
Descriptor

cHnd1=3790
cHnd1=3790
cHnd1=3790
cHnd1=3790
cHnd1=3790
cHnd1=3790
cHnd1=3790
cHnd1=3790
cHnd1=3790

dscUuid=FE01FD21
dscUuid=FC033344
dscUuid=FEO01DEAD
dscUuid=FBO04BEEF
dscUuid=FC033344
dscUuid=FEOQ1FD23
dscUuid=FE01DEAD
dscUuid=FEO01DEAD
dscUuid=00000000

Scan complete

cHnd1=3790
cHnd1=3790
cHnd1=3790
cHnd1=3790

OxDEAD
dscUuid=FE01DEAD
dscUuid=FEO01DEAD
dscUuid=FE01DEAD
dscUuid=00000000

Scan complete

cHnd1=3790
cHnd1=3790
cHnd1=3790

dscHndl=4
dscHndl=5
dscHndl=6
dscHndl=7
dscHnd1l=8
dscHnd1=9
dscHndl1=10
dscHndl=11
dscHnd1=0

dscHndl=6
dscHndl=10
dscHndl=11
dscHnd1l=0

custom uuid 112233445566778899AABBCCDDEEFF00

dscUuid=FC033344
dscUuid=FC033344
dscUuid=00000000

Scan complete

- Disconnected

Exiting...

dscHndl=5
dscHnd1=8
dscHnd1=0

5.9.7 BleGattcFindChar

FUNCTION

This function facilitates an efficient way of locating the details of a characteristic if the UUID is known along with the UUID of
the service containing it. The results are delived in an EVFINDCHAR event message. If the GATT server table has multiple
instances of the same service/characteristic combination then this function works because, in addition to the UUID handles to

219
© Copyright 2019 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

https://connectivity.lairdtech.com

BL654 smartBASIC Extensions

p NNECTIVITY
User Guide Lalrd co CTIV

be searched for, it also accepts instance parameters which are indexed from 0. This means the fourth instance of a
characteristic with the same UUID in the third instance of a service with the same UUID is located with index values 3 and 2
respectively.

Given that the results are returned in an event message, a handler must be registered for the EVFINDCHAR event.

Depending on the size of the remote GATT server table and the connection interval, the search of the characteristic may take
many hundreds of milliseconds. While this is in progress, it is safe to do other non-GATT-related operations such as servicing
sensors and displays or any of the onboard peripherals.

Note: It is not currently possible to scan for characteristics in included services. This is a future enhancement.

BLEGATTCFINDCHAR (connHandle, svcUuidHndlI, svcindex, charUuidHndl, charindex)

A typical pseudo code for finding a characteristic involves calling BleGATTcFindChar() which in turn will result in the
EVFINDCHAR event message and typically is as follows:

Register a handler for the EVFINDCHAR event message

On EVFINDCHAR event message
If Char Value Handle == 0 then
Characteristic not found
Else
Characteristic has been found

Call BleGATTcFindChar ()
If BleGATTcFindChar () ok then Wait for EVFINDCHAR

Returns INTEGER, a result code.

The typical value is 0x0000, indicating a successful operation and it means an EVFINDCHAR
event message is thrown by the smartBASIC runtime engine containing the results. A non-zero
return value implies an EVFINDCHAR message is not thrown.

Arguments:

byVal nConnHandle AS INTEGER

This is the connection handle as returned in the on-connect event for the connection on which
the remote GATT server can be accessed. This is returned in the EVBLEMSG event message
with msgld == 0 and msgCtx is the connection handle.

byVal svcUuidHndl AS INTEGER
svcUuidHndl | Set this to the service UUID handle which is generated either by BleHandleUuid16() or
BleHandleUuid128() or BleHandleUuidSibling().

byVal svcindex AS INTEGER
svcindex | This is the instance of the service to look for with the UUID handle svcUuidHndl, where 0 is the
first instance, 1 is the second, and so on.

byVal charUuidHndl AS INTEGER
charUuidHndl | Set this to the characteristic UUID handle which is generated either by BleHandleUuid16() or
BleHandleUuid128() or BleHandleUuidSibling().

byVal charindex AS INTEGER
charlndex | This is the instance of the characteristic to look for with the UUID handle charUuidHndl, where 0
is the first instance, 1 is the second, and so on.

connHandle

Example:

// Example :: BleGATTcFindChar.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

https://connectivity.lairdtech.com 220 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird

) CONNECTIVITY
User Guide _)

//

//Remote server has 5 prim services with 16 bit uuid and 3 with 128 bit uuids
// 3 of the 16 bit uuid are the same value 0xDEAD and

// 2 of the 128 bit uuids are also the same 112233445566778899AABBCCDDEEFF
//

// Server created using BleGATTcTblFindChar.sub invoked in OpenMcp.scr

// using Nordic Usb Dongle PC10000

DIM rc,at$,conHndl, uHndl,uuid$, sIdx, cIdx

//
// Initialise and instantiate service, characteristic, start adverts

//
FUNCTION OnStartup ()

DIM rc, adRpt$, addr$, scRpt$
rc=BleAdvRptInit (adRpt$, 2, 0, 10)

IF rc==0 THEN : rc=BleScanRptInit (scRpt$) : ENDIF
IF rc==0 THEN : rc=BleAdvRptsCommit (adRpt$,scRpt$) : ENDIF
IF rc==0 THEN : rc=BleAdvertStart (0,addr$,50,0,0) : ENDIF

//open the GATT client with default notify/indicate ring buffer size

IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF
ENDFUNC rc
//
// Close connections so that we can run another app without problems
//

SUB CloseConnections ()
rc=BleDisconnect (conHndl)
rc=BleAdvertStop ()

ENDSUB

//
// Ble event handler
//
FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)

DIM uu$,uHndS, uHndC

conHndl=nCtx

https://connectivity.lairdtech.com 221 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird

) CONNECTIVITY
User Guide _)

IF nMsgID==1 THEN
PRINT "\n\n- Disconnected"
EXITFUNC O
ELSEIF nMsgID==0 THEN
PRINT "\n- Connected, so scan remote GATT Table for an instance of char"
uHndS = BleHandleUuidl6 (0xXDEAD)
uu$ = "112233445566778899AABBCCDDEEFF0O0"
uu$ = StrDehexize$ (uu$)
uHndC = BleHandleUuidl28 (uu$)
sIdx = 2
cIdx = 1 //valHandle will be 32
rc = BleGattcFindChar (conHndl, uHndS, sIdx, uHndC, cIdx)
IF rc==0 THEN
//BleDiscCharFirst () will exit with 0 when operation is complete
WAITEVENT
ENDIF

sIdx 1

cIdx = 3 //does not exist
rc = BleGattcFindChar (conHndl, uHndS, sIdx, uHndC, cIdx)
IF rc==0 THEN
//BleDiscCharFirst () will exit with 0 when operation is complete
WAITEVENT
ENDIF
CloseConnections ()
ENDIF
ENDFUNC 1

"//
v/

function HandlerFindChar (cHndl, cProp,hVal, isUuid) as integer
print "\nEVFINDCHAR "
print " cHndl=";cHndl
print " Props=";cProp
print " valHndl=";hVal
print " ISvcUuid=";isUuid
IF hval == 0 THEN
PRINT "\nDid NOT find the characteristic"
ELSE

PRINT "\nFound the characteristic at handle ";hVal

https://connectivity.lairdtech.com 222 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird

) CONNECTIVITY
User Guide _)

PRINT "\nSvc Idx=";sIdx;" Char Idx=";cIdx
ENDIF

endfunc 0

//

// Main () equivalent

//

ONEVENT EVBLEMSG CALL HndlrBleMsg
OnEvent EVFINDCHAR call HandlerFindChar

//Register base uuids with the underlying stack, otherwise the services with the

//128bit uuid's will be delivered with a uuid handle == FF000000 == UNKNOWN
uuid$ = "112233445566778899AABBCCDDEEFF00"
uuid$ = StrDehexize$ (uuids$)

uHndl = BleHandleUuidl28 (uuid$)
uuid$ = "1122DEAD5566778899AABBCCDDBEEF00"
uuid$ = StrDehexize$ (uuid$)

uHndl = BleHandleUuidl28 (uuid$)

IF OnStartup ()==0 THEN

PRINT "\nAdvertising, and GATT Client is open\n"
ELSE

PRINT "\nFailure OnStartup"

ENDIF

WAITEVENT

PRINT "\nExiting..."

Expected Output:

Advertising, and GATT Client is open

- Connected, so scan remote GATT Table for an instance of char
EVFINDCHAR cHndl=866 Props=2 valHndl=32 ISvcUuid=0

Found the characteristic at handle 32

Svc Idx=2 Char Idx=1

EVFINDCHAR cHndl=866 Props=0 valHndl=0 ISvcUuid=0

Did NOT find the characteristic

- Disconnected
Exiting...

https://connectivity.lairdtech.com 223 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions l_ailﬂ-(:lw CONNECTIVITY

User Guide

5.9.8 BleGattcFindDesc

FUNCTION

This function facilitates an efficient way of locating the details of a descriptor if the UUID is known along with the UUID of the
service and the UUID of the characteristic containing it. The results are delivered in a EVFINDDESC event message. If the
GATT server table has multiple instances of the same service/characteristic/descriptor combination then this function works
because, in addition to the UUID handles to be searched for, it accepts instance parameters which are indexed from 0. This
means that the second instance of a descriptor in the fourth instance of a characteristic with the same UUID in the third
instance of a service with the same UUID is located with index values 1, 3, and 2 respectively.

Given that the results are returned in an event message, a handler must be registered for the EVFINDDESC event.

Depending on the size of the remote GATT server table and the connection interval, the search of the characteristic may take
many hundreds of milliseconds. While this is in progress, it is safe to do other non-GATT-related operations such as servicing
sensors and displays or any of the onboard peripherals.

Note: It is not currently possible to scan for characteristics in included services. This planned for a future release.

BLEGATTCFINDDESC (connHndl, svcUuHndlI, svcldx, charUuHndl, charldx,descUuHndl, descldx)

A typical pseudo code for finding a descrirptor involves calling BleGATTcFindDesc() which in turn results in the EVFINDDESC
event message and typically is as follows:

Register a handler for the EVFINDDESC event message

On EVFINDDESC event message
If Descriptor Handle == 0 then
Descriptor not found
Else
Descriptor has been found

Call BleGATTcFindDesc ()
If BleGATTcFindDesc () ok then Wait for EVFINDDESC

Returns INTEGER, a result code.

The typical value is 0x0000, indicating a successful operation and it means an EVFINDDESC event
message is thrown by the smartBASIC runtime engine containing the results. A non-zero return value
implies an EVFINDDESC message is not thrown

Arguments:

byVal connHndl AS INTEGER

This is the connection handle as returned in the on-connect event for the connection on which the remote
GATT server can be accessed. This is returned in the EVBLEMSG event message with msgld == 0 and
msgCtx is the connection handle.

byVal svcUuHndl AS INTEGER

svcUuHnNd! | Set this to the service UUID handle which is generated either by BleHandleUuid16() or
BleHandleUuid128() or BleHandleUuidSibling().

byVal svcldx AS INTEGER
svcldx | This is the instance of the service to look for with the UUID handle svcUuidHndI, where 0 is the first
instance, 1 is the second, and so on.

byVal charUuHndl AS INTEGER
charUuHndl | Set this to the characteristic UUID handle which is generated either by BleHandleUuid16() or
BleHandleUuid128() or BleHandleUuidSibling().

connHndl

https://connectivity.lairdtech.com 224 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

byVal charldx AS INTEGER
charldx | This is the instance of the characteristic to look for with the UUID handle charUuidHndl, where 0 is the first
instance, 1 is the second, and so on.

byVal descUuHndl AS INTEGER
descUuHndl | Set this to the descriptor uuid handle which is generated either by BleHandleUuid16() or
BleHandleUuid128() or BleHandleUuidSibling().

byVal descldx AS INTEGER
descldx | This is the instance of the descriptor to look for with the UUID handle charUuidHndl, where 0 is the first
instance, 1 is the second, and so on.

Example:

// Example :: BleGATTcFindDesc.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

//

//Remote server has 5 prim services with 16 bit uuid and 3 with 128 bit uuids
// 3 of the 16 bit uuid are the same value 0xDEAD and

// 2 of the 128 bit uuids are also the same 112233445566778899AABBCCDDEEFF
//

// Server created using BleGATTcTblFindDesc.sub invoked in OpenMcp.scr

// using Nordic Usb Dongle PC10000

DIM rc,at$,conHndl, uHndl,uuid$, sIdx, cIdx,dIdx

//
// Initialise and instantiate service, characteristic, start adverts

//
FUNCTION OnStartup ()

DIM rc, adRpt$, addr$, scRpt$

rc=BleAdvRptInit (adRpt$, 2, 0, 10)

IF rc==0 THEN : rc=BleScanRptInit (scRpt$) : ENDIF

IF rc==0 THEN : rc=BleAdvRptsCommit (adRpt$,scRpt$) : ENDIF
IF rc==0 THEN : rc=BleAdvertStart (0,addr$,50,0,0) : ENDIF

//open the GATT client with default notify/indicate ring buffer size

IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF
ENDFUNC rc
1/
// Close connections so that we can run another app without problems
1/

SUB CloseConnections ()

https://connectivity.lairdtech.com 225 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird

) CONNECTIVITY
User Guide \—)

rc=BleDisconnect (conHndl)
rc=BleAdvertStop ()
ENDSUB

//
// Ble event handler
//
FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)

DIM uu$, uHndS, uHndC, uHndD
conHndl=nCtx
IF nMsgID==1 THEN
PRINT "\n\n- Disconnected"
EXITFUNC O
ELSEIF nMsgID==0 THEN
PRINT "\n- Connected, so scan remote GATT Table for ALL services"
uHndS = BleHandleUuidl6 (0xDEAD)
uu$ = "112233445566778899AABBCCDDEEFF0O0"
uu$ = StrDehexize$ (uu$)
uHndC = BleHandleUuidl28 (uu$)
uu$ = "1122C0ODE5566778899AABBCCDDEEFFOO0O"
uu$ = StrDehexize$ (uu$)
uHndD = BleHandleUuidl28 (uu$)

sIdx 2

cldx = 1

dIdx = 1 // handle will be 37

rc = BleGattcFindDesc (conHndl, uHndS, sIdx, uHndC, cIdx, uHndD, dIdx)
IF rc==0 THEN

//BleDiscCharFirst () will exit with 0 when operation is complete

WAITEVENT
ENDIF
sIdx =1
cldx = 3

dIdx = 4 //does not exist

rc = BleGattcFindDesc (conHndl, uHndS, sIdx, uHndC, cIdx, uHndD, dIdx)

IF rc==0 THEN
//BleDiscCharFirst() will exit with 0 when operation is complete
WAITEVENT

ENDIF

CloseConnections ()

https://connectivity.lairdtech.com 226 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions
User Guide

Laird 2» CONNECTIVITY

ENDIF
ENDFUNC 1

'/

'/
function HandlerFindDesc (cHndl,hndl) as integer
print "\nEVFINDDESC "
print " cHndl=";cHndl
print " dscHndl=";hndl
IF hndl == 0 THEN

PRINT "\nDid NOT find the descriptor"
ELSE

PRINT "\nFound the descriptor at handle ";hndl

PRINT "\nSvc Idx=";sIdx;" Char Idx=";cIdx;"
ENDIF

endfunc 0

//

desc Idx=";dIdx

// Main () equivalent

//

ONEVENT EVBLEMSG

OnEvent EVFINDDESC

CALL HndlrBleMsg

call HandlerFindDesc

//Register base uuids with the underlying stack,

uuid$ = "112233445566778899AABBCCDDEEFFO0"
uuid$ = StrDehexize$ (uuid$)

uHndl = BleHandleUuidl28 (uuid$)

uuid$ = "1122DEAD5566778899AABBCCDDBEEF00"
uuid$ = StrDehexize$ (uuid$)

uHndl = BleHandleUuid128 (uuid$)

IF OnStartup ()==0 THEN

PRINT "\nAdvertising,
ELSE
PRINT "\nFailure OnStartup"

ENDIF

//128bit uuid's will be delivered with a uuid handle ==

and GATT Client is open\n"

otherwise the services with the

FF000000 == UNKNOWN

https://connectivity.lairdtech.com

227

© Copyright 2019 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

il“ NNECTIVITY
User Guide _d) €0 CTIV

WAITEVENT

PRINT "\nExiting..."

Expected Output:

Advertising, and GATT Client is open

- Connected, so scan remote GATT Table for ALL services
EVFINDDESC cHndl=1106 dscHndl=37

Found the descriptor at handle 37

Svc Idx=2 Char Idx=1 desc Idx=1

EVFINDDESC cHndl=1106 dscHndl=0

Did NOT find the descriptor

- Disconnected
Exiting...

5.9.9 BleGattcRead/BleGattcReadData
FUNCTIONS

If the handle for an attribute is known, then these functions are used to read the content of that attribute from a specified offset
in the array of octets in that attribute value.

Given that the success or failure of this read operation is returned in an event message, a handler must be registered for the
EVATTRREAD event.

Depending on the connection interval, the read of the attribute may take many hundreds of milliseconds. While this is in
progress, it is safe to do other non-GATT-related operations such as servicing sensors and displays or any of the onboard
peripherals.

BleGATTcRead is used to trigger the procedure and BleGattcReadData is used to read the data from the underlying cache
when the EVATTRREAD event message is received with a success status.
BLEGATTCREAD (connHndl, attrHndl, offset)

A typical pseudo code for reading the content of an attribute calling BleGattcRead() which in turn results in the EVATTRREAD
event message and typically is as follows:

Register a handler for the EVATTRREAD event message

On EVATTRREAD event message
If GATT Status == 0 then
BleGattcReadData () //to actually get the data
Else
Attribute could not be read

Call BleGattcRead()
If BleGattcRead () ok then Wait for EVATTRREAD

Returns INTEGER, a result code.

The typical value is 0x0000, indicating a successful operation and it means an EVATTRREAD event
message is thrown by the smartBASIC runtime engine containing the results. A non-zero return value
implies an EVATTRREAD message is not thrown.

Arguments:
byVal connHndl AS INTEGER
connHndl This is the connection handle as returned in the on-connect event for the connection on which the remote
GATT server can be accessed. This is returned in the EVBLEMSG event message with msgld == 0 and
msgCtx is the connection handle.
https://connectivity.lairdtech.com 228 Americas: +1-800-492-2320

© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions l_ailﬂ-‘:lw CONNECTIVITY

User Guide

attrind| byVal attrHndl AS INTEGER
Set to the handle of the attribute to read. It is a value in the range 1 to 65535.
offset byVal offset AS INTEGER
This is the offset from which the data in the attribute is to be read.

BLEGATTCREADDATA (connHndl, attrHndl, offset, attrData$)

This function is used to collect the data from the underlying cache when the EVATTRREAD event message has a success
GATT status code.

Returns INTEGER, a result code. The typical value is 0x0000, indicating a successful read.

Arguments:

byVal connHndl AS INTEGER

This is the connection handle as returned in the on-connect event for the connection on which the
remote GATT server can be accessed. This is returned in the EVBLEMSG event message with
msgld == 0 and msgCtx is the connection handle.

byRef attrHndl AS INTEGER
attrHndl | The handle for the attribute that was read is returned in this variable. It is the same as the one
supplied in BleGATTcRead, but supplied here so that the code can be stateless.

byRef offset AS INTEGER
offset | The offset into the attribute data that was read is returned in this variable. It is the same as the one
supplied in BleGATTcRead, but supplied here so that the code can be stateless.

byRef attrData$ AS STRING

connHndl

attrData . . . o
$ The attribute data which was read is supplied in this parameter.
Example:
// Example :: BleGATTcRead.sb

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

//

//Remote server has 3 prim services with 16 bit uuid. First service has one
//characteristic whose value attribute is at handle 3 and has read/write props
//

// Server created using BleGattcTblRead.sub invoked in OpenMcp.scr

// using Nordic Usb Dongle PC10000

DIM rc,at$,conHndl,uHndl,nOff, atHndl

1/

// Initialise and instantiate service, characteristic, start adverts

//
FUNCTION OnStartup ()

DIM rc, adRpt$, addr$, scRpt$
rc=BleAdvRptInit (adRpt$, 2, 0, 10)

IF rc==0 THEN : rc=BleScanRptlInit (scRpt$) : ENDIF
https://connectivity.lairdtech.com 229 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird

) CONNECTIVITY
User Guide _)

IF rc==0 THEN : rc=BleAdvRptsCommit (adRpt$,scRpt$) : ENDIF

IF rc==0 THEN : rc=BleAdvertStart (0,addr$,50,0,0) : ENDIF

//open the GATT client with default notify/indicate ring buffer size
IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF

ENDFUNC rc

//
// Close connections so that we can run another app without problems
//

SUB CloseConnections ()

rc=BleDisconnect (conHndl)
rc=BleAdvertStop ()
ENDSUB

//
// Ble event handler
//
FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)

DIM uHndA
conHndl=nCtx
IF nMsgID==1 THEN
PRINT "\n\n- Disconnected"
EXITFUNC O
ELSEIF nMsgID==0 THEN
PRINT "\n- Connected, so read attibute handle 3"
atHndl = 3
nOff = 0
rc=BleGattcRead (conHndl, atHndl, nOff)
IF rc==0 THEN
WAITEVENT
ENDIF
PRINT "\nread attibute handle 300 which does not exist"
atHndl = 300
noff = 0
rc=BleGattcRead (conHndl, atHndl, nOff)
IF rc==0 THEN
WAITEVENT
ENDIF

CloseConnections ()

https://connectivity.lairdtech.com 230 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions
User Guide

Laird l 2» CONNECTIVITY

ENDIF
ENDFUNC 1

'/

'/
function HandlerAttrRead (cHndl,aHndl,nSts) as integer
dim nOfst,nAhndl, at$
print "\nEVATTRREAD "
print " cHndl=";cHndl
print " attrHndl=";aHndl
print " status=";integer.h' nSts
if nSts == 0 then
print "\nAttribute read OK"
rc = BleGattcReadData (cHndl,nAhndl,nOfst,ats$)
print "\nData = ";StrHexize$ (at$)
print " Offset= ";nOfst

print " Len=";strlen (at$)

print "\nhandle = ";nAhndl
else

print "\nFailed to read attribute"
endif

endfunc 0

//
// Main () equivalent
//
ONEVENT EVBLEMSG CALL HndlrBleMsg
OnEvent EVATTRREAD call HandlerAttrRead
IF OnStartup ()==0 THEN

PRINT "\nAdvertising, and GATT Client is open\n"
ELSE

PRINT "\nFailure OnStartup"
ENDIF
WAITEVENT

PRINT "\nExiting..."

https://connectivity.lairdtech.com 231
© Copyright 2019 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

User Guide La"'d 2» CONNECTIVITY

Expected Output:

Advertising, and GATT Client is open

- Connected, so read attibute handle 3

EVATTRREAD cHndl=2960 attrHndl=3 status=00000000
Attribute read OK

Data = 00000000 Offset= 0 Len=4

handle = 3

read attibute handle 300 which does not exist
EVATTRREAD cHndl=2960 attrHndl=300 status=00000101
Failed to read attribute

- Disconnected
Exiting...

5.9.10BleGattcWrite

FUNCTION

If the handle for an attribute is known then this function is used to write into an attribute starting at offset 0. The
acknowledgement is returned via a EVATTRWRITE event message.

Given that the success or failure of this write operation is returned in an event message, a handler must be registered for the
EVATTRWRITE event.

Depending on the connection interval, the write to the attribute may take many hundreds of milliseconds. While this is in
progress, it is safe to do other non GATT related operations such as servicing sensors and displays or any of the onboard
peripherals.

BLEGATTCWRITE (connHndl, attrHndl, attrData$)

A typical pseudo code for writing to an attribute which results in the EVATTRWRITE event message and typically is as follows:

Register a handler for the EVATTRWRITE event message

On EVATTWRITE event message
If GATT Status == 0 then
Attribute was written successfully
Else
Attribute could not be written

Call BleGattcWrite ()
If BleGattcWrite () ok then Wait for EVATTRWRITE

Returns INTEGER, a result code. The typical value is 0x0000, indicating a successful read.
Arguments:
byVal connHndl AS INTEGER
connHndl This is the connection handle as returned in the on-connect event for the connection on which the remote
GATT server can be accessed. This is returned in the EVBLEMSG event message with msgld == 0 and
msgCtx is the connection handle.
attrind| byVal attrHndl AS INTEGER
The handle for the attribute that is to be written to.
byRef attrData$ AS STRING
attrData$ The attribute data to write.
https://connectivity.lairdtech.com 232 Americas: +1-800-492-2320

© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird

) CONNECTIVITY
User Guide _)

Example:

// Example :: BleGATTcWrite.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

//

//Remote server has 3 prim services with 16 bit uuid. First service has one
//characteristic whose value attribute is at handle 3 and has read/write props
//

// Server created using BleGATTcTblWrite.sub invoked in OpenMcp.scr
// using Nordic Usb Dongle PC10000

DIM rc,at$,conHndl, uHndl, atHndl

//

// Initialise and instantiate service, characteristic, start adverts

//
FUNCTION OnStartup ()

DIM rc, adRpt$, addr$, scRpt$

rc=BleAdvRptInit (adRpt$, 2, 0, 10)

IF rc==0 THEN : rc=BleScanRptInit (scRpt$) : ENDIF

IF rc==0 THEN : rc=BleAdvRptsCommit (adRpt$,scRpt$) : ENDIF

IF rc==0 THEN : rc=BleAdvertStart (0,addr$,50,0,0) : ENDIF

//open the GATT client with default notify/indicate ring buffer size
IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF

ENDFUNC rc

//
// Close connections so that we can run another app without problems
//

SUB CloseConnections ()

rc=BleDisconnect (conHndl)
rc=BleAdvertStop ()

ENDSUB

//
// Ble event handler
//
FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)

https://connectivity.lairdtech.com 233 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

il“ NNECTIVITY
User Guide _d) €0 CTIV

DIM uHndA

conHndl=nCtx

IF nMsgID==1 THEN
PRINT "\n\n- Disconnected"
EXITEFUNC O

ELSEIF nMsgID==0 THEN
PRINT "\n- Connected, so write to attibute handle 3"
atHndl = 3
at$="\01\02\03\04"
rc=BleGattcWrite (conHndl,atHndl, at$)
IF rc==0 THEN

WAITEVENT
ENDIF
PRINT "\nwrite to attibute handle 300 which does not exist"
atHndl = 300
rc=BleGattcWrite (conHndl, atHndl, at$)
IF rc==0 THEN
WAITEVENT

ENDIF
CloseConnections ()

ENDIF

ENDFUNC 1

'/
'/

function HandlerAttrWrite (cHndl,aHndl,nSts) as integer
dim nOfst,nAhndl,at$
print "\nEVATTRWRITE "
print " cHndl=";cHndl
print " attrHndl=";aHndl
print " status=";integer.h' nSts
if nSts == 0 then
print "\nAttribute write OK"
else
print "\nFailed to write attribute"
endif

endfunc 0

//

https://connectivity.lairdtech.com 234 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

// Main () equivalent

//

ONEVENT EVBLEMSG CALL HndlrBleMsg
OnEvent EVATTRWRITE call HandlerAttrWrite
IF OnStartup ()==0 THEN

PRINT "\nAdvertising, and GATT Client is open\n"
ELSE
PRINT "\nFailure OnStartup"

ENDIF

WAITEVENT

PRINT "\nExiting..."

Expected Output:

Advertising, and GATT Client is open

- Connected, so read attibute handle 3

EVATTRWRITE cHndl=2687 attrHndl=3 status=00000000
Attribute write OK

Write to attibute handle 300 which does not exist
EVATTRWRITE cHndl=2687 attrHndl=300 status=00000101
Failed to write attribute

- Disconnected
Exiting...

5.9.11 BleGattcWriteCmd

FUNCTION

If the handle for an attribute is known, then this function is used to write into an attribute at offset 0 when no acknowledgment
response is expected. The signal that the command has actually been transmitted and that the remote link layer has
acknowledged is by the EVNOTIFYBUF event.

Note: The acknowledgement received for the BleGattcWrite() command is from the higher level GATT layer. Do not
confuse this with the link layer ACK .

All packets are acknowledged at link layer level. If a packet fails to get through, then that condition manifests as a
connection drop due to the link supervision timeout.

Given that the transmission and link layer ACK of this write operation is indicated in an event message, a handler must be
registered for the EVNOTIBUF event.

Depending on the connection interval, the write to the attribute may take many hundreds of milliseconds. While this is in
progress, it is safe to do other non-GATT-related operations such as servicing sensors and displays or any of the onboard
peripherals.

https://connectivity.lairdtech.com 235 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

il“ NNECTIVITY
User Guide _d) €0 CTIV

BLEGATTCWRITECMD (connHndl, attrHndl, attrData$)

The following is a typical pseudo code for writing to an attribute which results in the EVNOTIFYBUF event:

Register a handler for the EVNOTIFYBUF event message

On EVNOTIFYBUF event message
Can now send another write command

Call BleGattcWriteCmd ()
If BleGattcWrite () ok then Wait for EVNOTIFYBUF

Returns INTEGER, a result code. The typical value is 0x0000, indicating a successful read.
Arguments:
byVal connHndl AS INTEGER
connHndl This is the connection handle as returned in the on-connect event for the connection on which the
remote GATT Server can be accessed. This is returned in the EVBLEMSG event message with
msgld == 0 and msgCtx is the connection handle.
attrand| byVal attrHndl AS INTEGER
The handle for the attribute that is to be written to.
byRef attrData$ AS STRING
attrDatas The attribute data to write.
Example:
// Example :: BleGATTcWriteCmd.sb

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

//

//Remote server has 3 prim services with 16 bit uuid. First service has one
//characteristic whose value attribute is at handle 3 and has read/write props
//

// Server created using BleGATTcTblWriteCmd.sub invoked in OpenMcp.scr

// using Nordic Usb Dongle PC10000

DIM rc,at$,conHndl,uHndl, atHndl

//
// Initialise and instantiate service, characteristic, start adverts
//
FUNCTION OnStartup ()

DIM rc, adRpt$, addr$, scRpt$s
rc=BleAdvRptInit (adRpt$, 2, 0, 10)

IF rc==0 THEN : rc=BleScanRptlInit (scRpt$) : ENDIF
IF rc==0 THEN : rc=BleAdvRptsCommit (adRpt$,scRpt$) : ENDIF
IF rc==0 THEN : rc=BleAdvertStart (0,addr$,50,0,0) : ENDIF
https://connectivity.lairdtech.com 236 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

il“ NNECTIVITY
User Guide _d) €0 CTIV

//open the GATT client with default notify/indicate ring buffer size
IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF

ENDFUNC rc

//
// Close connections so that we can run another app without problems
//

SUB CloseConnections ()

rc=BleDisconnect (conHndl)
rc=BleAdvertStop ()

ENDSUB

//
// Ble event handler
//
FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)

DIM uHndA
conHndl=nCtx
IF nMsgID==1 THEN
PRINT "\n\n- Disconnected"
EXITFUNC O
ELSEIF nMsgID==0 THEN
PRINT "\n- Connected, so write to attribute handle 3"
atHndl = 3
at$="\01\02\03\04"
rc=BleGattcWriteCmd (conHndl, atHndl, at$)
IF rc==0 THEN
WAITEVENT
ENDIF
PRINT "\n- write again to attribute handle 3"
atHndl = 3
at$="\05\06\07\08"
rc=BleGattcWriteCmd (conHndl, atHndl, at$)
IF rc==0 THEN
WAITEVENT
ENDIF
PRINT "\n- write again to attribute handle 3"
atHndl = 3
at$="\09\0A\0B\OC"

https://connectivity.lairdtech.com 237 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

User Guide La"'d 2» CONNECTIVITY

rc=BleGattcWriteCmd (conHndl, atHndl, at$)
IF rc==0 THEN
WAITEVENT
ENDIF
PRINT "\nwrite to attribute handle 300 which does not exist"
atHndl = 300
rc=BleGattcWriteCmd (conHndl, atHndl, at$)
IF rc==0 THEN
PRINT "\nEven when the attribute does not exist an event will occur"
WAITEVENT
ENDIF
CloseConnections ()
ENDIF
ENDFUNC 1

"//
"/

function HandlerNotifyBuf () as integer

print "\nEVNOTIFYBUF Event"

endfunc 0 '//need to progress the WAITEVENT

//
// Main () equivalent
//
ONEVENT EVBLEMSG CALL HndlrBleMsg
OnEvent EVNOTIFYBUF call HandlerNotifyBuf
IF OnStartup ()==0 THEN

PRINT "\nAdvertising, and GATT Client is open\n"
ELSE

PRINT "\nFailure OnStartup"
ENDIF
WAITEVENT

PRINT "\nExiting..."

https://connectivity.lairdtech.com 238 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

Expected Output:

Advertising, and GATT Client is open

- Connected, so write to attribute handle 3

EVNOTIFYBUF Event

- write again to attribute handle 3

EVNOTIFYBUF Event

- write again to attribute handle 3

EVNOTIFYBUF Event

write to attribute handle 300 which does not exist

Even when the attribute does not exist an event will occur
EVNOTIFYBUF Event

- Disconnected
Exiting...

5.9.12BleGattcWritePrepare
FUNCTION

The Write Prepare and Write Execute functions are used to perform the Long Write procedure. Long Writes are used when the
value handle is known, but the length of the characteristic value is longer than can be sent in a single Write Request message.

BleGattcWritePrepare requests that the GATT server prepares to write the attribute value. This function can be used multiple
times as long as a BleGattcWriteExecute function is used at the end to perform the full Long Write.

BLEGATTCWRITEPREPARE (connHndl, attrHndl, offset, attrData$)

Returns INTEGER, a result code. The typical value is 0x0000, indicating a successful read.
Arguments:
byVal connHndl AS INTEGER
connHndl This is the connection handle as returned in the on-connect event for the connection on which the
remote GATT Server can be accessed. This is returned in the EVBLEMSG event message with
msgld == 0 and msgCtx is the connection handle.
attrand| byVal attrHndl AS INTEGER
The handle for the attribute that is to be written to.
fset byVal attrHndl AS INTEGER
offse
This is the offset at which the data in the attribute is to be written.
byRef attrData$ AS STRING
attrData$ The attribute data to write.
https://connectivity.lairdtech.com 239 Americas: +1-800-492-2320

© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions l_ailﬂ-(:lw CONNECTIVITY

User Guide

5.9.13BleGattcWriteExecute

FUNCTION

The BleGattcWriteExecute function is used by the GATT client to request the server to write or cancel the write of all the
values that have been prepare with the BleGattcWritePrepare function. It is used as the final step in a long write operation.

BLEGATTCWRITEEXECUTE (connHndl, Flags)

Returns INTEGER, a result code. The typical value is 0x0000, indicating a successful read.

Arguments:

byVal connHndl AS INTEGER
This is the connection handle as returned in the on-connect event for the connection on which the

connkindl remote GATT Server can be accessed. This is returned in the EVBLEMSG event message with
msgld == 0 and msgCtx is the connection handle.
byVal Flags AS INTEGER
Flags

Cancel all prepared writes
1 Immediately write all pending prepared values

5.9.14BleGattcNotifyRead

FUNCTION

A GATT server has the ability to notify or indicate the value attribute of a characteristic when enabled via the Client
Characeristic Configuration Descriptor (CCCD). This means data arrives from a GATT server at any time and must be
managed so that it can synchronised with the smartBASIC runtime engine.

Data arriving via a notification does not require GATT acknowledgements, however indications require them. This GATT client
manager saves data arriving via a notification in the same ring buffer for later extraction using the command
BleGattcNotifyRead(); for indications, an automatic GATT acknowledgement is sent when the data is saved in the ring buffer.
This acknowledgment happens even if the data is discarded because the ring buffer is full. If the data must not be
acknowledged when it is discarded on a full buffer, set the flags parameter in the BleGattcOpen() function where the GATT
client manager is opened.

In the case when an ACK is NOT sent on data discard, the GATT server is throttled and no further data is notified or indicated
by it until BleGattNotifyRead() is called to extract data from the ring buffer to create space and it triggers a delayed
acknowledgement.

When the GATT client manager is opened using BleGattcOpen(), it is possible to specify the size of the ring buffer. If a value
of 0 is supplied, then a default size is created. SYSINFO(2019) in a smartBASIC application or the interactive mode command
AT 1 2019 returns the default size. Likewise SYSINFO(2020) or the command AT | 2020 returns the maximum size.

Data that arrives via notifications or indications get stored in the ring buffer. At the same time, a EVATTRNOTIFY event is
thrown to the smartBASIC runtime engine. This is an event, in the same way an incoming UART receive character generates
an event; that is, no data payload is attached to the event.

BLEGATTCNOTIFYREAD (connHndl, attrHndl, attrData$, discardCount)

The following is a typical pseudo code for handling and accessing notification/indication data:

Register a handler for the EVATTRNOTIFY event message
On EVATTRNOTIFY event
BleGattcNotifyRead () //to actually get the data

Process the data

Enable notifications and/or indications via CCCD descriptors

https://connectivity.lairdtech.com 240 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

p NNECTIVITY
User Guide Lalrd co CTIV

Returns INTEGER, a result code. The typical value is 0x0000, indicating data was successful read.
Arguments:
connHndl byRef connHndl AS INTEGER
On exit, this is the connection handle of the GATT server that sent the notification or indication.
byRef attrHndl AS INTEGER
attrHndl

On exit, this is the handle of the characteristic value attribute in the notification or indication.

byRef attrData$ AS STRING
attrData$ | On exit, this is the data of the characteristic value attribute in the notification or indication. It is
always from offset 0 of the source attribute.

byRef discardedCount AS INTEGER

On exit, this should contain 0. It signifies the total number of notifications or indications that got
discardedCount | discared because the ring buffer in the GATT client manager was full.

If non-zero values are encountered, it is recommended that the ring buffer size be increased
by using BleGattcClose() when the GATT client was opened using BleGattcOpen().

Example:

// Example :: BleGATTcNotifyRead.sb

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples
//

// Charactersitic at handle 15 has notify (16==cccd)

// Charactersitic at handle 18 has indicate (19==cccd)

DIM rc,at$,conHndl, udndl,atHndl

//
// Initialise and instantiate service, characteristic, start adverts
//
FUNCTION OnStartup ()
DIM rc, adRpt$, addr$, scRpt$
rc=BleAdvRptInit (adRpt$, 2, 0, 10)
IF rc==0 THEN : rc=BleScanRptInit (scRpt$) : ENDIF
IF rc==0 THEN : rc=BleAdvRptsCommit (adRpt$,scRpt$) : ENDIF
IF rc==0 THEN : rc=BleAdvertStart (0,addr$,50,0,0) : ENDIF
//open the gatt client with default notify/indicate ring buffer size
IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF
ENDFUNC rc

//

// Close connections so that we can run another app without problems

//

SUB CloseConnections ()
rc=BleDisconnect (conHndl)
rc=BleAdvertStop ()

ENDSUB

//
// Ble event handler
//
FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)
conHndl=nCtx
IF nMsgID==1 THEN
PRINT "\n\n- Disconnected"
EXITFUNC O
ELSEIF nMsgID==0 THEN

https://connectivity.lairdtech.com 241 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird

) CONNECTIVITY
User Guide _)

PRINT "\n- Connected, so enable notification for char with cccd at 16"
atHndl = 16
ats="\01\00"
rc=BleGattcWrite (conHndl, atHndl, at$)
IF rc==0 THEN
WAITEVENT
ENDIF
PRINT "\n- enable indication for char with cccd at 19"
atHndl = 19
at$="\02\00"
rc=BleGattcWrite (conHndl, atHndl, at$)
IF rc==0 THEN
WAITEVENT
ENDIF
ENDIF
ENDFUNC 1

'/
'//
function HandlerAttrWrite (cHndl,aHndl,nSts) as integer

dim nOfst,nAhndl, at$

print "\nEVATTRWRITE "

print " cHndl=";cHndl

print " attrHndl=";aHndl

print " status=";integer.h' nSts

if nSts == 0 then

print "\nAttribute write OK"
else

print "\nFailed to write attribute"
endif

endfunc 0

'/
'// Thrown when AT+CFG 213 = 0
'/
function HandlerAttrNotify () as integer
dim chndl, aHndl,att$,dscd
print "\nEVATTRNOTIFY Event \n"
rc=BleGattcNotifyRead (cHndl,aHndl, att$,dscd)
print "\n BleGattcNotifyRead()"
if rc==0 then
print " Connection Handle=";cHndl
print " Characteristic Handle=";aHndl
print " Data=";StrHexize$ (att$)
print " Discarded=";dscd
else
print " failed with ";integer.h' rc
endif
endfunc 1

'/
'// Thrown when AT+CFG 213 = 1
'/
function HandlerAttrNotifyEx (BYVAL hConn, BYVAL hChar, BYVAL nType, BYVAL nLen, BYVAL
Data$) as integer

print "\nEVATTRNOTIFYEX Event :: "

if nType == 1 then
print "Notification\n"
elseif nType == 2 then
print "Indication\n"
endif
https://connectivity.lairdtech.com 242 Americas: +1-800-492-2320

© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

print " Connection Handle=";hConn
print " Characteristic Handle=";hChar
print " Data=";Datas$
endfunc 1
//
// Main () equivalent
//
ONEVENT EVBLEMSG CALL HndlrBleMsg
OnEvent EVATTRWRITE call HandlerAttrWrite
OnEvent EVATTRNOTIFY call HandlerAttrNotify // Thrown when AT+CFG 213 = 0
OnEvent EVATTRNOTIFYEX call HandlerAttrNotifyEx // Thrown when AT+CFG 213 = 1
IF OnStartup ()==0 THEN
PRINT "\nAdvertising, and Gatt Client is open\n"
ELSE
PRINT "\nFailure OnStartup"
ENDIF
WAITEVENT
PRINT "\nExiting..."

Expected Output:

Advertising, and GATT Client is open

- Connected, so enable notification for char with cccd at 16
EVATTRWRITE cHndl=877 attrHndl=16 status=00000000
Attribute write OK
- enable indication for char with cccd at 19
EVATTRWRITE cHndl=877 attrHndl=19 status=00000000
Attribute write OK
EVATTRNOTIFY Event

BleGATTcNotifyRead () cHndl=877 attrHndl=15 data=BAADCODE discarded=0
EVATTRNOTIFY Event

BleGATTcNotifyRead () cHndl=877 attrHndl=18 data=DEADBEEF discarded=0
EVATTRNOTIFY Event

BleGATTcNotifyRead () cHndl=877 attrHndl=15 data=BAADCODE discarded=0
EVATTRNOTIFY Event

BleGATTcNotifyRead () cHndl=877 attrHndl=18 data=DEADBEEF discarded=0

5.10Attribute Encoding Functions

Data for characteristics are stored in value attributes, arrays of bytes. Multibyte Characteristic Descriptors content is stored
similarly. Those bytes are manipulated in smartBASIC applications using STRING variables.

The Bluetooth specification stipulates that multibyte data entities are stored in little endian format and so all data manipulation
is done similarly. Little endian means that a multibyte data entity is stored so that lowest significant byte is positioned at the
lowest memory address and likewise, when transported, the lowest byte is on the wire first.

This section describes all the encoding functions which allow those strings to be written in smaller bytewise subfields in a more
efficient manner compared to the generic STRXXXX functions that are made available in smartBASIC.

Note: CCCD and SCCD descriptors are special cases; they have two bytes which are treated as 16-bit integers. This is
reflected in smartBASIC applications so that INTEGER variables are used to manipulate those values instead of
STRINGS.
https://connectivity.lairdtech.com 243 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

5.10.1 BleEncode8

FUNCTION

This function overwrites a single byte in a string at a specified offset. If the string is not long enough, then it is extended with
the new extended block uninitialized and then the byte specified is overwritten.

If the nindex is such that the new string length exceeds the maximum attribute length, this function fails. The maximum
attribute length can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth specification allows a length
between 1 and 512.

BLEENCODES (attr$, nData, nindex)

Returns | INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
Arguments:
byRef attr$ AS STRING
attr$. . : L .
This argument is the string that is written to an attribute.
nData byVal nData AS INTEGER
The least significant byte of this integer is saved. The rest is ignored.
byVal nindex AS INTEGER
This is the zero-based index into the string attr$ where the new data fragment is written to. If the string attr$
nindex | . . . o
is not long enough to fit the index plus the length of the fragment, it is extended. If the extended length
exceeds the maximum allowable length of an attribute (see SYSINFO(2013)), this function fails.
Example:
// Example :: BleEncode8.sb

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

DIM rc

DIM attr$

attr$="Laird"

PRINT "\nattrS$=";attr$

//Remember: - 4 bytes are used to store an integer on the BL654
//write 'C' to index 2 -- '111' will be ignored
rc=BleEncode8 (attr$,0x11143,2)

//write 'A' to index 0
rc=BleEncode8 (attr$, 0x41,0)

//write 'B' to index 1
rc=BleEncode8 (attr$, 0x42,1)

//write 'D' to index 3
rc=BleEncode8 (attr$, 0x44, 3)

//write 'y' to index 7 -- attr$ will be extended
rc=BleEncodeS8 (attr$, 0x67, 7)

PRINT "\nattr$ now = ";attr$

https://connectivity.lairdtech.com 244 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

User Guide Lalrd 2» CONNECTIVITY

Expected Output:

attr$=Laird
attr$ now = ABCDd\00\00g

5.10.2BleEncodel6

FUNCTION

This function overwrites two bytes in a string at a specified offset. If the string is not long enough, then it is extended with the
new extended block uninitialized and then the bytes specified are overwritten.

If the nindex is such that the new string length exceeds the maximum attribute length, this function fails. The maximum
attribute length can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth specification allows a length
between 1 and 512.

BLEENCODE16 (attr$, nData, nindex)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byRef attr$ AS STRING
This argument is the string that is written to an attribute.

byVal nData AS INTEGER
The two least significant bytes of this integer is saved. The rest is ignored.

byVal nindex AS INTEGER

This is the zero based index into the string attr$ where the new fragment of data is written. If the
nindex | string attr$ is not long enough to accommodate the index plus the length of the fragment, it is
extended. If the extended length exceeds the maximum allowable length of an attribute (see
SYSINFO(2013)), this function fails.

attr$

nData

Example:

// Example :: BleEncodel6.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

DIM rc, attr$
attr$="Laird"

PRINT "\nattr$=";attr$

//write 'CD' to index 2

rc=BleEncodel6 (attr$,0x4443,2)

//write 'AB' to index 0 - '2222' will be ignored
rc=BleEncodel6 (attr$,0x22224241,0)

//write 'EF' to index 3

rc=BleEncodel6 (attr$, 0x4645,4)

PRINT "\nattr$ now = ";attr$

Expected Output:

attr$=Laird
attr$ now = ABCDEF

https://connectivity.lairdtech.com 245 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird CONNECTIVITY

User Guide

5.10.3BleEncode24

FUNCTION

This function overwrites three bytes in a string at a specified offset. If the string is not long enough, then it is extended with the
new extended block uninitialized and then the bytes specified are overwritten.

If the nindex is such that the new string length exceeds the maximum attribute length, this function fails. The maximum
attribute length can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth specification allows a length
between 1 and 512.

BLEENCODE24 (attr$, nData, nindex)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
Arguments:
attrs byRef attr$ AS STRIN_G o _
This argument is the string that is written to an attribute.
byVal nData AS INTEGER
nData

The three least significant bytes of this integer is saved. The rest is ignored.

byVal nindex AS INTEGER

This is the zero based index into the string attr$ where the new fragment of data is written. If the string
nindex | attr$ is not long enough to accommodate the index plus the length of the fragment, it is extended. If the
extended length exceeds the maximum allowable length of an attribute (see SYSINFO(2013)), this
function fails.

Example:

// Example :: BleEncode24.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

DIM rc

DIM attr$: attr$="Laird"

//write 'BCD' to index 1
rc=BleEncode24 (attr$,0x444342,1)
//write 'A' to index 0
rc=BleEncodeS8 (attr$, 0x41,0)
//write 'EF'to index 4

rc=BleEncodel6 (attr$, 0x4645, 4)

PRINT "attr$=";attr$

Expected Output:

| attr$=ABCDEF

https://connectivity.lairdtech.com 246 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

User Guide La"'d 2» CONNECTIVITY

5.10.4 BleEncode32
FUNCTION

This function overwrites four bytes in a string at a specified offset. If the string is not long enough, then it is extended with the
new extended block uninitialized and then the bytes specified are overwritten.

If the nindex is such that the new string length exceeds the maximum attribute length, this function fails. The maximum
attribute length can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth specification allows a length
between 1 and 512.

BLEENCODE32(attr$,nData, nindex)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
Arguments:
attrs byRef attr$ AS STRIN_G o _
This argument is the string that is written to an attribute.
byVal nData AS INTEGER
nData

The four bytes of this integer is saved. The rest is ignored.

byVal nindex AS INTEGER

This is the zero based index into the string attr$ where the new fragment of data is written. If the
nindex | string attr$ is not long enough to accommodate the index plus the length of the fragment, it is
extended. If the extended length exceeds the maximum allowable length of an attribute (see
SYSINFO(2013)), this function fails.

Example:

// Example :: BleEncode32.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

DIM rc

DIM attr$: attr$="Laird"

//write 'BCDE' to index 1
rc=BleEncode32 (attr$,0x45444342,1)
//write 'A' to index 0

rc=BleEncodeS8 (attr$, 0x41,0)

PRINT "attr$=";attr$

Expected Output:

| attr$=ABCDE

https://connectivity.lairdtech.com 247 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird CONNECTIVITY

User Guide

5.10.5BleEncodeFLOAT

FUNCTION

This function overwrites four bytes in a string at a specified offset. If the string is not long enough, it is extended with the new
extended block uninitialized and then the byte specified is overwritten.

If the nindex is such that the new string length exceeds the maximum attribute length, this function fails. The maximum
attribute length can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth specification allows a length
between 1 and 512.

BLEENCODEFLOAT (attr$, nMatissa, nExponent, nindex)

Returns | INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
Arguments:
attrs byRef attr$ AS STRING

This argument is the string that is written to an attribute.

byVal nMantissa AS INTEGER

This value must be in the range -8388600 to +8388600 or the function fails. The data is written in little
endian so that the least significant byte is at the lower memory address.

Note: The range is not +/- 2048 because after encoding the following 2 byte values have special
. meaning:
nMatissa

0x007FFFFF NaN (Not a Number)
0x00800000 NRes (Not at this resolution)
0x007FFFFE + INFINITY
0x00800002 - INFINITY
0x00800001 Reserved for future use

nExponent byVal nExponent AS INTEGER

This value must be in the range -128 to 127 or the function fails.

byVal nindex AS INTEGER

This is the zero based index into the string attr$ where the new fragment of data is written. If the string
nindex | attr$ is not long enough to accommodate the index plus the length of the fragment, it is extended. If the
extended length exceeds the maximum allowable length of an attribute (see SYSINFO(2013)), this
function fails.

Example:

// Example :: BleEncodeFloat.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

DIM rc

DIM attr$: attr$=""

//write 1234567 x 107-54 as FLOAT to index 2
PRINT BleEncodeFLOAT (attr$,123456,-54,0)

//write 1234567 x 1071000 as FLOAT to index 2 and it will fail
//because the exponent is too large, it has to be < 127

IF BleEncodeFLOAT (attr$,1234567,1000,2) !=0 THEN

PRINT "\nFailed to encode to FLOAT"

https://connectivity.lairdtech.com 248 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird CONNECTIVITY

User Guide

ENDIF

//write 10000000 x 1070 as FLOAT to index 2 and it will fail
//because the mantissa is too large, it has to be < 8388600
IF BleEncodeFLOAT (attr$,10000000,0,2) !=0 THEN

PRINT "\nFailed to encode to FLOAT"

ENDIF

Expected Output:

0
Failed to encode to FLOAT
Failed to encode to FLOAT

5.10.6BleEncodeSFLOATEX

FUNCTION

This function overwrites two bytes in a string at a specified offset as short 16-bit float value. If the string is not long enough, it is
extended with the extended block uninitialized. Then the bytes are overwritten.

If the nindex is such that the new string length exceeds the maximum attribute length, this function fails. The maximum
attribute length can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth specification allows a length
between 1 and 512.

BLEENCODESFLOATEX (attr$, nData, nindex)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byRef attr$ AS STRING

atr$ This argument is the string that is written to an attribute
byVal nData AS INTEGER
nData The 32 bit value is converted into a 2-byte IEEE-11073 16-bit SFLOAT consisting of a 12-bit signed

mantissa and a 4-hbit signed exponent. This means a signed 32-bit value always fits in such a FLOAT
enitity, but there is a loss in significance to 12 from 32.

byVal nindex AS INTEGER

This is the zero-based index into the string attr$ where the new fragment of data is written. If the string

nindex | attr$ is not long enough to accommodate the index plus the length of the fragment, it is extended. If the
new length exceeds the maximum allowable length of an attribute (see SYSINFO(2013)), this function

fails.

Example:

// Example :: BleEncodeSFloatEx.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

DIM rc, mantissa, exp

DIM attr$: attrs$=""

//write 2,147,483,647 as SFLOAT to index 0
rc=BleEncodeSFloatEX (attr$,2147483647,0)

https://connectivity.lairdtech.com 249 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions Laird CONNECTIVITY

User Guide

rc=BleDecodeSFloat (attr$,mantissa, exp,0)

PRINT "\nThe number stored is ";mantissa;" x 10"";exp

Expected Output:

| The number stored is 214 x 1077

5.10.7BleEncodeSFLOAT
FUNCTION

This function overwrites two bytes in a string at a specified offset as short 16-bit float value. If the string is not long enough, it is
extended with the new block uninitialized. Then the byte specified is overwritten.

If the nindex is such that the new string length exceeds the maximum attribute length, this function fails. The maximum
attribute length can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth specification allows a length
between 1 and 512.

BLEENCODESFLOAT (attr$, nMatissa, nExponent, nindex)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
Arguments:
attr$ byRef attr$ AS STRING

This argument is the string that is written to an attribute.

byVal nMantissa AS INTEGER
This must be in the range -2046 to +2046 or the function fails. The data is written in little endian so the
least significant byte is at the lower memory address.

Note: The range is not +/- 2048 because after encoding, the following 2-byte values have special
meaning:
nMatissa 0x007FF NaN (Not a Number)
0x00800 NRes (Not at this resolution)
0x007FE + INFINITY
0x00802 - INFINITY
0x00801 Reserved for future use

byVal nExponent AS INTEGER
This value must be in the range -8 to 7 or the function fails.

byVal nindex AS INTEGER

This is the zero based index into the string attr$ where the new fragment of data is written. If the string
nindex | attr$ is not long enough to accommodate the index plus the length of the fragment, it is extended. If the
new length exceeds the maximum allowable length of an attribute (see SYSINFO(2013)), this function
fails.

nExponent

Example:

// Example :: BleEncodeSFloat.sb
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples

DIM rc

https://connectivity.lairdtech.com 250 Americas: +1-800-492-2320
© Copyright 2019 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL654 smartBASIC Extensions

La NNECTIVITY
User Guide Ird €0 CTIV

DIM attr$: attr$=""

SUB Encode (BYVAL mantissa, BYVAL exp)
IF BleEncodeSFloat (attr$,mantissa,exp,2) !=0 THEN
PRINT "\nFailed to encode to SFLOAT"
ELSE

PRINT "\nSuccess"

ENDIF
ENDSUB
Encode (1234, -4) //1234 x 10"-4
Encode (1234,10) //1234 x 10710 will fail because exponent too large
Encode (10000, 0) //10000 x 1070 will fail because mantissa too large

Expected Output:

Success
Failed to encode to SFLOAT
Failed to encode to SFLOAT

5.10.8BleEncodeTIMESTAMP

FUNCTION

This function overwrites a 7-byte string into the string at a specified offset. If the string is not long enough, it is extended with
the new extended block uninitialized and then the byte specified is overwritten.

The 7-byte string consists of a byte each for century, year, month, day, hour, minute and second. If (year * month) is zero, it is
taken as “not noted” year and all the other fields are set zero (not noted).

For example, 5 May 2013 10:31:24 is represented as \14\0D\05\05\0A\1F\18.

If the nindex is such that the new string length exceeds the maximum attribute length, this function fails. The maximum length
of an attribute as implemented can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth specification
allows a length between 1 and 512.

Note: When the attr$ string variable is updated, the two byte year field is converted into a 16-bit integer. Hence \14\0D
gets converted to \DD\O7

BLEENCODETIMESTAMP (attr$, timestamp$, nindex)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byRef attr$ AS STRING

This argument is the string that is written to an attribute.

byRef timestamp$ AS STRING

timestamp$ | This is a 7-byte string as described above. For example 5 May 2013 10:31:24 is entered
\14\0D\05\05\0A\1F\18.

byVal nindex AS INTEGER

This is the zero based index into the string attr$ where the new fragment of data is written. If the string attr$

attr$

nindex | . . L
is not long enough to accommodate the index plus the length of the fragment it is extended. If the new
length exceeds t