
A

www.lairdtech.com/wireless 1

© Copyright 2018 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BLE Mesh
BL654 Sample smartBASIC Application

Application Note 29.3.31.8-MESH310-8 - rel 1

1 INTRODUCTION

If you are migrating a smartBASIC application which works with an older mesh firmware then plase refer to
the migration section in this document which highlights the changes you have to make to your application.

In July of 2017, the Bluetooth SIG released Mesh Profile Specification v1.0 describing a Mesh Profile running on top of any
BLE device which is v4.0 or newer.

The following are the goals of this document:

▪ Provide an overview of BLE mesh from an application perspective by introducing you to some early beta BLE mesh
functionality in the Laird BL654 module

▪ Demonstrate how to utilize it in a sample smartBASIC application by testing the functionality over the UART using a
light switch client and server example.

Given the smartBASIC implementation, the mesh explanation is in the context of the event-driven smartBASIC programming
paradigm.

The mesh functionality described in this application note is for testing and demonstrative purpose only. It is not fit for
production as it is built using the v3.1.0 release of the BLE mesh SDK from Nordic Semiconductor. This release allows
provisioning of devices using either an iOS or Android device using an application from Nordic called nRF Mesh.

As this is based on the v3.1.0 release of the SDK from Nordic, Laird reserves the right to change the specifics of the API that
is used to expose the Mesh functionality and is described in this application note. Potential changes will be in line with any
changes that Nordic may introduce as they continue to work on the stack towards an eventual feature-rich production release
which they intend to have approved by the Bluetooth SIG. This implies that Laird will inherit that certification and pass it along
to customers who use a Laird module that incorporates mesh. The certification may extend to Sig adopted models as and
when smartBASIC applications implementing those models are available.

1.1 Low Power Node Overview

Ble Mesh is power hungry and that is because it uses a managed flood adverts mechanism for propogating messages to all
the nodes in a netwrok, and to do that the specification recommends that the radio receiver be switched on for nearly 100% of
the time. Given that on average most chipsets consume around 5milliAmps when the radio is listening for packets then battery
operation is feasible only when massive capacities are used and will not provide months of operation.

This is not unique to just mesh. Theoretically the same problem applies when a BLE device is in a GATT connection, but it
manages to operate from coin cell batteries simply because when in a connection, it knows exactly when an incoming
message is going to arrive and so only switches on its radio at those times. This results in very low duty cycles which results in
extremely low power consumption.

This low duty cycling paradigm is used to given the Low Power Node feature in BLE Mesh.

Simply put, a low power device relies on a Friend node, which is not battery powered, to listen for incoming messages on its
behalf. The friend will cache all incoming messages intended for the Low Power Node in a message queue.

The Low Power Node will then read that message queue as and when it needs to by polling the friend. This means that the
low power node can keep its radio switched off and like in a GATT connection only switch on the radio when interogating the

BLE Mesh
Application Note

www.lairdconnect.com/bluetooth
2

© Copyright 2019 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Friend for messages to be transferred from that queue. Hence with this type of operation the average power consumption can
get to very low values similar to GATT connections.

The BLE Mesh specification has defined a protocol for a low power node to seek a friend and then poll for messages from it
and is taken care of by the underlying stack.

2 REQUIREMENTS
To use this sample application, you need the following:

▪ DVK-BL654 (development kits) – Minimum of three. Ideally you will need a total of five to view the interaction with
multiple on/off servers
One of the five dev kits is used as a sniffer for mesh adverts to get a better understanding of mesh operation because it
shows reassuring activity (such as unprovisioned beacons). The sniffer device can be a BL652 devkit because the
smartBASIC application runs as-is on both platforms.

▪ An optional Nordic PCA10056 devkit to be used as a Friend Node if you want to try the Low Power Node example.

▪ PC with spare USB ports (using a USB hub, if appropriate)

▪ UwTerminalX – available for Windows, Linux and Mac: https://github.com/LairdCP/UwTerminalX/releases

▪ Engineering mesh-capable firmware for the BL654
The response to the AT command “AT I 3” will have the word ‘MESH310’.

▪ Sample command manager smartBASIC applications demonstrating mesh functionality called cmd.manager.mesh.sb

▪ Sample apps $autorun$.mesh.light.switch.client.sb, $autorun$.mesh.light.switch.server.sb and
$autorun$.mesh.light.switch.server.lpn.sb which are included in the firmware zip file.
The app $autorun$.mesh.light.switch.server.lpn.sb application demonstrates the light switch server application when
operating as low power node.

▪ An optional MeshSniff smartBASIC application called $autorun$.mesh.sniff.sb which is included in the firmware zip file.
This is used to sniff and display mesh-related advert packets which can be loaded onto a BL652 or BL654 devkit. See
section 11 for more details

▪ An iOS or Android smartphone with the latest OS and the latest application called nRF Mesh installed from either Apple
Store or Google Play respectively.

Note: For the purposes of this document, we assume you have familiarised yourself with compiling/loading smartBASIC

applications

The switches and jumpers on the BL654 devkits shall be configured as per the photograph below.

https://github.com/LairdCP/UwTerminalX/releases

BLE Mesh
Application Note

www.lairdconnect.com/bluetooth
3

© Copyright 2019 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Figure 1: BL654 development kit

WARNING: If the four jumpers on the bottom right of the board are missing then the four LEDs that are below them will not

operate. This mesh demo relies on showing those LED being switched on and off.

3 RELEASE SPECIFIC NOTES
This application note describes mesh functionality exposed via Laird’s smartBASIC programming language implemented on
top of Nordic Semiconductor’s Mesh SDK which is at release level 3.1.0. This release is not fully functional and offers the
advert bearer, relay functionality and Low Power node features. There is no ability to offer Friend capability as that will not be
available until a future release of the Nordic SDK.

Please refer to Nordic Semiconductor’s release notes for more details about the 3.1.0 SDK.

4 DEMO DESCRIPTION
The examples demonstrated in this application note are light switch client and server devices with provisioning of all devices
using an iOS or Android smartphone. It will also optionally demonstrate Low Power Node capability.

The client device implements the client behavior of a Nordic Semiconductor custom Light Switch model and likewise the server
device implements the server behavior of the Light Switch model. The Low Power Node capability is also demostrated using a
low power node variant of the light switch server application.

In the overview section, a model is described as an array of opcode and associated handlers. The Nordic custom Light Switch
model consists of the following opcodes and the recipient for each opcode.

Table 1: Nordic custom light switch model opcodes and opcode recipients

Opcode Name Opcode Role Msg Data

http://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.meshsdk.v0.10.0%2Fmd_RELEASE_NOTES.html

BLE Mesh
Application Note

www.lairdconnect.com/bluetooth
4

© Copyright 2019 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

SIMPLE_ON_OFF_OPCODE_SET 0xC10059 Server 0/1 tid

SIMPLE_ON_OFF_OPCODE_GET 0xC20059 Server

SIMPLE_ON_OFF_OPCODE_SET_UNRELIABLE 0xC30059 Server 0/1 tid

SIMPLE_ON_OFF_OPCODE_STATUS 0xC40059 Client 0/1

* 0059 – Nordic Semiconductor Company ID

tid – Transaction ID

The tid data field is just an incrementing number which wraps at 0xFF to 0x00; Nordic did not attached any specific meaning to
it. It is incremented each time a SET or SET_UNRELIABLE message is sent.

The example demonstrated in this appnote shows provisioning of up to three light switch servers and a single light switch
client.

The example is best described using the following figure (Figure 2).

Figure 2: Demo client/server structure

Figure 2 shows five devkits labelled Client, Server 0, Server 1, Server 2 and Friend. Each server contains a single element
implementing Nordic’s custom Light Switch Model server roles and the client contains four elements each containing a single
Light Switch Model client. The Friend is loaded with the Zephyr RTOS based Friend firmware provided in binary form and
loaded using the batch file supplied which is appropritely named.

When the client devkit is powered up, it registers four elements, each containing the same model (Nordic Light Switch Client
Model, Model ID=0x00590001). It starts to advertise an unprovisioned beacon and GATT Mesh Provisioning Service advert
and contains the same device UUID in both which always remains the same.

When an unprovisioned server is powered up, it registers a single element with a single model (Nordic Light Switch Server
Model, Model ID=0x00590000). It starts to advertise an unprovisioned beacon and GATT Mesh Provisioning Service advert
and contains the same device UUID in both which always remains the same.

The Nordic smartphone application nRF Mesh on an iOS or Android device is used to provision and configure the client and all
servers. It will also provision the Friend Node if you decide to try that.

The client’s first model is provisioned so that it has a node address of 0x0010, publish address of 0xD001, and subscribes to
group address 0xC001 (all addresses in range 0xC000 to 0xFF00 are group addresses). The second model is provisioned so
that it has a node address of 0x0011, publish address of 0xD002, and subscribes to group addresses 0xC002. The third model

BLE Mesh
Application Note

www.lairdconnect.com/bluetooth
5

© Copyright 2019 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

is provisioned so that it has a node address of 0x0012, publish address of 0xD003, and subscribes to group address 0xC003.
Finally, the fourth model is provisioned so that it publishes to group address 0xC000 (to which all servers will subscribe) and
does not subscribe to any address.

▪ Server 0 is provisioned so that it has a node address of 0x0001, publish address of 0xC001, and subscribes to group
address 0xC000 (which is the publish address of the fourth model in the client) and group addess 0xD001 (which is
publish address of first model in the client).

▪ Server 1 is provisioned so that it has a node address of 0x0002, publish address of 0xC002, and subscribes to group
address 0xC000 (which is the publish address of the fourth model in the client) and group address 0xD002 (which is the
publish address of the second model in the client)

▪ Server 2 is provisioned so that it has a node address of 0x0003, publish address of 0xC003, and subscribes to group
address 0xC000 (which is the publish address of the fourth model in the client) and group address 0xD003 (which is the
publish address of the third model in the client).

The provisioning means first model in client controls server 0, second model in client controls server 1, third model in client
controls server 2, and finally fourth model in client controls all three servers because they subscribe to its publish address.

At any time, if the client wants to set the on/off state of a server, it publishes a message with opcode
SIMPLE_ON_OFF_OPCODE_SET or SIMPLE_ON_OFF_OPCODE_SET_UNRELIABLE. The former results in a response
message with opcode SIMPLE_ON_OFF_OPCODE_STATUS but the latter does not.

The smartBASIC sample app $autorun$.mesh.light.switch.client.sb is an application that implements the client device and is
programmed so that the Laird devkit BUTTON1 controls the LED on server 0, BUTTON2 controls the LED on server 1,
BUTTON3 controls the LED on server 2, and BUTTON4 controls the LED on all servers at the same time.

The smartBASIC sample app $autorun$.mesh.light.switch.server.sb is an application that implements the server device and is
programmed so that the Laird devkit BUTTON1 locally toggles the state of LED and also publishes the state of the LED so that
all subscribers are informed of the local state.

5 BL654 DEVELOPMENT KIT FIRMWARE LOAD
To set up each development kit with the engineering mesh firmware, locate the mesh firmware zip file, unzip into a folder, and
follow these steps for all of the dev kits:

 Connect your BL654 development kit to your PC via the USB Micro cable. The power LED illuminates when the board
is receiving power.

 Open UwTerminalX.

 In the Config tab, set the parameters and COM port associated with your development board.

 Click OK to advance to the Terminal tab.

 Use UwTerminalX to return the BL654 to factory defaults using the command at&f* as shown in Figure 3.

If you are using a new development board with the sample application, you may need to remove the autorun jumper on
J12 and press the reset button to exit out of the sample application and then issue the at&f* command to erase the file
system and all non-volatile data.

BLE Mesh
Application Note

www.lairdconnect.com/bluetooth
6

© Copyright 2019 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Figure 3: Returning the BL654 to factory defaults

 Close UwTerminalX.

 In the folder where the Mesh firmware was unzipped, locate the _DownloadFirmwareUart.bat file and launch it.

Figure 4: Launch _DownloadFIrmwareUart.bat file

 In the COM field, enter the same comport number as was used in step 3 and confirm that the message COM port is
invalid, should be between 1 and 255 disappeared.

 Click OK.

Figure 5: Valid COM port is entered

 Click Proceed.

 When the upgrade is complete, click Quit.

BLE Mesh
Application Note

www.lairdconnect.com/bluetooth
7

© Copyright 2019 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 Open UwTerminalX.

 In the Config tab, set the parameters and COM port associated with your development board.

 Click OK to advance to the Terminal tab.

 Send the command AT I 3 and confirm the following response, where nn is 10 or higher:
10 3 29.1.1.0-MESH211-nn

6 BL654 DEVELOPMENT KIT SMARTBASIC APP LOAD
If you have five boards then label them: Client, Server 0, Server 1, Server 2, and Sniff.

For boards labelled Client, Server 0, Server 1 (optional), and Server 2 (optional), perform the following steps:

 For the Client board, load the Mesh smartBASIC example application. Use the right-click menu and select XCompile +
load.

Figure 6: Select XCompile + Load

 Select the $autorun$.mesh.light.switch.client.sb file which is located in the MeshApps subfolder.

It should take approximately ten seconds for the mesh program to load. Run the mesh example by typing at+run
“$autorun$” followed by Enter or pressing the reset button.

Figure 7: Running the mesh program

BLE Mesh
Application Note

www.lairdconnect.com/bluetooth
8

© Copyright 2019 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

For the board labelled Sniff, perform the following steps:

1. Load the Mesh Sniff smartBASIC example application. Use the right-click menu and select XCompile + Load.

Figure 8: Select XCompile + Load

2. Select the $autorun$.mesh.sniff.sb file which is located in the MeshApps subfolder.

It should take approximately ten seconds for the mesh program to load. Run the sniff example by typing $autorun$
followed by Enter or pressing the reset button.

7 PCA10056 DEVELOPMENT KIT FIRMWARE LOAD
If you decide to try the low power node variant of in server 2, then you will need a Nordic PCA10056 devkit loaded with
frimware capable of offering a Friend capability.

To load the firmware, connect the devkit to your PC (and assuming you have already played with that devkit and loaded other
Nordic firmware) all you need to do is launch the batch file called “ZephyrFriendLoad.bat”. If it it successful then the devkit will
be ready for provisioning and use the Nordic smartphone application to do so.

8 LAUNCH AND TEST THE MESH EXAMPLE

8.1 Overview

This section describes a step-by-step guide to creating and provisioning a mesh of up to four devices (we recommend four, but
only two are required) implementing Nordic’s Light Switch example as per their SDK, but implemented in Laird’s easy-to-use
event driven smartBASIC programming environment.

The devices can be provisioned using either an iOS or an Android application which is developed by Nordic Semiconductor
called nRF Mesh. Only step-by-step instructions for provisioning using an iOS device are described in the this application note.

WARNING:

Before you begin, please take a note of the revision of the BL654 devkit you are using.

The production release has the silkscreen label DVK-BL654-1.0 at the corner where the DC jack CON1 is located.

You may have the following earlier versions: DVK-BL654-A1 or DVL-BL654-B0. These earlier DVKs do not have the correct
labels for the four buttons; trial and error is required to locate which button is which.

When you run this example, server 0,1 and 2 DVKs only use BUTTON 1 and the client DVK uses all four buttons.

In each, when the appropriate button is pressed, a debug message prints on the UwTerminalX screen to identify which

BLE Mesh
Application Note

www.lairdconnect.com/bluetooth
9

© Copyright 2019 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

button was pressed. Experiment to locate the correct button. We then recommend you make a mark on the devkit
appropriately for future reference.

8.2 Launch and Test Process Initial Steps

To launch and test the mesh example, follow these steps:

 Connect all boards to your PC.

 Open as many UwTerminalX instances as there are boards using the comport that your PC exposes for each board.

 Reset each board via the reset button on the devkit. Confirm that you see the following messages on the client board
(Figure 9), server boards (Figure 10), and sniff board (Figure 11).

Figure 9: Client board message

Or if Low Power Node variant in Server 2 then..

Figure 10: Server boards message

Figure 11: Sniff board message

 If necessary, revert the boards into unprovisioned and clean states.

Note: If this is the first time you are running this test and the boards are already in a clean, unprovisioned state, you

can skip this step.

If, at any time, you think the boards may have non-volatile mesh information (so aren’t in an unprovisioned

state) or you are uncertain, it is best practice to revert all the boards.

If you clean one board, clean all the boards.

a. In the UwTerminalX toolbar, untick the DTR checkbox.

b. Tick/untick the BREAK checkbox.

c. This resets the module and ensures that the smartBASIC $autorun$ application does not automatically launch.

In this mode, the module accepts AT commands.

d. Confirm this by sending AT and seeing a 00 response.

e. Send the AT&F 0x100000 command. This erases all flash sectors used by the Mesh stack. This is interpreted as

an unprovisioned state.

f. In UwTerminalX, click Clear.

g. Tick the DTR checkbox.

h. Tick/untick the BREAK checkbox to reset the board.

BLE Mesh
Application Note

www.lairdconnect.com/bluetooth
10

© Copyright 2019 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

i. Confirm that the board’s UwTerminalX displays the following:

Figure 12: Board is waiting for provisioning

 On the Sniff board UwTerminalX screen, tick/untick the BREAK checkbox after ensuring that the DTR checkbox is
ticked.

 Switch off the client board and all the server boards as you will be powering up and provisioning them using a
smartphone one by one. This sequential startup is not necessary for the provisioning process, but it helps to make this
step-by-step guide unambiguous. As you get more familiar with the nRF Mesh smartphone app, you will be able to
ignore this and provision selected devices at will.

The following sections instruct you on actual provisioning.

8.3 Setting Up Server 0

To set up Server 0 for provisioning, follow these steps:

 Switch on the Server 0 board and observe the following sniff board traffic:

Figure 13: Sniff board traffic

This traffic shows that Server 0 started advertising, that it is unprovisioned, and that it can accept provisioning either
over adverts (PB-ADV) or via a BLE connection (PB-GATT).

Note that both advert forms contain the same UUID and OOB data. In your case, the UUID value will be very different
as each mesh device has a unique value.

The following applies to each row:

Field 1 The Bluetooth address of the unprovisioned mesh device

Field 2 PB_GATT[-50] or PB_ADV[-58]

This means this is an unprovisioned mesh beacon and the [-50] or [-58] is the RSSI value for the
beacon/advert that arrived.

Field 3 (DevUUID=)9F0CE6498091A00B4865DD9386892175

The device UUID that is factory programmed into the device and is always constant for that particular
device. This will vary for you.

Field 4 (OOB=)0000

The out-of-band bit mask which conveys how the authentication phase of the provisioning will take
place. The bit mask is reproduced from the spec as follows:

Bit Description

0 Other

1 Electronic/URI

2 2D machine-readable code

3 Bar code

4 Near Field Communication (NFC)

5 Number

6 String

7 Reserved for future use

8 Reserved for future use

9 Reserved for future use

BLE Mesh
Application Note

www.lairdconnect.com/bluetooth
11

© Copyright 2019 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

10 Reserved for future use

11 On box

12 Inside box

13 On piece of paper

14 Inside manual

15 On device

Field 5 (URIhash=)

This is empty and may contain an eight-hex digit hash value of a URL that would be advertised by this
mesh device in a normal advert (arranged via the GATT stack). It can also be used to direct the user to a
website for installation or product details. See smartBASIC function BleAdvertStart() in the BL654
smartBASIC Extensions Guide for more details.

8.4 Provisioning Server 0 by Phone

8.4.1 iOS

To provision your iOS Server 0, follow these steps:

 Launch the nRF Mesh application.

 From the bottom tabs, select Settings.

 From the Settings page Reset Mesh State row, select/tap Forget Network and confirm in the pop-up dialog box.
This erases all states from the smartphone and allows you to start a new mesh network. It also recreates a new random
network and creates three new random app keys.

 Locate the Application Version row and ensure that the version is at least v1.0.2.

 From the bottom tabs, select Scanner. The scanner screen scans for all devices that are in an unprovisioned state and
offers mesh provisioning service via GATT.

 Select the LS P-Server device to advance to the Node Provision screen.

 Ensure the following:

▪ the Name row shows LS P-Server

▪ the Unicast address shows 0x0001

▪ there is a value in the Appkey 1 row

Note: You can edit any of these rows by tapping it. This is especially relevant if you want to allocate a node

address different from the one displayed.

 On the top right, tap Identify to view additional information that is pertinent to the provisioning step. From that window,
tap Provision from the top right to open the UwTerminalX window for that device. This window displays a BLE
connection being established and then some ## MESH STATE messages that show the progress of the provisioning
process.

When the new Progress row at the bottom of the phone screen reaches 100%, the screen automatically changes to the
Network screen.

Note: If the progress gets stuck before it reaches 100%, kill the phone app, power-cycle the module, and start

again. Ensure that, in the Node Provision screen, the unicast address to be allocated is still correct.

On the UwTerminal screen, the following message confirms that the address of the first node is 1 (==0x0001) and that
there is one element: ## MESH_STATE : Provisioned <Addr=1 Count=1>

The Network screen displays all the nodes in this network. For now, there is only one – LS P-SERVER : 0001 where
0001 is the node address allocated to it.

It also has one element and three models. In the loaded smartBASIC application
($autorun$.mesh.light.switch.proxy.server.sb), we only registered one light switch server model in function ls_server();
the other two are the configuration and health foundation models which all devices inherit by default.

BLE Mesh
Application Note

www.lairdconnect.com/bluetooth
12

© Copyright 2019 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

LS P-SERVER corresponds to the #define DEVICE_NAME that exists in the loaded smartBASIC app.

 Tap the LS P-Server box to advance to the Node Configuration screen. This screen shows details of the three models.

 Tap the Simple OnOff Server row to advance to the Simple OnOff Server window.

 Tap the APPKEY BINDING row and select Appkey 1. The APPKEY BINDING value now displays Key Bound with
index 0000.

 Because Server 0 publishes to the group address 0xC001 (see Figure 2), do the following:

a. In the Simple OnOff Server screen, tap to add the value for the PUBLICATION ADDRESS row to advance to the
Publication Settings screen. On this screen, you see that the first row has a default publication address of
0xCEEF.

b. Tap 0xCEEF.

c. In the pop-up dialog box, enter 0xC001 and tap Set to return to the Publication Settings screen.

d. On the top right of the screen, tap Apply Publication to accept and return to the previous screen.

 Because the subscription address is 0xC000 and 0xD001 (see Figure 2), do the following:

a. Tap Add Subscription Address.

b. Enter 0xC000 in the new dialog box.

c. Tap Add.

d. Confirm that the Simple OnOff Server window lists C000 as a subscription address.

e. Tap Add Subscription Address.

f. Enter 0xD001 in the new dialog box.

g. Tap Add.

h. Confirm that the Simple OnOff Server window lists C000 & D001 as subscription addresses.

i. On the top left of the window, tap Back.

In the Node Configuration window, an icon in the third row shows two vertical arrows and a horizontal line. This
shows that the model was assigned a publication and a subscription address.

 On the top left of the window, tap Network.

 On the top right of the Network window, tap Disconnect to advance to the appropriate UwTerminalX window and see
confirmation of a BLE disconnection.

The Sniffer UwTerminalX window now displays a new type of adverts called PROXY(NET_ID). This is basically the
device now advertising a Mesh Proxy Service for the phone to get back into the network via a GATT connection, if
necessary.

8.4.2 Android

TBD. Awaiting a refreshed nRF Mesh that has same iOS functionality.

8.5 Provisioning Server 1 by Phone

This step is recommended but can be skipped if you have only one server.

Turn on board Server 1 and observe the sniff board traffic that is similar to what you saw in a previous step.

8.5.1 iOS

To provision your iOS Server 1, follow these steps:

 Launch the nRF Mesh application if it’s not still running from the previous step.

 From the bottom tabs, select Scanner. The scanner screen scans for all devices that are in an unprovisioned state and
offers mesh provisioning service via GATT.

 Select the LS P-Server device to advance to the Node Provision screen.

 Ensure the following:

▪ the Name row shows LS P-Server

▪ the Unicast address shows 0x0002

Note: You can edit any of these rows by tapping it. Change the unicast address to 0x0002, if necessary.

BLE Mesh
Application Note

www.lairdconnect.com/bluetooth
13

© Copyright 2019 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 On the top right, tap Identify to view additional information that is pertinent to the provisioning step.

 From that window, tap Provision from the top right to open the UwTerminalX window for that device. This window
displays a BLE connection being established and then some ## MESH STATE messages that show the progress of the
provisioning process.

When the new Progress row at the bottom of the phone screen reaches 100%, the screen automatically changes to the
Network screen.

Note: If the progress gets stuck before it reaches 100%, kill the phone app, power-cycle the module, and start

again. Ensure that, in the Node Provision screen, the unicast address to be allocated is still correct.

The Network screen displays all the nodes in this network. For now, there is only one – LS P-SERVER : 0002 where
0002 is the node address allocated to it.

It also has one element and three models. In the loaded smartBASIC application
($autorun$.mesh.light.switch.proxy.server.sb), we only registered one light switch server model in function ls_server();
the other two are the configuration and health foundation models which all devices inherit by default.

LS P-SERVER corresponds to the #define DEVICE_NAME that exists in the loaded smartBASIC app.

 Tap the LS P- SERVER : 0002 box to advance to the Node Configuration screen. This screen shows details of the
three models.

 Tap the Simple OnOff Server row to advance to the Simple OnOff Server window.

 Tap the APPKEY BINDING row and select Appkey 1. The APPKEY BINDING value now displays Key Bound with
index 0000.

 Because Server 1 publishes to the group address 0xC002 (see Figure 2), do the following:

a. In the Simple OnOff Server screen, tap to add the value for the PUBLICATION ADDRESS row to advance to the
Publication Settings screen. On this screen, you see that the first row has a default publication address of
0xCEEF.

b. Tap 0xCEEF.

c. In the pop-up dialog box, enter 0xC002 and tap Set to return to the Publication Settings screen.

d. On the top right of the screen, tap Apply Publication to accept and return to the previous screen.

 Because the subscription address is 0xC000 & 0xD002 (see Figure 2), do the following:

a. Tap Add Subscription Address.

b. Enter 0xC000 in the new dialog box.

c. Tap Add.

d. Confirm that the Simple OnOff Server window lists C000 as a subscription address.

e. Tap Add Subscription Address.

f. Enter 0xD002 in the new dialog box.

g. Tap Add.

h. Confirm that the Simple OnOff Server window lists C000 and D002 as subscription addresses.

i. On the top left of the window, tap Back.

In the Node Configuration window, an icon in the third row shows two vertical arrows and a horizontal line. This
shows that the model was assigned a publication and a subscription address.

 On the top left of the window, tap Network.

 On the top right of the Network window, tap Disconnect to advance to the appropriate UwTerminalX window and see
confirmation of a BLE disconnection.

The Sniffer UwTerminalX window now displays more adverts called PROXY(NET_ID) with different MAC addresses.
This is basically the device now advertising a Mesh Proxy Service for the phone to get back into the network via a
GATT connection, if necessary.

8.5.2 Android

TBD. Awaiting a refreshed nRF Mesh that has same iOS functionality.

BLE Mesh
Application Note

www.lairdconnect.com/bluetooth
14

© Copyright 2019 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

8.6 Provisioning Server 2 by Phone

This step is recommended but can be skipped if you have only two servers.

Turn on board Server 2 and observe the sniff board traffic that is similar to what you saw in a previous step.

Note: if you have loaded the LPN variant of the smartBASIC application then the provisioning process is no different so just
fiollow the same process that foillows.

8.6.1 iOS

To provision your iOS Server 2, follow these steps:

1. Launch the nRF Mesh application if it’s not still running from the previous step.

2. From the bottom tabs, select Scanner. The scanner screen scans for all devices that are in an unprovisioned state and
offers mesh provisioning service via GATT.

3. Select the LS P-Server device to advance to the Node Provision screen.

4. Ensure the following:

▪ the Name row shows LS P-Server

▪ the Unicast address shows 0x0003

Note: You can edit any of these rows by tapping it. Change the unicast address to 0x0003, if necessary.

5. On the top right, tap Identify to view additional information that is pertinent to the provisioning step.

6. From that window, tap Provision from the top right to open the UwTerminalX window for that device. This window
displays a BLE connection being established and then some ## MESH STATE messages that show the progress of the
provisioning process.

When the new Progress row at the bottom of the phone screen reaches 100%, the screen automatically changes to the
Network screen.

Note: If the progress gets stuck before it reaches 100%, kill the phone app, power-cycle the module, and start

again. Ensure that, in the Node Provision screen, the unicast address to be allocated is still correct.

The Network screen displays all the nodes in this network. For now, there is only one – LS P-SERVER : 0003 where
0003 is the node address allocated to it.

It also has one element and three models. In the loaded smartBASIC application
($autorun$.mesh.light.switch.proxy.server.sb), we only registered one light switch server model in function ls_server();
the other two are the configuration and health foundation models which all devices inherit by default.

LS P-SERVER corresponds to the #define DEVICE_NAME that exists in the loaded smartBASIC app.

 Touch Tap the LS P- SERVER : 0003 box to advance to the Node Configuration screen. This screen shows details of
the three models.

 Tap the Simple OnOff Server row to advance to the Simple OnOff Server window.

 Tap the APPKEY BINDING row and select Appkey 1. The APPKEY BINDING value now displays Key Bound with
index 0000.

 Because Server 2 publishes to the group address 0xC003 (see Figure 2), do the following:

a. In the Simple OnOff Server screen, tap to add the value for the PUBLICATION ADDRESS row to advance to the
Publication Settings screen. On this screen, you see that the first row has a default publication address of
0xCEEF.

b. Tap 0xCEEF.

c. In the pop-up dialog box, enter 0xC003 and tap Set to return to the Publication Settings screen.

d. On the top right of the screen, tap Apply Publication to accept and return to the previous screen.

 Because the subscription address is 0xC000 & 0xD003 (see Figure 2), do the following:

a. Tap Add Subscription Address.

b. Enter 0xC000 in the new dialog box.

BLE Mesh
Application Note

www.lairdconnect.com/bluetooth
15

© Copyright 2019 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

c. Tap Add.

d. Confirm that the Simple OnOff Server window lists C000 as a subscription address.

e. Tap Add Subscription Address.

f. Enter 0xD003 in the new dialog box.

g. Tap Add.

h. Confirm that the Simple OnOff Server window lists C000 & D003 as subscription addresses.

i. On the top left of the window, tap Back.

In the Node Configuration window, an icon in the third row shows two vertical arrows and a horizontal line. This
shows that the model was assigned a publication and a subscription address.

 On the top left of the window, tap Network.

 On the top right of the Network window, tap Disconnect to advance to the appropriate UwTerminalX window and see
confirmation of a BLE disconnection.

The Sniffer UwTerminalX window now displays more adverts called PROXY(NET_ID) with different MAC addresses.
This is basically the device now advertising a Mesh Proxy Service for the phone to get back into the network via a
GATT connection, if necessary.

8.6.2 Android

TBD. Awaiting a refreshed nRF Mesh that has same iOS functionality.

8.7 Provisioning the Client by Phone

Turn on the board Client and observe the sniff board traffic that is similar to what you saw in a previous step.

8.7.1 iOS

To provision your iOS Client, follow these steps:

 Launch the nRF Mesh application if it’s not still running from the previous step.

 From the bottom tabs, select Scanner. The scanner screen scans for all devices that are in an unprovisioned state and
offers mesh provisioning service via GATT.

 Select the LS P-CLIENT device to advance to the Node Provision screen.

 Check the following:

▪ the Name row shows LS P-CLIENT

▪ the Unicast address now shows 0x0004

Note: You can edit any of these rows by tapping it.

 Change the Unicast address to 0x0028.

 On the top right, tap Identify to view additional information that is pertinent to the provisioning step.

 From that window, tap Provision from the top right to open the UwTerminalX window for that device. This window
displays a BLE connection being established and then some ## MESH STATE messages that show the progress of the
provisioning process.

When the new Progress row at the bottom of the phone screen reaches 100%, the screen automatically changes to the
Network screen.

Note: If the progress gets stuck before it reaches 100%, kill the phone app, power-cycle the module, and start

again. Ensure that, in the Node Provision screen, the unicast address to be allocated is still correct.

The UwTerminal window displays the following message:
MESH_STATE : Provisioned <Addr=40 Count=4>. This confirms that the address of the first node is 40

(==0x0028) and that there are four elements.

BLE Mesh
Application Note

www.lairdconnect.com/bluetooth
16

© Copyright 2019 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

The Network screen displays all the nodes in this network. For now, there is only one – LS P-CLIENT : 0028 where
0028 is the node address allocated to it.

It also has four elements and six models. In the loaded smartBASIC application
($autorun$.mesh.light.switch.proxy.client.sb), we only registered four light switch client models in function ls_client();
the other two are the configuration and health foundation models which all devices inherit by default.

The LS P-CLIENT corresponds to the #define DEVICE_NAME that exists in the loaded smartBASIC application.

 Tap the LS P- CLIENT : 0028 box to advance to the Node Configuration screen. This screen shows details of the six
models.

 Tap the Simple OnOff Server row to advance to the Simple OnOff Server window.

 Tap the APPKEY BINDING row and select Appkey 1. The APPKEY BINDING value now displays Key Bound with
index 0000.

 Because the client’s first model publishes to the address 0xD001, do the following: (see Figure 2), do the following:

a. In the Simple OnOff Server screen, tap to add the value for the PUBLICATION ADDRESS row to advance to
the Publication Settings screen. On this screen, you see that the first row has a default publication address of
0xCEEF.

b. Tap 0xCEEF.

c. In the pop-up dialog box, enter 0xD001 and tap Set to return to the Publication Settings screen.

d. On the top right of the screen, tap Apply Publication to accept and return to the previous screen.

 Because the subscription address is 0xC001(see Figure 2), do the following:

a. Tap Add Subscription Address.

b. Enter 0xC001 in the new dialog box.

c. Tap Add.

d. Confirm that the Simple OnOff Client window lists C001 as a subscription address.

e. On the top left of the window, tap Back.

f. Tap the second row (Simple OnOff Client) to advance to the Simple OnOff Client) window.

g. Tap the APPKEY BINDING row and select Appkey 1. The APPKEY BINDING value now displays Key Bound
with an index 0000.

 Because the client’s second model publishes to the address 0xD002 (see Figure 2), do the following:

a. In the Simple OnOff Client window, tap to add the value for the PUBLICATION ADDRESS row. This reveals the
Publication Settings window where the first row has a default publication address of 0xCEEF.

b. Tap 0xCEEF.

c. In the pop-up dialog box, enter 0xD002.

d. Tap Set to return to the Publication Settings window.

e. On the top right of the window, tap Apply Publication.

 Because the client’s second model has the subscription address 0xC002 (see Figure 2), do the following:

a. Tap Add Subscription Address.

b. Enter 0xC002.

c. Tap Add.

d. Confirm that the Simple OnOff Client window lists C002 as a subscription address.

e. On the top left of the window, tap Back.

f. Tap the third row (Simple OnOff Client) to advance to the SimpleOnOff Client window.

g. Tap the APPKEY BINDING row and select Appkey 1. This returns you to the previous window and the
APPKEY BINDING value now shows Key Bound with index 0000.

 Because the client’s third model publishes to the address 0xD003 (see Figure 2), do the following:

a. In the Simple OnOff Client window, tap to add the value for the PUBLICATION ADDRESS row. This reveals the
Publication Settings window where the first row has a default publication address of 0xCEEF.

b. Tap 0xCEEF.

c. In the pop-up dialog box, enter 0xD003.

d. Tap Set to return to the Publication Settings window.

e. On the top right of the window, tap Apply Publication.

 Because the client’s third model has the subscription address 0xC003 (see Figure 2), do the following:

BLE Mesh
Application Note

www.lairdconnect.com/bluetooth
17

© Copyright 2019 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

a. Tap Add Subscription Address.

b. Enter 0xC003.

c. Tap Add.

d. Confirm that the Simple OnOff Client window lists C003 as a subscription address.

e. On the top left of the window, tap Back.

f. Tap the fourth row (Simple OnOff Client) to advance to the SimpleOnOff Client window.

g. Tap the APPKEY BINDING row and select Appkey 1. This returns you to the previous window and the
APPKEY BINDING value now shows Key Bound with index 0000.

 Because the client’s forth model publishes to the address 0xC000 (see Figure 2), do the following:

a. In the Simple OnOff Client window, tap to add the value for the PUBLICATION ADDRESS row. This reveals the
Publication Settings window where the first row has a default publication address of 0xCEEF.

b. Tap 0xCEEF.

c. In the pop-up dialog box, enter 0xC000.

d. Tap Set to return to the Publication Settings window.

e. On the top right of the window, tap Apply Publication.

f. On the top left of the window, tap Back.

In the Node Configuration window, an icon in the first three Simple OnOff Client model rows shows two vertical
arrows and a horizontal line. This shows that the model was assigned a publication and a subscription address.
The fourth has an icon with only an up arrow and the horizontal line which implies that it has a publication
address but not a subscription address.

 On the top left of the window, tap Network.

 On the top right of the Network window, tap Disconnect to advance to the appropriate UwTerminalX window and see
confirmation of a BLE disconnection.

The Sniffer UwTerminalX window now displays more adverts called PROXY(NET_ID) with different MAC addresses.
This is basically the device now advertising a Mesh Proxy Service for the phone to get back into the network via a
GATT connection, if necessary.

8.7.2 Android

TBD. Awaiting a refreshed nRF Mesh that has same iOS functionality.

8.8 Testing Nordic’s Simple OnOff Server and Client Mesh Model

In all four devkits, locate the four LEDs. They are located near the area where there are two USB sockets close together.

There are four two-pin headers with the following labels: J26, J37, J45, and J39. Ensure that all four of these have a jumper

which connects the four LEDs to the appropriate GPIO pins on the module.

All four devices are now provisioned so you can test Nordic’s Simple OnOff server and client mesh model. To do this, follow
these steps:

 On the client, press BUTTON 1. Its UwTerminal window displays the following

This confirms that BUTTON 1 was pressed and that a mesh message was sent. It also displays two status messages:
1) the direct replay to the SET message (reliable) and 2) the status that was published so that all subscribers are aware
of the change.

LED1 should now be ON.

The following displays on Server 0’s UwTerminal window:

BLE Mesh
Application Note

www.lairdconnect.com/bluetooth
18

© Copyright 2019 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

This displays when a message with the opcode SET is received.

LED 1 should now be ON.

 On Server 0, press BUTTON 1. It’s UwTerminal window then displays the following:

This confirms that BUTTON ! was pressed and that a mesh message was sent.

LED1 on that devkit should now be OFF.

The following displays on the client’s UwTerminal window:

This displays when a STATUS message is received.

LED 1 should now be OFF.

Note the following:

▪ Pressing BUTTON 2 on the client devkit controls LED1 on Server 1.

▪ Pressing BUTTON 3 on the client devkit controls LED1 on Server 2.

▪ Pressing BUTTON 4 on the client devkit controls LED1 on all server devkits and locally LED1 to LED3 follow those
states.

9 MESH-RELATED SMARTBASIC FUNCTIONS AND EVENTS
This section describes the functions and events that were added to this engineering firmware release. Because it is based on
v2.1.1 of the Nordic Mesh SDK, Laird reserves the right to change or delete any functions and events listed in this section.

9.1 Mesh-related AT Commands

9.1.1 AT&F 0x100000

This AT command is used to delete all mesh-related flash sectors so that all state information is deleted. This results in the
device reverting to the unprovisioned state and so it begins sending unprovisioned beacons.

9.2 Mesh-related Result Codes

Many of the new functions return a result code. There is a lookup feature in UwTerminalX that describes what those failure
result codes mean. The new mesh-related result codes for this alpha release are as follows:

UWRESULTCODE_BLE_MESH_INVALID_OPCODEID 0x60C0
UWRESULTCODE_BLE_MESH_TOO_MANY_MODELS 0x60C1
UWRESULTCODE_BLE_MESH_OPCODE_TABLE_FULL 0x60C2
UWRESULTCODE_BLE_MESH_MODEL_NOT_ADDED 0x60C3
UWRESULTCODE_BLE_MESH_PREV_MODEL_EMPTY 0x60C4
UWRESULTCODE_BLE_MESH_PREV_ELEMENT_EMPTY 0x60C5
UWRESULTCODE_BLE_MESH_CURRENT_MODEL_EMPTY 0x60C6
UWRESULTCODE_BLE_MESH_TOO_MANY_ELEMENTS 0x60C7
UWRESULTCODE_BLE_MESH_TABLE_EMPTY 0x60C8
UWRESULTCODE_BLE_MESH_LAST_MODEL_EMPTY 0x60C9
UWRESULTCODE_BLE_MESH_DUPLICATE_OPCODEID 0x60CA
UWRESULTCODE_BLE_MESH_INVALID_MODELHANDLE 0x60CB
UWRESULTCODE_BLE_MESH_INVALID_MODELINDEX 0x60CC
UWRESULTCODE_BLE_MESH_INVALID_PACKEDOPCODE 0x60CD

BLE Mesh
Application Note

www.lairdconnect.com/bluetooth
19

© Copyright 2019 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

UWRESULTCODE_BLE_MESH_INVALID_REPLYINFO 0x60CE
UWRESULTCODE_BLE_MESH_ALREADY_STARTED 0x60CF
UWRESULTCODE_BLE_MESH_CANNOT_BE_PROVISIONER 0x60D0
UWRESULTCODE_BLE_MESH_INVALID_DATALEN 0x60D1
UWRESULTCODE_BLE_MESH_INVALID_TIMEOUT 0x60D2
UWRESULTCODE_BLE_MESH_INV_STATIC_AUTH_DATA 0x60D3
UWRESULTCODE_BLE_MESH_LAST_ELEMENT_EMPTY 0x60D4
UWRESULTCODE_BLE_MESH_MODELS_NOTALLOWED 0x60D5
UWRESULTCODE_BLE_MESH_PROVISIONER_BUSY 0x60D6
UWRESULTCODE_BLE_MESH_ATT_MTU_TOO_SMALL 0x60D7
UWRESULTCODE_BLE_MESH_PUB_REL_PENDING 0x60D8
UWRESULTCODE_BLE_MESH_NOPENDING_PUB_REL 0x60D9

UWRESULTCODE_BLE_MESH_NOT_STARTED 0x60DA

UWRESULTCODE_BLE_MESH_INV_FEATURE_COMBO 0x60DB

UWRESULTCODE_BLE_MESH_INVALID_DURATION 0x60DC

UWRESULTCODE_BLE_MESH_INVALID_RSSI 0x60DD

UWRESULTCODE_BLE_MESH_INVALID_RXWINSZ 0x60DE

UWRESULTCODE_BLE_MESH_INVALID_SUBSLSTSZ 0x60DF

UWRESULTCODE_BLE_MESH_ALREADY_FRIENDED 0x60E0

UWRESULTCODE_BLE_MESH_LPNSTATE_NOT_IDLE 0x60E1

UWRESULTCODE_BLE_MESH_FRIEND_NOT_CONNECTED 0x60E2

9.3 Mesh-related Functions

9.3.1 BleMeshAddElement

When a mesh is started, it must know the number of elements the device will expose as well as the models and messages
each of those elements will host. The element/mesh/message information can be viewed as a tree structure of information and
that collection is referred to as in the specification as the ‘composition’.

Use this function to add elements to the container, which is initialised with an element with a location value of 0 on powerup, to
which is added more instances of models and op-codes. Each element ends up getting a unique node address by the
provisioner. If this function is called when the container has the default element and no models have been added yet, then the
function call overrides the default and that is how the location value can be updated for the first element.

As mentioned in the description for BleMeshAddMessage() which is described later, a new element is needed if a device will
end up with multiple instances of messages. The Mesh specification mandates that an element SHALL have only one instance
of a message.

Note: For those familiar with how a USB device works when plugged into a host, it sends configuration data describing

itself. The composition data serves a similar function in Mesh provisioning.

BleMeshAddElement(nLocation)

Returns INTEGER : resultCode

 0x0000 : Success

 0x0607 : Location value not in range 0x0000 to 0xFFFF

 0x60C5 : Previous element empty

 0x60C6 : Current model empty

 0x60C7 : Too many elements. Limit will be exceeded.

Arguments:

nLocation

byVAL nLocation AS INTEGER.

Specifies the location description as defined in the GATT Bluetooth Namespace Descriptors

which can be found here and is a value in the range 0x0000 to 0xFFFF.

https://www.bluetooth.com/specifications/assigned-numbers/gatt-namespace-descriptors

BLE Mesh
Application Note

www.lairdconnect.com/bluetooth
20

© Copyright 2019 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

For example:-

0x0000 : unknown

0x0101 : back

0x0107 : backup

0x0103 : bottom

0x0110 : external

0x010A : flash

0x0100 : front

0x010B : inside

0x010F : internal

0x010D : left

0x0105 : lower

0x0106 : main

0x0109 : supplementary

0x010C : outside

0x010E : right

0x0102 : top

0x0104 : upper

0x0001 to 0x00FF : just conveys the value, e.g 0x0004=fourth, 0x000A=tenth

9.3.2 BleMeshAddSigModel

An element in a device (the default added on powerup or specifically using BleMeshAddElement()) shall have one or more
models. Use this function to add a model using a 16-bit SIG adopted identifier to the mesh schema. It is added to the most
recently added element. A model in turn contains opcodes; a function detailed later is used to do that.

BleMeshAddSigModel(nModelId, handleModel)

Returns INTEGER : resultCode

 0x0000 : Success

 0x0607 : nModelId value not in range 0x0000 to 0xFFFF

 0x60C4 : Previously added model has no messages attached

 0x60C1 : Too many models have been defined in total

 0x60CC : handleModel is not recognised as a model handle

Arguments:

nModelId

byVAL nModelId AS INTEGER.

Specifies a value in the range 0x0000 to 0xFFFF which is model ID as adopted by the Bluetooth

SIG and described in the specification “Mesh Model Specification”.

For example that specification defines 0x1000 as a Generic OnOff Server and 0x1001 as a

Generic OnOff Client.

handleModel

byREF handleModel AS INTEGER.

On Entry if this model is going to be an extension of another earlier added model then it shall be

the handle of that model obtained when BleMeshAddSigModel() or BleMeshAddVendorModel()

was called, otherwise it shall contain 0.

If this model is an extension of another one, then it will share the subsciption list with the shared

model.

On Exit, this is an opaque handle value that the smartBASIC app uses to describe a model when

an API will interact with a model or when a message arrives, this value will be presented to

enable the developer to channel the behaviour accordingly

We recommend that you store it in a global smartBASIC variable.

BLE Mesh
Application Note

www.lairdconnect.com/bluetooth
21

© Copyright 2019 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

9.3.3 BleMeshAddVendorModel

An element in a device (the default added on powerup or specifically using BleMeshAddElement()) has one or more models.
Use this function to add a Model using a 32-bit vendor identifier to the mesh schema. It is added to the most recent-added
element. A model in turn contains messages; a function detailed later is used to do that.

BleMeshAddVendorModel(nCompanyId, nModelId, handleModel)

Returns INTEGER : resultCode

 0x0000 : Success

 0x0607 : nCompanyId value not in range 0x0000 to 0xFFFF

 0x0608 : nModelId value not in range 0x0000 to 0xFFFF

 0x60C4 : Previously added model has no messages attached

 0x60C1 : Too many models have been defined in total

 0x60CC : handleModel is not recognised as a model handle

Arguments:

nCompanyId

byVAL nCompanyId AS INTEGER.

Specifies a value in the range 0x0000 to 0xFFFF which is a company ID. A member of the

Bluetooth SIG can request one for free.

For a full list of company identifiers see here. Where you will see for example, 0x0059 is for

Nordic Semiconductor.

It is VERY important that if you create a new custom model you use your own company ID and

not someone else as you risk collision and thus confuse a provisioner.

Also please note that if you want to interact with a Nordic defined Model then it is perfectly valid

to use their company identifier here.

nModelId

byVAL nModelId AS INTEGER.

Specifies a value in the range 0x0000 to 0xFFFF which is model ID as adopted by the Bluetooth

SIG and described in the specification “Mesh Model Specification”.

handleModel

byREF handleModel AS INTEGER.

On Entry if this model is going to be an extension of another earlier added model then it shall be

the handle of that model obtained when BleMeshAddSigModel() or BleMeshAddVendorModel()

was called, otherwise it shall contain 0.

If this model is an extension of another one, then it will share the subsciption list with the shared

model.

On Exit, this is an opaque handle value that the smartBASIC app shall use to describe a model

when an API will interact with a model or when a message arrives, this value will be presented to

enable the developer to channel the behaviour accordingly

We recommend that you store it in a global smartBASIC variable.

9.3.4 BleMeshAddMessage

A model in a device will have one or more opcodes for messages registered so that incoming messages can be processed.
Use this function to add a packed opcode that defines a message which is a value in up to 3-bytes long. A 3 byte packed
opcode consists of companyID and a 6 bit opcode value, whereas a value which <= 0xFFFF will be a SIG defined opcode.

Note: If this function fails with BLE_MESH_DUPLICATE_OPCODEID (0x60CB) then it implies that your mesh structure is

faulty. If you need a duplicate opcode, then you must add another element to the device for it to again be a unique

entry. Then, since an element gets its own node address, the node address is used to differentiate which instance of

opcode is being referenced.

https://www.bluetooth.com/specifications/assigned-numbers/company-identifiers

BLE Mesh
Application Note

www.lairdconnect.com/bluetooth
22

© Copyright 2019 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BleMeshAddMessage(nPackedOpcode)

Returns INTEGER : resultCode

 0x0000 : Success

 0x06C3 : No models have been added to the current element

 0x60C2 : Too many messages have been added. Limit will be exceeded

 0x60CE : nPackedOpcode is invalid

 0x60CB : Current element already has this message added

Arguments:

nPackedOpcode

byVAL nPackedOpcode AS INTEGER.

For a SIG defined opcode this shall be a value in the range 0x0000 to 0xFFFF.

For a vendor defined opcode the value shall be 0xPPVVVV where PP is a value in the range

0xC0 to 0xFF and VVVV is the companyID.

9.3.5 BleMeshStart

Once an Element/Model/Message composition has been defined using the functions described above, it must be registered
with the Mesh stack and started. This function does that and is always done even if the device is provisioned and configured.
When the mesh stack starts, it checks if the non-volatile information matches the structure defined in the tree. It will also know
how to fork from there. If the non-volatile data is missing or does not match, then it puts the device into unprovisioned state
and starts unprovisioned adverts. Otherwise it resumes mesh operation as a full member of a network.

Some of the parameters supplied in this function are used to configure the composition data – the information that is supplied
to a provisioner so that it knows more about this device and more of that composition data is configured using the functions
BleMeshConfigInt() and BleMeshConfigStr() which are described later.

After calling this function the event EVBLEMESH_EVENT which will have eventType WAIT_FOR_PROVISIONING or
PROVISIONED will be thrown to the smartBASIC application.

If the device is provisioned then simple wait for EVBLEMESH_MESSAGERX events for incoming messages to process or
based on gpio or other triggers call one of the Publish messages to send messages.

BleMeshStart(nTxPower, nCompanyId, nProductId, nVersionId, staticAuth$)

Returns INTEGER : resultCode

 0x0000 : Success

 0x0608 : nCompanyId value not in range 0x0000 to 0xFFFF

 0x0609 : nProductId value not in range 0x0000 to 0xFFFF

 0x060A : nVersionId value not in range 0x0000 to 0xFFFF

 0x060C : nDefaultTTL value not in range 0 to 127

 0x60D0 : The mesh stack has already been started

 0x60C9 : The mesh table tree is not empty

 0x60D1 : This device cannot be a provisioner

 0x60C8 : The mesh table tree is empty

 0x60CA : The last model is empty in the tree

Arguments:

nTxPower

byVAL nTxPower AS INTEGER.

Specifies a value in the range -128 to 20 which is the transmit power for network advert

messages.

nCompanyId

byVAL nCompanyId AS INTEGER.

Specifies a value in the range 0x0000 to 0xFFFF which is a company ID. A member of the

Bluetooth SIG can request one for free.

For a full list of company identifiers see here. Where you will see for example, 0x0059 is for

Nordic Semiconductor.

It is VERY important that you use your own companyID so that a provisioner better understands

https://www.bluetooth.com/specifications/assigned-numbers/company-identifiers

BLE Mesh
Application Note

www.lairdconnect.com/bluetooth
23

© Copyright 2019 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

how to configure your device. Think of this value and the nProductId as the equivalent of the plug

and play VID/PID information presented by a USB device.

nProductId

byVAL nProductId AS INTEGER.

Specifies a value in the range 0x0000 to 0xFFFF which is a product ID. This can be any value

that you wish as you maintain a list of all the different mesh products that your produce.

This is very similar to the PID value in USB world

nVersionID

byVAL nVersionId AS INTEGER.

Specifies a value in the range 0x0000 to 0xFFFF which is a version ID. This can be any value

that you wish.

staticAuth$
byREF staticAuth$ AS STRING.

This is a 16 byte string containing a key which will be randomly generated

9.3.6 BleMeshConfigInt

This function is used to specify more integer configuration parameters before the mesh functionality is started using the
function BleMeshStart().

BleMeshConfigInt(nCnnfigId, nConfigValue)

Returns INTEGER : resultCode

 0x0000 : Success

Arguments:

nConfigId

byVAL nConfigId AS INTEGER.

See ‘nConfigValue’ for more details.

From 0 to 99 configId they can be set before the mesh stack is started using BleMeshStart().

From 100 to 999 configid values can only be modifed after BleMeshStart() is called and for all

other configId they can be altered regardless..

nConfigValue

byVAL nConfigValue AS INTEGER.

For ConfigId= 1

A bit mask which specifies which mesh features the device will expose as follows:-

 Bit 0 : Relay Capability

 Bit 1 : Proxy Capability

 Bit 2 : Friend Capability

 Bit 3 : Low Power Node Capability

 Bits 4 to 31 : Reserved for future use and should be set to 0

For ConfigId= 10

Bit mask specifying which bearers to activate for provisioning all but Low Power Nodes

 Bit Description

 0 Advert Bearer

 1 Gatt Bearer

 4..31 Reserved for future use, set to 0

For ConfigId= 11

Bit mask specifying which bearers to activate for provisioning Low Power Nodes

 Bit Description

 0 Advert Bearer

 1 Gatt Bearer

 4..31 Reserved for future use, set to 0

BLE Mesh
Application Note

www.lairdconnect.com/bluetooth
24

© Copyright 2019 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

For ConfigId= 12

16 bit OOB Info field in unprovisioned beacons

 Range : 0..0xFFFF (Bit Mask as follows)

 Bit Description

 0 Other

 1 Electronic / URI

 2 2D machine-readable code

 3 Bar code

 4 Near Field Communication (NFC)

 5 Number

 6 String

 7 Reserved for Future Use

 8 Reserved for Future Use

 9 Reserved for Future Use

 10 Reserved for Future Use

 11 On box

 12 Inside box

 13 On piece of paper

 14 Inside manual

 15 On device

For ConfigId= 13

Output OOB size (Table 5.21 in Mesh Profile spec)

 Range : 0..8 (0==Device does not support output OOB)

For ConfigId= 14

Output OOB Action

 Range : 0..15

For ConfigId= 15

Input OOB size (Table 5.23 in Mesh Profile spec)

 Range : 0..8 (0==Device does not support input OOB)

For ConfigId= 16

Input OOB Action

 Range : 0..15

For ConfigId= 20

Minimum queue size requested in a Friend Request by a Low Power Node

 Range : 1..7 (Actual size is 2 to the power of this value)

For ConfigId= 21

Receive Window Factor requested in a Friend Request by a Low Power Node

 Range : 0..3 (Value Factor)

 0 1

 1 1.5

 2 2

 3 2.5

For ConfigId= 22

RSSI Factor requested in a Friend Request by a Low Power Node

 Range : 0..3 (Value Factor)

BLE Mesh
Application Note

www.lairdconnect.com/bluetooth
25

© Copyright 2019 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 0 1

 1 1.5

 2 2

 3 2.5

For ConfigId= 23

Receive Delay in milliseconds requested in a Friend Request by a Low Power Node

 Range : 10..255

For ConfigId= 24

Poll Retry Count by a Low Power Node when in a freindship

 Range : 1..10

For ConfigId= 1000

Enable/Disable Mesh subevent reporting in EVBLEMESH_EVENT

 This is a bitmask:

 Bit Description

 0 Other Subevents

 1 Low Power Node low level events

9.3.7 BleMeshConfigStr

This function is used to specify string configuration parameters before the mesh functionality is started using the function
BleMeshStart().

BleMeshConfigStr(nCnnfigId, sConfigValue$)

Returns INTEGER : resultCode

 0x0000 : Success

Arguments:

nConfigId

byVAL nConfigId AS INTEGER.

See ‘sConfigValue$’ for more details. . Negative configId and up to 99 values are config values

that can be set before the mesh stack is started, that is, before BleMeshStart() is called.

sConfigValue$

byREF sConfigValue$ AS STRING.

For ConfigId= 1

Provisioning Beacon Device URI

9.3.8 BleMeshMessagePublish

This function is used to publish a message with the opcode and data specified using the provisoned publish details (like
destination address) of the model which is specified by the handleModel provided (the handle that was returned when either
BleMeshAddSigModel() or BleMeshAddVendorModel() were called). It uses the appkey and netkey bound to the model
indentified by ‘handleModel’.

BleMeshMessagePublish(handleModel, nPackedOpcode, sData$)

Returns INTEGER : resultCode

 0x0000 : Success

 0x60CC : handleModel is not recognised as a model handle

 0x60CE : nPackedOpcode is invalid

 Other : Nordic stack specific

BLE Mesh
Application Note

www.lairdconnect.com/bluetooth
26

© Copyright 2019 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Arguments:

handleModel

byVAL handleModel AS INTEGER.

This is the handle of a model that was registered using BleMeshAddSigModel() or

BleMeshAddVendorModel(). The destination address, appkey comes from whatever was

configured for the model by a provisioner.

nPackedOpcode

byVAL nPackedOpcode AS INTEGER.

For a SIG defined opcode this shall be a value in the range 0x0000 to 0xFFFF.

For a vendor defined opcode the value shall be 0xPPVVVV where PP is a value in the range

0xC0 to 0xFF and VVVV is the companyID.

sData$

byREF sData$ AS STRING.

This contains the data that will be sent as payload for the message. The specification allows

this to be from 0 to 380-bytes. It will be appropriately lower if the opcode is 3-bytes long

9.3.9 BleMeshMessagePublishAcked

This function is used to publish a reliable message with all the parameters as described for the function
BleMeshMessagePublish() but in addition, it takes two more parameters which correspond to the opcode of the message to
expect that acknowledges receipt of this method and the maximum time to wait for that ack.

If the function returns a successful resultcode, then a reliable publish transaction shall be assumed to have started. It will
terminate when an event message EVBLEMESH_ACKEDMSG_RESULT is received with a status code which conveys
whether it was successful or a timeout occurred or cancelled because the function BleMeshMessagePubAckedCancel() had
subsequengly been called.

While a reliable publish transaction is in progress, this function cannot be called for the same handleModel.

Note: If the model publishes to a group address, then a message is sent but the transaction is deemed to be completed

immediately – do not expect to wait for the EVBLEMESH_ACKEDMSG_RESULT event.

BleMeshMessagePubAcked(handleModel, nPackedOpcode, nExpectedOpcode, nTimeoutsec, sData$)

Returns INTEGER : resultCode

 0x0000 : Success

 0x60CC : handleModel is not recognised as a model handle

 0x60CE : nPackedOpcode is invalid

 Other : Nordic stack specific

Arguments:

handleModel

byVAL handleModel AS INTEGER.

This is the handle of a model that was registered using BleMeshAddSigModel() or

BleMeshAddVendorModel(). The destination address, appkey comes from whatever was

configured for the model by a provisioner.

nPackedOpcode

byVAL nPackedOpcode AS INTEGER.

For a SIG defined opcode this shall be a value in the range 0x0000 to 0xFFFF.

For a vendor defined opcode the value shall be 0xPPVVVV where PP is a value in the

range 0xC0 to 0xFF and VVVV is the companyID.

nExpectedOpcode

byVAL nExpectedOpcode AS INTEGER.

This is the packed opcode of the message to wait for as an acknowledgement from all

subscribers of this message.

For a SIG defined opcode this shall be a value in the range 0x0000 to 0xFFFF.

For a vendor defined opcode the value shall be 0xPPVVVV where PP is a value in the

range 0xC0 to 0xFF and VVVV is the companyID.

nTimeoutSec

byVAL nTimeoutSec AS INTEGER.

Wait for this long, in seconds, for an ack to arrive and shall be in the range 30 to 60

seconds.

BLE Mesh
Application Note

www.lairdconnect.com/bluetooth
27

© Copyright 2019 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

sData$

byREF sData$ AS STRING.

This contains the data that will be sent as payload for the message. The specification allows

this to be from 0 to 380-bytes. It will be appropriately lower if the opcode is 3-bytes long

9.3.10 BleMeshMessagePubAckedCancel

This function is used to cancel a reliable publish transaction that was initiated for a model using the function
BleMeshMessagePubAcked().

BleMeshMessagePubAckedCancel(handleModel)

Returns INTEGER : resultCode

 0x0000 : Success

 0x60CC : handleModel is not recognised as a model handle

 Other : Nordic stack specific

Arguments:

handleModel

byVAL handleModel AS INTEGER.

This is the handle of a model that was registered using BleMeshAddSigModel() or

BleMeshAddVendorModel().

9.3.11 BleMeshMessageReply

This function is used to send a response to an incoming message with the opcode and data specified using the destination
details (like destination address) embedded in the opaque parameter sReplyData$. This was supplied when the incoming
message arrived via the event EVBLEMESH_MESSAGERX which is described later. The sReplyInfo$ will also contain the
appkey that was used by the incoming message and so the response needs to use the same one.

Note: handleModel and nPackedOpcode are also supplied in the EVBLEMESH_MESSAGERX event when the incoming

message arrived

BleMeshMessageReply(handleModel, nPackedOpcode, sData$, sReplyInfo$)

Returns INTEGER : resultCode

 0x0000 : Success

 0x60CC : handleModel is not recognised as a model handle

 0x60CE : nPackedOpcode is invalid

 0x60CF : sReplyInfo$ is invalid

 Other : nordic stack specific

Arguments:

handleModel

byVAL handleModel AS INTEGER.

This is the handle of a model that was registered using BleMeshAddSigModel() or

BleMeshAddVendorModel(). The destination address, appkey comes from whatever was

configured for the model by a provisioner.

nPackedOpcode

byVAL nPackedOpcode AS INTEGER.

For a SIG defined opcode this shall be a value in the range 0x0000 to 0xFFFF.

For a vendor defined opcode the value shall be 0xPPVVVV where PP is a value in the range

0xC0 to 0xFF and VVVV is the companyID.

sData$

byREF sData$ AS STRING.

This contains the data that will be sent as payload for the message. The specification allows

this to be from 0 to 380-bytes. It will be appropriately lower if the opcode is 3-bytes long

sReplyInfo$

byREF sReplyInfo$ AS STRING.

This will have been supplied in the EVBLEMSG_OPC_MSG event and MUST be supplied

unmodified from there. It is an opaque object and will be checked for modification and if so

will result in a failure to send a response

BLE Mesh
Application Note

www.lairdconnect.com/bluetooth
28

© Copyright 2019 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

9.3.12 BleMeshFriendConnect

When a device is in Low Power Node mode this function is used to seek a Friend which will cache incoming messages for this
node while the radio is switched off to conserve power. It does so by sendng a Friend Request message as described in the
Mesh Profile specification.

If a success resultcode is returned then this transation is terminate by one of two events EVBLEMESH_FRIENDCONNECT or
EVBLEMESH_FRIENDDISCON.

BleMeshFriendConnect(scanDurMs, pollTimeoutMs, minRssi, minRxWinSz, maxRxWinSz, minSubsLstSz)

Returns INTEGER : resultCode

 0x0000 : Success

 Other : Nordic stack specific

Arguments:

scanDurMs
byVAL scanDurMs AS INTEGER.

The duration to scan for incoming Friend Offers which shall be in the range 100 to 1000.

pollTimeoutMs

byVAL pollTimeoutMs AS INTEGER.

Poll Timeout in milliseconds in the range 1000 to 345599900 (which is 1 sec to 96 hours). If

the low power node does not send a poll within this timeout, then the Friend will assume that

the low power node has disappeared.

Use function BleMeshFriendPoll() to manually initiate a poll to trigger one, but note that the

stack will automatically send one out within this timeout period. This auto poll will occur at

interval which is a function of this value minus the sum of Receive Delay and Receive

Window multiplied by the Poll Trey count +1 which is set via BleMeshConfigInt(24)

minRssi

byVAL minRssi AS INTEGER.

This is the minimum RSSI as measured by the Friend when it received the Friend Request

message and will be provided in the Friend Offer message and this node will reject the offer

when the rssi is below this value

minRxWinSz

byVAL minRxWinSz AS INTEGER.

When a friend sends an Offer it will provide a Receive Window Size in milliseconds. The offer

will be rejected if the value is less than this value.

maxRxWinSz

byVAL maxRxWinSz AS INTEGER.

When a friend sends an Offer it will provide a Receive Window Size in milliseconds. The offer

will be rejected if the value is bigger than this value

minSubLstSz

byVAL minSubLstSz AS INTEGER.

When a friend sends an Offer it will provide a subscription list size. The offer will be rejected if

the value is less than this value because otherwise the friend will not be able to listen for all

the subscribed addresses for this node.

9.3.13 BleMeshFriendDisconnect

When a device is in Low Power Node mode and connected to a friend (see BleMeshFriendConnect()), this function is used to
break the friendship.

If a success resultcode is returned then this transation is terminate by the event EVBLEMESH_FRIENDDISCON.

BleMeshFriendDisonnect()

Returns INTEGER : resultCode

 0x0000 : Success

 Other : Nordic stack specific

Arguments: None

BLE Mesh
Application Note

www.lairdconnect.com/bluetooth
29

© Copyright 2019 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

9.3.14 BleMeshFriendPoll

When a device is in Low Power Node mode this function is used to force a poll to see if the friend has any messages cached
for it. If there are any messages then they will be presented using the normal event EVBLEMESH_MESSAGERX

BleMeshFriendPoll(pollTimeoutMs)

Returns INTEGER : resultCode

 0x0000 : Success

 Other : Nordic stack specific

Arguments:

pollTimeoutMs

byVAL pollTimeoutMs AS INTEGER.

Poll Timeout in milliseconds in the range up to 345599900 (which is 1 sec to 96 hours).

If the value is <= 0 then an immediate manual POLL is triggered.

If value is >0 and <1000 then a POLL will be triggered but an error resultcode will be

returned.

If greater than 1000 then a POLL gets triggered and in addition the auto POLL interval is set

to this value as long as it satisfies the criteria for the poll timeout value as specified in the

BleMeshFreindConnect() function

9.3.15 BleMeshUnProvAndReset

This function is used to wipe all provisioning and configuration information so that it is back into unprovisioned state. Note that
effect of calling this from the application is the same as a provisioner sending a ‘Node Reset’ Foundation Model message.

After the information is cleared the module will perform a self-warm reset and so expect the EVBLEMESH_EVENT event with
event type PROVISION_WAIT_FOR.

BleMeshUnProvAndReset()

Returns INTEGER : resultCode

 0x0000 : Success

 Other : Nordic stack specific

Arguments: None

9.4 Mesh-related Events

9.4.1 EVBLEMESH_EVENT

This event is used to report events detected by the mesh stack.

Parameters:

nEventType
byVAL nEventType AS INTEGER.

This contains the event type

nContext

byVAL nContext AS INTEGER.

This contains the cntext datat for the event and if the event has no payload then it will be set

to 0

sContext$

byVAL sContext$ AS STRING.

This contains context data for the event and can be an empty string if the event type has no

payload

BLE Mesh
Application Note

www.lairdconnect.com/bluetooth
30

© Copyright 2019 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

The values for nEventType and associated context integer and string will be as per the table below.

If the context column is ‘none’ then the integer will be 0 and the string will be empty.

Value Description Context

100 PROVISION_WAIT_FOR None

110 PROVISION_IDNTFY_START nContext

Duration in seconds that the Node will physically indicate (like a blinking

LED) that it is the device that will be provisioned when provisioning is

initiated

120 PROVISION_IDNTFY_STOP None

150 PROV_PRE_STACK_DISABLE None

 (will be received just before the stack is disabled so that the GATT table

which contains the Mesh Provisioning Service can be destroyed and on re-

enabling a new GATT table is created with the Mesh Proxy Service)

160 PROVISION_STACK_ENABLED None

(happens after the stack is restarted with Mesh Proxy Service)

190 PROVISION_ABORTED None

(happens when provisioning is aborted)

200 PROVISIONED sContext$

First 2-bytes = First Element Node address

Second 2-bytes = Number of Elements

 <<Note: 2-bytes entities are little endian>>

220 FOUNDATION_CONFIG nContext

The foundation message identified by this opcode has updated the

foundation model state.

For example, if the publication info or subscription list (or any other state)

is updated the application will know it has happened, but will not know

what the updated value.

300 KEY_REFRESH_NOTIFICATION None

400 IV_UPDATE_NOTIFICATION None

800 OTHER_EVENT Low level events.

This event will only happen if enabled via BleMeshConfigInt(50,n) where n

has bit 0 set. By default that bit is set to 0.

nContext

This further identifies a Low Power Node feature related event that has

occurred as follows:-

0 : A mesh message has been received

1 : A mesh message transmission has been completed

4 : An authenticated network beacon is received

5 : A heartbeat message is received

6 : The heartbeat subscription parameters changed

14 : Flash operations queue is empty, and flash is stable.

15 : RX Failed

16 : SAR Failed

17 : Flash Failed

BLE Mesh
Application Note

www.lairdconnect.com/bluetooth
31

© Copyright 2019 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

18 : Config Stable

19 : Config Storage Failure

20 : Config Load Failure

27 : Mesh stack has been disabled

810 LPN_EVENT Low Level events.

Normal Low Power Node events to handle are

EVBLEMESH_FRIENDCONNECT and EVBLEMESH_FRIENDDISCON

This event will only happen if enabled via BleMeshConfigInt(50,n) where n

has bit 1 set. By default that bit is set to 0.

nContext

This further identifies a Low Power Node feature related event that has

occurred as follows:-

21 : The node received a friend offer

22 : The node received a friend update

23 : The Friend Request Timed out

24 : The node successfully polled all data from the friend note

25 : A Friendship has been successfully established

26 : A friendship has successfully been terminated

900 MALLOCFAIL_MSGRX nContext

A message with this opcode was received but could not be delivered to the

application because of a malloc fail.

9.4.2 EVBLEMESH_MESSAGERX

This event occurs when a message arrives and needs to be processed and may result in zero or more outgoing messages.

Parameters:

nElementIndex

byVAL nElementIndex AS INTEGER.

This contains the element index 0 to N and will correspond to the elements that were added

using BleMeshElementAdd()

handleModel

byVAL handleModel AS INTEGER.

This contains the handle that was returned by BleMeshAddSigModel() or

BleMeshAddVendorModel()

nPackedOpcode

byVAL nPackedOpcode AS INTEGER.

This contains the packed opcode.

For a SIG defined opcode this shall be a value in the range 0x0000 to 0xFFFF.

For a vendor defined opcode the value shall be 0xPPVVVV where PP is a value in the range

0xC0 to 0xFF and VVVV is the companyID

sData$
byREF sData$ AS STRING.

This contains the data that arrived in the message associated with the opcode

sReplyInfo$

byREF sReplyInfo$ AS STRING.

This contains context data that will be used if BleMeshMessageReply() is called and should

be supplied to that function unmodified. This data MUST NOT be modified in anyway by the

application when it is supplied in BleMeshMessageReply()

It is expected that the smartBASIC application the handler will switch on the nPackedOpcode value (using the Select
compound statement) and then call an appropriate function to handle the data

BLE Mesh
Application Note

www.lairdconnect.com/bluetooth
32

© Copyright 2019 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

9.4.3 EVBLEMESH_ACKEDMSG_RESULT

This event occurs to signal the end of a reliable publish transaction which was initiated using the function
BleMeshMessagePublishAcked()

Parameters:

nElementIndex

byVAL nElementIndex AS INTEGER.

This contains the element index 0 to N and will correspond to the elements that were added

using BleMeshElementAdd()

handleModel

byVAL handleModel AS INTEGER.

This contains the handle that was returned by BleMeshAddSigModel() or

BleMeshAddVendorModel()

nResult

byVAL nResult AS INTEGER.

This contains the result outcome as follows:-

0 = Transaction successfully completed

1 = Transaction failed due to a timeout

2 = Transaction Aborted due to BleMeshMessagePubAckedCancel() being called

9.4.4 EVBLEMESH_FRIENDCONNECT

This is a low power node related event which occurs to signal that an attempt to seek a friend using the function
BleMeshFriendConnect() has succeeded and mesh messages will now be received via the event
EVBLEMESH_MESSAGERX as a result of the automatic polling that happens. At any time the low power node can manually
trigger a poll for messages queued up in a friend by calling the function BleMeshFriendPoll()

Parameters:

nReceiveWinSize
byVAL nReceiveWinSize AS INTEGER.

This contains the receive window size offered by the friend

nMsgQueSize
byVAL nMsgQuwSize AS INTEGER.

This contains the message queue size offered by the friend

nSubscriptionListSize

byVAL nSubscriptionListSize AS INTEGER.

This contains the number of subscription addresses that the friend can subscribe on

behalf of the low power node.

When this event occurs, the subscription list in the low power node has already been

transferred to the friend.

nMeasuredRssi

byVAL nMeasuredRssi AS INTEGER.

This contains the rssi of the friend request message from this low power node as

measured by the friend.

9.4.5 EVBLEMESH_FRIENDDISCON

This is a low power node related event which occurs to signal that an attempt to seek a friend using the function
BleMeshFriendConnect() has failed and the reason is provided.

It will also happen on power up if the device is a low power node so that tha application can use that event to initiate a friend
connection using BleMeshFriendConnect() and in that case the reason will be set to 256.

Parameters:

nReason

byVAL nReason AS INTEGER.

This reason this event was generated

0 : The Low Power node actively terminated the friendship

1 : There was no response from the LPN within the Poll Timeout

2 : The Friend node did not reply to the (repeated) Friend Poll

3 : The Low Power node was not able to send transport command due to internal fault

256 : The device has just powered up

BLE Mesh
Application Note

www.lairdconnect.com/bluetooth
33

© Copyright 2019 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

10 SMARTBASIC APP CODE WALKTHROUGH
In a smartBASIC BLE Mesh application, the developer must only code for creating the mesh models and then sending and
receiving mesh messages; the developer only has to deal with what triggers a mesh message to be sent and what happens
when a mesh message is received. With that in mind, smartBASIC provides functions such as BleMeshMessagePubXXXX()
and BleMeshMessageReply() for sending messages; since it is an event-driven language, there is an event
EVBLEMESH_MESSAGERX that is thrown to the application which in turn has a handler written by the developer to process
it.

In terms of which node to send to or where a message comes from, that is entirely dealt with when a device is provisioned and
configured by a provisioner like a smartphone. In fact, all the coding of that aspect is completely opaque to the application
layer so is not even exposed to the smartBASIC app developer.

With that in mind, the relevant portions of the Client and Server applications are described in the following sections.

10.1 Client : $autorun$.mesh.light.switch.client.sb

On start, the function GpioInit() on line circa 625 which is defined at line circa 273 where the gpio for all 4 buttons on the
devkit are configured as inputs using GpioSetFunc() and all 4 LEDs are configured as outputs, again using GpioSetFunc()
and then finally all 4 button gpios are configured to generate the EVGPIOCHANx event so that the handlers
HandlerOnButtonx() are called when they change state.

Then the function MeshInit () is called to initialise the Gatt table, and then RegModels() which in turn registers 4 mesh
elements, each with a single ‘simple onoff client’ model which you see in the ‘for’ loop, and then finally the mesh stack is
started by calling the function BleMeshStart().

For incoming mesh messages, the following statement, at line circa 609, ensures that the function HandlerMeshMessageRx()
is called.

Locate the HandlerMeshMessageRx() function and you will see it is passed the element index, the model handle, the opcode
of the message and the payload. There you see a SELECT statement to switch on the opcode value and in this case the
model only listens for the STATUS message and for this demo we call the function onStatus() and print a message that the
message has arrived.
Locate the onStatus() function where you will see that the data in the message is decoded to extract the state of the LED at
the server that sent it and that it calls GpioWrite() to reflect the state of the remote LED on one of the local LEDs

Locate the HandlerOnButtonX() (where X== 1 or 2 or 3 or 4) and you will see that a debug message is printed to indicate
that BUTTON X has been pressed and then the function OnButton() is called. That function is defined at circa line which in
turn calls SendSetMsg() which in turn creates and sends the SIMPLE_ON_OFF_OPCODE_SET message.

On power-up the event EVBLEMESH_EVENT will always be thorwn to the app with event type 100
(PROVISION_WAIT_FOR) or 200 (Provisioned). That event is processed in function HandlerMeshEvent() that can be found
in the included file EvMeshEvent_Handler.sblib where all that happens is that a message is printed.

10.2 Server : $autorun$.mesh.light.switch.server.sb

On start, the function GpioInit() on line circa 560 which is defined at line circa 260 where the gpio for button 1 on the devkit is
configured as input using GpioSetFunc() and all 4 LEDs are configured as outputs, again using GpioSetFunc() and then
finally button 1 gpio is configured to generate the EVGPIOCHAN0 event so that the handlers HandlerOnButton1() is called
when it changes state.

Then the function MeshInit() is called and then RegModels() which in turn registers 1 mesh element, with a single ‘simple
onoff server model at line circa 350. Then the three opcodes are registered and then finally the mesh stack is started by calling
the function BleMeshStart() at line circa 575.

For incoming mesh messages, the following statement, towards the end of the file, ensures that the function
HandlerMeshOpcMsg() is called.

BLE Mesh
Application Note

www.lairdconnect.com/bluetooth
34

© Copyright 2019 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Locate the HandlerMesh() function and you will see it is passed the element index, the model handle, the opcode of the
message and the payload. There you see a SELECT statement to switch on the opcode value and in this case the model
listens for the GET, SET and SET_UNRELIABLE messagew and for this demo we call the functions OnGet(), OnSetRel() and
OnSetUnRel() respectively and also print a message that the message has arrived.

Locate the OnGet() function where you will see that the STATUS message is published – and note there is no information
about who it publishes to as that is provided at provisioning time.

Locate the OnSetRel() function where you will see that STATUS message is sent in a reply (the destination node address is
provided in the respInfo$ parameter) and also another STATUS message is published – again to a recipient that will have
been configured when the device was provisioned.

Locate the OnSetUnrel() function where you will see that STATUS message is published – again to a recipient that will have
been configured when the device was provisioned. Note there is no reply to the sender.

Locate the HandlerOnButton1() and you will see that a debug message is printed to indicate that BUTTON 1 has been
pressed and then the locate variable ledstate[0] is toggled and the GpioWrite() is used to update the satet of LED1 as per the
state of that variable and then finally the new LED state is published using BleMeshMessagePublish() so that all subscribers
are made aware of that change of state.

On power-up the event EVBLEMESH_EVENT will always be thorwn to the app with event type 100
(PROVISION_WAIT_FOR) or 200 (Provisioned). That event is processed in function HandlerMeshEvent() that can be found
in the included file EvMeshEvent_Handler.sblib where all that happens is that a message is printed.

10.3 Server : $autorun$.mesh.light.switch.server.lpn.sb

This is the application to load to experiment with a Low Power Node. The processing of mesh messages related to the models
is exactly the same as per the non-lpn variant of the application except that it has the extra duty to initiate a connection to a
friend so that incoming messages can be received. Without a friendship the node is useless as it cannot receive any
messages to process, although it is capable of directly publishing messages without the help of a friend.

In short, the extra effort is to always maintain that it is in a friendship and that is done by calling BleMeshFriendConnect()
whenever it has been sent the event EVBLEMESH_FRIENDDISCON. That means that this application has to register for an
additional two low power node related messages as follows:-

On receipt of the EVBLEMESH_FRIENDISCON event the handler HndlrMeshFrndDiscon() is called and all that function
does is starts a timer. And when that tiemr expires the function HandlerTimer1() is called where it calls the function
BleMeshFriendConnect().

Apart from these additional actions, the sending and receiving of messages is identical to the non-LPN variant of the server
application.

On power-up the event EVBLEMESH_EVENT will always be thorwn to the app with event type 100
(PROVISION_WAIT_FOR) or 200 (Provisioned). That event is processed in function HandlerMeshEventX() which in turn
invokes HandlerMeshEvent() that can be found in the included file EvMeshEvent_Handler.sblib where all that happens is that
a message is printed.
This difference from the other two apps is purely to delay the initiatation of a friend connection if a gatt connection still exists.
This is currently a workaround for an issue with related to the provisioning phase that requires a mesh stack restart and so will
throw a PROVISIONED eventtype. That is normal but if the provisioning gatt connection is present then it seems to be
interfered with if a friend connection is started at that point.
You will therefore notice that the FriendConnect function is invoked when the gatt connection disconnects.

11 MIGRATING SMARTBASIC APPS FROM OLDER FIRMWARE
This section describes the changes required to your smartBASIC application to port from an older version. While the mesh
firmware is in experimental phase tracking Nordic’s Mesh SDK which makes significant changes as it evolves Laird are forced
to make changes and this section makes that task easier.

BLE Mesh
Application Note

www.lairdconnect.com/bluetooth
35

© Copyright 2019 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

11.1 Version Mesh310-8 from Mesh211-10

This firmware caters for Low Powr Node feature and fixes bugs related to the earlier Mesh Stack.

• The event EVBLEMESH_STATE is renamed to EVBLEMESH_EVENT which provides an extra integer paramter so
the handler for it needs to cater for it. The new example app contains a file called “EvMeshEvent_Handler.sblib”
which can be #included in your app to inherit the behavior as shown in the new sample apps.

• The function BleMeshConfigInt() takes has new config items that can be used to configure the behavior of the mesh
node. See details here.

• Deleted functoin BleMeshSchemaNew(). Call BleMeshAddElement() instead.

• Added new function BleMeshFriendConnect()

• Added new function BleMeshFriendDisconnect()

• Added new function BleMeshFriendPoll()

• Added new function BleMeshUnProvAndReset()

• Removed event EVBLEMESH_STATE

• Added new event EVBLEMESH_EVENT

• Added new event EVBLEMESH_FRIENDCONNECT

• Added new event EVBLEMESH_FRIENDDISCON

11.2 Version Mesh211-12 from Mesh211-10

• It is now possible to add up to 8 elements per node, up from 4

• Function BleMeshStart() now takes an extra integer parameter which is used to specify the transmit power to use for
mesh adverts. The default was previously 0dBm

• Function BleMeshConfigInt() no longer takes configId==0 as that configuration value can be modified by a provisioner
and so allowing it to be done locally does not make sense.

• Function name BleMeshSchemaNew() has now been changed to BleMeshBeginNodeComposition()

• Function name BleMeshAddOpcode() has now been changed to BleMeshAddMessage()

• Function name BleMeshPublish() has now been changed to BleMeshMessagePublish()

• Function name BleMeshPublishReliable() has now been changed to BleMeshMessagePublishAcked()

• Function name BleMeshReply() has now been changed to BleMeshMessageReply()

• Event name EVBLEMESH_OPC_MSG has now been changed to EVBLEMESH_MESSAGERX

• Event name EVBLEMESH_PUBREL_RESULT has now been changed to EVBLEMESH_ACKEDMSG_RESULT

12 SNIFFER OPERATION
This section describes how to operate the mesh sniffer which displays mesh traffic. Messages which have content encrypted
are NOT decrypted as the keys are not available for that to happen.

Load the smartBASIC application $autorun$.mesh.sniff.sb and on starting it any mesh related messages will be displayed
similar to the UwTerminalX screenshot below.

If there are many devices in the area you will see a lot of messages scroll up fast. If you want to temporarily stop scanning just
hit the ENTER key and it will stop. Hitting the ENTER key will restart scanning.

It is also possible that you may want to monitor messages from a particular node only whose address is at the beginning of the
lines. To just view advert messages from that node, hit ENTER key to suspend scanning, and enter the command

BLE Mesh
Application Note

www.lairdconnect.com/bluetooth
36

© Copyright 2019 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

ps “01E925”

and then hit ENTER key to restart the scanning. You will now only see lines which have the text “01E925” in it.
Generally the command ‘ps’ takes a pattern which can be any sequence of characters and all the sniffer application is doing is
printing a line if and only if that line contains that pattern anywhere in the line.

To abort filtered scanning, suspend scanning, enter ps “” and restart scanning by hitting the ENTER key.

You are free to modify the sniffer smartBASIC application in any way you want. If you think it will be useful for others we
encourage you to submit to Laird for incorporation so that those changes are released to everyone on the next firmware
release.

13 REFERENCES
The following documents are also accessible from the BL654 product page of the Laird website (Documentation tab):

▪ BL654 smartBASIC Extension Manual

▪ BL654 Datasheet

▪ UwTerminalX

The following documents are also accessible from the Bluetooth SIG website:

▪ Mesh Profile Specification v1.0

▪ Mesh Model Specification v1.0

▪ Mesh Device Properties v1.0

14 REVISION HISTORY

Version Date Notes Approver

0.10.0/rel10 5 Dec 2017 Initial Release Jonathan Kaye

2.1.1/8 17 Jul 2018
Updated to reflect firmware based on Nordic

Mesh SDK V2.1.1
Jonathan Kaye

2.1.1/8-rel 2 16 Aug 2018 All sections updated as per the functionality Jonathan Kaye

2.1.1 rel 3 24 Sep 2018 Typo correction Mahendra Tailor

29.1.1.12-MESH211-12

Rel 1
19 Oct 2018

+ Function and Event name changes.

+ On mesh start the txpower can be specified to

extend range between nodes. Default was 0dBm

and now it can be set as high as +8dBm

+ Added section 10 with details of migrating a

smartBASIC app from an older firmware

+ Added section 11 describing sniffer operation

Mahendra Tailor

29.1.1.14-MESH211-14

Rel 2
10 Jan 2019 Version change Mahendra Tailor

29.3.31.8-MESH310-8 29 May 2019
Based on SDK v3.1.0 and added Low Power

Node capability
Mahendra Tailor

http://www.lairdtech.com/products/bl652-ble-module

	1 Introduction
	1.1 Low Power Node Overview

	2 Requirements
	3 Release Specific Notes
	4 Demo Description
	5 BL654 Development Kit Firmware Load
	6 BL654 Development Kit smartBASIC App Load
	7 PCA10056 Development Kit Firmware Load
	8 Launch and Test the Mesh Example
	8.1 Overview
	8.2 Launch and Test Process Initial Steps
	8.3 Setting Up Server 0
	8.4 Provisioning Server 0 by Phone
	8.4.1 iOS
	8.4.2 Android

	8.5 Provisioning Server 1 by Phone
	8.5.1 iOS
	8.5.2 Android

	8.6 Provisioning Server 2 by Phone
	8.6.1 iOS
	8.6.2 Android

	8.7 Provisioning the Client by Phone
	8.7.1 iOS
	8.7.2 Android

	8.8 Testing Nordic’s Simple OnOff Server and Client Mesh Model

	9 Mesh-related smartBASIC Functions and Events
	9.1 Mesh-related AT Commands
	9.1.1 AT&F 0x100000

	9.2 Mesh-related Result Codes
	9.3 Mesh-related Functions
	9.3.1 BleMeshAddElement
	9.3.2 BleMeshAddSigModel
	9.3.3 BleMeshAddVendorModel
	9.3.4 BleMeshAddMessage
	9.3.5 BleMeshStart
	9.3.6 BleMeshConfigInt
	9.3.7 BleMeshConfigStr
	9.3.8 BleMeshMessagePublish
	9.3.9 BleMeshMessagePublishAcked
	9.3.10 BleMeshMessagePubAckedCancel
	9.3.11 BleMeshMessageReply
	9.3.12 BleMeshFriendConnect
	9.3.13 BleMeshFriendDisconnect
	9.3.14 BleMeshFriendPoll
	9.3.15 BleMeshUnProvAndReset

	9.4 Mesh-related Events
	9.4.1 EVBLEMESH_EVENT
	9.4.2 EVBLEMESH_MESSAGERX
	9.4.3 EVBLEMESH_ACKEDMSG_RESULT
	9.4.4 EVBLEMESH_FRIENDCONNECT
	9.4.5 EVBLEMESH_FRIENDDISCON

	10 smartBASIC App Code Walkthrough
	10.1 Client : $autorun$.mesh.light.switch.client.sb
	10.2 Server : $autorun$.mesh.light.switch.server.sb
	10.3 Server : $autorun$.mesh.light.switch.server.lpn.sb

	11 Migrating smartBASIC apps from older firmware
	11.1 Version Mesh310-8 from Mesh211-10
	11.2 Version Mesh211-12 from Mesh211-10

	12 Sniffer Operation
	13 References
	14 Revision History

