
 

https://www.lairdconnect.com/ 1 

© Copyright 2019 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

Application Note  v1.0 

 

 

The purpose of this document is to guide you through the process of creating a secure bootloader image using Nordic’s DFU 
sample application for the Laird Connectivity 451-00004 – BL654 based USB dongle. This allows for secure signed firmware 
updates, and to also generate and load a test application. 

Note:  This is for customers that have a Zephyr/Nordic SDK/other application and want to program it to the USB dongle and 

prevent unauthorized firmware upgrades. If preventing unauthorized firmware upgrades is not an issue, then the 

default bootloader can be used as-is. 

 

Note:  Laird Connectivity also makes a variant of this product which supports smartBASIC development (Laird part # 451-

00003). The variants have different hardware and are dedicated to their specific development environments. 

 
Before starting, the following are required (see the relevant sections for details on acquiring the components): 

▪ Windows/Linux computer 

▪ Laird Connectivity 451-00004 USB dongle 

▪ Nordic nrfutil command-line utility 

▪ Nordic SDK 

▪ Open bootloader files 

▪ IDE/Compiler 

 

A computer with access to the internet running a Windows operating system (windows 7 or newer) or Linux (4.x kernel or 
newer) is required. This guide assumes that a Windows computer is being used; commands may be different if running on 
Linux. 

 

The Laird Connectivity 451-00004 USB dongle is available world-wide from various distributors. It can be differentiated from 
the 451-00003 USB dongle (smartBASIC dongle) due to a hole in the top part of the case which exposes the reset button (this 
hole is not found on the 451-00003 dongle). (Figure 1) 

 

Figure 1: Dongle reset button 



https://www.lairdconnect.com/ 2 

© Copyright 2019 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

Nordic’s command line utility nrfutil (available for Windows/Linux/Mac) can be used to interact with the module and to create 
firmware upgrade files from a terminal or command prompt. For windows, a build is available from the nrfutil Github Releases 
page; for Linux, follow the instructions listed on the front page of the nrfutil Github Repository. 

 

The Nordic SDK is required to build a secure bootloader image. 

Note that this is for the bootloader itself and has no impact on what RTOS/tool the main application is uses. It can be 
downloaded from the Nordic website: http://developer.nordicsemi.com/nRF5_SDK/ (for this guide, 15.3 was used). Once 
downloaded, extract the contents of the zip file to a directory that does not have any spaces in. 

 

Some files are required for generating the update package. These files can be downloaded from 
https://github.com/LairdCP/Nordic_DFU_BL654_USB. The repository does not need to be cloned from git; you can download 
an archive by clicking Clone or download > Download ZIP (). 

 

Figure 2: Download an archive 

This repository also contains a sample pre-modified secure bootloader project from the 15.3 SDK. 

 

A C compiler which supports the nRF52840 (Cortex-M4) is required and an optional IDE for editing the project files. The 
Nordic SDK supports Keil μVision 5, GNU GCC, IAR, and Segger Embedded Studio (SES). This guide was tested with GCC. 
The GCC build can be downloaded from the ARM site: https://developer.arm.com/tools-and-software/open-source-
software/developer-tools/gnu-toolchain/gnu-rm/downloads (2019 q3 was used for this guide). Instructions are also provided for 
Segger Embedded Studio (SES). Installing Segger Embedded Studio (SES) or configuring it is outside the scope of this guide. 

https://github.com/NordicSemiconductor/pc-nrfutil/releases
https://github.com/NordicSemiconductor/pc-nrfutil/releases
http://developer.nordicsemi.com/nRF5_SDK/
https://github.com/LairdCP/Nordic_DFU_BL654_USB
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm/downloads
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm/downloads


https://www.lairdconnect.com/ 3 

© Copyright 2019 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 
By default, the Laird Connectivity 451-00004 module sets the internal high-voltage regulator to run at 3.3v, enables readback 
protection, and disables CPU patch functionality to protect the integrity of the code running on the module and prevent it being 
read back via SWD. Because these settings are stored in the UICR, they cannot be re-configured or disabled. There is a 
32KHz crystal (±20 ppm error) connected to the low speed oscillator port of the module and active-high blue LED connected to 
SIO13 (P0.13). 

 

 
There is a sample secure bootloader project available on github which can be moved into the Nordic SDK version 15.3 under 
examples\dfu available from https://github.com/LairdCP/Nordic_DFU_BL654_USB which has been pre-modified to use the 
soft-blinking LED. Note that this project includes modifications for GCC and Segger Embedded Studio (SES) only, for Keil or 
IAR builds, these changes need to be manually applied. 

If you wish to see the changes and manually apply/configure them, follow below. If you use the sample project from github, 
skip to section 5.8 Adding Public Key to Bootloader. 

 
The secure bootloader project can be located in the Nordic SDK under the following directory: 
examples\dfu\secure_bootloader\pca10056_usb 

 

The bootloader start address must match the start address of the existing bootloader. For SDK 15.3, this is already set 
correctly but may be set differently if using a different version of the SDK. Check that the start address is set to 0xF4000 and 
has a length of 0xA000. For the GCC build, this is in secure_bootloader_gcc_nrf52.ld. 

 

The secure bootloader code uses multiple LEDs by default which are not present on the 451-00004 dongle hardware so 
should be removed. Open main.c and remove the bsp_board_* functions: 

https://github.com/LairdCP/Nordic_DFU_BL654_USB


https://www.lairdconnect.com/ 4 

© Copyright 2019 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

With the code as-is, there is no longer be any indication via LED that the module is in bootloader mode. This can optionally be 
changed so that the LED is used for status indication if desired through one of two methods: 

▪ Simple LED on/off – This allows the LED to be turned on and off depending on its state. This requires minimal 
modifications. 

▪ Soft-blink LED – The pre-loaded bootloader uses this on the dongle to smoothly fade the LED in and out. This requires 
numerous changes and increases RAM usage and flash consumption. 

 

Inside main.c in the dfu_observer function, add the following code under the NRF_DFU_EVT_DFU_INITIALIZED line to 
configure the LED and turn it off: 

          nrf_gpio_cfg(13, NRF_GPIO_PIN_DIR_OUTPUT, NRF_GPIO_PIN_INPUT_CONNECT, 

NRF_GPIO_PIN_NOPULL, NRF_GPIO_PIN_S0S1, NRF_GPIO_PIN_NOSENSE); 

            nrf_gpio_pin_write(13, 0); 

And under the NRF_DFU_EVT_TRANSPORT_ACTIVATED line, add the following code to turn the LED on: 

          nrf_gpio_pin_write(13, 1); 

The 1 and 0 of the nrf_gpio_pin_write() functions can be switched to have the LED on at bootloader start and turn off when it is 
initialized, if desired. The complete function for SDK 15.3 looks like the following: 

static void dfu_observer(nrf_dfu_evt_type_t evt_type) 

{ 

    switch (evt_type) 

    { 

        case NRF_DFU_EVT_DFU_FAILED: 

        case NRF_DFU_EVT_DFU_ABORTED: 

        case NRF_DFU_EVT_DFU_INITIALIZED: 

            nrf_gpio_cfg(13, NRF_GPIO_PIN_DIR_OUTPUT, NRF_GPIO_PIN_INPUT_CONNECT, 

NRF_GPIO_PIN_NOPULL, NRF_GPIO_PIN_S0S1, NRF_GPIO_PIN_NOSENSE); 

            nrf_gpio_pin_write(13, 0); 

            break; 

        case NRF_DFU_EVT_TRANSPORT_ACTIVATED: 

            nrf_gpio_pin_write(13, 1); 

            break; 

        case NRF_DFU_EVT_DFU_STARTED: 

            break; 

        default: 

            break; 

    } 

} 



https://www.lairdconnect.com/ 5 

© Copyright 2019 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

This concludes enabling the simple on/off LED functionality. 

 

To enable the soft-blink functionality, open the main.c file and add this to the include section: 

#include "led_softblink.h" 

#include "app_timer.h" 

#include "nrf_clock.h" 

Directly below this, add the following defines and application timer definition: 

#define LAIRD_LED_SIO    13 

#define LAIRD_LED        0b10000000000000       //Bit-mask format 

 

/* Timer used to blink LED on DFU progress. */ 

APP_TIMER_DEF(m_dfu_progress_led_timer); 

Directly above the dfu_observer() function, add this timer timeout handler: 

static void dfu_progress_led_timeout_handler(void * p_context) 

{ 

    app_timer_id_t timer = (app_timer_id_t)p_context; 

 

    uint32_t err_code = app_timer_start(timer, 

                                        APP_TIMER_TICKS(DFU_LED_CONFIG_PROGRESS_BLINK_MS), 

                                        p_context); 

    APP_ERROR_CHECK(err_code); 

 

    nrf_gpio_pin_toggle(LAIRD_LED_SIO); 

} 

Add the following code to the top of the dfu_observer() function: 

static bool timer_created = false; 

   uint32_t err_code; 

 

    if (!timer_created) 

    { 

        err_code = app_timer_create(&m_dfu_progress_led_timer, 

                                    APP_TIMER_MODE_SINGLE_SHOT, 

                                    dfu_progress_led_timeout_handler); 

        APP_ERROR_CHECK(err_code); 

        timer_created = true; 

    } 



https://www.lairdconnect.com/ 6 

© Copyright 2019 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

Add this code under the NRF_DFU_EVT_DFU_FAILED and NRF_DFU_EVT_DFU_ABORTED case statements: 

err_code = led_softblink_stop(); 

APP_ERROR_CHECK(err_code); 

 

err_code = app_timer_stop(m_dfu_progress_led_timer); 

APP_ERROR_CHECK(err_code); 

 

err_code = led_softblink_start(LAIRD_LED); 

APP_ERROR_CHECK(err_code); 

break; 

Add the following code the NRF_DFU_EVT_DFU_INITIALIZED case statement, before the break; line 

nrf_gpio_cfg(LAIRD_LED_SIO, NRF_GPIO_PIN_DIR_INPUT, NRF_GPIO_PIN_INPUT_CONNECT, 

NRF_GPIO_PIN_NOPULL, NRF_GPIO_PIN_S0S1, NRF_GPIO_PIN_NOSENSE); 

 

if (!nrf_clock_lf_is_running()) 

{ 

  nrf_clock_task_trigger(NRF_CLOCK_TASK_LFCLKSTART); 

          } 

          err_code = app_timer_init(); 

          APP_ERROR_CHECK(err_code); 

 

           led_sb_init_params_t led_sb_init_param = LED_SB_INIT_DEFAULT_PARAMS(LAIRD_LED); 

 

          uint32_t ticks = APP_TIMER_TICKS(DFU_LED_CONFIG_TRANSPORT_INACTIVE_BREATH_MS); 

          led_sb_init_param.p_leds_port    = BSP_LED_1_PORT; 

          led_sb_init_param.on_time_ticks  = ticks; 

led_sb_init_param.off_time_ticks = ticks; 

led_sb_init_param.duty_cycle_max = 255; 

led_sb_init_param.active_high = true; 

 

err_code = led_softblink_init(&led_sb_init_param); 

APP_ERROR_CHECK(err_code); 

 

err_code = led_softblink_start(LAIRD_LED); 

APP_ERROR_CHECK(err_code); 

Add the following under the NRF_DFU_EVT_TRANSPORT_ACTIVATED case statement: 

{ 

uint32_t ticks = APP_TIMER_TICKS(DFU_LED_CONFIG_TRANSPORT_ACTIVE_BREATH_MS); 

led_softblink_off_time_set(ticks); 

led_softblink_on_time_set(ticks); 

} 

Add the following case statement after the end of the NRF_DFU_EVT_TRANSPORT_ACTIVATED case statement: 

case NRF_DFU_EVT_TRANSPORT_DEACTIVATED: 

{ 

uint32_t ticks =  APP_TIMER_TICKS(DFU_LED_CONFIG_PROGRESS_BLINK_MS); 

err_code = led_softblink_stop(); 

APP_ERROR_CHECK(err_code); 

 

err_code = app_timer_start(m_dfu_progress_led_timer, ticks, 

m_dfu_progress_led_timer); 

APP_ERROR_CHECK(err_code); 

break; 

} 



https://www.lairdconnect.com/ 7 

© Copyright 2019 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

Add in this code to sdk_config.h to enable the required features: 

// <q> LED_SOFTBLINK_ENABLED  - led_softblink - led_softblink module 

 

 

#ifndef LED_SOFTBLINK_ENABLED 

#define LED_SOFTBLINK_ENABLED 1 

#endif 

 

// <q> LOW_POWER_PWM_ENABLED  - low_power_pwm - low_power_pwm module 

 

 

#ifndef LOW_POWER_PWM_ENABLED 

#define LOW_POWER_PWM_ENABLED 1 

#endif 

 

// <e> APP_TIMER_ENABLED - app_timer - Application timer functionality 

//========================================================== 

#ifndef APP_TIMER_ENABLED 

#define APP_TIMER_ENABLED 1 

#endif 

// <o> APP_TIMER_CONFIG_RTC_FREQUENCY  - Configure RTC prescaler. 

 

// <0=> 32768 Hz 

// <1=> 16384 Hz 

// <3=> 8192 Hz 

// <7=> 4096 Hz 

// <15=> 2048 Hz 

// <31=> 1024 Hz 

 

#ifndef APP_TIMER_CONFIG_RTC_FREQUENCY 

#define APP_TIMER_CONFIG_RTC_FREQUENCY 1 

#endif 

 

// <o> APP_TIMER_CONFIG_IRQ_PRIORITY  - Interrupt priority 

  

  

// <i> Priorities 0,2 (nRF51) and 0,1,4,5 (nRF52) are reserved for SoftDevice 

// <0=> 0 (highest) 

// <1=> 1 

// <2=> 2 

// <3=> 3 

// <4=> 4 

// <5=> 5 

// <6=> 6 

// <7=> 7 

 

#ifndef APP_TIMER_CONFIG_IRQ_PRIORITY 

#define APP_TIMER_CONFIG_IRQ_PRIORITY 6 

#endif 

 

// <o> APP_TIMER_CONFIG_OP_QUEUE_SIZE - Capacity of timer requests queue. 

// <i> Size of the queue depends on how many timers are used 

// <i> in the system, how often timers are started and overall 

// <i> system latency. If queue size is too small app_timer calls 

// <i> will fail. 

 

#ifndef APP_TIMER_CONFIG_OP_QUEUE_SIZE 

#define APP_TIMER_CONFIG_OP_QUEUE_SIZE 10 

#endif 

 

// <q> APP_TIMER_CONFIG_USE_SCHEDULER  - Enable scheduling app_timer events to 

app_scheduler 



https://www.lairdconnect.com/ 8 

© Copyright 2019 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

#ifndef APP_TIMER_CONFIG_USE_SCHEDULER 

#define APP_TIMER_CONFIG_USE_SCHEDULER 0 

#endif 

 

// <q> APP_TIMER_KEEPS_RTC_ACTIVE  - Enable RTC always on 

 

// <i> If option is enabled RTC is kept running even if there is no active timers. 

// <i> This option can be used when app_timer is used for timestamping. 

 

#ifndef APP_TIMER_KEEPS_RTC_ACTIVE 

#define APP_TIMER_KEEPS_RTC_ACTIVE 0 

#endif 

 

// <o> APP_TIMER_SAFE_WINDOW_MS - Maximum possible latency (in milliseconds) of handling 

app_timer event. 

// <i> Maximum possible timeout that can be set is reduced by safe window. 

// <i> Example: RTC frequency 16384 Hz, maximum possible timeout 1024 seconds - 

APP_TIMER_SAFE_WINDOW_MS. 

// <i> Since RTC is not stopped when processor is halted in debugging session, this value 

// <i> must cover it if debugging is needed. It is possible to halt processor for 

APP_TIMER_SAFE_WINDOW_MS 

// <i> without corrupting app_timer behavior. 

 

#ifndef APP_TIMER_SAFE_WINDOW_MS 

#define APP_TIMER_SAFE_WINDOW_MS 300000 

#endif 

 

// <q> NRF_SORTLIST_ENABLED  - nrf_sortlist - Sorted list 

 

 

#ifndef NRF_SORTLIST_ENABLED 

#define NRF_SORTLIST_ENABLED 1 

#endif 

 

 

//========================================================== 

// <h> Bootloader LEDs Configuration 

 

//========================================================== 

// <o> DFU_LED_CONFIG_TRANSPORT_ACTIVE_BREATH_MS - Active and Inactive period (in 

milliseconds) of LED breathing when DFU transport is active (e.g. BLE connected). 

#ifndef DFU_LED_CONFIG_TRANSPORT_ACTIVE_BREATH_MS 

#define DFU_LED_CONFIG_TRANSPORT_ACTIVE_BREATH_MS 300 

#endif 

 

// <o> DFU_LED_CONFIG_TRANSPORT_INACTIVE_BREATH_MS - Active and Inactive period (in 

milliseconds) of LED breathing when DFU transport is inactive (e.g. BLE disconnected). 

#ifndef DFU_LED_CONFIG_TRANSPORT_INACTIVE_BREATH_MS 

#define DFU_LED_CONFIG_TRANSPORT_INACTIVE_BREATH_MS 600 

#endif 

 

// <o> DFU_LED_CONFIG_PROGRESS_BLINK_MS - Active and Inactive period of LED blinking when 

DFU progress is ongoing. 

#ifndef DFU_LED_CONFIG_PROGRESS_BLINK_MS 

#define DFU_LED_CONFIG_PROGRESS_BLINK_MS 100 

#endif } 



https://www.lairdconnect.com/ 9 

© Copyright 2019 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

Soft-blink LED status can be used to indicate the status of the bootloader and will make the LED softly fade in and out when 
the device is in bootloader mode. 

 

Add these extra C files: 

$(SDK_ROOT)/components/libraries/sortlist/nrf_sortlist.c \ 

$(SDK_ROOT)/components/libraries/timer/experimental/app_timer2.c \ 

$(SDK_ROOT)/components/libraries/timer/experimental/drv_rtc.c \ 

$(SDK_ROOT)/components/libraries/led_softblink/led_softblink.c \ 

$(SDK_ROOT)/components/libraries/low_power_pwm/low_power_pwm.c \ 

$(SDK_ROOT)/components/libraries/atomic_fifo/nrf_atfifo.c \ 

Add these extra include directories: 

$(SDK_ROOT)/components/libraries/sortlist \ 

$(SDK_ROOT)/components/libraries/low_power_pwm \ 

$(SDK_ROOT)/components/libraries/led_softblink \ 

$(SDK_ROOT)/components/libraries/timer/experimental \ 

$(SDK_ROOT)/components/libraries/timer \ 

$(SDK_ROOT)/components/libraries/atomic_fifo \ 

Add the following to the C flags: 

CFLAGS += -DAPP_TIMER_V2 

CFLAGS += -DAPP_TIMER_V2_RTC1_ENABLED 

Add the following to the assembly flags: 

ASMFLAGS += -DAPP_TIMER_V2 

ASMFLAGS += -DAPP_TIMER_V2_RTC1_ENABLED 

The linker file for the secure bootloader in SDK 15.3 is wrong and needs fixing, open secure_bootloader_gcc_nrf52.ld and 
change: 

uicr_bootloader_start_address (r) : ORIGIN = 0x00000FF8, LENGTH = 0x4 

To: 

uicr_bootloader_start_address (r) : ORIGIN = 0x10001014, LENGTH = 0x4 

Then change: 

uicr_mbr_params_page (r) : ORIGIN = 0x00000FFC, LENGTH = 0x4 

To: 

uicr_mbr_params_page (r) : ORIGIN = 0x10001018, LENGTH = 0x4 



https://www.lairdconnect.com/ 10 

© Copyright 2019 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

With the SES project open, right click on the project on the left-hand side project view and select options. In the drop-down 
menu, select common and search for include. Then append the following to the end of the User Include Directories option: 

../../../../../components/libraries/sortlist 

../../../../../components/libraries/low_power_pwm 

../../../../../components/libraries/led_softblink 

../../../../../components/libraries/timer/experimental 

../../../../../components/libraries/timer 

Click OK and search for Preprocessor. Then append the following to the end of the Preprocessor Definitions option: 

APP_TIMER_V2 

APP_TIMER_V2_RTC1_ENABLED 

Click OK and click OK again to apply the settings. 

Right click on the nRF_Drivers folder in the left-hand side project view and select Add existing files. Then add the following 
file, relative to your nRF SDK v15.3 root directory: 

components/libraries/timer/experimental/drv_rtc.c 

Right click on the nRF_Libraries folder in the left-hand side project view and select Add existing files. Add the following files 
one-by-one, relative to your nRF SDK v15.3 root directory: 

components/libraries/sortlist/nrf_sortlist.c 

components/libraries/timer/experimental/app_timer2.c 

components/libraries/led_softblink/led_softblink.c 

components/libraries/low_power_pwm/low_power_pwm.c  

components/libraries/atomic_fifo/nrf_atfifo.c 

The linker file for the secure bootloader in SDK 15.3 is wrong and must be fixed. To do this, right-click on the project in the left-
hand side project view and select Edit Section Placement, in the xml file that opens change: 

  <MemorySegment name="uicr_bootloader_start_address" start="0x00000FF8" size="0x4"> 

    <ProgramSection alignment="4" keep="Yes" load="Yes" 

name=".uicr_bootloader_start_address" 

address_symbol="__start_uicr_bootloader_start_address" 

end_symbol="__stop_uicr_bootloader_start_address" start = "0x00000FF8" size="0x4" /> 

To: 

  <MemorySegment name="uicr_bootloader_start_address" start="0x10001014" size="0x4"> 

    <ProgramSection alignment="4" keep="Yes" load="Yes" 

name=".uicr_bootloader_start_address" 

address_symbol="__start_uicr_bootloader_start_address" 

end_symbol="__stop_uicr_bootloader_start_address" start = "0x10001014" size="0x4" /> 

Then change: 

  <MemorySegment name="uicr_mbr_params_page" start="0x00000FFC" size="0x4"> 

    <ProgramSection alignment="4" keep="Yes" load="Yes" name=".uicr_mbr_params_page" 

address_symbol="__start_uicr_mbr_params_page" end_symbol="__stop_uicr_mbr_params_page" 

start = "0x00000FFC" size="0x4" /> 



https://www.lairdconnect.com/ 11 

© Copyright 2019 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

To: 

  <MemorySegment name="uicr_mbr_params_page" start="0x10001018" size="0x4"> 

    <ProgramSection alignment="4" keep="Yes" load="Yes" name=".uicr_mbr_params_page" 

address_symbol="__start_uicr_mbr_params_page" end_symbol="__stop_uicr_mbr_params_page" 

start = "0x10001018" size="0x4" /> 

 

By default, the secure bootloader can be entered by having a GPIO set at start-up or by setting the GPREGRET register and 
restarting the module. However, on the Laird dongle bootloader, the bootloader is entered by pressing the reset button, this 
ensures that even if an application with a fault is loaded then the module can be recovered. To switch to using the reset button 
to enter the bootloader, open the sdk_config.h file and search for this line: 

#define NRF_BL_DFU_ENTER_METHOD_BUTTON 1 

Change the 1 to a 0 to prevent using a button to enter DFU mode like so: 

#define NRF_BL_DFU_ENTER_METHOD_BUTTON 0 

Then search for this line: 

#define NRF_BL_DFU_ENTER_METHOD_PINRESET 0 

Change the 0 to a 1 like so to enable using the reset button to enter DFU mode: 

#define NRF_BL_DFU_ENTER_METHOD_PINRESET 1 

 

For the signed operation of the bootloader to work, a private/public keypair must be generated. The purpose of the private key 
is to sign some data (in this instance, a fixed size checksum/hash of the application) which can then be sent with firmware 
upgrade packages. The public key gets embedded into the bootloader and is used to verify signatures but cannot generate 
them. A private key can be used to calculate a public key, but a public key cannot be used to calculate a private key, this 
provides a secure firmware upgrade mechanism. 

It is imperative that the private key be stored safely. If the key is lost, then all units that have been programmed cannot be 
upgraded again via the bootloader; and if the key is exposed or leaked, it can then be used to sign fake firmware files which 
could (depending on application) lead to information loss or far reaching security problems. 

The nrfutil program is used to generate a keypair. It can be generated using the following command; the output filename can 
be set by adjusting the user_key.pem command line argument: 

nrfutil.exe keys generate user_key.pem 

This file contains the private and public keys which can be viewed respectively by issuing the commands: 

nrfutil.exe keys display --key sk --format hex user_key.pem 

nrfutil.exe keys display --key pk --format hex user_key.pem 

 

Use nrfutil to generate a .c file which contains the public key by running: 

nrfutil.exe keys display --key pk --format code user_key.pem > dfu_public_key.c 



https://www.lairdconnect.com/ 12 

© Copyright 2019 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

If this is not done in the examples/dfu directory, then the file must be moved there (and overwrite the existing file). Once 
moved, this becomes the public key which is included in the secure bootloader. 

 

Using the IDE/supported toolchain of your choice, compile/rebuild the project to generate an output hex file. If using GCC, this 
is performed by going to the examples\dfu\secure_bootloader\pca10056_usb\armgcc folder and issuing the command: 

make -j3 

The -j3 argument is used to build using three parallel threads which speeds up compilation on multi-core/CPU systems. It can 
be omitted if building on a single core system or increased, if desired. 

If using Segger Embedded Studio (SES), ensure you have the ‘Release’ build selected in the dropdown on the left-hand side 
project view and click the ‘Build’ menu and select the ‘Build solution’ option. 

 

 

The compiled application hex file is located inside the _build directory. This can be turned into a firmware upgrade package by 
using nrfutil, ensure that the laird_dongle_public.pem file from the Laird Connectivity open bootloader repository is moved into 
this directory and issue the command: 

nrfutil pkg generate bl_upd.zip --bootloader nrf52840_xxaa.hex --bootloader-version 1 --

hw-version 52 --sd-req 0x00 --key-file laird_dongle_public.pem 

 

The compiled application hex file is located inside the Output\Release\Exe directory. This can be turned into a firmware 
upgrade package by using nrfutil, ensure that the laird_dongle_public.pem file from the Laird Connectivity open bootloader 
repository is moved into this directory and issue the command: 

nrfutil pkg generate bl_upd.zip --bootloader secure_bootloader_usb_mbr_pca10056.hex --

bootloader-version 1 --hw-version 52 --sd-req 0x00 --key-file laird_dongle_public.pem 

 

The existing bootloader has a version of 0, therefore 1 is the version of the bootloader which needs to be used to upgrade. 
The hardware version of 52 indicates it is for the nRF52 chipset; the SD requirement of 0 indicates that the softdevice is not 
required/used. Once ran, the output package bl_upd.zip is created which can be used to upgrade the bootloader on the 
modules using nrfutil. 

 
To enter bootloader mode, plug in a Laird Connectivity 451-00004 USB dongle and press the reset button. The LED fades in 
and out to indicate that it is in bootloader mode. You may need to install drivers for the USB serial port which are located in the 
NRF SDK folder directory examples\usb_drivers.  

With the dongle in bootloader mode, upgrade the unit to the new secure bootloader inside the signed firmware zip file by 
running the command (substituting COM87 for the serial port of the plugged-in dongle, check device manager to find this out if 
you do not know it): 

nrfutil.exe dfu usb-serial -pkg bl_upd.zip -p COM87 



https://www.lairdconnect.com/ 13 

© Copyright 2019 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

The process should complete successfully, and the dongle will reboot to run the new bootloader. Before rolling this out to all 
dongles, the programmed image should first be tested to ensure it works by programming a user application to it to ensure that 
the correct signing key was used. This is explained in the following sections. 

 
To test that the public key used for verifying signatures has been entered successfully, we recommend that you build a sample 
application and test it to ensure it can be programmed to a module using the bootloader. For this guide, the BLE HRS (heart 
rate service) sample application in the Nordic SDK is used but any application in the Nordic SDK or Zephyr SDK can be used. 

The HRS peripheral application is located in the examples\ble_peripheral\ble_app_hrs folder and the pca10059 build is 
used. Navigate to the examples\ble_peripheral\ble_app_hrs\pca10059\s140 directory and build the application using your 
chosen compiler, which for GCC is achieved by running make in the armgcc folder or for Segger Embedded Studio requires 
using the project file in the SES folder. Once building has finished, a hex file is located in the _build sub-folder (GCC) or 
Output\Release\Exe sub-folder (SES). 

Note:  If using Zephyr, the application must start at offset 0x1000, not 0x0. This can be set by configuring 

FLASH_LOAD_OFFSET to 0x1000 before building the application. 

In the GUI configuration, this option is under Build and Link features > Linker Options > Kernel load offset. 

 
Similar to how the bootloader upgrade package is built, nrfutil is used to generate an application update package which has 
separate command line arguments for the user application and softdevice (If using a Zephyr, there is no softdevice file).  

 

Run this command for generating a package. This assumes SDK 15.3 and softdevice 6.1.1. Check the SDK files for details/file 
paths if using a different version. This also assumes user_keyt.pem was copied to the _build directory: 

nrfutil.exe pkg generate --application nrf52840_xxaa.hex --hw-version 52 --application-

version 1 --sd-req 0xb6,0x00 --sd-id 0xb6 --softdevice 

..\..\..\..\..\..\..\components\softdevice\s140\hex\s140_nrf52_6.1.1_softdevice.hex --key-

file user_key.pem app_upd.zip 

 

Run this command for generating a package. This assumes SDK 15.3 and softdevice 6.1.1. Check the SDK files for details/file 
paths if using a different version. This also assumes user_key.pem was copied to the _build directory: 

nrfutil.exe pkg generate --application ble_app_hrs_pca10059_s140.hex --hw-version 52 --

application-version 1 --sd-req 0xb6,0x00 --sd-id 0xb6 --softdevice 

..\..\..\..\..\..\..\..\..\components\softdevice\s140\hex\s140_nrf52_6.1.1_softdevice.hex -

-key-file user_key.pem app_upd.zip 

 
Plug the Laird Connectivity 451-00004 dongle into the computer and ensure it is in bootloader mode by pressing the reset 
button. Run the following command to program the application and softdevice to the module (substituting COM87 for the serial 
port of your dongle): 

nrfutil dfu usb-serial -pkg app_upd.zip -p COM87 

If an error displays, it could be caused by an incorrect bootloader public key. Check that it was correctly imported then rebuild 
and try again. 



https://www.lairdconnect.com/ 14 

© Copyright 2019 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 
Once the module has been programmed, it loads the application and begins advertising. Using a mobile phone or other BLE 
equipped device, start a scan for advertising modules. The following was tested on iOS using the nRF connect app. 

 

Figure 3: Start a scan 

There should be a device advertising with the name Nordic_HRM. Connect to the device and ensure it is able to view the 
GATT table: 

 

Figure 4: Nordic_HRM device displays 

https://apps.apple.com/gb/app/nrf-connect/id1054362403


https://www.lairdconnect.com/ 15 

© Copyright 2019 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

Press the reset button on the dongle and ensure that the module enters bootloader mode. The mobile device should indicate 
that it has been disconnected: 

 

Figure 5: Disconnected mobile device 

This concludes testing of the secure bootloader image. 

 
As well as using the reset button to enter bootloader mode, it can also be entered by setting the GPREGRET register to 0xB1 
(equivalent to BOOTLOADER_DFU_START from nrf_bootloader_info.h) and restarting the module using 
NVIC_SystemReset(), for example. 

 
The bootloader and Nordic MBR occupy flash space on the module with the following memory structure: 

 

Figure 6: Memory structure 



https://www.lairdconnect.com/ 16 

© Copyright 2019 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

It is important that the linker file of your application is aware of the bootloader and does not try to place code there. It is also 
important that your application does not try to read/write/erase code at addresses used by the bootloader or bootloader 
settings. 

The bootloader supports single and dual bank firmware updates. This can be tweaked to enable/disable them (by default, dual 

bank updating is forced which means that the largest application that can be upgraded via the bootloader is 
972KB

2
= 486KB). 

Information on what single/dual bank firmware updates are is available on the Nordic site. Control of this is handled in the 
sdk_config.h file with the following defines: 

#define NRF_DFU_FORCE_DUAL_BANK_APP_UPDATES 0 

#define NRF_DFU_SINGLE_BANK_APP_UPDATES 0 

The bootloader uses all of the free space for storing upgrade data which begins at the end of the application space. Optionally, 
if the application requires storage space then it can do this by storing data at 0xF3000 and prior by setting 
DFU_APP_DATA_RESERVED in nrf_dfu_types.h to a multiple of the page size. So, if this is set to 0x1000, it reserves 
0xF2000-0xF3000 for application use; if set to 0x3000, it reserves 0xF0000-0xF3000 for application use. By default, this is set 
to 0. Further details are available on the Nordic site. 

 

Version Date Notes Contributor(s) Approver 

1.0 01 Oct 2019 Initial Release Jamie M cc r a e Jonathan Kaye 

     

 

https://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.sdk5.v15.3.0%2Flib_bootloader_dfu_banks.html&cp=5_1_3_5_1_2
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.sdk5.v15.3.0%2Flib_bootloader_dfu_banks.html&cp=5_1_3_5_1_2

	1 Introduction
	1.1 Scope

	2 Requirements
	2.1 Windows/Linux Computer
	2.2 Laird Connectivity 451-00004 USB Dongle
	2.3 Nordic nrfutil Command-Line Utility
	2.4 Nordic SDK
	2.5 Open Bootloader Files
	2.6 IDE/Compiler

	3 Hardware Settings
	4 Sample Project
	5 Project Setup
	5.1 Updating Flash Location
	5.2 Removing LED Code
	5.3 Adding Simple LED On/Off (optional)
	5.4 Adding Soft-Blink LED (optional)
	5.5 Adding Soft-Blink LED includes/defines (optional)
	5.5.1 GCC
	5.5.2 Segger Embedded Studio (SES)

	5.6 Updating SDK Configuration
	5.7 Generating a Public/Private Keypair
	5.8 Adding Public Key to Bootloader
	5.9 Building Project

	6 Creating Signed Upgrade Package
	6.1 GCC
	6.2 Segger Embedded Studio (SES)
	6.3 Version Note

	7 Upgrade Dongle to Secure Bootloader
	8 Building a Sample User Application
	9 Building Sample Application Firmware Update Package
	9.1 GCC
	9.2 Segger Embedded Studio

	10 Programming Sample User Application Update Package
	11 Testing the Sample User Application
	12 Entering Bootloader Mode
	13 User Application Constraints
	14 Revision History

