Laird 5,

CONNECTIVITY

User Guide

BL652 smartBASIC Extensions

Release 28.10.7.0

This guide pertains to BL652-specific smartBASIC functions and routines. For information
on functions and routines that apply to all smartBASIC modules, see the smartBASIC Core

Manual.

http://b7c114b8ac32968eb0a5-0034a95ea8a03cf459b9e4f7b28746f2.r86.cf3.rackcdn.com/home/brandworld/files/User%20Guide%20-%20smartBASIC%20Core%20Functionality.pdf
http://b7c114b8ac32968eb0a5-0034a95ea8a03cf459b9e4f7b28746f2.r86.cf3.rackcdn.com/home/brandworld/files/User%20Guide%20-%20smartBASIC%20Core%20Functionality.pdf

BL652 smartBASIC Extensions

User Guide

La i rd J»» CONNECTIVITY

REVISION HISTORY

28.4.0.21 15 Apr 2016 Initial Release Youssif M. Saeed Jonathan Kaye
28.4.0.23 14 May 2016 Added NFC chapter Youssif M. Saeed Jonathan Kaye
285025 07June2016 dded LEprivacy and LE Secure Connections Youssif M. Saeed Jonathan Kaye
sections
28.5.0.35 04 July 2016 Extension guide for engineering release v28.5.0.35 Youssif M. Saeed Jonathan Kaye
28.6.1.2 26 Aug 2016 Production Release Youssif M. Saeed Youssif M. Saeed
28.6.1.2 21 Nov 2016 Added Index Youssif M. Saeed Youssif M. Saeed
28614 12Dec201g 'dded Packetlength Extension sectionandlong o saeed Jonathan Kaye
Write functions
28.6.1.4 03 Feb 2017 Minor edits / formatting Youssif M. Saeed Jonathan Kaye
28.6.1.4 20 Feb 2017 Added FlashXXX section in addition to minor edits Youssif M. Saeed Jonathan Kaye
28.6.2.0 02 May 2017 Added LE Ping and other throughput functionality Youssif M. Saeed Jonathan Kaye
28.7.3.0 31 Oct 2017 Added 2M PHY, removed L2CAP, plus minor fixes Youssif M. Saeed Jonathan Kaye
28.8.4.0 05 Jun 2018 ﬁiizsezpljfgj;tllvr:;::ename' el et Gl Youssif M. Saeed Jonathan Kaye
28.9.5.0 05 Sep 2018 Added 2MPHY adverts and Watchdog timer Youssif M. Saeed Jonathan Kaye
28.9.6.0 01 Nov 2018 23323 Erehghnac::e?:ﬂchkbumt API Mahendra Tailor ~ Mahendra Tailor
28.9.6.0 14 Aug 2019 léj\rl)gféig&1?;?53:;:2;:jh;IeeI\DIES;et Mahendra Tailor Mahendra Tailor
Clarified description for functions:
28.9.6.0 31 Jan 2020 BleSecMngrLescOwnOobDataGet() Mahendra Tailor Jonathan Kaye
BleSecMngrLescPeerOobDataSet()
28.10.7.0 14 Feb 2020 Added new ‘Extended Adverts’ Section Mahendra Tailor Jonathan Kaye

© Copyright 2018,2020 Laird. All Rights Reserved. Any information furnished by Laird Connecctivity and its agents is believed to be accurate and reliable.
All specifications are subject to change without notice. Responsibility for the use and application of Laird materials or products rests with the end user
since Laird and its agents cannot be aware of all potential uses. Laird makes no warranties as to non-infringement nor as to the fitness, merchantability, or
sustainability of any Laird materials or products for any specific or general uses. Laird, Laird Connectivity, or any of its affiliates or agents shall not be liable
for incidental or consequential damages of any kind. All Laird products are sold pursuant to the Laird Terms and Conditions of Sale in effect from time to
time, a copy of which will be furnished upon request. When used as a tradename herein, Laird means Laird Connectivity. Laird Connectivity™,
corresponding logos, and other marks are trademarks or registered trademarks of Laird Connectivity. Other marks may be the property of third parties.
Nothing herein provides a license under any Laird or any third party intellectual property right.

Americas: +1-800-492-2320
Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

https://www.lairdconnect.com/ 2
Copyright 2020 Laird. All Rights Reserved

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

CONTENTS
1 [a] oo [Tt [o [P TP 11
2 Vo Te 1] L @oT oY 17 ={U] =1 o RS 12
3 INTErACtiVE MOTE COMMANUS...eitiiiitiieiiteite ettt ettt st e ettt stte ettt e s bbeesteeesabeesbeeesabeebeeessbeesbteessbesnbaeessbeenbeeensaeesseesaseennes 12
3.1 LN I e T N I o] I) GO UPUPTPPPRRRRPPIRt 12
3.1.1 A o C OO PO PURUPTROPRRPROt 14
3.1.2 AT O GE X et e e e e e e e e e e aeeeaeaeeeeeaeeeaeaeaaaeaeaeaeeeaeaeaeaeeeaeaeaeanenaes 17
3.1.3 ATHBTD K ettt ettt e ettt e ettt e e e e etae e e e ettt e e eebaeeeabaeeeeataeeeee—aaeeataeeeaaabeeeeabaaeeatbeaeeaateeeeataeeeaatreaeannns 18
3.14 AT + MAC “12 hex digit MaC @address”uiiiiiiieeeiiie e cceee s e e e ertre e e s e e e e tte e e saraeeesatseeeassaeesnsseaeessseeennnns 18
3.1.5 L I = PSP PPPPTPIRN 19
3.1.6 L I PO PP TUTORUP PRt 19
3.1.7 ATHPROTECT ..utttiiieeiiteestteesiteesiee e siteestteesieesbeeessteebeesbeeesbeesbeeaabeeeasaesabeesaseeeabeeensaeenbeesnseeenbeesnsaesabeeenseesnbaeensaesnss 20
4 Core LanguUAge BUIlt-in ROUTINEScoiviieieiiieieiiee e ciee ettt ee e e st e e et e e s s aae e e sabeeeessbaeesassteeesssaeeesnsaeeessteeesnsseeesssseaenns 21
4.1 INFOIMATION ROUTINES ..ecuviiiiiiiiie ettt ettt ettt e st s e e st e e s beesabeesabeesabeesabeesabeesabaesabeesabeesnseesabeesseesbaesnseesnss 21
4.1.1 SYSINFO ettt ettt ettt ettt ettt ettt e st e ettt e st e e ebe e e bee e be e e b eeeabe e e bt e e abe e e beeea b et e bt e e bt e e bee e b et e hee et et e naae e bee e beeenbaeennaeean 21
4.1.2 SYSINFOS ...ttt et ettt et st e st et e st e st ete st e st et et ese et e ssese et e s ese et e s ese et e saes e et e beseete st ase et e b ese et e sbeneeteebenseteeteneetesteneerens 23
4.2 UART INEEITACE ettt itieeitie ettt sttt st e st e s e e sttt e sa b e e s abeesabeesaaeesateesaeeesateesaseesabeesaseesabaesaseesabeesnseesabaeeseesbaesnseesnss 24
421 (U] (0] o 1T o [P PP U PPPPPPPTRRPOE 24
4.2.2 (U T A= S 1 PSP PRSP PR PPPOP 25
4.2.3 UIEBREAK ...ttt tttee ettt stee ettt sttt e sttt s te e st e s teesabeesabeesabeeeabaeeabeesabaeeabeeeasaeeabeeenbaeeabe e e saeenbaeeseeeseeesabeesteennseenses 25
43 12C = TWO WIr@ INEEITACE (TWI) oottt ettt e et e e et e e et eeeeataeeeeaseeeeesseaeeetseeeeensseeeenneesensreeeens 25
4.4) W 1 =T N1 =T O OSSPSR PR 25
4.5) I IR [=T s =T T OSSOSO 26
45.1 YL g T Lo Y [T Y =R 26
45.2 Y o TN 1YL= @e] o 7= RSSO SUTRUURPROE 26
453 SPISIAVEOPEN ettt ettt e e et e e e et e e e e etbe e e eebaeeeetaeeeaattaeeaabaaeeabaeeeattaeeeaabaaeeatbeeeanstaeeeanbeeaeatreeeane 27
45.4 Y o] 1Y 1 o 1Y SRS 28
45.5 SPISIAVETXBUTTEIVWIILE ..eieieiee ittt et e e et e e e ette e e eeabaeeesabaeeeesaeeesssaaeesatseeeassaeesnsbaaeesstasaeannes 29
4.5.6 SPISIAVERXBUTFEIREAM ...ceeeeeiieeiiiie e ettt ee et e et e e et e e sttt e e et e e seaaeeeessteeeeansteeesssseaeesnseeesansseesssseaeennseeesannes 30
4.6 INPUL/OULPUL INTEITACE ROUTINES ..evviiiiitieitecite ettt ettt et ete et st e st esteesteebeeabeetbeetaaebeebeenbeensesasesasesseesseeseenrenns 31
4.6.1 EVENTS AN0 IVIBSSAEES .. uttiiiiiiieeeitieeeeitte e e eetteeesteeeeestteeeeetbeeeesatseaeeastaeeeaassaeessseaeaastaseeasssaeesassaaaeastaeseansssessnnsanas 32
4.6.2 [CT 01T Y] d 51U o Lol PSPPSR SPPPRN 32
4.6.3 [CT o1 {0 Y] =¥ g ol =t PP UPPPN 34
46.4 (€Y o] TeT@le a¥iT=d 24TV s TSRS PP 37
4.6.5 (€] e 2 T=T= T PSR 39
4.6.6 (CT oY Lo 1AL 1 =TSO ON 40
4.6.7 GPIOBINAEVENT/GPIOASSIZNEVENTccuviieirieiiteeete et eetee ettt e ettt sttt e eae e sbeeebeesbeeebeeeabeeeseesnbeesseeabesensssentasenseeents 42
4.6.8 GpioUNbIiNdEVENt/GPIOUNASSIGNEVENT.....cecivieiriereereceeiteeeteeeteeereereeeeeteeete e beebeeasesaaesaeesteenseeseenseessesssesseenses 44
4.7 MISCEIIANEOUS ROULINES ...ttt ettt ettt ettt ettt e e ettt e s st e e e sttt e e s aabaeeseasbeeessbeeessabaeeesnbaeesasaeessasseeanns 45
4.7.1 ASSERTBLO52 ..ottt ettt ettt ettt et e sttt e sat e s bt e e bte e bt e e ste e bt e e saeesabe e e st e e abeeebeeeabeesaateeabeesbeesabeeeseeebaeenneenane 45
4.7.2 ERASEFILESYSTEMciiitiitteetie ettt sttt sttt st s bt st e sttt st e sttt e bt e s abe e e st e sabe e e bt e s abe e e seeeabeeenbeesbeeensbeennteesnreenseas 45
5 BLE EXteNSIONS BUilt=-iN ROULINES .. .eiiiiiiiieiitiee ettt ettt e sttt e e sttt e e s att e e s s ab e e e s s abeeesbbaeesaabbeesnnbeeesnnsaens 46

https://www.lairdconnect.com/ 3 Americas: +1-800-492-2320

Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

5.1 [o 4 1V T OSSOSO P PP ORPRPRPON 46
511 BlESEEAAArESSTYPEEX .. eiitteiutieetieette et ettt et e bttt e ettt et e e bt e bt e s bt e e bt e sabe e e sbe e e bt e e bbeebe e e sabeebe e e bt e e beeennreeneas 46
5.2 EVENTS @N0 IMIESSAEES ...ttt ettt ettt ettt e st e et e s bt e et e st eeab e e sa bt e s abeesabeeeabeesabeeeabeesabeeeabeesabeesneesbaeenneenane 48
5.2.1 EVBLE_ADV_TIMEOUT ..eiuttiititiitie sttt srite st e st e st e sttesabe e sbaessbaessaaesabaesatesabaesssaesabeesssaesnbeeenstesnbeeenssesseeenssesnsens 48
5.2.2 EVBLE_CONN_TIHMEOUT ..ttt ettt e e ettt et e e e sttt et e e e s ettt et e e e s e anbeeeeeeesesaanbabeeeeeaesanbsbaeeeeeesannnnnnes 49
5.2.3 EVBLE_ADV _REPORT ...uttitteititiitte sttt ertte st e ste e s bt e s bt esabe e sttesabaessbtesabeesatesabaesbaeeabaeesbaeenbeeesabeenbaeenstesnseesnasasnses 49
5.2.4 EVBLE_FAST _PAGEDooiitiiititiitie ettt st s et sbt e st e st e s bt e sttt e bt e s aba e s satesabae e beesabaeesaaeeabaeenatesabaeenstesnbeeesnseenses 49
5.2.5 EVBLE_SCAN_TIMEOUT ..ttt ettt e e ettt et e e e sttt e e e e e s e aas b et e e e e e sesanbeaeeeeesesaanbbbeeeeesesanssbaeeeesesannnnnees 49
5.2.6 EVBLEMSG......ceiitiiiieeeiee ettt sttt st e st e st e bt e sabe e s bt e sabe e e bt e eabeesabaeeabe e s beesabeeebaeeabeeenbeeeabeeebae e bt e e sateeneeennbeenses 49
5.2.7 LoV 5] R (0] | SN 52
5.2.8 EVCHARVAL ..ottt et e e et e e e e e e e e et et e e e e e e et e e et e e e e e e e e e e e e ereraaaaans 53
5.2.9 EVCHARVALUE ..ottt ettt sttt sttt st sab et e bt e s ba e s bt e s abe e e bt e sabe e e bt e e abe e e baeeabeeebteeabeeensteeseeesaseenses 53
5.2.10 EVCHARHVC ...ttt ettt ettt st ettt e s a e bt e s bt e e s bt e e s he e e bt e e s hb e e ne e e sa b e e e ae e e sabeeeaseesabeesnteesabeesaseesabeesnneesn 55
5.2.11 EVCHARGCCCDeiitiieteieiteette ettt ettt e sit e sttt e sbte e sbe e e s ut e e at e e s abeesae e e s ab e e e bt e e sabeeaae e e sabeeesseesabeeeaseesabeesnseesabeesaseesabeennneenn 56
5.2.12 EVCHARSCECD.....eiitteiiiteitteestteestte e sttt e siteestae e stteesteeesateassaeessteessaeessbeesaeesseeaseeesabeensseesateasaseesabeennseesataesaseesataennseens 59
5.2.13 EVCHARDESC ... et itttitttetteette ettt ettt ettt ettt e sht e e bt e s at e e sate e s he e e she e e s he e e be e e sbbeeane e e sab e e ab e e sabeeeabeesabeeentee s beeeabeesabeennreenn 63
5,214 EVAUTHVAL...tittt ittt ettt ettt stte ettt e site e tee e sbteesaeeesateesbaeesbteesbaeessteeseeesseeaaeeessbeensseesabeanaseesabeensseesabaesaseesataennneens 66
5.2.15 EVAUTHVALEX....i oottt iittt ettt ettt et e e site ettt sttesstaeesateessaeesateesateesaseassseesateessseessseensseesateasaseesaseensseesataesaseesnsaennseens 66
5.2.16 EVAUTHOCCCDeiitiiiiiteiteette ettt ettt ettt ettt et e bt e s ht e sae e e s ab e e sat e e sab e e e ae e e saseesae e e sabeeesbeesabeeeaseesabeennseesabeesnbeesabeennneesn 68
5.2.17 EVAUTHSCED ...utiiiieiiiieiiteestte ettt e sttt e site e stee e sttessaaeesateestaeesateesateesateensteesabeenaseessseensseesateasaseesabeennseesabaesaseesasaennseens 71
5.2.18 EVAUTHDESC ... ettt ettt ettt ettt ettt ettt ettt et e e s et e s bt e s bt e e s bt e e s he e e bt e e s hbeene e e sa b e e e sseesabeesaseesabeesnseesabeesaseesabeesnneesn 73
5.2.19 EVVSPRX ittt ettt ettt ettt ettt ettt ht e bt e h e e e bt e s h et e h et e s bt e e bt e e s h et e bt e e eR Rt e ehe e e sh et e eR bt e sabeeeabeesabeeeabee s beeeabeesbeeenreenn 75
5.2.20 EVVSPRXOVRN .oiiuiiiiiitiitieeitteesiteesittesiteestteesteessuseessseessssesssesssssesssesssssesssesssseesssesssseesssesssseesssesssseesoseessesssseessseens 75
5.2.21 EVVSPTXEMPTY .ttt eitteeitte ettt ettt e sit ettt esht e s sht e e s bt e e bteesabeesat e e sabeesabeesabe e st e e sabeeesseesateesabeesabeesnteesasaennseesabeenaseens 75
5.2.22 EVCONNRSSI .ttt ettt ettt ettt ettt ettt ettt e bt e e s a e e e s bt e e s bt e e sbt e e s bt e e bt e e shbeene e e sab e e e ab e e sabeeeab e e sabeeenteesabeeeabeesabeenaree s 75
5.2.23 EVINOTIFYBUF ...etiitieiiit ettt ettt ettt e stte st e e sa e e staeesateesateesabeasaeeesateasaseessseensseesateesaseesaseennseesasaesasessasaennseens 75
5.2.24 EVCONNPARAMREQ,ccitteittteitteesitt ettt ettt e sttt e sttt e sateesteeesaeeesuteesabeesaeeesabeesaeeesabeessseesabeesaseesabeessseesasaesnseesabeenaseens 79
5.2.25 EVBLE_EXTADVDROPPED......ciiiittiiiteriieesttesteesiteesiteestaeessaeessseesseeessseessseessseessseessseesasesssseesssesssseesoseesssesssessseens 80
5.2.26 EVBLE_EXTADVNOMEM.....ccuttiiitiiiteiieisiitesteestteesiteeseaeesiteesseeessteessseesaseassseessseessseesnsesssseesssesssseesseesssesssseessseens 81
5.2.27 EVBLE_SCAN_ABORTEDecouttiitteitieriteesttt sttt ettt stt ettt e site e sttt e sht e e sat e e sabeesat e e sabeessbeesabeesabeesabeesnseesaseennseesabeesnneens 81
5.2.28 EVBLE_EXTADV_END...ciiiiiiiiieiieeitiesiteesttestteestteestteesaaeessaeessseesaseessseesasesssseesssessssessnsesssseesssesssseesseesssesssseessseens 81
5.2.29 EVBLE_EXTADV _RPT .eeiiiiiiiiiteiieenitt st ettt e site e sttt e siteestaeesateesaaeesateesaeeesateesaseesssaensseesateasssaesssaesnseesaseessseesnseennseens 81
5.2.30 EVBLE _EXTSCN _RPT ...eiiiitieittteitte ettt ettt ettt e stt e e st e e sit e e sttt e shteesat e e sabeesateesabeesaeeesaseeasseesabeesaseesabeesnseesabaenaseesabaenaneenn 81
5.2.31 EVBLE_EXTADV_RPT_INCOMPLETEeeiiitiitieesiieesieesieesieesteesiteesieeesiteesaseesssaessseesaseassseesssesssseesnseesssessseessseens 81
5.3 MISCEIIANEOUS FUNCHIONS.utieiiieiiieeiie ettt ettt e st e st e e st e esabe e sabeesabeesabeesabeesnbeesabeesabeesabeesnneesans 82
5.3.1 BIETXPOWEISEL ...ttt ettt ettt ettt ettt et e e bt e bt e e bt e e bee s bt e e bt e ettt e seesabeeenateeabeeennbeeateesnreennes 82
5.3.2 BlETXPWIWNIIEPAITING ..veeeieeeieiieieee et e e e e e et e e e e e s e ettt eeeeeesesasbaareaeeeeaeasbbaaaaeeeesassraaeeeaassansssnns 83
5.3.3 L2110) =4 T oS 85
5.3.4 Y E=T@l o= Ta T a1 11V - o U PUPUOE 85
5.4 Y ¥ (V7T o 4 11 V=4 = U o ot o o SRR 85
5.4.1 211y Ne (V=T) - [PRSP P PP PO PRPTRPROP 86
5.4.2 211y Yo V2= o] o]« IO OO T TS U S RO ST P U PRRRR 89
https://www.lairdconnect.com/ 4 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

5.4.3 L2112y V7T o 0o o =R 90
5.4.4 BIEATVRPTINIT ...ttt ettt et et e b e e bt e bt e s b et e bt e e bt e e bbe e bt e e eaee e be e e sabeeneeesareeneas 90
5.4.5 BlESCANRPEINIT ...ttt et ettt e b e e bt e bt e s bt e bt e e bt e bb e e bt e e ne e e be e e s ane e ne e e sareenes 91
5.4.6 211y Yo VAT { CT=Y] o X- ol ISR 92
5.4.7 BIEAAVRPEAAAUUIALEeeviieiiiiee ettt ettt ettt s et et e e e st e e et e e seaatee s sabeeeeesabaeessasteessssaeesnsbaeessnsseeesnnsneas 92
5.4.8 BIEAAVRPLAAAUUIAL2Eeeeiiiiiiieeiie ettt ettt sttt ettt s sbt e st s satesbe e e bt e e beeesbaesabeeesabesbaeessbeeseeenseeensens 94
5.4.9 BIEAAVRPTAPPENAADeeviiieiiiee ettt ettt ettt e sttt e e ettt e e e te e e e staee e e staeesaassaeesasseaeastseeeanssaeesssaeeesstaeeeansseeesansnes 94
5.4.10 BleAdVRPISCOMMILeiiiiiiiiit ettt ettt e st e s bt e s it e e s a bt e eae e e sabeeeabeesabeesaseesabeeenneesateenaneesabeennneens 95
5.5 EXtENAEA AQVEITS FUNCLIONS .evvviiiiiiiieeiiieesie ettt sttt ettt s e e sate e sate e st e e sabe e sabeesateesabeesabeesabeesnbeesabeesnseesabaesseesnns 97
55.1 211 AT 6 T 1 TSP PPPRR 98
5.5.2 BIEAUVSEENEWDATA ...eiiieiiee ittt ettt ettt st e e ettt e e sbte e e sabee e s abaeessabteessabeeeesnsbaeesaaseeeesaseeeennraeesnnsaeas 100
5.5.3 21 =Y e LYY=] =L o OO OO PRSP RRUPTOUPRRUPRRN 100
5.5.4 (211 VY=Y) o o ST 101
5.5.5 BIESCANSTAITEX «...eeuiieiiiieet ettt ettt et s et et e s bt e et e s bt e e bt e s b et e bt e s b e e e bee s beeebee e beeenneenane 101
5.5.6 211 o e 2 o1 d AV =Y =T - - USRI 103
5.5.7 BlIECONNECEEXTENTEM......coueeeiiieeee ettt ettt e e s bt e et e s bt e e bt e sabeeebeesabeeebeesabeesneenane 103
5.5.8 BIEEXTAAVRPEAPPENTAD ...c.eeiieeeeiiee ettt ettt e e ettt e e ettt e e e s tte e e eebaeeestbeeeesabaeeeassaaeesasseaeassaeeeassaaeesnsseeaanssasesnnsenas 104
5.5.9 BIEEXLtAAVRPTAAAUUIALE ...eovuveiiiieiiiieiieeiieeeitee st e st sbe e ste e s e e sbeesabeessbeesabeesnbeesabeesnsaesabaesnseesabeessessnsessnseenans 104
5.5.10 BIeEXtAAVRPIAAAUUIAL2Eccueiiiiiiiiieiiei ettt ettt ettt et e et ettt e s et e s bt s bee e bt e e s bt e sbe e e ssbesbeeesnneennees 105
5.5.11 BlEEXtAAVRPTIGEISPACE ..ccccuviiiieiiiee e ctiee ettt e ettt e e et e e e e tte e e staee e e s ataeeeeateeesabeeaaastaeeeansaasesasaeseaastseeeansaaeessseeaans 106
5.6 Lo 1l 01107 =4 =101 o ot o] o - TP UPPPP PP 106
5.6.1 BIESCANSTANT ...ttt ettt ettt et s e et s e ettt e e bt e s bt e e bt e s b et e bt e s be e e bt e s beeenaee e beeenneenane 107
5.6.2 211N or= T4V o T o APPSR URUPROPRRRPR 108
5.6.3 (2T LSRYo=14 1] o o R SRR 109
5.6.4 BIESCANFIUSK ..ottt ettt s e st e st e s et e e bt e s bt e et e e s be e e bee s be e e nbee e baeenaeenane 110
5.6.5 (21N Y= T o 0] o i - RSP UPP 112
5.6.6 (21N Lo CT=] Vo VA Y=Y o Yo Y o SR 113
5.6.7 (BTN T L= 7 Vo V2 Y=Y o Yo T o o o SRR RR 116
5.6.8 BlEGEEADDYINGEXuviieeiiieeecieee ettt e ettt e e st e e e et e e e e tteeeestteeeeeataeeesbbaaeeaabaeeeassaeeesasseaeastaeesassaaeeanseeeeantaeeeansanas 117
5.6.9 BlIEGETADDYTAE ...eeueeeitieeteeeitee et e st e et e et e st e e bt e s bt e st esabe e e bt e sa b et e bt e s a bt e e bt e s b e e et e e s beeebee s beeebee e beeenneenane 119
5.6.10 BleSCANGEIPAGEIAUANcciciiiie ettt ettt et e e et e e e e rtte e e s etbeeeeettaeeeeateeeeatbeeaeastaeeeansaaeesbbeaeeanteeeeansaaeeatreaaans 121
5.7 CONNECEION FUNCHIONS .ttt ettt e e e e st e et e e e s bbbt e e e e e e s nebeeeeeeesannnbeeeeeeesaannnraneeeeesannnn 122
5.7.1 (oYL g T Lo LY [T =SSP 122
5.7.2 [217=T 0o o T=To PP UPTUPRRUP 122
5.7.3 BIECONNECECANCEL ...eiiiiieieetee et et sttt st e st e s bt e s bt e s beesbeesabeeebeesabeesbeesabaeenneenane 125
5.7.4 (2310 Y =Tt 6o o | =SSP 127
5.7.5 BIEDISCONNECT ..eeeiiiiiiieiiitee ettt ettt e ettt e sttt e e e s a bt e e e sabte e e sabbee e s abaeesaabbeeesabbeee s abaeesaasaeessabbeeesnbaeesaanaeas 129
5.7.6 BlESETCUICONNPAIIMS «...eiitieiitteeite sttt st e et e st e st e st esabeeeabeesabee s st e sabeeeabeesabeesabeesabeesaseesabeesseesabeesnseesane 130
5.7.7 BlEGELCUICONNPAIIMNS .. .tiiiiiiiee ettt ettt ettt e e ettt e s sttt e e sbb e e e s abaeessabbeeesabbeeeeaabaeesaasaeessabbeeesnbaeesaanaeas 133
5.7.8 BIECONNIMINGIURACEE ...ttt ettt e e et e e et e e e e e ba e e eeaabeeeebbeeeeaataeeeessaaeesnseeseanreeeennsenas 133
5.7.9 BleGetCoNNHANAIEFITOMAAL ..cc.eiiiiie et sttt e et e st e s be e sabe e s bt e sabaeesbeesbaeenneeeane 134
5.7.10 BleGetAddrFromCONNHANAIEccciiiiieiiit ettt ettt e et e e ae e b e s taeesbe e e saaeebeeessaeesteeessseensseessaeenses 136
https://www.lairdconnect.com/ 5 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

5.7.11 BlECONNRSSISTA 1. uvieiteiitieeititeitie ettt rite st et e et e et e st e s sbte e bt e e sbbeebe e e abeebeeessbeeabeeesateeabeeessteebeeenabeebteenaaeeaes 138
5.7.12 BlECONNRSSISTOP «.uveeiuteiitieeiet it ettt ettt ettt ettt ettt e sb e e bt e sbt e e bt e e sbb e e bt e e bt e e bt e e bbe e b et e abbe e bt e e abbe s be e e bt e e bt e e nnneenees 139
5.8 Whitelist Management FUNCLIONSco..iiiiiiiiieiiieee ettt ettt e sttt e st e e s st e e sareesnteesaneennees 140
5.8.1 BlIEW I ISTCIEALE ..veiivieitieritie ettt e st e s be e st e e e be e sabeesabeesabaesbeesabaesabeesabaesnbeesabaesnseesans 140
5.8.2 BIEWHILEIISTDESEIOY .neveeieieitteetee ettt sttt et sa b e et e s bt e e bt e s b e e e bt e sabeeenbeesabeeebeesabeesneenane 143
5.8.3 BIEWHILEIISTCIEAN ..vveiiiieeteesite ettt sttt st e st e st e st e e e abeesabeesabeesabaesabeesabaeenbeesabaesnbeesabaesnseesnss 143
5.8.4 BlIEW I ISTSEEFIITEL c..viiitieiie ettt sttt e st e et e e st e e s be e s beesbeesabaesbeesabaeenbeesabeesnseesans 144
5.8.5 LA TR LT IS 7Y o 1Yo Lo | PP P TP 144
5.8.6 BIEWHILEIISTATAINGEX ..veiiuvieiiiiiieesiee ettt sttt s e s bee st e s be e sabeesbeesabaesbeesabaesseesabaesnbeesabeesnseesnss 145
5.8.7 BIEWNILEIISTINTO 1eeinetiiieciiee et ettt stb e e et et e s sabee e e sabteeesaabaeesnasaeessnseeeesnasaeesnnneeas 145
5.9 GATT SEIVEI FUNCEIONS ...ttt ettt et e e e s ettt e e e e e s e abab et e e e e e seababaeeeeeesaaasnbbeeeeeesesnnraaaeeeesanann 146
5.9.1 EVENTS GN0 IMIBSSAZES ..uuvrieeiiiieeeeiee e ettt e e sttt e e etteeestaeeeestteeeesasaeeessseee e staeeaasssaeesasseeeanssaeesassseeesasseeeassasesannnens 151
5.9.2 (2311 CT=T o N3V Zof L1 A ST 152
5.9.3 BlEGEIDEVICENGIMESvivietiieeeetiiteseete st et ettt et et e st e st et e sbesaetesbassese st essesessessesesseasesessassesessensesessensese s essesessensanenss 153
5.9.4 BIESVCREEDEVINTO ...viiieiiiie ettt e et e e et e e e st e e e ettt e e e sbbeeeesataeeeaasaaeesabbeaeestaeesasseaeesnsbeeeanstaeeeansanas 154
5.9.5 BIEHANAIEUUIALE ..ottt ettt sttt sttt st e et e st e e e bt e s be e e bt e sabeeenbeesabeesabeesabeeeneenane 156
5.9.6 BIEHANAIEUUIAL2Sveiiiieiiieeiieesiee sttt ettt et st s te e s be e st e sabeeeabeesabeesabeesabaeenbaesabaesnbaesabeesnseesabaeanseesnss 157
5.9.7 (2115 T oL T WU TTo K] o] T Y= U URR 158
5.9.8 BIESEIVICEINEW ..ottt sttt e bt e sttt et e st e e bt e s bt e e bt e sa b e e e bt e sabee s bt e sabeeeabeesabeesbeesabeeeneenane 159
5.9.9 BlESEIVICECOMMIIL c..veiitiiitiesie e st sie e et e st e et e s e e e bt e s be e s bee s beesabeesabeesabeesabeesabeesabaeeaseesabaesnsaesabeesnseesabaeenseesnts 161
5.9.10 BlESVCAAAINCIUAESVC ..cneiiiiiieiieeiet ettt ettt ettt et e bt e at e s bt e s bt e e be e e s bt e e bt e e satesbe e e st e sbeeesnneenees 161
5.9.11 BlEeAIIMEtAdataEX «oo.eeiiiiieiei ettt ettt e aa e bt et e e bt e s aneenes 162
5.9.12 BlECRAINEW .oiitiiiiieiiet ittt ettt ettt ettt et e sbe e s sbe e e be e e sbteebe e e sbaeeabaeebbeeabeeeabaeeabee e sbeeabeeenbeeeabeeenbeeenbeeenabeenbeeenaaeenes 165
5.9.13 BleCharDESCUSEIDESCuueiuiieiieeitterite ettt ettt ettt e site ettt e sbte sttt e sute e bt e e s st e e bt e e ssteeabeeesbeesbeeesstesbeeenseesbesensneenes 166
5.9.14 BleCharDeSCPIStNFIMLeiiiiiiiieeittt ettt ettt ettt et e e sb et e at e s sbe e e s ate e bt e e s bt e e bt e e sbteebe e e st e sbeeennneenees 167
LR TN T 2 11T o P Y Y of Y o O TSP 170
5.9.16 BlECRarCOmMMIT....c.eeiieiiiieeiee ettt ettt ettt ettt ettt e sat e s bt e e s a e e e bt e e bt e e be e e ssbe e bt e e saeeeabeeesbeeebeeenseeennteesaneenes 171
5.9.17 BlECharValUBREAM.......ciiuiiiiii ittt ettt ettt et et ste e e sbe e e s bt e e ba e e s beeebe e e saeenbeeessaeanbee e saeenbeeenssesnbeeensseenses 173
5.9.18 BlECRarValUEWIIte. . et iuieeiet it ettt et ettt estee ettt e et e e sbe e e sbe e e sabeebe e e s ateebee e eaeenbeeesaaeeabeeessaesnbeeensseenbeeensseenses 176
5.9.19 BleCharValUBWIITEEXc.uiiiiieieeiet ettt ettt et sb ettt e s et e e bt s bt e e bt e e s bt e e be e esabesbeeennneenees 177
5.9.20 BleCharValUENOLIfYueiieiiie ettt e st e e et e e e ettt e e e e tbaeeeeabeeeetbaeaeastaeesanssaeessseseaantseeeanssaeesnsreaaans 177
5.9.21 BleCharValueINmiCate.....cuiieiiirieeiieierite et esiee et ste et e stt e et e e sat e e sbe e e s bt e e beeessaeenbeeessaeesbeeessteebeeensseebeeensaeenses 179
5.9.22 BlECharDESCREAM ...ccouueiiiieetiteite ettt ettt ettt ettt ettt ettt ettt et e bt e s bt e e b et e bt e s be e e ste e bt e e bt e e bt e e bee e be e e ab e e bt e e saneennes 182
LR I T 1= XU d o To Y 4 72=T @ o T O O USRI 184
5.9.24 BlEAULNOIZEDESC ..eeiuteiiiieeiee ettt ettt ettt ettt et sttt et e bt e s bt e e bt e e bt e e bt e e s st e e b et e sht e e bt e e nate s bt e e nateebteesaneennes 184
LR I A T 1 1Y =Y Vi 1ol Y O = = <Te AN SRR 185
5.10 GATT CHENE FUNCHIONS ...ttiiiiee ettt ettt e e ettt e sttt e e e s bb e e e s a b e e e sabbeessabbeeeeasbeeesabaeeeaabaeeesssaeesaasaens 185
5.10.1 EVENTS @NA IMESSAEES ...uveeeeerireiiteeeeitieeeeitteeesettreeasteeeeastesesasseesaassseesasseeesasseeeassteeesanssssesassnesasnsesessnssesssnssneenns 187
L0 (0 11T C =) ol @] o 1T o SRR 192
Lo O B 1 1T O 4 ol 6] [11T OO OO PSP PPRUTPPRPPUPON 193
5.10.4 BleDiscServiCeFirst / BleDiSCSEIVICENEXEeviieveeeeiereeeeeereeereeteeeseetesesseeesareeesssateeesassseesserseessssreeesssseessasseessns 194
5.10.5 BleDiscCharFirst / BIEDISCCRAINEXLEccivcuviiiieeieeiiteie ettt eeee e e sttt e e eeae e e e s ebeeeesssbeeesenbteessbeeesssnbesessseesesareeeeaas 198
https://www.lairdconnect.com/ 6 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

5.10.6 BleDiSCDESCFIrst /BlEDISCDESCNEXLE ...uuvvrieeeeereiiterieeeeeeiesireeeeesssessireeetesssesassrasesesssssassresesessssssssresseesessssmsssseesees 202
oI O A 2 11T O ol g To [o - Y USRS 207
o O I 1 1=T O ol g To | LT o PSSRSO 211
5.10.9 BleGattCRead/BleGattCREAIDATA . .occvvvrieeeieiecierieeee et eeeetree et e e s sesereeeteessesasraeetesssesasssaseteessesassrasseeeessssmsrrnsreees 215
5.10.10 211 G T ol 1 T PP RUTPPSTTPO 219
5.10.11 3] I=YCF ol g £=T 6 oo [P TP ROT PP 222
5.10.12 2] L O Y {0 o =T o F- Y SRS 226
5.10.13 211 O T o =] (T o PSPPSR 227
5.10.14 2] 1O Y (ol N 1Y 2T Lo U UPN 227
5.11 Attribute ENCOTING FUNCLIONS .e..ueiiiiiiiieiiee ettt ettt et sab e e bt e sat e e bt e e sabe s bt e e snneeneas 230
Lo 0t R = 1 1= Yo oo o 1= < J PSRRI 231
LT A 111 1 Voo o L= OO OO PTOUPOTPTPRR 232
5.11.3 BIEENCOUE24 ...ttt ettt ettt e h et e bbbt e bt e b e e e bt e e bt e e bt e ehe e e bt e e ehte e be e e sabeennt e e saneenees 233
5.11.4 BIEENCOUE32 ...ttt ettt e b et e b e e bt e b e e bt e bt e e bt e e h e e e b et e ehe e e bt e e sate e be e e sabeeenteesaneenes 234
LT T 111 s Tlo o 1= ol 10 7 OO P T UTP 234
5.11.6 BlEENCOUESFLOATEX ...coitiiiiiteiteetet ettt ettt ettt sttt et e bttt e ettt e sa e e e b et e bt e e bt e e ste e bt e e saeeeabe e e saeesabetensbesbeeennneenees 236
5.11.7 BlEENCOUESFLOAT ...itiiitteetetertte ettt et e ettt et e st e s sbaesbe e e sbaeebee e sbteeabe e e sbeeabeeesaeenbeeesaeenbeeesbeenbeeensaeenbeeennseenses 237
5.11.8 BlEENCOUETIMESTAMP......ciiititiitieeittt ettt ettt ettt ettt e staesbe e e sbteebeessbbeebeeessbeebeeessaeenbeeessaeenbeeensaeenbesenseesnbeeensneenses 238
5.11.9 BIEENCOAESTRING ...uutiiiiiiiiiieiteetee ettt ettt ettt ettt et e ettt e sbe e e b et e s bt e e bt e e bt e s be e e ste e bt e e beeeabe e e saeesabeeenseesbeeesaneennees 239
5.11.10 BIEENCOUEBITS. .. eeeiteeiittesie et st et e st sb e st ese bt e s et e sabeesabeesabeesaseesabeasaeeesabeesateessteesaeessbeesaeensseansseesaseenses 240
5.12 ALLrIDULE DECOAING FUNCLIONS . eiiiieiiiieiiee et ettt et e st e e et e e e s aee e e sttt e e e s baeesesteeesaaeaeensteeessnseeessnsseeesnnsenennnee 240
5.12.1 BIlEDECOUESS ...ttt ettt ettt ettt ettt ettt ettt e bt e e bt e be e e bt bt e e bt e bt e e bt e e s h et e b et e e he e e bt e e aate e be e e sabeennteesaneenees 241
LT 2 111 D 1Yol e [T OO ORI 242
5.12.3 BlEDECOUESILE ..ottt ettt ettt ettt ettt ettt et b et e s at e e bt e h b e e bt e he e e bt e b te e b et e he e e bt e e heeebe e e nabeennteennneennes 243
5.12.4 BlEDECOUEULEueeeeiieieitieeiee ettt ettt ettt ettt ettt et e bt e s bt e e bt e e s bt e e bt e e st e e bt e e st e e bt e e be e e be e e bt e ebe e e nnbeennteennneenes 244
LT T 111 D 1Yo Yo [y A O STRR 246
5.12.6 BlEDECOUEU2A ...ttt ettt ettt ettt ettt e b et e s ht e e bt e s h b e e b et e bt e e bt e e b te e b et e he e e bt e e ehe e e bt e e hbeennteesaneenes 247
LT A = 1= D 1Yol e [32 O TSR 249
5.12.8 BlEDECOUEFLOAT ... coitititieetet ettt et e st e ettt e staeesbe e e sbaeebe e e sbaeebaeessseenbee e steesaeeesaeenbeeessaeenseeeseesnbesesseenseeensseenses 250
5.12.9 BleDECOUESFLOATuiiiitteetet et ettt ettt ettt ettt sttt e bt e sttt e bt e s b et e bt e e bt e e st e e bt e e ssteeabe e e saee e bt e esbtesabeeensbeebeeenaneenes 251
5.12.10 BIEDECOUETIIMIESTAIMPtiiitieeiteestee st site e st e st e s te e st e e st e e sabeesaaeesabeesate e s s beasaaeessteesaeessbeesaeensseenseeenseeensens 252
5.12.11 BIEDECOUESTRINGciitiiiiieiiieetee st e st e st e ste e s teesaeeesabeesateesabeesaseesabeassaeessbeanaseessseansaeessbeensaeensseenseeensseansees 254
5.12.12 BIEDECOUEBITS ..ottt ettt s e s e st e st e e s et e s ab e e sab e e s ab e e sabeesbeeesabeesaeeesat e e st e e ssbeesateenabeenbeesaneennes 255
5.13 Bonding and Bonding Database FUNCLIONSccccuiiiiiiiii ettt etee e et e e e ate e e s tre e e e aba e e eeasaeeeenreaaans 256
Lo 700 R = T oo [T Y= S U ot o L3S 256
5.13.2 Bonding Table Types: ROING & PEISISt.......cciiciiiiiiieiecir st e et e et e e e eee e e s e e e e snte e e esnereeesnaeeeeas 257
L0 I T T V1V Y o 1T Y oo [N o [T V= ST 257
LT T 1 1Y =TT Yo g = - SR 258
5.13.5 BleBONAINGPEISISTKEY ...ttt e e e e et e e e e e e bbb e e e e e e se s astaaeeeeeeesasbaaseeeeeesannraanaaaens 259
Lo e T 2 11=T =TT o Yo [T aT=d K WU 1y =T TR 259
Lo T A 1 1Y =TT Yo o = X = Y=Y -1 S 261
5.13.8 BIEBONAINGEIASEAIL.......ooiieeeiiieeeeee ettt ettt e e et e e e tte e e e e tte e e eeabeeeeatseeaeaataeeeanssaeesbseaaaasteeeeansseeesassanaans 261
https://www.lairdconnect.com/ 7 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

LT TS T 1= =TT Yo Y/ [F=da CT=Y d [o TSR 262
5.14 SECUNITY MaNagEr FUNCLIONS ...eiiiiiiiiiiiiii ittt e et e s s e e e s s b e e e s eama e e e snaeesssnranesnnne 263
5.14.1 EVENES GNU IMIESSAEOS ..etuveiiutiiiiieettt ettt ettt et e ettt e bt e s bt e e sbteebe e e sbbeebe e e bbe s bt e e ssbeeabeeesbbesabeteasbesbeeensbesbeeennneennees 263
5.14.2 BleSeCMNGILESCPAINNGPIET ..o e e e e e et e e et e e et e e s e astae e s tbeeeesntbeeesnssaeessreeeans 265
Lo 0 T 1 1= = YT PSPPI 266
LT S 11Ny =Yl VTV T T =T o USSR 270
LT T 1 1Y ool =Y o d =11 g V-SRI 270
5.14.6 BlePairingStatiCPasskeycocuui ittt ettt e e st e e s bt e a b e bt e nnaesneas 271
5.14.7 BleSECMNGIPASSKEYevieieeiiii ittt et e et e e et e e st e e et b e e e e eate e e s aaae e e staeesansteee s taeeeaantaeeeannraeeanaeeeans 271
5.14.8 BleSecMNgrLescKeypreSSENADIEcccuuiiiiiiieeii ettt ettt et be e s ar e et nees 273
5.14.9 BleSecMNgrLesCKeYPreSSNOTIfYiiiiiiitiiiieiii ettt ettt ettt s et e sae e s be e s b e e bt e e saneeneas 273
5.14.10 BlIESECMNGIOOBPIETt e s e e e st e e e e aea e e e sta e e e e staeeeaasaaeestbeeeenntaeeeanraeeearaaaaans 275
5.14.11 211Ny =Tol Y [= O 10 121 =1 PSP 275
5.14.12 BleSecMNgrLesCOWNOODDATAGETccuuiieiiiieeeiiieeceitee e stee e e stee e seaee e e staeeeesateeessaaeeeesbaeeeensteeeenssseessssaeeans 277
5.14.13 BleSecMNgrLescPeerO0DDAtASETccccuiii ettt ettt et eeere e e et e e e e tte e e eeatr e e e s bt e e e e ttaeeeeraaeeearaeeans 278
5.14.14 BlESECIMNEGIKEYSIZES eeeievreeiiiiiee ettt e eete e e sttt e e ettt e eeete e e sbaeeeesateeesassaeeessaeeeasseeesanseeessnsaeeeensseeesansaeessseneeans 280
5.14.15 BlIESECMNEIBONARE(D ...uevieieiiiiee ettt et e ettt e e ettt e et e e e s bt e e e et ttaeeeeasaaeesbbeaeasstaeesansaaeesasseaesstaeeeansaeeesssnaeans 281
5.14.16 2] 1] = gl Y] o1 (o] oY o [Tt 4 o VUSSP 281
5.15 Virtual Serial POrt SErvice — ManaAgEAdoccuuiieeiiiie e cctee et e st e sttt e e et e e s s aee e e saaeeeesstaeesesneeessnnseeessnseeesnnnns 283
LT TS R VA S oo = (U = o o ISP 285
5.15.2 Command and Bridge MoOde OPeration.........cccueeeiiiieeieiiieeiiieeeestteeseste e e ssteeeeesebeeessaeeeessaeeeesnseeesssneessnsseeenns 291
5.15.3 VSP (VirtUal SErial POIt) EVENTSoeeiiieieeeiiie ettt eette e ee e eeaae e e eetaeeeeeabaeeeeareeesetseeeeatresesnsseeeensneeeens 292
LT R 11NV Y o T0 T o T=T o TSRS SRR 294
LT T T 1 1oAY o T@ T o T=T o =5 SRR 296
Lo T SR 1 1oLV o T o Y SRR 298
LT T A 11NV Ay o] [e F O TSR 299
5.15.8 BlEVSPWWIIEE ceeutiiiiieeiee ettt ettt ettt ettt ettt e be e e bt e bt e bt e bt e e b et e be e e bt e e b ee e bt e e ht e e bt e e s ae e e be e e sabeennteenaneenes 300
LR T T 11NV Ay o] 2 =T T OO PRSPPI 302
5.15.10 BIEVSPUAIBIIAGE. ... eeeeeiieeeeieee e et ettt e ettt e e ettt e e e etae e e sbaeeeesatseeeaasaeeesbseaeastsseeanssaeesasseaeastseeeansaeeesassanaans 304
5.15.11 BIEVSPFIUSI ..ttt sttt st e st e s e e a et s hr e e at e shr e e ht e e sh b e e eht e e nabeenateesareennes 306
5.16 Data Packet LeNGth EXLENSIONcciiiiieiiiiee ettt ee e e e ettt e e e st e e e e etteeestbeaeesataeeeensasaessseeeaastaeeeanssseeasseaaans 309
5.16.1 OVEIVIBW ..eiiieiieeiiiitieeee e e ettt ee e e e ettt et e e e e e s aba bt eeeeeesa s be e et eeeeesaaane e et et e e e aaanebaeeeeeeaaaannbebeeeeesasannbebneeeeeesanrnnneeaens 309
Lo T A @ ol O (=Y oYY 7 ={ V] = o o 1SRRI 309
5.16.3 EVENTS GNA IMESSAEES ...uveieetiiiieiiiieeitieeeeitteeeeettteeesteeeeetreeesaseaaaastsseeassasesassasaaastasesanssasesassessaantseesanssasessseaaans 311
5.16.4 BleGattCALtIIDULEMEUREBQUESTcei i iiie et cceee e e et e e s et e e e st e e e s aae e e e sateeesenseeeesanaeeeeanseeeesnnsneesnseeeans 311
5.16.5 BleMaxXPacketLENGENSELciiiciiieiiiiieeeee ettt e s et e e e st e e e s aa e e e s ate e e s easae e e s raeeeeanteeeeannraeeanaeeeans 313
5.16.6 BleMaXPaCKEtLENGLNGEL.......ueiiiiiee e e e e e e e et e e e e e e e e s aata e e e e e e ee s asbaaaeeeeeesannbaaaaaaeas 313
507 LE PIN ittt ettt ettt bbb e e bt e eh e e e b et bt e e b et e bt e e bt e e hte e b et e bt e e be e e ahee e baeeshbeeabaeenaaeenes 314
5.07.1 OVEIVIBW .eeeieiieeieittee et e ettt e e e e e e etee et e e e e e s aube b et e e e e e saaaae e et e eeeeaaaaan b et e e e e e eaannbab et eeeaaaannbeeeeeeeaesannbbbbeeaeeesanbnnneeaens 314
5.17.2 EVENTS @NU IMIESSAEES .oeiiieiiiiiiiieieee ettt et e e e secttte e e e e e e eee bbb eeeeeeeseaaataeeeeaeseaastaassaeeseaanstaassaeeaesanstasseaeeeesassanneaaens 314
5.17.3 BlePIiNGAULNTIMEOULoeiiiiiiiieciiee ettt e et e e e e e e s e e e sa e e eeaeeeesnseeeesstaeesanseaeesasaeeeannseeesansseeesnnseeeans 314
LT B 8 1 |V I o PSSP 316
https://www.lairdconnect.com/ 8 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

5.18.1 EVENTS GNA IMESSAEES ...uveeeeuriieiiireeeitteeeeitteeeseteeeesteeeaassesesaseeeaastaeeaassesesasseeeaastasesanssaeessssessaassseesasseeesnsseeenns 316
5.18.2 BIEPRYSEL ..eoveeeeveceeeeteeese et sa et sa e et e et s st e et e et s s st n et n st n st en et n e st nen 317

6 Other EXtENSION BUITT-IN ROUTINES ..ciouuiiiiiiiee ettt st e e st e e s st e e e sttt e e s sabeeessasteeesabaeeesnabeeesnasteessnseeeeans 319
6.1 Near Field CommuUuNICatioNs (NFC)......oiiiiiieeeiie e ceiiee et ee et e e et e e e et e e e sate e e e s ataeessasseeesasaaeesansseseenssaeesnsseeaans 319
6.1.1 OVEIVIBW ettt ettt et e ettt e e e e et ettt e e e e e s s be e et e e e e e s aabeeeeeeeeesaasbe b e eeeeeesaasnbbeeeeeesaansnbbaaeeeesennnsaeaeeassanann 319
6.1.2 N DEF IMBSSaEES i iiiiiiiiiiiiiieieiet ettt ettt ettt eteteterateterereteterererererererererererenens 320
6.1.3 Arduino Based NFC REATENccuveiiiiieiee ittt sttt eiee st e s it e st e st e st e s sbeesbe e s sbeesabaessbtesabeesssbeesaeeesateenseeessseeses 321
6.1.4 SAMPIE APPIICALION 1 .ottt et st s bt e bt e s b et e bt e e b et e bbe s bt e e bt e e be e e nnneenes 321
6.1.5 SFTa Y o L=l] o] L= 1 o 1 AP 324
6.1.6 WAKE-ON-NFC ittt ettt ettt sttt e s sttt e e s e bt e e s saateeesabaeeeesbaeesaasaeesaabaeeeessbeeesaaseeessasaeesastaeesnsseessnsseeenns 328
6.1.7 EVENTS @N0 IMESSAZESeeueteiitieeite ettt ettt e e sttt e bt e s bt et e s bt e e bt e s bt e e bt e sabeeeabeesabeeebeesabeesneenane 329
6.1.8 NTCHANAWArESTATE . eiiiiiiieeiie ettt sttt e st e et e st e e s be e s beesabee s s baeesbeesabaesnbeesabaesbeesabaesnseesnns 329
6.1.9 [NV {010 o T=T ISP 329
B.1.10 INFCCIOSE .ttt et st e e st e et e s a bt e st e e s ab e e e ab e e sab e e eab e e sabeeeubeesabeeeab e e sabeeeabeesabeeeaneesabeeeaneenn 330
o0 I R\ {0 =T (o KT =Y o 1Y <O RUOR PP 331
6.1.12 NFCNUEFIMISENEW ...eiieiiie ittt ettt e e ettt e e et e e sttt e e e s st eeseaateeesaaeeeessteeesasteeesnsaeeesssaeesannseeesnnsenessnsseeanns 331
6.1.13 NFCNAEIIMISEDEIETE.eeeeieieeeeeiee ettt et e et e e e st e e e ette e e stbeeeesabaeeeestaeesssaaeesstaeeeanssaeeannsaaeessseeaans 332
6.1.14 NFCNAEFIMISZGEIINTOviiiiiiiie et s e e et e e e e bt e e e s abee e e s abeeeeeataeesassaaeesataeaeanssseeeanssaeessseeaans 333
6.1.15 NFCNUEFIMISZRESETneeiiee ittt e st e e e st e s et e e e sttt e e e s sbaeeessteeessseeeesnbeeesanseeesanseeessnsseeanns 334
6.1.16 NFCNAEFRECAUALEOODooiviiiiiieiie ittt sttt s e s abe e s be e s abe e sabeesabeesabeesabeesabeesaseesaseesnseesn 334
6.1.17 NFCNAEIRECADUGENENIC ..eeuuteeiiieeiieeitte ettt sttt ettt e e st e st e st esabeesabeesas e e sabeeeabeesabeesnneesabeesnseess 336
(700 000 < T \VJ ol o 1= 41V Y= o o] o o1 PRI 337
6.2 System CoNfigUration ROUTINESccoiiiiiiiiiieeeciiee et e ecttee e et e e e e tte e e stae e e e ataeeeeasteeesaaeseeasteeeeessaeesassaseeansseeennes 338
6.2.1 S S M S ARG ... e s s e s s e e e s s e e e e e e e e e e e e aeneneans 338
6.3 FIRSI ROULINES ..ttt ettt ettt e sh e ae e e s bt e e ae e e s ab e e ae e e sa b e e aeeesabeesabeesabeesaseesabeesnseesabaesaseens 338
6.3.1 OVBIVIBW ettt ettt et ettt e e e e e ettt e e e e e e e aaa s be e et e e e e e s as b e et e e e e e e s nsbe b e e e e e e e saanses et e eeeesannnbeeeeeeesennnraeeeeeesannnn 338
6.3.2 [1] 410 1T o 1SR 338
6.3.3 [T 21 Y= T OO URPRUPPRRUP 339
6.3.4 [T 01 L OO URPRUPRRRPPR 340
6.3.5 FIRSNEFQSE ittt ettt ettt e sttt et e s a bt e s bt esabe e e bt esa b e e et e e s a bt e e bt e s a b e e e bt e s beeebee e beeenbee s baeenaeenane 341
6.3.6 [1] 101 T T OO URRUPRUPRRUPR 341
6.4 CryPtOBraphiC ROUTINES ...cc.uviiieeiiie et ettt eete e e e et e e e e tte e e eeabae e e s baeaeestaeeseabaaeesabssaeanstaeeeassaaeeasteeaeanssseesansenns 342
6.4.1 (ool €1 a1 =T =T UL o] oV =YL RS 342
6.4.2 [olel 0] Ton = 1= Y=ol =] RO UPRTUP 342
6.4.3 ECCHMACSNA256 ... ittt ettt s e st e st et s bt e sa bt e s bt e sabeesabeesabeeeabeesabeesbeesabaeenseenane 344
6.5 RV o [Y= T 4 RS RE 345
6.5.1 LT) =Y SO 345
6.5.2 WWOERESEL ..ttt ettt sttt sa e st e st e e bt e sab e e s bt e sabe e s bt e sabeeeabeeeab e e e st e sabe e e btesnteesabeebeeenaneenes 345
6.5.3 RVAT Lo L £ 2 U 0 o o [Y-SR 346
6.6 MISCEIIANEOUS ROULINES ...ttt ettt ettt ettt ettt e e e st e e e sate e e s bt e e e s abaeeseaabeeesabbeeeesbaeesaaseaessssananns 346
6.6.1 REAAPWISUPPIYIMIV ..ottt ettt e et e e et e e et e e e aeee e e saa e e e e staeesasseeeesaneeeeansaeesasseaeesnsaeeeannsaeesannenas 346
6.6.2 SEEPWISUPPIYTIIESNIMV ...ttt e e ettt e e ettt e e e et e e e e tbee e e abeeeeaasaeeestbeaeaastaeeeensaeaeasseaaans 347

https://www.lairdconnect.com/ 9 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

6.7 ENhanced SNOCKBUIST (ESB) ..cccuuviiiiiieeeiiieeeeiee e ette e ettt e e e tte e e s tae e e e ataeeesattaeesssseeeestaeesanssesesassaeeanssseesansseeessseanans 349
6.7.1 OVEIVIBW ettt ettt et ettt et e e ettt et e e e e e s s be et e e e e e e s st e et e eeeeesaasbs b e eeeeeesaasnbbeeeeeesaansnbeaaeeeesennnsaeaeeessannnn 349
6.7.2 EVENTS @N0 IMESSAZES «...eeutieiitteette ettt ettt e e st e bt e s b e et e s bt e e bt e s b e e e bt e sabeeeabeesabeeebeesabeesneenane 351
6.7.3 ESB ErTOr COUBS. . eiiuutiritiiiteeriteesiteesiteeeiteesteesbeesateesbeesabeesbeesabeesabeesabeesabeesabaesabeesabeeeabaesabaesnbeesabaesnseesnbaesnsaesnns 351
6.7.4 ESDOPENPEXIMIOTE ...ttt sttt et e st e e bt e s bt e e bt e st e e e beesab e e e bt e sabeeebeesabeeeneenane 352
6.7.5 [0 10 o 1T a Y o (1Y o e 1SR 354
6.7.6 [o T Lo 1Y IO OO PP PURTUPPRUPPRUPRN 356
6.7.7 ESDSUSPENG ...ttt ettt e et e sttt e b e s bt e e bt e s bt e et e e s b et e bt e s be e e bt e e beeenree et 356
6.7.8 [0 o115 o | LT OO OO PP PURPUOUPRRUPRN 357
6.7.9 [E 1A | T PP 357
LT 0 (O =1 o 1= T [PP PTPURN 358
I A R T =Y o OO OSSP P P ORPPPRRI 358
6.7.12 ESDSEEIRXSTALE ..eeuriiiiieiiiieiieeetee ettt ettt e e st e et e st e et esa bt e et e sa bt e e a b e sa b e e e ab e e sabeeeab e e sabeeeaneesbeeeareenn 359
T8 I T =1 o 11V, - T F= Y= T o USRI 359
6.7.14 ESDIMAN@BERXFITO....ccuiiieiiiiie ettt et e e et e e e st e e e e bt e e e stbe e e e e abbeeeettaeeeaabaae e e baeeeaantaeeeanbaaeearraeaans 360
6.7.15 ESDSELAGUIESSES ...eeutieiiieetee ettt ettt e et s bt e st e st e et esa bt e et e e sa bt e e ab e e sa b e e e ab e e sabeeeabee st e e eanee s beeeaneenn 360
LT 0 LT =1« T0o Y =SSP 361
I A A 1 o [o] e PO SOR PP 362
EVENTS QN0 IMIBSSAZES 1eeeeurrieiiiiieeeiieeeesitteeesstteeestteesaauteeesaaaaeeesstaeeeasteeesassaeessasaeeeassseeesansseesssseesansseeesanssnessasseesennsenesannes 363
IVHISCEITANEOUS ...ttt ettt ettt ettt si et ste e e bt e bt e e be e e bbeeabe e e bt e eabee s b eeeabee e bteeabeeebeeaabaesnbaesabeeenbeesabaesnbaesabaesnsaennns 363

8.1 BIUETOOh RESUIT COURS ..ttt ettt et s e e ae e e s ab e e at e e sa b e e sateesabeesaseesabeesnneesabeesaneesn 363

9 PAYol QYo Yl [Te =T s 1Yo SRR 365

9.1 FA g = o[V] o] £ o] o DO PP P PPTPTPRPRS 365
9.1.1 (o= g Y =T o o[PSP OP PSP PPPPOP 365
9.1.2 DS CIAIMIET ettt ettt ettt et e st e st esa b e e e bt e sa b e e st e e s a bt e e bt e s b e e et e e s be e e bt e e beeenbee e baeenaeenane 365

9.2 1Y ol R = O OO 365
9.2.1 (o= g Y =T o o[PSP T PSP PTPPOP 366
9.2.2 (D11l =1 41T OSSP URPUPPRRUPR 366

T 111 0 PRSP 367
https://www.lairdconnect.com/ 10 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

1 INTRODUCTION

This user guide provides detailed information on BL652-specific smartBASIC extensions which provide a high-level managed
interface to the underlying Bluetooth stack in order to manage the following:

= Perform GAP functionality such as scanning, advertising and connections
= Perform GATT server functionality

= Perform GATT client functionality

= Perform pairing, bonding, and security manager functions

= Manage Tx power functionality

= Attribute encoding and decoding

= Perform NFC related functionality

= Events related to the above

1.1 What Does a BLE Module Contain?

Our smartBASIC-based BLE modules are designed to provide a complete wireless processing solution. Each one contains:

= Ahighly integrated radio with an integrated antenna (external antenna options are also available)

= BLE Physical and Link layer

= Higher level stack

= Multiple SIO and ADC

= Wired communication interfaces such as UART, 12C, and SPI

= AsmartBASIC run-time engine

= Program accessible flash memory, which contains a robust flash file system exposing a conventional file system and a
database for storing user configuration data

For simple end devices, these modules can completely replace an embedded processing system.

The following block diagram (Figure 1) illustrates the structure of the BLE smartBASIC module from a hardware perspective
on the left and a firmware/software perspective on the right.

https://www.lairdconnect.com/ 11 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

Non-Vol
File
System
for
smartBASIC
Apps

Example A

o}
PRINT "Laird BL652 Module"
WAITEVENT

smartBASIC Non-Vol

run-time engine i
(provides safe access to hardware) el

Bluetooth Low Energy Stack (v4.2)

L:14 mm W:10 mm H:2.1mm. (Pad pitch: 0.75mm)

39 connection pads

IUARTlIGPIOlIADCII 12c || SPI IlNFC

Tag
512K Flash
ARM Cortex M4
with Floating Point Optional External
[64MHz] 32.768Khz Crystal

Optional External
T Serial (SPI) Flash

BLE Radio (v4.2)

Figure 1: Bluetooth smartBASIC module block diagram

2 MODULE CONFIGURATION

There are many features of the module that cannot be modified programmatically which relate to interactive mode
operation or alter the behaviour of the smartBASIC runtime engine. These configuration objects are stored in non-volatile
flash and are retained until the flash file system is erased via AT&F* or AT&F 1.

To write to these objects, which are identified by a positive integer number, the module must be in interactive mode and
the command AT+CFG must be used. To read current values of these objects use the command AT+CFG, described here.

Predefined configuration objects are as listed under details of the AT+CFG command.

3 INTERACTIVE MODE COMMANDS

Below are some BL652-specific AT commands.

31 AT Ilor ATl or ATIX

COMMAND

Provides compatibility with the AT command set of Laird’s standard Bluetooth modules.

Note ‘ATIX’ will result in any integer values being displayed in hexadecimal.

https://www.lairdconnect.com/ 12 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

AT | num
Returns \n10\tMM\tInformation\r
\nOO\r
Where
\n = linefeed character Ox0A
\t = horizontal tab character 0x09
MM = a number (see below)
Information = string consisting of information requested associated with MM
\r = carriage return character 0x0D
Arguments
num Integer Constant
A number in the range of 0 to 65,535. Currently defined numbers are:
0 Device Name
1 BLE Stack Build Number
3 Version number of module firmware
4 Bluetooth Address
5 Chipset ID
6 File System Flash Segment Statistics
14 Static Random BLE address
16 NvRecords Flash Segment Statistics
24 If AT+MAC used to set IEEE address, then that mac address
26 BLE Bonding database segment
33 smartBASIC core version number
36 Config Keys Flash Serment Statistics
44 Current random BLE address
2080 Module startup time
2081 Get time in milliseconds since reset (will overflow as 32 bit
counter)
7001 Toolchain used to build firmware
Ox8yyy Get content of FICR register
Ox9yyy Get content of UICR register
0xCOFE Displays the licence
CRC of most recent file downloaded since reset — volatile
0xC12C .
The value is in hex.
Interactive Yes
Command

This is an Interactive mode command and must be terminated by a carriage return for it to be processed.

‘Example:

AT i 3
10 3 28.6.1.2
00

https://www.lairdconnect.com/ 13 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

AT I 4
10 4 01 D31A920731BO

3.1.1 AT+CFG
COMMAND

AT+CFG is used to set a non-volatile configuration key. Configuration keys are comparable to S registers in
modems. Their values are kept over a power cycle but are deleted if the AT&F* command is used to clear the file
system.

Unless otherwise stated, if a config key value is changed then a reset is required for it to take effect.

The “num value” syntax is used to set a new value and the “num ?” syntax is used to query the current value.
When the value is read the syntax of the response is:

27 Oxhhhhhhhh (dddd)
..where Oxhhhhhhhh is an eight hexdigit number which is 0 padded at the left and dddd is the decimal signed
value.

AT+CFG num value or AT+CFG num ?

Returns If the config key is successfully updated or read, the response is \n00\r.

Arguments:

Integer Constant
num | The ID of the required configuration key. All of the configuration keys are stored as an array of 16-bit
words.

Integer_constant
value | This is the new value for the configuration key and the syntax allows decimal, octal, hexadecimal, or binary
values.

This is an Interactive mode command and must be terminated by a carriage return for it to be processed.

The following Configuration Key IDs are defined.

40 Maximum size of local simple variables

41 Maximum size of local complex variables

42 Maximum depth of nested user-defined functions and subroutines
43 The size of stack for storing user functions’ simple variables

44 The size of stack for storing user functions’ complex variables

45 The size of the message argument queue length

100 Enable/Disable Virtual Serial Port Service when in interactive mode. Valid values are:
0x0000 | Disable
0x0001 | Enable
0x81nn | Enable ONLY if Signal Pin nn on module is HIGH
0xClnn | Enable ONLY if Signal Pin nn on module is LOW

ELSE Disable
101 In Virtual Serial Port Service, select either to use INDICATE or NOTIFY to send data to client.
0 Prefer Notify
https://www.lairdconnect.com/ 14 Americas: +1-800-492-2320

Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

ELSE ‘ Prefer Indicate

This is a preference and the actual value is forced by the property of the TX characteristic of the service.

102

Advert interval in milliseconds when advertising for connections in interactive mode and AT Parse mode.
Valid values: 20 to 10240 milliseconds

103

Advert timeout in milliseconds when advertising for connections in interactive mode and AT Parse mode.
Valid values: 0 to 16383 seconds, where 0 means forever.

104

Data transfer is managed in the Virtual Serial Port service manager.

When sending data using NOTIFIES, the underlying stack uses transmission buffers of which there is a finite
number. This specifies the number of transmissons to leave unused when sending a lot of data and allows
other services to send notifies without having to wait for them.

The total number of transmission buffers can be determined by calling SYSINFO(2014) or in interactive mode
submitting the command ATi 2014

105

When in interactive mode and connected for virtual serial port services, this is the minimum connection
interval in milliseconds to be negotiated with the master.

Valid values: 0 to 4000 ms.
If a value of less than 8 is specified, then the minimum value of 7.5 is selected.

106

When in interactive mode and connected for virtual serial port services, this is the maximum connection
interval in milliseconds to be negotiated with the master.
Valid values: 0 to 4000 ms.
Note: If a value of less the minimum specified in 105, then it is forced to the value in
105 plus 2 milliseconds.

107

When in interactive mode and connected for virtual serial port services, this is the connection supervision
timeout in milliseconds to be negotiated with the master.

Valid range: 0 to 32000.
Note: If the value is less than the value in 106, then a value double the one in 106 is used.

108

When in interactive mode and connected for virtual serial port services, this is the slave latency to be
negotiated with the master. An adjusted value is used if this value times the value in 106 is greater than the
supervision timeout in 107

109

When in interactive mode and connected for virtual serial port services, this is the Tx power used for adverts
and connections. The main reason for setting a low value is to ensure that in production, if smartBASIC
applications are downloaded over the air, limited range allows many stations to be used to program devices.

110

If Virtual Serial Port Service is enabled in interactive mode (see 100), this specifies the size of the transmit ring
buffer in the managed layer sitting above the service characteristic FIFO register.

Valid range: 32 to 256

111

If Virtual Serial Port Service is enabled in interactive mode (see 100), this specifies the size of the receive ring
buffer in the managed layer sitting above the service characteristic fifo register.

Valid range: 32 to 256

112

If set to 1, then the service UUID for the virtual serial port is as per Nordic’s implementation and any other
value is per Laird’s modified service.
See more details of the service definition here.

VSP can also be configured using a Sautorun$ application which does not have a waitevent statement so will
exit as soon as the VSP is configured.

113

This is the advert interval in milliseconds when advertising for connections in interactive mode and UART
bridge mode.

VSP can also be configured using a Sautorun$ application which does not have a waitevent statement so will

https://www.lairdconnect.com/ 15 Americas: +1-800-492-2320

Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

exit as soon as the VSP is configured.
Valid values: 20 to 10240 milliseconds

114 This is the advert timeout in milliseconds when advertising for connections in interactive mode and UART
bridge mode.

VSP can also be configured using a Sautorun$ application which does not have a waitevent statement so will
exit as soon as the VSP is configured.
Valid values: 0 to 16383 seconds. 0 disables the timer (makes it continuous)

115 This is used to specify the UART baudrate when Virtual Serial Mode Service is active and UART bridge mode is
enabled.

VSP can also be configured using a Sautorun$ application which does not have a waitevent statement so will
exit as soon as the VSP is configured.

Valid values: 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 76800, 115200, 230400,
250000, 460800, 921600, 1000000.

Note: If an invalid value is entered, then the default value of 9600 is used.

116 In VSP/UART bridge mode, this value specifies the latency in milliseconds for data arriving via the UART and
transfering to VSP and then onward on-air. This mechanism ensures that the underlying bridging algorithm
waits for up to this amount of time before deciding that no more data is going to arrive to fill a BLE packet and
so flushes the data onwards.

Note: Given that the largest packet size takes 20 bytes, if more than 20 bytes arrive then the latency timer is
overridden and the data is immediately sent.

200 Maximum number of 128-bit, Vendor Specific UUID bases to allocate

204 Gatt Table : Attribute table size in bytes. The size must be a multiple of 4

205 Max number of connections acting as a peripheral (Can be up to 1)

206 Max number of connections acting as a central (Can be up to 8)

Note: In order to configure the device to be able to have 8 connections as central, CFG 205 should be set
to 0, otherwise the device will auto-adjust to have 7 connections as central and 1 as peripheral.

207 Max number of SMP instances for all connections acting as a central. It is recommended that this is left to 1 as
the stack will reserve memory for its use which will only be used occasionally

208 Include the Service Changed characteristic in the Attribute Table (default is included)

209 Security manager is placed in debug mode to use the SIG defined debug key for LE Secure Connections pairing

210 Low Frequency Clock Configuration
The BL652 module does not have an onboard 32.768Khz low frequency crystal and that clock is derived from
an RC oscillator which is calibrated against the high frequency 32MHz crystal on a periodic basis. However the
user has access to the relevant pins (SI00 and SIO1) to fit the 32K crystal externally.

This register is used to configure the LF clock source to be either one or the other or even for autodetection.
Note: Autodetection means there is a startup delay from reset of up to half a second as opposed to about
1 to 2 milliseconds. This should be factored into any battery life calculations.
This configuration register is a bitmask consisting of :
https://www.lairdconnect.com/ 16 Americas: +1-800-492-2320

Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

Bits Len Description

~N N s

0..7 (8) Calibration Time Interval in 1/4 second units
8..15 (8) How often (in number of calibration intervals) the RC oscillator shall be calibrated
if the temperature hasn't changed.
16..26 (10) Crystal accuracy in ppm (0..1024ppm)
27..29 (3) Reserved for future use (set to 0)
30..31 (2) LF Clock Source : 00 - Autodetect
01 - RC Oscillator with Calibration against HF Clock
10 - Crystal
11 - Synthesized from HF Clock (Very power inefficient)

Note: If bits 30-31 is ‘10’ then bits 0-15 are ignored and likewise if 30-31 is ‘01’ then bits 16..26 are ignored.

The command AT | 2082 or from an application SYSINFO(2082) will return the actual parameters installed at
the instance. So for example if autodection is specified (bits 31..31 == 00) then the value returned will be one
of 01, 10 or 11. And similarly for the other parameters, if invalid values where entered.

211 Maximum ATT_MTU size. Possible values are 23 — 247 Bytes.
212 Maximum Attribute data length. Possible values are 20 — 244 Bytes.

213 Use EVCHARVALUE and EVATTRNOTIFYEX instead of the default EVCHARVAL and EVATTRNOTIFY respectively.
These former events include all parameters in the event, including the string data, and therefore provide
improved throughputs. For more information, see EVCHARVALUE and EVATTRNOTIFYEX.

214 0: Medium bandwidth (3 packets per connection interval) is used on all connections.
1: High bandwidth (6 packets per connection interval) is used on the FIRST connection. Other connections will
have medium bandwidth.
Note: when high bandwidth is used, the maximum number of connections that a device can have are reduced
from 8 to 6.

216 Maximum packet length a module can use (this is not the same as the current packet length). Possible values
are 27-251. By default this is set to 251.

518 The default Uart TX ring buffer length
519 The default Uart RX ring buffer length

520 The baudrate to use for command mode on power up. This setting will be inherited by the Sautorun$
application if a print happens before an explicit uartopen inside that application.

Note: These values revert to factory default values if the flash file system is deleted using the
AT & F * interactive command.

3.1.2 AT+CFGEX
COMMAND

AT+CFGEX is used to set a non-volatile string configuration key. Configuration keys are comparable to S registers in
modems. Their values are kept over a power cycle but are deleted if the AT&F* command is used to clear the file
system.

Unless otherwise stated, if a config key value is changed then a reset is required for it to take effect.

The “num value” syntax is used to set a new value and the “num ?” syntax is used to query the current value.

https://www.lairdconnect.com/ 17 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

When the value is read the syntax of the response is:

27 string
..Where string is the current value of the configuration key.

AT+CFGEX num value or AT+CFGEX num ?

Returns If the config key is successfully updated or read, the response is \n00\r.

Arguments:

Integer Constant
num | The ID of the required configuration key. All of the configuration keys are stored as an array of 16-bit
words.

String_constant

value
This is the new string value for the configuration key.

This is an Interactive mode command and must be terminated by a carriage return for it to be processed.

The following Configuration Key IDs are defined.

117 VSP advertisement name, the name of the device which will be seen by scanning devices when the module is
in VSP mode (can be between 1-31 bytes in length).

Default value is: LAIRD BL652

Note: These values revert to factory default values if the flash file system is deleted using the
AT & F * interactive command.

3.1.3 AT+BTD *

COMMAND

Deletes the bonded device database from the flash.

AT+BTD*

Returns \nOO\r

Arguments None

This is an Interactive Mode command and must be terminated by a carriage return for it to be processed.

Note: The module self-reboots so that the bonding manager context is also reset.

Example:

AT+BTD*

314 AT + MAC “12 hex digit mac address”
COMMAND

This is a command that is successful one time as it writes an IEEE MAC address to non-volatile memory. This address
is then used instead of the random static MAC address that comes preprogrammed in the module.

https://www.lairdconnect.com/ 18 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

Notes: If the module has an invalid licence, then this address is not visible.
If the address 000000000000 is written then it is treated as invalid and prevents a new
address from being entered.

AT + MAC “12 hex digits”

Returns \nOO\r
or
\n01 192A\r

Where the error code 192A is NVO_NVWORM_EXISTS. This means that an IEEE MAC
address already exists; this can be read using the command AT | 24

Arguments A string delimited by “” which shall be a valid 12 hex digit MAC address that is written to
non-volatile memory.

This is an interactive mode command and MUST be terminated by a carriage return for it to be processed.

Note: The module self-reboots if the write is successful. Subsequent invocations of this command generate an error.

Interactive Command: YES

‘Examples:

AT+MAC “008098010203”

3.1.5 AT+BLX

COMMAND

This command is used to stop all radio activity (adverts or connections) when in interactive mode. It is particularly useful
when the virtual serial port is enabled while in interactive mode.

AT+BLX
Returns \n0OO\r
Arguments: None

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be processed.

Example

AT+BLX

3.1.6 AT&F

COMMAND

AT&F provides facilities for erasing various portions of the module’s non-volatile memory.

AT&F integermask

Returns OK if flash is successfully erased
Arguments
https://www.lairdconnect.com/ 19 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

Integermask ‘ Integer corresponding to a bit mask or the * character

The mask is an additive integer mask with the following acceptable values:

0x0000xxxx Also see core user guide

1 Erases Flash File System
0x100 Erase the System Config keys Flash segment (AT+CFG)
0x10000 Erase the BLE Bonding Manager
0x10 or Erase the NvRecords Flash Segment
0x40000
o Erases all data segments
Else Not applicable to current modules

If an asterisk is used in place of a number, then the module is configured back to the factory default state by erasing all
flash file segments.

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be processed.

AT&F 1 ‘delete the file system
AT&F 16 ‘delete the user config keys
AT&F * ‘delete all data segments

3.1.7 AT+PROTECT

COMMAND

This command is used to enable readback protection of the flash. For this command to be issued correctly, the readback
protection flag should first be enabled using ‘AT+PROTECT “E”’ followed by setting the protection using ‘AT+PROTECT “S™’.

WARNING: Enabling readback protection is a one time only command. Exiting this mode would completely erase the
firmware and would require the use of an nrfjprog command to be issued through the JTAG interface. Once
erased, a new license for the module will be needed. While this mode is enabled, firmware upgrade can only
be carried out over UART. DO NOT enable readback protection unless absolutely necessary.

Notes: To make note of the license, keep a copy of the response to the command AT | 14 and AT | OxCOFE

AT+PROTECT “Char”
Returns 00 for successful execution.
Arguments:

A character which could be one of the following values:-

“Char” E — Enable the readback protection flag.
ar
D — Disable the readback protection flag.

S — Set readback protection on the module. This is an irreversible command.

This is an Interactive mode command and must be terminated by a carriage return for it to be processed.

https://www.lairdconnect.com/ 20 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

4 CORE LANGUAGE BUILT-IN ROUTINES

Core language built-in routines are present in every implementation of smartBASIC. These routines provide the basic
programming functionality. They are augmented with target-specific routines for different platforms which are described in
the extension manual for each target platform.

All the core functionality is described in the document smartBASIC Core Functionality. Additional information is also
available from our Laird Embedded Wireless Solutions Support Center at http://ews-support.lairdtech.com.

Some functions have small behavioral differences from the core functionality; these are listed below.

4.1 Information Routines
411 SYSINFO

FUNCTION
Returns an informational integer value depending on the value of varld argument.

SYSINFO (varld)

Returns INTEGER. Value of information corresponding to integer ID requested.
SRS = Local Stack Frame Underflow
= Local Stack Frame Overflow
Arguments:
byVal varld AS INTEGER
An integer ID which is used to determine which information is to be returned as described below.
0 Device ID. Each platform type has a unique identifier.
Module firmware version number
Example:
W.X.Y.Z is returned as a 32-bit value made up as follows:
(W<<24) + (X<<18) + (Y<<6) + (2)
3 where W is the platform and will always be 28 for the BL652 and X is changed whenever 3™
party libraries are changed. In this case the Nordic Softdevice and Y is the build number and
Zis the sub-build number.
Note you can check the Softdevice build number in command mode by submitting the
command AT | 1
BASIC core version number
Example:
33 A.B is returned as a 32 bit value made up as follows:
varld (A<<8) + (B)
and note the string “A.B” is returned via command mode command AT | 33
601 Flash File System: Data Segment: Total Space
602 Flash File System: Data Segment: Free Space
603 Flash File System: Data Segment: Deleted Space
611 Flash File System: FAT Segment: Total Space
612 Flash File System: FAT Segment: Free Space
613 Flash File System: FAT Segment: Deleted Space
631 NvRecord Memory Store Segment: Total Space
632 NvRecord Memory Store Segment: Free Space
633 NvRecord Memory Store Segment: Deleted Space
1000 BASIC compiler HASH value as a 32 bit decimal value
1001 How RAND() generates values: 0 for PRNG and 1 for hardware assist
1002 Minimum baudrate
1003 Maximum baudrate
https://www.lairdconnect.com/ 21 Americas: +1-800-492-2320

Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

https://assets.lairdtech.com/home/brandworld/files/User%20Guide%20-%20smartBASIC%20Core%20Functionality.pdf
http://ews-support.lairdtech.com/

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

1004

Maximum STRING size

1005

Is 1 for run-time only implementation, 3 for compiler included

1010

Module Type

2000

Reset Reason
= 8 :Self-Reset due to Flash Erase
= 9:ATZ
= 10: Self-Reset due to smart BASIC app invoking function RESET()

2001

Cause of last reset. This is a bit mask where the bits are defined as follows:

Bit 0: Reset from pin-reset

Bit 1: Reset from watchdog

Bit 2: Reset from soft reset

Bit 3: Reset from CPU lockup

Bit 16: Reset due to wake up from System OFF mode when wakeup is triggered from GPIO
Bit 19: Reset due to wake up from System OFF mode by NFC field detect

2002

Timer resolution in microseconds

2003

Number of timers available in a smart BASIC Application

2004

Tick timer resolution in microseconds

2005

LMP Version number for BT 4.0 spec

2006

LMP Sub Version number

2007

Chipset Company ID allocated by BT SIG

2008

Returns the current TX power setting (see also 2018)

2009

Number of devices in trusted device database

2010

Number of devices in trusted device database with IRK

2011

Number of devices in trusted device database with CSRK

2012

Max number of devices that can be stored in trusted device database

2013

Maximum length of a GATT Table attribute in this implementation

2016

Radio activity of the baseband and the BT allocation is as follows:-
: advertising

: connected as slave

: Initiating a connection

: scanning for adverts

= 4:connected as master

[]
w N = O

2018

Returns the TX power while pairing in progress (see also 2008)

2021

Stack tide mark in percent. Values near 100 are not good.

2022

Stack size

2023

Initial Heap size

2024

The chipset temperature in tenth of a centigrade. E.g. 23.4 will be returned as 234

2025

Current free heap memory. Note this is the total of all free blocks and so it is entirely
possible to get a MALLOC_FAIL even though this indicates there is enough memory for your
need because there may not be a block large enough to accommodate the request.
Although smartBASIC does not directly expose malloc/free, they are used extensively in
STRING variable operations.

2026

Supply voltage in millivolts

2040

Max number of devices that can be stored in trusted device database

2041

Number of devices in trusted device database

2042

Number of devices in the rolling device database

2043

Maximum number of devices that can be stored in the rolling device
Database

2044

Returns a 16 bit hash of the current state of the Gatt Table Schema

2050

Will be O if NFC pins are disabled and 1 if enabled

2051

Maximum number of NDEF messages that can be created simultaneously

2052

Maximum size of an NDEF message in bytes

https://www.lairdconnect.com/

22 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

The startup time from reset to just before the autorun application is launched in
milliseconds

2081 The current tick count in milliseconds

This is a bitmask value

2082 The actual Low Frequency Clock configuration submitted to the softdevice. See AT+CFG 210
description for details about the 4 bit fields in the 32 bits

2085 Error code returned by BLE Stack startup function. 0 means no error.

2086 RAM reserved by Nordic SoftDevice on startup

2100 Connect Scan Interval used when connecting, in milliseconds

2101 Connect Scan Window used when connecting, in milliseconds

2102 Connect Slave Latency default value in connection requests

2105 Connect Multi-Link Connection Interval periodicity in milliseconds

2150 Scan Interval used when scanning in milliseconds

2151 Scan Window used when scanning in milliseconds

2152 Scan Type Active or Passive (0=Passive, 1=Active)

2203 Advert Channel Mask

Content of FICR register in the Nordic nrf52 chipset. In the nrf52 datasheet, in the FICR

2080

OX8_OOO section, all the FICR registers are listed in a table with each register identified by an offset,

Ox87FE | 5° for example, to read the Code memory page size which is at offset 0x010, call
SYSINFO(0x8010) or in interactive mode use AT | 0x8010.

0x9000 Content of UICR register in the Nordic nrf52 chipset. In the nrf52 datasheet, in the UICR

) section, all the UICR registers are listed in a table with each register identified by an offset,

0x9800 so for example, to read the NFC pins functionality which is at offset 0x20C, call

SYSINFO(0x920C) or in interactive mode use AT | 0x920C.
Example:
// Example :: SysInfo.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

PRINT "\nSysInfo 601 = ";SYSINFO (601) // Flash File System: Total Space (Data Segment)
PRINT "\nSysInfo 2102 = ";SYSINFO (2102) // Default connect slave latency
PRINT "\nSysInfo 1002 = ";SYSINFO(1002) // Minimum UART baud rate

Expected Output:

SysInfo 601 = 49152
SysInfo 2102 =0
SysInfo 1002 = 1200

4.1.2 SYSINFO$

FUNCTION

Returns an informational string value depending on the value of varld argument.

SYSINFOS (varld)

Returns STRING. Value of information corresponding to integer ID requested.
Exceptions = Local Stack Frame Underflow
= Local Stack Frame Overflow

Arguments:
varld | byVal varld AS INTEGER
An integer ID which is used to determine which information is to be returned as described below.
4 | The Bluetooth address of the module.

https://www.lairdconnect.com/ 23 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

It is seven bytes long. First byte is 00 for IEEE public address and 01 for random public address.
Next six bytes are the address.

A random public address unique to this module. May be the same value as in 4 above unless an
IEEE Bluetooth address is set.

14 It is seven bytes long. First byte is 00 for IEEE public address and 01 for random public address.
Next six bytes are the address.
Example:
// Example :: SysInfo$.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

PRINT "\nSysInfo$ (4)
PRINT "\nSysInfo$ (14)
PRINT "\nSysInfo$ (0)

"; SYSINFOS (4) // address of module
";SYSINFOS (14) // public random address
"; SYSINFOS (0)

Expected Output:

SysInfo$ (4) \OI\FA\84\D7H\D9\03
SysInfo$(14) = \01\FA\84\D7H\D9\03
SysInfo$ (0)

4.2 UART Interface
4.2.1 UartOpen

FUNCTION
This function is used to open the main default UART peripheral using the parameters specified.

See core manual for further details.

https://www.lairdconnect.com/ 24 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY
User Guide

UARTOPEN (baudrate, txbuflen, rxbuflen, stOptions)

byVal stOptions AS STRING
This string (can be a constant) MUST be a minimum five characters long where each character is used to
specify further comms parameters as follows.

Character Offset:
DTE/DCE role request:
0 = T-DTE
= C-DCE
Parity:
1 = N-None

= 0-0dd (Not Available)
= E-— Even (Not Available)
2 Databits: 8
3 Stopbits: 1
stOptions Flow Control:
= N-None
= H-CTS/RTS hardware
= X - Xon/Xof (Not Available)
SIO pin for RTS (\FF for default pin)
SIO pin for TX (\FF for default pin)
SIO pin for CTS (\FF for default pin)
SIO pin for RX (\FF for default pin)
Behaviour when detected a UART_BREAK
O0=Enter Deep Sleep
1=No Action
2=Send EVUARTBREAK event to smartBASIC application
0 =The event EVUARTCTS is not sent to the smartBASIC application
10 = The event EVUARTCTS is sent to the smartBASIC application

(e R NR T REC}

10

The following baud rates are supported: 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 76800, 115200, 230400,
250000, 460800 and 921600 baud.

4.2.2 UartSetRTS
The BL652 module does not offer the capability to control the RTS pin as the underlying hardware does not allow it.

4.2.3 UartBREAK

The BL652 module does not offer the capability to send a BREAK signal.

4.3 12C - Two Wire Interface (TWI)

The BL652 can be only be configured as an 12C master if it is the only master on the bus and only 7-bit slave addressing is
supported. See core user guide for API details.

When the 12C interface is opened using 12cOpen(), it takes a frequency parameter for the clock line. Valid values
are 100KHz, 250KHz and 400KHz.

4.4 SPI| Master Interface

The BL652 module can be configured as SPI master and SPI Slave. For SPI Master API details, refer to the smartBASIC Core
manual as the SPI Master interface is shared between many smartBASIC modules.

https://www.lairdconnect.com/ 25 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

4.5 SPI Slave Interface

This section describes all the events and routines used to interact with the SPI Slave peripheral that is available on the
module. For successful SPI operations, the remote SPI master’s CS, MISO, MOSI, and SCK should be connected directly to
the module’s CS, MISO, MOSI and SCK pins (respectively). The module’s 4 SPI Slave pins can be configured using the
SpiSlaveConfig() function, which by default are 11 (CS), 17 (MISO), 18 (MOSI), and 19 (SCK). Special purpose pins such as
nAutorun (13) and nReset (22) cannot be configured for SPI Slave operations.

On the BL652, the SPI Slave peripheral supports the following frequencies:- 125 KHz, 250 KHz, 500 KHz, 1 MHz, 2 MHz, 4
MHz, and 8 MHz. These frequencies are set by the SPI master and cannot be configured by the SPI Slave.

4.5.1 Events and Messages

4.5.1.1 EVSPISLAVETXRX

This event is thrown when an SPI slave transaction has been completed and the SPI slave Tx/Rx buffers have been updated.
The event comes with the following parameters:-

nTxAmount — The amount of data that was read (clocked out) by the remote SPI master.
nRxAmount — The amount of data that was written by the remote SPI master into the SPI slave Rx buffer.

4.5.1.2 EVSPISLAVERXBUFFERFULL

This event is thrown when the SPI slave Rx buffer is full and as a result some data written by the remote SPI master
might’ve been dropped. The event contains the following parameters:-

nRxAmountDropped — The amount of data that was written from the remote SPI master but dropeed due to the buffer
being full.

4.5.1.3 EVSPISLAVETXBUFFEREMPTY

This event is thrown when the SPI slave Tx buffer has been emptied due to an SPI master reading out the Tx data from the
SPI slave Tx buffer. The handler for this event contains no parameters.

4.5.2 SpiSlaveConfig

FUNCTION

This function is used to update the configuration options of the SPI slave peripheral. If the SPI slave peripheral is already
open, then these values will not take effect until the peripheral is closed and then opened again.

SPISLAVECONFIG(nConfigld, nValue)

Returns INTEGER, a result code.
Typical value:
0x0000 - The Tx buffer has been updated successfully
0x5260 - Invalid configuration index

Arguments:

https://www.lairdconnect.com/ 26 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

nConfigld byVal nConfigld AS INTEGER.
The configuration ID, possible values are:-
0 SPI Slave Chip Select (CS) pin — default 11

1 SPI Slave Master In Slave Out (MISO) pin — default 17
2 SPI Slave Master Out Slave In (MOSI) pin — default 18
3 SPI Slave Clock (SCK) pin — default 19
4 SPI Slave Tx buffer size in bytes — (Possible values: 16-255, default 255)
5 SPI Slave Rx buffer size in bytes — (Possible values: 16-255, default 255)
6 SPI Slave Mode:-
Mode CPOL CPHA

0 0 0

1 0 1

2 1 0

3 1 1

nValue byVal nValue AS INTEGER
The value to be assigned to the configuration ID

Example:

// Example :: SpiSlaveConfig.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

dim rc, nHandle

// Configure SPI Slave peripheral Tx buffer before opening
rc = SpiSlaveConfig (4, 100)

if rc == 0 then
print "\nSPI slave tx buffer size configured"
else
print "\nFailed to configure SPI slave tx buffer with error code ";integer.h'
rc
endif

// Open SPI Slave Periperhal
rc = SpiSlaveOpen (nHandle)

if rc == 0 then
print "\nOpened SPI Slave peripheral with handle = ";integer.h' nHandle
else
print "\nFailed to open SPI Slave peripheral”
endif
WaitEvent

Expected Output:

SPI slave tx buffer size configured
Opened SPI Slave peripheral with handle = 9ABCDEFO

4.5.3 SpiSlaveOpen

FUNCTION

This function is used to open a slave SPI peripheral in half duplex mode using the preconfigured SPI Slave values. The
parameters (GPIO pins, buffer sizes, mode, etc) are inherited from the SpiSlaveConfig() function. The default parameters on
the BL652 are:

https://www.lairdconnect.com/ 27 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

SPI Slave CS Pin 11

SPI Slave MOSI Pin 17

SPI Slave MISO Pin 18

SPI Slave SCK Pin 19

SPI Slave Tx Buffer Size (in bytes) 255

SPI Slave Rx Buffer Size (in bytes) 255

SPI Slave Mode 0 (CPOL=0, CPHL=0)

In order to change these parameters, the SPI slave peripheral should be closed before SpiSlaveConfig() is used. After all the
parameters have been successfully configured, SpiSlaveOpen can be called again at which point the new values will take
effect.

SPISLAVEOPEN(nHandle)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
Arguments:
nHandle byRef nHandle AS INTEGER.
When calling this function, a variable should be given which on return will contain the handle of the
opened SPI Slave peripheral if the function is successful.

Example:

// Example :: SpiSlaveOpen.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

dim rc, nHandle

// Open SPI Slave Periperhal
rc = SpiSlaveOpen (nHandle)

if rc == 0 then
print "\nOpened SPI Slave peripheral with handle = ";integer.h' nHandle
else
print "\nFailed to open SPI Slave peripheral"
endif
WaitEvent

Expected Output:

| Opened SPT Slave peripheral with handle = 9ABCDEF(

4.5.4 SpiSlaveClose

FUNCTION

This function is used to close the SPI slave peripheral with the given handle.

SPISLAVECLOSE(nHandle)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
Arguments:
nHandle byRef nHandle AS INTEGER.
Handle of the SPI slave interface to close. On return, this will contain an invalid handle indicating that
the SPI Slave peripheral has been successfully closed.

Example:
{ // Example :: SpiSlaveClose.sb
https://www.lairdconnect.com/ 28 Americas: +1-800-492-2320

Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples
dim rc, nHandle

// Open SPI Slave Periperhal
rc = SpiSlaveOpen (nHandle)
if rc == 0 then
print "\nOpened SPI Slave peripheral with handle = ";integer.h' nHandle

rc = SpiSlaveClose (nHandle)

if rc == 0 then
print "\nSPI Slave successfully closed"
endif
endif
WaitEvent

Expected Output:

Opened SPI Slave peripheral with handle = 9ABCDEFO0
SPI Slave successfully closed

4.5.5 SpiSlaveTxBufferWrite

FUNCTION

This function is used to write the content of a string to the SPI slave Tx buffer. This written data is only stored in the buffer
and not sent to the SPI master until the SPI master selects the SPI slave chip and clock out the data from the buffer.
When the SPI master selects the chip and clocks out the data, the buffer becomes inaccessible by the app until the SPI
master operation is complete.

SPISLAVETXBUFFERWRITE(nHandle, strWr$)

Returns INTEGER, a result code.
Typical value:
0x0000 The Tx buffer has been updated successfully
0x5206 Tx Buffer full
0x521D Resource busy (e.g. the buffer is being accessed by the remote SPI master)
0x5220 Invalid handle
0x5222 Invalid wite length (e.g. the given string is larger than the Tx buffer size)

Arguments:
nHandle byVal nHandle AS INTEGER.
The handle of the SPI slave interface to write to.
striwrS byRef strWr$ AS STRING
Reference to a string variable to write to the SPI slave Tx buffer.

Example:

// Example :: SpiSlaveTxBufferWrite.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples
dim rc, nHandle

dim st$: st$ = "SPI Slave Data"

// Open SPI Slave Periperhal
rc = SpiSlaveOpen (nHandle)
if rc == 0 then
// Try writing data to the buffer

https://www.lairdconnect.com/ 29 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

rc = SpiSlaveTxBufferWrite (nHandle, st$)
if rc == 0 then
print "\nSPI Slave buffer updated with written data"
else
print "\nFailed to write SPI Slave data with error code ";integer.h' rc
endif
endif
WaitEvent

Expected Output:

|SPI Slave buffer updated with written data

4.5.6 SpiSlaveRxBufferRead

FUNCTION

This function is used to read the contents of the SPI slave Rx buffer. The data in the Rx buffer would have been placed by
the remote SPI master in an earlier transaction. This Rx buffer can only be accessed if the SPI slave is not selected by the
remote SPI master and there is no ongoing SPI operation. The data that is read is then removed from the buffer in order to
make room for more SPI master write operations.

If data is received from the remote SPI master and the Rx buffer is full, the event EVSPISLAVERXBUFFERFULL is thrown with
the amount of data that was dropped.

SPISLAVERXBUFFERREAD(nHandle, nLength, strRdS)

Returns INTEGER, a result code.
Typical value:
0x0000 The Rx buffer has been read successfully
0x5220 Invalid handle
0x5223 Invalid read length (e.g. the given length is larger than the Rx buffer)

Arguments:

nHandle byRef nHandle AS INTEGER.
Handle of the SPI slave interface to close. On return, this will contain an invalid handle indicating that
the SPI Slave peripheral has been successfully closed.

nlength byRef nLength AS INTEGER
Number of bytes to read from the Rx buffer. On return, this value will contain the number of data bytes
that was read.

strRdS ByRef strRd$ AS STRING

On return, this variable will contain the string data that was read from the SPI slave Rx buffer.

Example:

// Example :: SpiSlaveRxBufferRead.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples
dim rc, nHandle, st$

dim nLen : nLen = 30 // Try to read 30 bytes of data

// Open SPI Slave Peripheral
rc = SpiSlaveOpen (nHandle)
if rc == 0 then
// Try reading data from SPI slave buffer
rc = SpiSlaveRxBufferRead (nHandle, nLen, st$)

https://www.lairdconnect.com/ 30 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

if rc == 0 then
if nLen > 0 then
print "\nSPI slave Data read: "; st$
else
print "\nNo SPI slave data read"
endif
else
print "\nFailed to read SPI Slave data with error code ";integer.h' rc
endif
endif
WaitEvent

Expected Output:

|No SPI slave data read

4.6 Input/Output Interface Routines

I/0 and interface commands allow access to the physical interface pins and ports of the smartBASIC modules. Most of these
commands are applicable to the entire range of modules. However, some are dependent on the actual I/O availability of
each module.

There are 31 SIO (Special I/0) pins available on the BL652. All of these pins can be configured to provide additional types of
functionality. However, some of the pins have set functionality that should never be changed.

Note: All of the pins can be configured as digital inputs or outputs, therefore these are not listed in the table below.

Table 1: SIO pin functionality

0 XTAL1

1 XTAL2

2 Adc00, Vsp

3 Adc01

4 Adc02

5 UART_RTS/Adc03

6 UART_TX

7 UART_CTS

8 UART_RX

9 NFC1

10 NFC2

11 No alternate functionality

12 SFlashCS (Only when external serial SPI flash is connected, e.g. BL652 Devkit)

13 Autorun

14 SFlashMiso (Only when external serial SPI flash is connected, e.g. BL652 Devkit)

15 No alternate functionality

16 SFlashClock (Only when external serial SPI flash is connected, e.g. BL652 Devkit)
https://www.lairdconnect.com/ 31 Americas: +1-800-492-2320

Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide
oS0 Rndtionalty

17 No alternate functionality
18 No alternate functionality
19 No alternate functionality
20 SFlashMosi (Only when external serial SPI flash is connected, e.g. BL652 Devkit)
21 Reset (Cannot be used as an SIO pin)
22 No alternative functionality
23 SpiMosi
24 SpiMiso
25 SpiClock
26 12cData
27 12cClock
28 Adc04
29 Adc05
30 Adc06
31 Adc07

Notes: Where Autorun or Vsp functionality is required, then that pin can only be used for that function and cannot be

changed.

Pwm option outputs a fully configurable waveform; Freq option outputs a 50:50 mark space ratio waveform.

4.6.1 Events and Messages

EVGPIOCHANN Here nis from 0 to N where N is platform dependent and an event is generated when a
preconfigured digital input transition occurs. The number of digital inputs that can auto-generate is
hardware dependent. For the BL652. N can be 0, 1, 2, or 3.

Use GpioBindEvent() to generate these events. See example for GpioBindEvent().

EVDETECTCHANN Here nis from 0 to N where N is platform dependent and an event is generated when a
preconfigured digital input transition occurs. The number of digital inputs that can auto-generate is
hardware dependent. For the BL652, N can only be 0.

Use GpioAssignEvent() to generate these events.

4.6.2 GpioSetFunc

FUNCTION

This routine sets the function of the SIO pin identified by the nSigNum argument.

The module datasheet contains a pinout table which denotes SIO pins. The number designated for that special I/O pin
corresponds to the nSigNum argument.

The nFunction argument denotes the required functionality. Use only supported values from Table 1.

The bSubFunc argument defines the configuration of the requested function.

https://www.lairdconnect.com/ 32 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

GPIOSETFUNC (nSigNum, nFunction, nSubFunc)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nSigNum byVal nSigNum AS INTEGER.
The signal number as stated in the pinout table of the module.

nFunction byVal nFunction AS INTEGER.
Specifies the configuration of the SIO pin as follows:

1=DIGITAL_IN
2 = DIGITAL_OUT
3 = ANALOG_IN

nSubFunc byVal nSubFunc INTEGER
Configures the pin as follows:
If nFunction == DIGITAL_IN

Bits 0..3
0x01 Pull down resistor (weak)
0x02 Pull up resistor (weak)
0x03 Pull down resistor (strong)
0x04 Pull up resistor (strong)
Else No pull resistors
Bits 4, 5
0x10 | When in deep sleep mode, awake when this pin is LOW
0x20 | When in deep sleep mode, awake when this pin is HIGH
Else No effect in deep sleep mode
Bits 8..31
Must be Os
If nFuncType == DIGITAL_OUT
Values:
0 Initial output to LOW
1 Initial output to HIGH
5 Output is PWM (Pulse Width Modulated Output). See function GpioConfigPW() for more

configuration. The duty cycle is set using function GpioWrite().

Output is FREQUENCY. The frequency is set using function GpioWrite() where 0 switches off the
output; any value in range 1..4000000 generates an output signal with 50% duty cycle with that
frequency.

Bits 4..6 (output drive capacity)

0 = Standard; 1 = Standard

0 = High; 1 = Standard

0 = Standard; 1 = High

0 = High; 1 = High

0 = Disconnect; 1 = Standard

v bW |N|FL | O

0 = Disconnect; 1 = High

https://www.lairdconnect.com/

33 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

6 0 = Standard; 1 = Disconnect

7 0 = High; 1 = Disconnect
If nFuncType == ANALOG_IN
0 := Use Default for system.

0 Use the system default: 10-bit ADC, 1/6 scaling
0x16 10-bit ADC, 1/6 scaling

0x15 10-bit ADC, 1/5 scaling

0x14 10-bit ADC, 1/4 scaling

0x13 10-bit ADC, 1/3 scaling

0x12 10-bit ADC, 1/2 scaling

0x11 10-bit ADC, 1/1 scaling (Unity)

0x21 10-bit ADC, 2/1 scaling

0x41 10-bit ADC, 4/1 scaling

Note: The internal reference voltage is the same as the module Vcc value with +/- 1.5% accuracy.

Example:

// Example :: GpioSetFunc.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

PRINT GpioSetFunc (15,1,2) //Digital In SIO 15, strong pull up resistor

PRINT GpioSetFunc(3,3,0) //Analog In SIO 3 (Temperature Sensor), default settings
PRINT GpioSetFunc(17,2,1) //SIO017 (LEDO) digital out, initial output high

Expected Output:

000

4.6.3 GpioSetFuncEx

FUNCTION

This routine sets the function of the SIO pin identified by the nSigNum argument and provides for more enhanced
configurability compared to the legacy function GpioSetFunc().

The module datasheet contains a pinout table which denotes SIO pins. The number designated for that special I/O pin
corresponds to the nSigNum argument.

The nFunction argument denotes the required functionality. Use only supported values from Table 1.
The bSubFunc argument defines the configuration of the requested function.

GPIOSETFUNCEX (nSigNum, nFunction, subFunc$)

Returns ‘ INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
Arguments:
. byVal nSigNum AS INTEGER.
nSigNum . . .
The signal number as stated in the pinout table of the module.
https://www.lairdconnect.com/ 34 Americas: +1-800-492-2320

Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

byVal nFunction AS INTEGER.

Specifies the configuration of the SIO pin as follows:
nFunction | 1=DIGITAL_IN

2 = DIGITAL_OUT

3 = ANALOG_IN

byVal nSubFunc$ INTEGER

If nFunction == DIGITAL_IN

subFunc$ will be a string that has the following form:- “\Digital_In_Bitmask”, where Digital_In_Bitmask
bits can be as follows:-

Bits 0..3

0x01 Pull down resistor (weak)

0x02 Pull up resistor (weak)

0x03 Pull down resistor (strong)

0x04 Pull up resistor (strong)

Else No pull resistors
Bits 4, 5

0x10 When in deep sleep mode, awake when this pin is LOW

0x20 When in deep sleep mode, awake when this pin is HIGH

Else No effect in deep sleep mode
Bits 8..31
Must be Os

subFunc$

If nFuncType == DIGITAL_OUT

subFuncS will be a string that has the following form:- “\Digital_Out”, where Digital_Out consists of the
following:-

Bits 0-3: Values
Bits 4-6: Drive Capacity (Only for LOW and HIGH configuration. For PWM and FREQUENCY this is always
set to 0=Standard; 1=Standard)

Values:

0 Initial output to LOW

1 Initial output to HIGH

Output is PWM (Pulse Width Modulated Output). See function GpioConfigPW() for more
configuration. The duty cycle is set using function GpioWrite().

Output is FREQUENCY. The frequency is set using function GpioWrite() where 0 switches off
3 the output; any value in range 1..4000000 generates an output signal with 50% duty cycle
with that frequency.

Bits 4..6 (output drive capacity)
0 0 = Standard; 1 = Standard
1 0 = High; 1 = Standard

https://www.lairdconnect.com/ 35 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

0 = Standard; 1 = High
0 = High; 1 = High

0 = Disconnect; 1 = Standard

0 = Disconnect; 1 = High

0 = Standard; 1 = Disconnect

N o | v |lbs | w N

0 = High; 1 = Disconnect

If nFuncType == ANALOG_IN
The reference voltage for the analog to digital converter is 0.6 volts.

subFuncS$ will be a string that has the following form:- “\Gain_hex\Resolution_hex\Acquisition_hex”

If the string is empty, then default values will be used. Otherwise, the values can be as follows:-

Gain_hex

0 Use the system default: 10-bit ADC, 1/6 scaling
0x16 1/6 scaling

0x15 1/5 scaling

0x14 1/4 scaling

0x13 1/3 scaling

0x12 1/2 scaling

0x11 1/1 scaling (Unity)

0x21 2/1 scaling

0x41 4/1 scaling
For example, if you have a maximum analog voltage of 1.7 volts, then select a gain of 1/3 so that the
maximum voltage into the convertor will be 1.7 * 1/3 = 0.57 which means it will not be bigger than the
reference voltage of 0.6v and it will be specified in subFunc$ so that the first byte in the string is “\13”

Resolution_hex
0 Use the system default: 10-bit ADC
0x08 8-bit ADC resolution
0x0A 10-bit ADC resolution
0x0C 12-bit ADC resolution

Acquisition_hex

0 Use the system default: 10 microseconds
0x03 3 microseconds

0x05 5 microseconds

0x0A 10 microseconds

OxOF 15 microseconds

0x14 20 microseconds

0x28 40 microseconds

Any other value results in this function being rejected.

https://www.lairdconnect.com/ 36 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

For example, selecting 1/5% scaling, 12 bit resolution and acquisition time of 20 microseconds requires
that the variable subFunc$ be initialised as “\15\0C\14”

Note: The internal reference voltage is the same as the module Vcc value with +/- 1.5% accuracy.

Example:

// Example :: GpioSetFuncEx.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

//Digital In SIO 15, strong pull up resistor

PRINT GpioSetFuncEx (15,1,"\02")

//Analog In SIO 3 (Temperature Sensor), default settings

PRINT GpioSetFuncEx (3,3,"")

//Analog In SIO 23, 1/6 scaling, 12-bit resolution, 3us acquisition time
PRINT GpioSetFuncEx (23,3,"\16\0C\03"™)

//SI017 (LEDO) digital out, initial output high

PRINT GpioSetFuncEx (17,2,"\01")

//SI026 digital out, PWM

PRINT GpioSetFuncEx (26,2,"\02")

Expected Output:

00000

4.6.4 GpioConfigPwm

FUNCTION

This routine configures the PWM (Pulse Width Modulation) of all output pins when they are set as a PWM output using
GpioSetFunc() function described above.

Note: This is a ‘sticky’ configuration; calling it affects all PWM outputs already configured. It is advised that this is called
once at the beginning of your application and not changed again within the application unless all PWM outputs
are deconfigured and then re-enabled after this function is called.

The PWM output is generated using special PWM related peripherals in the microcontroller.

A PWM signal has a frequency and a duty cycle property; the frequency is set using this function and is defined by the
nMaxResolution parameter. For a given nMaxResolution value, given that the timer is clocked using a 1 MHz source, the
frequency of the generated signal is 1000000 divided by nMaxResolution. Hence if nMinFregHz is more than the
1000000/nMaxResolution, this function will fail with a non-zero value.

The nMaxResolution can also be viewed as defining the resolution of the PWM output in the sense that the duty cycle can
be varied from 0 to nMaxResolution. The duty cycle of the PWM signal is modified using the GpioWrite() command.

For example, a period of 1000 generates an output frequency of 1KHz, a period of 500, and a frequency of 2Khz etc.

On exit, the function returns with the actual frequency in the nMinFreqHz parameter.

GPIOCONFIGPWM (nMinFreqHz, nMaxResolution)

Returns ‘ INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
https://www.lairdconnect.com/ 37 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

Arguments:
. byRef nMinFreqHz AS INTEGER.
nMinfreqHz The nominal frequency of the waveform.
i byVal nMaxResolution AS INTEGER.
nMaxResolution .
Set to same value as nMinFreqHz.
Example:
// Example :: GpioConfigPwm.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

dim retval

dim i

dim nFreq

dim nResolution

dim res[5] as integer

FUNCTION HandlerTimerl ()
dim TmpVal
i=i+1
if i==5 then
i=0
endif
TmpVal = (res[i1]*100/ nResolution)
PRINT "\nTimer event! PWM changed to "; TmpVal; "% duty cycle."
GpioWrite (13, res[i])
ENDFUNC 1
i=0
nFreg=1024
nResolution=2048
res[0]=nResolution/2
res[l]=nResolution/4
res[2]=nResolution/8
res[3]=0

res[4]=nResolution

ONEVENT EVTMR1 CALL HandlerTimerl

//Configure PWM

retval = GpioConfigPWM (nFreqg,nResolution)
retval = GpioSetFunc(13,2,2)

https://www.lairdconnect.com/ 38 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

//Write the first value to the PWM out
GpioWrite (13, res[1])

PRINT "\nTimer started. PWM on 50% duty cycle."

//start a 5000 millisecond (5 second) recurring timer

TimerStart (1,5000,1)

WAITEVENT

Expected Output:

Timer started. PWM on 50% duty cycle.

Timer event! PWM changed to 25% duty cycle.
Timer event! PWM changed to 12% duty cycle.
Timer event! PWM changed to 0% duty cycle.
Timer event! PWM changed to 100% duty cycle.

4.6.5 GpioRead

FUNCTION
This routine reads the value from a SIO pin.

The module datasheet contains a pinout table which mentions SIO (Special I/0) pins and the number designated for that
SIO pin corresponds to the nSigNum argument.

GPIOREAD (nSigNum)

Returns INTEGER, the value from the signal.
If the signal number is invalid, then it returns a value of 0.

For digital pins, the value is 0 or 1. For ADC pins it is a value in the range 0 to M where M is the maximum
value based on the bit resolution of the analogue to digital converter.

Arguments:

byVal nSigNum INTEGER.

geIgiu The signal number as stated in the pinout table of the module.

Refer to the example for GpioBindEvent.

Example:

// Example: GpioRead.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

//This example reads from temperature sensor, for it to work, a jumper needs to be placed
on J6 between SIO 3 and TEMP_ SENS

#define GPIO TEMP SENS 3

dim rc, adc

//Start timer to read temperature sensor

https://www.lairdconnect.com/ 39 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

TimerStart (0,1000,1)

//Remove resistor

rc = GpioSetFunc (GPIO TEMP SENS, 1, 2)

//Analogue in
rc = GpioSetFunc (GPIO TEMP SENS, 3, 0)

FUNCTION HandlerTimerO ()
//Read the ADC
adc = GpioRead (GPIO TEMP_ SENS)
PRINT "\nRaw Temperature Sensor Reading: ";adc

ENDFUNC 1

OnEvent EVTMRO call HandlerTimerO

WAITEVENT

Expected output:

Raw Temperature Sensor Reading: 1943
Raw Temperature Sensor Reading: 1943

4.6.6 GpioWrite

FUNCTION
This function writes a new value to the SIO pin. If the pin number is invalid, nothing happens.

If the SIO pin is configured as a PWM output then the nNewValue specifies a value in the range 0 to N where N is the
nMinFreqHz set in the GpioConfigPwm command. The write value controls the mark space ratio of the output waveform.
A value of 0 outputs a low, a value of nMinFregHz outputs a high, and a value in varies the mark space ratio. The higher the
value, the longer the mark period.

As with the GpioConfigPwm function the nNewValue is used to calculate a hardware register value. This value must be less
than the register value calculated from the GpioConfigPwm function that is used to set the PWM output frequency. Again,
care must be taken to avoid non integer results or the output waveform will not be accurate.

As an indication if you divide the PWM output frequency by the value of the register calculated in the GpioConfigPwm
function above, then that result is the minimum nNewValue you can enter to get a mark:space ratio. Other valid
mark:space ratios are provided by integer multiples of this minimum value.

For example with a system frequency of 40 MHz and an output PWM frequency of 5 MHz then the register value to provide
the output frequency will be 8. So the minimum value of nNewValue is 0.625 MHz and the remaining obtainable values are
4.375, 3.75, 3.125, 2.5, 1.875 and 1.25 MHz. Any other nNewValue entered will round down to one of these values.

https://www.lairdconnect.com/ 40 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

GPIOWRITE (nSigNum, nNewValue)

Returns ‘

Arguments:

byVal nSigNum INTEGER.

The signal number as stated in the pinout table of the module.

byVal nNewValue INTEGER.

The value to be written to the port.

nNewValue | If the pin is configured as digital, then 0 clears the pin and a non-zero value sets it.
If the pin is configured as a PWM then this value sets the duty cycle.

If the pin is configured as a FREQUENCY then this value sets the frequency.

nSigNum

Example:

// Example :: GpioWrite.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

dim rc, i1, i2
i2 =1
il =1

// For debugging
// --- rc = result code

// —-—— 1ln = line number

Sub AssertRC (rc, 1n)
if rc!=0 then
print "\nFail :";integer.h' rc;" at tag ";1ln
endif

EndSub

rc=GpioSetFunc (17,2,1)

AssertRC (rc, 20)

rc=GpioSetFunc (19,2,1)

AssertRC (rc, 23)

function HandlerTmrO ()
il='!i1
GpioWrite (19,i1)
AssertRC (rc, 30)

endfunc 1

https://www.lairdconnect.com/ 41 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

function HandlerTmrl ()
i2=112
GpioWrite (17,1i2)
AssertRC (rc,42)

endfunc 1

function HandlerUartRx ()

endfunc 0

TimerStart (0,500,1)
TimerStart (1,1000,1)

onevent evuartrx call HandlerUartRx
onevent evtmr0 call HandlerTmrO
onevent evtmrl call HandlerTmrl
print "\n\nPress any key to exit"

waitevent

print "\nExiting..."

Expected Output:

Press any key to exit
Exiting...

4.6.7 GpioBindEvent/GpioAssignEvent

FUNCTION

This routine binds an event to a level transition on a specified SIO line configured as a digital input so that changes in the
input line can invoke a handler in smartBASIC user code.

When this function is called on the BL652, the SIO pin specified by nSigNum is set up as a digital input in the underlying
firmware so GpioSetFunc() does not need to be called beforehand.

If this function is used in your smartBASIC application, we recommend that you unbind all bound events by calling
GpioUnbindEvent() at the end of the application. Likewise for all assigned events, GpioUnassignEvent should be called.

Note: In the BL652 module an SIO pin can only be bound to one event at a time.

GPIOBINDEVENT (nEventNum, nSigNum, nPolarity)

GPIOASSIGNEVENT (nEventNum, nSigNum, nPolarity)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
Arguments:
https://www.lairdconnect.com/ 42 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide
nEventNu byVal nEventNum INTEGER.
m The SIO event number (in the range of 0 - N) which will result in the event EVGPIOCHANN being thrown if
GpioBindEvent is used, or EVDETECTCHANN if GpioAssignEvent is used .
] byVal nSigNum INTEGER.
nSigNum . . .
The signal number as stated in the pinout table of the module.
byVal nPolarity INTEGER.
States the transition as follows:
nPolarity 0 Low to high transition
1 High to low transition
2 (GpioBindEvent Only) Either a low to high or high to low transition
Note: Using GpioBindEvent provides the capability to detect any transition. However, it results in slightly higher power

consumption. If power is of importance, GpioAssignEvent() should be used instead as it uses other resources to
expedite an event.

Example:

// Example :: GpioBindEvent.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

dim rc

function HandlerBtnoO ()

dim i : i = GpioRead(1l1l)

'//1if button 0 was pressed
if 1i==0 then

print "\nButton 0 Pressed"

'//1if button 0 was released
elseif i==1 then

print "\nButton 0 Released"
endif

endfunc 1

function HandlerUartRx ()

endfunc 0

rc= GpioBindEvent (0,11,2) //Bind event 0 to high or low transition on SIOll (button
1)

if rc==0 then

https://www.lairdconnect.com/ 43 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

onevent evgpiochan0 call HandlerBtnO //When event 0 happens, call BtnOPress
print "\nSIOll - Button 0 is bound to event 0. Press button 0"

else
print "\nGpioBindEvent Err: ";integer.h'rc

endif

onevent evuartrx call HandlerUartRx

print "\n\nPress any key to exit"

waltevent
rc=GpioUnbindEvent (0)
if rc==0 then
print "\n\nEvent 0 unbound\nExiting..."

endif

Expected Output:

SI011 - Button 0 is bound to event 0. Press button 0

Press any key to exit
Button 0 Pressed

Button 0 Released
Button 0 Pressed
Button 0 Released

Event 0 unbound
Exiting...
00

4.6.8 GpioUnbindEvent/GpioUnAssignEvent

FUNCTION

This routine unbinds the runtime engine event from a level transition bound using GpioBindEvent().
GPIOUNBINDEVENT (nEventNum)

GPIOUNASSIGNEVENT (nEventNum)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byVal nEventNum INTEGER.
nEventNum | The SIO event number (in the range of 0 - N) which will be disabled so that it no longer generates run-
time events in smart BASIC.

See example for GpioBindEvent.

https://www.lairdconnect.com/ 44 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

4.7 Miscellaneous Routines

This section describes all miscellaneous functions and subroutines.
4.7.1 ASSERTBL652

SUBROUTINE

This function’s main use case is during smartBASIC source compilation and the presence of at least one instance of this
statement will ensure that the smartBASIC application will only fully compile without errors on a BL652 module. This
ensures that apps for other modules are not mistakenly loaded into the BL652.

AssertBL652 ()
Returns Not acceptable as it is a subroutine
Arguments: None

Example:

AssertBL652 () //Ensure loading on BL652 only

4.7.2 ERASEFILESYSTEM

FUNCTION

This function is used to erase the flash file system which contains the application that invoked this function, if and only if,
the SIO2 input pin is held high.

Given that SIO2 is high, after erasing the file system, the module resets and reboots into command mode with the virtual
serial port service enabled; the module advertises for a few seconds. See the virtual serial port service section for more
details.

This facility allows the current Sautorun$ application to be replaced with a new one.

WARNING: If this function is called from within Sautorun$, and the SIO2 input is high, then it will get erased and a fresh
download of the application is required which can be facilitated over the air.

ERASEFILESYSTEM (nArg)

Returns INTEGER Indicates success of command:

0 Successful erasure. The module reboots.

<>0 Failure.

Exceptions = Local Stack Frame Underflow
= Local Stack Frame Overflow

Arguments:

nArg byVal nArg AS INTEGER
This is for future use and MUST always be set to 1. Any other value will result in a failure.

Example:

DIM rc
rc = EraseFileSystem(1234)
IF rc!=0 THEN

https://www.lairdconnect.com/ 45 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

PRINT "\nFailed to erase file system because incorrect parameter"
ENDIF
//Input SIO2 is low
rc = EraseFileSystem (1)
IF rc!=0 THEN
PRINT "\nFailed to erase file system because SIO19 is low"
ENDIF

Expected Output:

Failed to erase file system because incorrect parameter
Failed to erase file system because SIO1l9 is low
00

5 BLE EXTENSIONS BUILT-IN ROUTINES

5.1 LE Privacy

To address privacy concerns, there are four types of Bluetooth addresses in a BLE device which can change as often as
required. For example, an iPhone regularly changes its BLE Bluetooth address and it always exposes only its resolvable
random address.This feature is known as LE privacy. It allows the Bluetooth address within advertising packets to be
replaced with a random value that can change at different time intervals. Malicious devices would not be able to track your
device as it actually looks like a series of different devices.

To manage this, the usual six octet Bluetooth address is qualified on-air by a single bit which qualifies the Bluetooth address
as public or random:

= Public—The format is as defined by the IEEE organisation.

= Random —The format can be up to three types and this qualification is done using the upper two bits of the most
significant byte of the random Bluetooth address.

Address types:

00 Public
01 Random Static

02 Random Private Resolvable

03 Random Private Non-Resolvable

All other values are illegal

On the BL652, the address type can be set using the function BleSetAddressTypeEx(). On the other hand, Sysinfo$(4) can be
used to retrieve the Bluetooth address if it is public or random static. Due to LE privacy 1.2, if the address type is random
resolvable or random non-resolvable then it cannot be retrieved by the application layer since it is fully controlled by the
baseband layer.

Note: The Bluetooth address portion in smartBASIC is always in big endian format. If you sniff on-air packets, the same
six packets will appear in little endian format, hence reverse order — and you will not see seven bytes, but a bit in
the packet somewhere which specifies it to be public or random.

5.1.1 BleSetAddressTypeEx

FUNCTION

https://www.lairdconnect.com/ 46 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

This functions sets the current address type to be used by the LE radio scan/advert/connection requests. Type 2 and 3 can
be set to be refreshed periodically.

BLESETADDRESSTYPEEX (nAddrType, nPeriodMS)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byVal nAddrType AS INTEGER.
Specifies the type of the LE address as follows:

0 Public address, same as Classic.

RAERATEE 1 Random static address, generated first boot.
2 Random address, resolvable with IRK, generated on call.
3 Random address, non resolvable, generation on call

The time period for changing resolvable and non-resolvable addresses in milliseconds. If the nAddrType is
nPeriodMS | 0 or 1 then this parameter is ignored. Negative values result in an error being returned. A value of 0
means the address will not change

Example:

// Example: BleSetAddressTypeEx.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM rc, addr$

// Set the address to pulic, nPeriodMS is ignored
rc = BleSetAddressTypeEx (0,0)

addr$ = SysInfo$ (4)

PRINT "\nBluetooth Address - "; StrHexize$ (addr$)

// Set the address to random static, nPeriodMS is ignored
rc = BleSetAddressTypeEx (1,0)

addr$ = SysInfos$ (4)

PRINT "\nBluetooth Address - "; StrHexize$ (addr$)

// Set the address to be random resolvable that changes every 30 seconds
rc = BleSetAddressTypeEx (2,30000)
addr$ = SysInfo$ (4)

PRINT "\nCurrent Address - "; StrHexize$ (addr$)

// Set the address to be random non-resolvable that changes every 1 seconds
rc = BleSetAddressTypeEx (3,1000)

addr$ = SysInfo$ (4)

PRINT "\nBluetooth Address - "; StrHexize$ (addr$)

Expected Output:

Bluetooth Address — 000016A4B75201

https://www.lairdconnect.com/ 47 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

Bluetooth Address — 01D3B61EE3F699
Bluetooth Address — 01D3B61EE3F699
Bluetooth Address - 01D3B61EE3F699

Note: Even though Sysinfo$(4) returns the random static address after setting address types 2 and 3, the actual
address used by the radio packets are the random resolvable and the random non-resolvable addresses
respectively. The reason for this is that private addresses are only known to the baseband.

5.2 Events and Messages
5.2.1 EVBLE_ADV_TIMEOUT

This event is thrown when adverts that are started using BleAdvertStart() time out.

Example:

// Example :: EvBle Adv Timeout.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM peerAddrs$

//handler to service an advert timeout
FUNCTION HndlrBleAdvTimOut ()
PRINT "\nAdvert stopped via timeout"

//DbgMsg ("\n - could use SystemStateSet (0) to switch off")

// rc = SystemStateSet (0)
ENDFUNC 0

//start adverts

//rc = BleAdvertStart(0,"",100,5000,0)

IF BleAdvertStart (0, peerAddrs$,100,2000,0)==0 THEN
PRINT "\n Advert Started"

ELSE
PRINT "\n\nAdvert not successful"

ENDIF

ONEVENT EVBLE ADV TIMEOUT CALL HndlrBleAdvTimOut

WAITEVENT

Expected Output:

https://www.lairdconnect.com/ 48 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

Advert Started
Advert stopped via timeout

5.2.2 EVBLE_CONN_TIMEOUT

This event is thrown when a BLE connection attempt initiated by the BleConnect() function times out.

See example for BleConnect.
5.2.3 EVBLE_ADV_REPORT

This event is thrown when an advert report is received whether successfully cached or not.

See example for BleScanGetAdvReport.
5.2.4 EVBLE_FAST_PAGED

This event is thrown when an advert report is received which is of type ADV_DIRECT_IND and the advert had a target
address (InitA in the spec) which matches the address of this module.

See example for BleScanGetPagerAddr.
5.2.5 EVBLE_SCAN_TIMEOUT

This event is thrown when a BLE scanning procedure initiated by the BleScanStart() function times out.

See example for BLESCANSTART.
5.2.6 EVBLEMSG

The BLE subsystem is capable of informing a smart BASIC application when a significant BLE related event has occurred and
it does so by throwing this message (as opposed to an EVENTTable 20, which is akin to an interrupt and has no context or
queue associated with it).

The message contains two parameters:

= msglID — Identifies what event was triggered
= msgCtx — Conveys some context data associated with that event.

The smartBASIC application must register a handler function which takes two integer arguments to be able to receive and
process this message.

Note: The messaging subsystem, unlike the event subsystem, has a queue associated with it and, unless that queue is
full, pends all messages until they are handled. Only messages that have handlers associated with them are
inserted into the queue. This prevents messages that will not get handled from filling that queue. The following
table lists the triggers and associated context parameters.

0 A BLE connection is established and msgCtx is the connection handle.
1 A BLE disconnection event and msgCtx identifies the handle.
4 A BLE Service Error. The second parameter contains the error code.
9 Pairing in progress and displayed Passkey supplied in msgCtx.
10 A new bond has been successfully created.
11 Pairing in progress and authentication key requested. msgCtx is key type.
14 Connection parameters update and msgCtx is the conn handle.
15 Connection parameters update fail and msgCtx is the conn handle.
16 Connected to a bonded master and msgCtx is the conn handle.
https://www.lairdconnect.com/ 49 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

17 A new pairing has replaced old key for the connection handle specified.

18 The connection is now encrypted and msgCtx is the conn handle.

20 The connection is no longer encrypted and msgCtx is the conn handle

21 The device name characteristic in the GAP service of the local GATT table has been written by the remote
GATT client.

22 Attempt to add a new bonding to the bonding database failed

23 On a BLE connection to a bonded device, if the current GATT table schema does not match what existed at the
last connection, then a GATT Service Change Indication is automatically sent and the app is informed via this
event

24 On a BLE connection to a bonded device, if the current gatt table schema does not match what existed at the

last connection, then a GATT Service Change Indication is automatically sent and the app is informed when the
client acknowledges that indication

25 OOB availability is requested (for future use and not thrown in current firmware)
26 Authentication has failed
27 Informational to indicate that encryption was LESC based
28 LESC pairing in progress and address+hash+random OOB data is required for remote device by security
manager
Note: Message ID 13 is reserved for future use.
Example:
// Example :: EvBleMsg.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM addr$: addr$=""

DIM rc

//

// This handler is called when there is a BLE message
//

FUNCTION HndlrBleMsg (BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER)
SELECT nMsgId
CASE 0
PRINT "\nBLE Connection ";nCtx
CASE 1
PRINT "\nDisconnected ";nCtx;"\n"
CASE 18
PRINT "\nConnection ";nCtx;" is now encrypted"
CASE 16
PRINT "\nConnected to a bonded master"

CASE 17

PRINT "\nA new pairing has replaced the old key";

https://www.lairdconnect.com/ 50 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

CASE ELSE
PRINT "\nUnknown Ble Msg"
ENDSELECT
ENDFUNC 1

FUNCTION HndlrBlrAdvTimOut ()
PRINT "\nAdvert stopped via timeout"
PRINT "\nExiting..."

ENDEFUNC O

FUNCTION HndlrUartRx ()
rc=BleAdvertStop ()
PRINT "\nExiting..."

ENDFUNC O

ONEVENT EVBLEMSG CALL HndlrBleMsg
ONEVENT EVBLE ADV TIMEOUT CALL HndlrBlrAdvTimOut
ONEVENT EVUARTRX CALL HndlrUartRx

// start adverts

IF BleAdvertStart (0,addr$,100,10000,0)==0 THEN
PRINT "\nAdverts Started"
PRINT "\nPress any key to exit\n"

ELSE
PRINT "\n\nAdvertisement not successful"

ENDIF

WAITEVENT

Expected Output (When connection made with the module):

Adverts Started
Press any key to exit

BLE Connection 3634

Connected to a bonded master
Connection 3634 is now encrypted

A new pairing has replaced the old key
Disconnected 3634

Exiting...

Expected Output (When no connection made):

Adverts Started

https://www.lairdconnect.com/ 51 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY
User Guide

Press any key to exit

Advert stopped via timeout
Exiting...

5.2.7 EVDISCON

This event is thrown when there is a BLE disconnection. It comes with two parameters:

= Connection handle
= The reason for the disconnection.

The reason, for example, can be 0x08 which signifies a link connection supervision timeout which is used in the Proximity
Profile.

A full list of Bluetooth HCI result codes for the reason of disconnection is provided in this document here.

Example:

// Example :: EvDiscon.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM addr$: addrs$=""

FUNCTION HndlrBleMsg (BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER)
IF nMsgID==0 THEN
PRINT "\nNew Connection ";nCtx
ENDIF

ENDFUNC 1

FUNCTION BtnOPress ()
PRINT "\nExiting..."
ENDFUNC 0

FUNCTION HndlrDiscon (BYVAL hConn AS INTEGER, BYVAL nRsn AS INTEGER) AS INTEGER

PRINT "\nConnection ";hConn;" Closed: 0x";nRsn

ENDFUNC 0
ONEVENT EVBLEMSG CALL HndlrBleMsg
ONEVENT EVDISCON CALL HndlrDiscon

// start adverts

IF BleAdvertStart (0,addr$,100,10000,0)==0 THEN
PRINT "\nAdverts Started\n"

ELSE
PRINT "\n\nAdvertisement not successful"

ENDIF

https://www.lairdconnect.com/ 52 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

WAITEVENT

Expected Output:

Adverts Started

New Connection 2915
Connection 2915 Closed: 0x19

5.2.8 EVCHARVAL

This event is thrown when a characteristic is written to by a remote GATT client. It comes with three parameters:

= Char Handle - Characteristic handle that was returned when the characteristic was registered using the function
BleCharCommit()

= Offset — Offset
= Length — Length of the data from the characteristic value

5.2.9 EVCHARVALUE

This event is thrown when the remote device writes to a characteristic value. It differs from EVCHARVAL in that the event
contains the parameters including the connection handle and the string data. If the write operation is performed on a
characteristic that requires authorisation, then EVAUTHVAL is thrown instead, and the user should then authorize and read
the value.

If the event is thrown with an empty string but the length has a non-zero value, then this indicates that there was not
enough memory to allocate to the event.

The event comes with the following parameters:-

= Connection Handle — The handle of the connection that wrote to the characteristic value.

= Char Handle - Characteristic handle that was returned when the characteristic was registered using the function
BleCharCommit()

= Offset — The offset at which the characteristic data was written.

= Length —The length of the data that was written. This should be equal to StrLen$(Data$), and can be used to detect if
there was any data loss.

= Data$ - The string data that was written to the characteristic.

Example:

// Example :: EvCharVal.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM hMyChar,rc,at$, conHndl

//
// Initialise and instantiate service, characteristic, start adverts
//
FUNCTION OnStartup ()

DIM rc, hSvc, attr$, adRpt$, addr$, scRpt$: attr$S="Hi"

//commit service

rc=BleServiceNew (1, BleHandleUuidl6 (0x18EE), hSvc)

//initialise char, write/read enabled, accept signed writes

rc=BleCharNew (0x0A,BleHandleUuidl6 (1) ,BleAttrMetabData(1,1,20,0,rc),0,0)
//commit char initialised above, with initial value "hi" to service 'hSvc'
rc=BleCharCommit (hSvc,attr$, hMyChar)

https://www.lairdconnect.com/ 53 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

//commit changes to service
rc=BleServiceCommit (hSvc)
rc=BleScanRptInit (scRpt$)
//Add 1 service handle to scan report
//rc=BleAdvRptAddUuidl6 (scRpt$,0x18EE,-1,-1,-1,-1,-1)
//commit reports to GATT table - adRpt$ is empty
rc=BleAdvRptsCommit (adRpt$, scRpt$)
rc=BleAdvertStart (0,addr$,20,300000,0)

ENDFUNC rc

//

// Close connections so that we can run another app without problems

//

SUB CloseConnections ()
rc=BleDisconnect (conHndl)
rc=BleAdvertStop ()

ENDSUB

//
// Ble event handler
//
FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)
conHndl=nCtx
IF nMsgID==1 THEN

PRINT "\n\n--- Disconnected from client"
EXITFUNC O
ELSEIF nMsgID==0 THEN
PRINT "\n--- Connected to client"
ENDIF
ENDFUNC 1
//
// New char value handler - Thrown when AT+CFG 213=0
//
FUNCTION HandlerCharVal (BYVAL charHandle, BYVAL offset, BYVAL len)
DIM s$
IF charHandle == hMyChar THEN
PRINT "\n";len;" byte(s) have been written to char value attribute from offset
";offset
rc=BleCharValueRead (hMyChar, s$)
PRINT "\nNew Char Value: ";s$
ENDIF
CloseConnections ()
ENDFUNC 1
//
// New char value handler - Thrown when AT+CFG 213=1
//

FUNCTION HandlerCharValue (BYVAL nConnHandle, BYVAL charHandle, BYVAL offset, BYVAL len,
BYVAL Data$)

DIM s$
IF charHandle == hMyChar THEN
PRINT "\n";len;" byte(s) have been written to char value attribute from offset
";offset
PRINT "\nData written is :";Data$ PRINT "\nData written is :";Data$;" - Connection

Handle=";integer.h' nConnHandle

rc=BleCharValueRead (hMyChar, s$)
PRINT "\nNew Char Value: ";s$

https://www.lairdconnect.com/ 54 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

ENDIF

CloseConnections ()
ENDFUNC 1
ONEVENT EVCHARVAL CALL HandlerCharVal // This event is thrown if AT+CFG 213 = 0
ONEVENT EVCHARVALUE CALL HandlerCharValue // This event is thrown if AT+CFG 213 = 1
ONEVENT EVBLEMSG CALL HndlrBleMsg
IF OnStartup ()==0 THEN

rc = BleCharValueRead (hMyChar, at$)

PRINT "\nThe characteristic's value is ";at$

PRINT "\nWrite a new value to the characteristic\n"
ELSE

PRINT "\nFailure OnStartup"
ENDIF

WAITEVENT

PRINT "\nExiting..."

Expected Output (AT+CFG 213=0):

The characteristic’s value is Hi
Write a new value to the characteristic

-—-—- Connected to client
5 byte(s) have been written to char value attribute from offset 0
New Char Value: Hello

-—-—- Disconnected from client
Exiting...

Expected Output (AT+CFG 213=1):

The characteristic’s value is Hi
Write a new value to the characteristic

-—-—- Connected to client
5 byte(s) have been written to char value attribute from offset 0
Data written is :hello - Connection Handle=0001FFO0O0

New Char Value: Hello

—-—— Disconnected from client
Exiting...

5.210 EVCHARHVC

This event is thrown when a value sent via an indication to a client gets acknowledged. It comes with one parameter:

= The characteristic handle that was returned when the characteristic was registered using the function
BleCharCommit()

Example:

// Example :: EVCHARHVC charHandle

// See example that is provided for EVCHARCCCD

https://www.lairdconnect.com/ 55 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

5.2.11 EVCHARCCCD

This event is thrown when the client writes to the CCCD descriptor of a characteristic. It comes with two parameters:

= The characteristic handle returned when the characteristic was registered with BleCharCommit()
= The new 16-bit value in the updated CCCD attribute

Example:

// Example :: EvCharCccd.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM hMyChar,rc,at$,conHndl

//

// Initialise and instantiate service, characteristic, start adverts
//
FUNCTION OnStartup ()

DIM rc, hSvc, metaSuccess, at$, attr$, adRpt$, addr$, scRpt$
attr$="Hi"

DIM svcUuid : svcUuid=0x18EE

DIM charUuid : charUuid = BleHandleUuidl6 (1)

DIM charMet : charMet = BleAttrMetaData (0,0,20,1,metaSuccess)
DIM hSvcUuid : hSvcUuid = BleHandleUuidl6 (svcUuid)

DIM mdCccd : mdCccd = BleAttrMetadata(1,1,2,0,rc) //CCCD metadata for char

//Create service

rc=BleServiceNew (1, hSvcUuid, hSvc)

//initialise char, write/read enabled, accept signed writes, indicatable

rc=BleCharNew (0x20, charUuid, charMet, mdCccd, 0)

//commit char initialised above, with initial value "hi" to service 'hMyChar'

rc=BleCharCommit (hSvc,attr$, hMyChar)

//commit service to GATT table

rc=BleServiceCommit (hSvc)

rc=BleAdvertStart (0,addr$,20,300000,0)
ENDFUNC rc

//

// Close connections so that we can run another app without problems

https://www.lairdconnect.com/ 56 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

//
SUB CloseConnections ()
rc=BleDisconnect (conHndl)
rc=BleAdvertStop ()
rc=GpioUnbindEvent (1)
ENDSUB

//
// Ble event handler
//

FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)
conHndl=nCtx
IF nMsgID==1 THEN
PRINT "\n\n--- Disconnected from client"
EXITEFUNC O
ELSEIF nMsgID==0 THEN

PRINT "\n--- Connected to client"
ENDIF
ENDFUNC 1
//
// Indication acknowledgement from client handler
//

FUNCTION HndlrCharHvc (BYVAL charHandle AS INTEGER) AS INTEGER
IF charHandle == hMyChar THEN
PRINT "\nGot confirmation of recent indication"
ELSE
PRINT "\nGot confirmation of some other indication: ";charHandle
ENDIF
ENDFUNC 1

//

// Called when data received via the UART

//

FUNCTION HndlrUartRx () AS INTEGER
ENDFUNC 0

//
// CCCD descriptor written handler

//

https://www.lairdconnect.com/ 57
Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

FUNCTION HndlrCharCccd (BYVAL charHandle, BYVAL nVal) AS INTEGER
DIM value$
IF charHandle==hMyChar THEN
IF nVal & 0x02 THEN
PRINT "\nIndications have been enabled by client"
value$="hello"
IF BleCharValueIndicate (hMyChar,value$) !=0 THEN
PRINT "\nFailed to indicate new value"
ENDIF
ELSE
PRINT "\nIndications have been disabled by client"
ENDIF
ELSE
PRINT "\nThis is for some other characteristic"
ENDIF

ENDFUNC 1

ONEVENT EVBLEMSG CALL HndlrBleMsg
ONEVENT EVCHARHVC CALL HndlrCharHvc
ONEVENT EVCHARCCCD CALL HndlrCharCccd
ONEVENT EVUARTRX CALL HndlrUartRx

IF OnStartup ()==0 THEN
rc = BleCharValueRead (hMyChar, at$)
PRINT "\nValue of the characteristic ";hMyChar;" is: ";at$
PRINT "\nYou can write to the CCCD characteristic."
PRINT "\nThe BL652 will then indicate a new characteristic value\n"
PRINT "\n--- Press any key to exit"
ELSE
PRINT "\nFailure OnStartup"
ENDIF

WAITEVENT

CloseConnections ()

PRINT "\nExiting..."

Expected Output:

Value of the characteristic 1346437121 is: Hi

https://www.lairdconnect.com/ 58
Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

You can write to the CCCD characteristic.
The BL652 will then indicate a new characteristic value

--- Press any key to exit

-—-—- Connected to client

Indications have been enabled by client
Got confirmation of recent indication
Exiting...

5.2.12EVCHARSCCD

This event is thrown when the client writes to the SCCD descriptor of a characteristic. It comes with two parameters:

= The characteristic handle that is returned when the characteristic is registered using the function BleCharCommit()
= The new 16-bit value in the updated SCCD attribute

The SCCD is used to manage broadcasts of characteristic values.

Example:

// Example :: EvCharSccd.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM hMyChar, rc,chval$, conHndl

//

// Initialise and instantiate service, characteristic, start adverts

//
FUNCTION OnStartup ()

DIM rc, hSvec, attr$, adRpt$, addr$, scRpt$,rc2
attr$="Hi"

DIM charMet : charMet = BleAttrMetaData(l,1,20,1,rc)

//Create service

rc=BleServiceNew (1,BleHandleUuidl6 (0x18EE), hSvc)

//initialise broadcast capable, readable, writeable

rc=BleCharNew (0x0B,BleHandleUuidl6 (1) ,charMet, 0,BleAttrMetadata(1l,1,1,0,rc2))

//commit char initialised above, with initial value "hi" to service 'hMyChar'

rc=BleCharCommit (hSvc,attr$, hMyChar)

//commit service to GATT table

rc=BleServiceCommit (hSvc)

rc=BleAdvertStart (0,addr$,20,300000,0)

https://www.lairdconnect.com/ 59 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

ENDFUNC rc

//

// Close connections so that we can run another app without problems

//

SUB CloseConnections ()
rc=BleDisconnect (conHndl)
rc=BleAdvertStop ()
rc=GpioUnbindEvent (1)

ENDSUB

//

// Broadcast characterstic value

//

FUNCTION PrepAdvReport ()
dim adRpt$, scRpt$, svcDta$

//initialise new advert report

rc=BleAdvRptinit (adRpt$, 2, 0, 0)

//encode service UUID into service data string

rc=BleEncodel6 (svcDta$, 0x18EE, 0)

//append characteristic value

svcDta$ = svcDta$ + chval$

//append service data to advert report

rc=BleAdvRptAppendAD (adRpt$, 0x16, svcDtas$s)

//commit new advert report, and empty scan report

rc=BleAdvRptsCommit (adRpt$, scRpt$)

ENDEFUNC rc

//

// Reset advert report
//

FUNCTION ResetAdvReport ()
dim adRpt$, scRpts$

https://www.lairdconnect.com/ 60
Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

//initialise new advert report

rc=BleAdvRptinit (adRpt$, 2, 0, 20)

//commit new advert report, and empty scan report

rc=BleAdvRptsCommit (adRpt$, scRpt$)

ENDFUNC rc

//

// Ble event handler
//

FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)
conHndl=nCtx
IF nMsgID==1 THEN
PRINT "\n\n--- Disconnected from client"
dim addr$
rc=BleAdvertStart (0, addr$,20,300000,0)
IF rc==0 THEN

PRINT "\nYou should now see the new characteristic value in the advertisment

data"
ENDIF
ELSEIF nMsgID==0 THEN
PRINT "\n--- Connected to client"
ENDIF
ENDFUNC 1
//
// Called when data arrives via UART
//
FUNCTION HndlrUartRx ()
ENDEUNC O
//
// CCCD descriptor written handler
//

FUNCTION HndlrCharSccd (BYVAL charHandle, BYVAL nVal) AS INTEGER
DIM value$
IF charHandle==hMyChar THEN
IF nVal & 0x01l THEN
PRINT "\nBroadcasts have been enabled by client"

IF PrepAdvReport ()==0 THEN

https://www.lairdconnect.com/ 61 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

rc=BleDisconnect (conHndl)
PRINT "\nDisconnecting..."
ELSE
PRINT "\nError Committing advert reports: ";integer.h'rc
ENDIF
ELSE
PRINT "\nBroadcasts have been disabled by client"
IF ResetAdvReport ()==0 THEN
PRINT "\nAdvert reports reset"
ELSE
PRINT "\nError Resetting advert reports: ";integer.h'rc
ENDIF
ENDIF
ELSE

PRINT "\nThis is for some other characteristic"

ENDIF

ENDFUNC 1

//

// New char value handler

//

FUNCTION HndlrCharVal (BYVAL charHandle, BYVAL offset, BYVAL len)
DIM s$
IF charHandle == hMyChar THEN

rc=BleCharValueRead (hMyChar, chval$)

PRINT "\nNew Char Value: ";chVal$
ENDIF
ENDFUNC 1
//
// Called after a disconnection
//

FUNCTION HndlrDiscon (hConn, nRsn)

dim addr$

rc=BleAdvertStart (0,addr$,20,300000,0)
ENDFUNC 1

ONEVENT EVBLEMSG CALL HndlrBleMsg
ONEVENT EVCHARSCCD CALL HndlrCharSccd

https://www.lairdconnect.com/ 62
Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

ONEVENT EVUARTRX CALL HndlrUartRx
ONEVENT EVCHARVAL CALL HndlrCharVal
ONEVENT EVDISCON CALL HndlrDiscon

IF OnStartup ()==0 THEN
rc = BleCharValueRead (hMyChar,chvals$)
PRINT "\nCharacteristic Value: ";chvVal$

PRINT "\nWrite a new value to the characteristic, then enable broadcasting.\nThe
module will then disconnect and broadcast the new characteristic value."

PRINT "\n--- Press any key to exit\n"
ELSE

PRINT "\nFailure OnStartup"
ENDIF

WAITEVENT

CloseConnections ()

PRINT "\nExiting..."

Expected Output:

Characteristic Value: Hi

Write a new value to the characteristic, then enable broadcasting.

The module will then disconnect and broadcast the new characteristic value.
-—-— Press any key to exit

--— Connected to client

New Char Value: hello

Broadcasts have been enabled by client
Disconnecting...

-—-—- Disconnected from client
You should now see the new characteristic value in the advertisment data
Exiting...

5.213 EVCHARDESC

This event is thrown when the client writes to a writable descriptor of a characteristic which is not a CCCD or SCCD (they are
catered for with their own dedicated messages). It comes with two parameters: the characteristic handle that was returned
when the characteristic was registered using the function BleCharCommit(), and an index into an opaque array of handles
managed inside the characteristic handle. Both parameters are supplied as-is as the first two parameters to the function
BleCharDescRead().

Example:

// Example :: EvCharDesc.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

https://www.lairdconnect.com/ 63 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

DIM hMyChar, rc,at$,condHndl, hOtherDescr

//

// Initialise and instantiate service, characteristic, start adverts

//

FUNCTION OnStartups$ ()

attr$="Hi"
DIM charMet : charMet = BleAttrMetaData(1l,0,20,0,rc)

//Commit svc with handle 'hSvcUuid'
rc=BleServiceNew (1,BleHandleUuidl6 (0x18EE), hSvc)
//initialise characteristic - readable

rc=BleCharNew (0x02,BleHandleUuidl6 (1), charMet, 0,0)

//Add user descriptor - variable length
attr$="my char desc"

rc=BleCharDescUserDesc (attr$,BleAttrMetadata(1,1,20,1,rc2))
//commit char initialised above, with initial value "char value"
attr2$="char value"

rc=BleCharCommit (hSvc, attr2$, hMyChar)

//commit service to GATT table

rc=BleServiceCommit (hSvc)

rc=BleAdvertStart (0,addr$,20,300000,0)
ENDFUNC attr$

//

DIM rc, hSvc, at$, adRpt$, addr$, scRpt$, hOtherDscr,attr$, attr2$, rc2

to service 'hSvc'

// Close connections so that we can run another app without problems

//

SUB CloseConnections ()
rc=BleDisconnect (conHndl)
rc=BleAdvertStop ()
rc=GpioUnbindEvent (1)

ENDSUB

//
// Ble event handler

//

FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)

https://www.lairdconnect.com/ 64
Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions
User Guide

La i rd‘ J»» CONNECTIVITY

conHndl=nCtx

IF nMsgID==1 THEN
PRINT "\n\n--- Disconnected from client"
EXITFUNC O

ELSEIF nMsgID==0 THEN
PRINT "\n--- Connected to client"

ENDIF

ENDFUNC 1

//

// Called when data arrives via UART
//

FUNCTION HndlrUartRx ()
ENDFUNC 0

//

// Client has written to writeable descriptor

//

dim duid, a$, rc

IF hChar == hMyChar THEN
rc = BleCharDescRead (hChar, hDesc,0,20,duid, a$)
IF rc ==0 THEN

";as
ELSE
PRINT "\nCould not read the descriptor value"
ENDIF
ELSE
PRINT "\nThis is for some other characteristic"
ENDIF
ENDFUNC 1
ONEVENT EVBLEMSG CALL HndlrBleMsg

ONEVENT EVCHARDESC CALL HndlrCharDesc

FUNCTION HndlrCharDesc (BYVAL hChar AS INTEGER, BYVAL hDesc AS INTEGER) AS INTEGER

PRINT "\nNew value for desriptor ";hDesc;" with uuid ";integer.h'duid;" is

ONEVENT EVUARTRX CALL HndlrUartRx
PRINT "\nOther Descriptor Value: ";OnStartup$ ()
PRINT "\nWrite a new value \n--- Press any key to exit\n"
WAITEVENT
CloseConnections ()
https://www.lairdconnect.com/ 65 Americas: +1-800-492-2320

Copyright 2020 Laird. All Rights Reserved

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

PRINT "\nExiting..."

Expected Output:

Other Descriptor Value: my char desc
Write a new value
--- Press any key to exit

--- Connected to client
New value for desriptor 0 with uuid FE012901 is hello

5.2 14EVAUTHVAL

This event is thrown instead of EVCHARVAL when a characteristic with read and/or write authorisation is being read or
written to by a remote GATT client. It comes with three parameters:
e Connection handle — The connection handle of the GATT client

e Char handle —The characteristic handle that was returned when the characteristic was registered using the function
BleCharCommit()

o ReadWrite —Will be 0x00000000 when this is a read attempt and 0x00010000 when write attempt
Call BleAuthorizeChar() to either grant or deny access.

If this a write attempt and access is granted then as soon as the function BleAuthoriseChar() returns the new value is ready
to be read using BleCharValueRead().

Note: When a characteristic requires authentication and the remote device reads from it or writes to it using the
WRITE_CMD (write without response), the event EVAUTHVALEX is thrown instead. The user should therefore
have both EVAUTHVAL and EVAUTHVALEX events in their app and service the events appropriately. See the
example below for more information.

5.215 EVAUTHVALEX

This event is thrown when the remote device writes to a characteristic value that requires authentication using the
WRITE_CMD (write without response) command. The user should then write the data using BleCharValueWriteEx at the
app layer, otherwise the value will not be updated. If the event is thrown with an empty string but the length has a non-
zero value, then this indicates that there was not enough memory to allocate to the event. The event comes with three
parameters:

e Connection handle — The connection handle of the GATT client

e Char handle —The characteristic handle that was returned when the characteristic was registered using the function
BleCharCommit()

e Offset — The offset of the characteristic at which the remote is attempting to write.

e Length — The length of the data that the remote is attempting to write. This should be equal to StrLen$(Data$) and
can be used to verify that no data loss has occurred.

e Data$ — The string data that the remote device is attempting to write.

Note: When a characteristic requires authentication and the remote device reads from it or writes to it using a
noramal WRITE, the event EVAUTHVAL is thrown instead. The user should therefore have both EVAUTHVAL and
EVAUTHVALEX events in their app and service the events appropriately. See the example below for more
information.

https://www.lairdconnect.com/ 66 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

Example:

// Example :: EvAuthVal.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM hMyChar, rc,at$, conHndl

// Initialise and instantiate service, characteristic, start adverts

FUNCTION OnStartup ()
DIM rc, hSvc, attr$, adRpt$, addr$, scRpt$: attr$="Hi"

//Commit service

rc=BleServiceNew (1,BleHandleUuidl6 (0x18EE), hSvc)

//Initialise char, write/read enabled, accept signed writes
rc=BleCharNew (0x0A,BleHandleUuidl6 (1) ,BleAttrMetaDataex(1,1,20,8,rc),0,0)
//Commit char initialised above, with initial value "hi" to service 'hSvc'
rc=BleCharCommit (hSvc,attr$, hMyChar)

//Commit changes to the service

rc=BleServiceCommit (hSvc)

rc=BleScanRptInit (scRpt$)

//Add 1 service handle to scan report

//rc=BleAdvRptAddUuidl6 (scRpt$,hSve,-1,-1,-1,-1,-1)

//Commit reports to GATT table - adRpt$ is empty
rc=BleAdvRptsCommit (adRpt$, SCRpt$S)

rc=BleAdvertStart (0,addr$,20,300000,0)

ENDFUNC rc

/=
// Close connections so that we can run another app without problems
e

SUB CloseConnections ()
rc=BleDisconnect (conHndl)
rc=BleAdvertStop ()

ENDSUB

FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)
conHndl=nCtx
IF nMsgID==1 THEN

PRINT "\n\n--- Disconnected from client"
EXITFUNC O
ELSEIF nMsgID==0 THEN
PRINT "\n--- Connected to client"
ENDIF
ENDFUNC 1
T
// AUTHVAL - The remote has written to the characteristic using WRITE (write with response)
/== e
FUNCTION HndlrAuthVal (BYVAL connHandle, BYVAL charHandle, BYVAL readWrite)
DIM s$
IF charHandle == hMyChar THEN
IF readWrite!=0 THEN
rc=BleAuthorizeChar (connHandle, charHandle, 3) //Grant access
rc=BleCharValueRead (hMyChar, s$)
PRINT "\nAuthenticated char written using Write with response."
PRINT "\nNew Char Value: ";s$
ENDIF
https://www.lairdconnect.com/ 67 Americas: +1-800-492-2320

Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

ENDIF
ENDFUNC 1

// AUTHVALEX - The remote has written to the characteristic using WRITE CMD (write without
response)

FUNCTION HndlrAuthValEx (BYVAL connHandle, BYVAL charHandle, BYVAL offset, BYVAL length,
BYVAL data$ AS STRING)
DIM s$
IF charHandle == hMyChar THEN
// We are OK with this connection handle, so write the characteristic
rc = BleCharValueWriteEx (charHandle, offset, data$)
rc=BleCharValueRead (hMyChar, s$)
PRINT "\nAuthenticated char written using Write without response."
PRINT "\nNew Char Value: ";s$

ENDIF
ENDFUNC 1
e St
// Enable synchronous event handlers
e St
ONEVENT EVBLEMSG CALL HndlrBleMsg
ONEVENT EVAUTHVAL CALL HndlrAuthVal
ONEVENT EVAUTHVALEX CALL HndlrAuthValEx
IF OnStartup ()==0 THEN
rc = BleCharValueRead (hMyChar, at$)
PRINT "\nThe characteristic's value is ";at$
PRINT "\nWrite a new value to the characteristic\n"
ELSE
PRINT "\nFailure OnStartup"
ENDIF
WAITEVENT

Expected Output:

The characteristic's value is Hi

Write a new value to the characteristic

-—-—- Connected to client

Authenticated char written using Write with response.
New Char Value: "Test"

Authenticated char written using Write without response.
New Char Value: "Test"

5.216 EVAUTHCCCD

This event is thrown instead of EVCHARCCCD when a CCCD descriptor of a characterisic with read and/or write
authorisation is being read or written to by a remote GATT client. It comes with three parameters as follows:

e The connection handle of the gatt client

e The characteristic handle returned when the characteristic was registered with BleCharCommit()

e Will be 0x00000000 when this is a read attempt and 0x0001HHHH when write attempt where the new 16-bit value
to be written is OXHHHH

Call BleAuthorizeDesc() to either grant or deny access.

https://www.lairdconnect.com/ 68 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

If this a write attempt and access is granted then as soon as the function BleAuthoriseDesc() returns the new value OxHHHH
is assumed to be written to the descriptor.

Example:

// Example :: EvAuthCccd.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM hMyChar,rc,at$, conHndl

//
// Initialise and instantiate service, characteristic, start adverts
//
FUNCTION OnStartup ()

DIM rc, hSvc, metaSuccess, at$, attr$, adRpt$, addr$, scRpt$

attr$="Hi"

DIM svcUuid : svcUuid=0x18EE

DIM charUuid : charUuid = BleHandleUuidl6 (1)

DIM charMet : charMet = BleAttrMetaDataex (1,1,20,0,metaSuccess)

DIM hSvcUuid : hSvcUuid = BleHandleUuidlé6 (svcUuid)

DIM mdCccd : mdCccd = BleAttrMetadataex(1l,1,2,8,rc) //CCCD metadata for char, write

auth

//Commit svc with handle 'hSvcUuid'

rc=BleServiceNew (1, BleHandleUuidl6 (svcUuid), hSvc)

//Initialise char, write/read enabled, accept signed writes, indicatable

rc=BleCharNew (0x6A, charUuid, charMet, mdCccd, 0)

//Commit char initialised above, with initial value "hi" to service 'hMyChar'

rc=BleCharCommit (hSvc,attr$, hMyChar)

rc=BleScanRptInit (scRpt$)

//Add 1 service handle to scan report

rc=BleAdvRptAddUuidlé6 (scRpt$, hSve,-1,-1,-1,-1,-1)

//Commit reports to GATT table - adRpt$ is empty

rc=BleAdvRptsCommit (adRpt$, scRptS$)

rc=BleAdvertStart (0,addr$,20,300000,0)

rc=GpioBindEvent (1,16,1) //Channel 1, bind to low transition on GPIO pin 16
ENDFUNC rc

//
// Close connections so that we can run another app without problems
//
SUB CloseConnections ()
rc=BleDisconnect (conHndl)
rc=BleAdvertStop ()
rc=GpioUnbindEvent (1)
ENDSUB

//
// Ble event handler
//
FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)
conHndl=nCtx
IF nMsgID==1 THEN

PRINT "\n\n--- Disconnected from client"
EXITFUNC O
ELSEIF nMsgID==0 THEN
PRINT "\n--- Connected to client"
ENDIF
ENDFUNC 1
https://www.lairdconnect.com/ 69 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions La » CONNECTIVITY

User Guide

//

// Indication acknowledgement from client handler

//

FUNCTION HndlrCharHvc (BYVAL charHandle AS INTEGER) AS INTEGER
IF charHandle == hMyChar THEN
PRINT "\nGot confirmation of recent indication"
ELSE
PRINT "\nGot confirmation of some other indication: ";charHandle
ENDIF
ENDFUNC 1

1/

// Handler to service button 0 pressed

//

FUNCTION HndlrBtnOPr () AS INTEGER
CloseConnections ()

ENDFUNC 1

!/

// CCCD descriptor authorisation

!/

FUNCTION HndlrAuthCccd (BYVAL connHandle,BYVAL charHandle, BYVAL readWrite) AS
DIM value$

IF charHandle==hMyChar THEN
IF readWrite != 0x0 THEN

rc=BleAuthorizeDesc (connHandle, charHandle, -1 ,3) //grant access
IF readWrite == 0x10002 THEN
PRINT "\nSending indication..."
value$="hello"
IF BleCharValueIndicate (hMyChar,value$) !=0 THEN
PRINT "\nFailed to indicate new value"
ENDIF
ELSE
PRINT "\nIndications were disabled"
ENDIF
ENDIF
ELSE
PRINT "\nThis is for some other characteristic"
ENDIF
ENDFUNC 1

ONEVENT EVBLEMSG CALL HndlrBleMsg
ONEVENT EVCHARHVC CALL HndlrCharHvc
ONEVENT EVAUTHCCCD CALL HndlrAuthCccd
ONEVENT EVGPIOCHAN1 CALL HndlrBtnOPr

IF OnStartup ()==0 THEN
rc = BleCharValueRead (hMyChar, at$)
PRINT "\nValue of the characteristic ";hMyChar;" is: ";at$
PRINT "\nYou can write to the CCCD characteristic."
PRINT "\nThe BL652 will then indicate a new characteristic value\n"

PRINT "\n--- Press button 0 to exit"
ELSE

PRINT "\nFailure OnStartup"
ENDIF
WAITEVENT

PRINT "\nExiting..."

INTEGER

https://www.lairdconnect.com/ 70
Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY
User Guide

Expected Output:

Value of the characteristic 1818531328 is: Hi
You can write to the CCCD characteristic.
The BL652 will then indicate a new characteristic value

-—-—- Press button 0 to exit

-—-—- Connected to client

Sending indication...

Got confirmation of recent indication

5.217 EVAUTHSCCD

This event is thrown instead of EVCHARSCCD when a SCCD descriptor of a characterisic with read and/or write
authorisation is being read or written to by a remote GATT client. It comes with three parameters as follows:

1. The connection handle of the gatt client
1. The characteristic handle returned when the characteristic was registered with BleCharCommit()

2. Will be 0x00000000 when this is a read attempt and 0x0001HHHH when write attempt where the new 16-bit value
to be written is OxHHHH

Call BleAuthorizeDesc() to either grant or deny access.

If this a write attempt and access is granted then as soon as the function BleAuthoriseDesc() returns the new value OxHHHH
is assumed to be written to the descriptor.

The SCCD is used to manage broadcasts of characteristic values.

Example:

// Example :: EvAuthSccd.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM hMyChar,rc,at$, conHndl

//
// Initialise and instantiate service, characteristic, start adverts
//
FUNCTION OnStartup ()

DIM rc, hSvc, at$, attr$, adRpt$S, addr$, scRpt$S , rc2

attr$S="Hi"

DIM charMet : charMet = BleAttrMetaDataex(1l,1,20,0,rc)

//Commit svc with handle 'hSvcUuid'
rc=BleServiceNew (1l,BleHandleUuidl6 (0x18EE) , hSvc)
//Initialise char, read enabled, accept signed writes, broadcast capable

rc=BleCharNew (0x4B,BleHandleUuidl6 (1), charMet, 0,BleAttrMetadataex(1,1,2,8,rc2))
//Commit char initialised above, with initial value "hi" to service 'hMyChar'
rc=BleCharCommit (hSvc,attr$, hMyChar)
//Commit svc
rc=BleServiceCommit (hSvc)

rc=BleAdvRptInit (adRpt$, 0x02,0,20)

//Add 'hSvc' and 'hMyChar' to the advert report
rc=BleAdvRptAddUuidlé6 (adRpt$, hSvc, hMyChar,-1,-1,-1,-1)
//Commit reports to GATT table - adRpt$ is empty
rc=BleAdvRptsCommit (adRpt$, scRpt$)

https://www.lairdconnect.com/ 71 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

rc=BleAdvertStart (0, addr$,20,300000,0)

rc=GpioBindEvent (1,16,1) //Channel 1, bind to low transition on GPIO pin
16
ENDFUNC rc
//

// Close connections so that we can run another app without problems

//
SUB CloseConnections ()
rc=BleDisconnect (conHndl)
rc=BleAdvertStop ()
rc=GpioUnbindEvent (1)
ENDSUB

//
// Ble event handler

//
FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)
conHndl=nCtx
IF nMsgID==1 THEN
PRINT "\n\n--- Disconnected from client"
EXITFUNC O
ELSEIF nMsgID==0 THEN
PRINT "\n--- Connected to client"
ENDIF
ENDEUNC 1

//

//handler to service button 0 pressed

//

FUNCTION HndlrBtnOPr () AS INTEGER
CloseConnections ()
ENDFUNC 1

//

// CCCD descriptor written handler
//

FUNCTION HndlrAuthSccd (BYVAL connHandle,BYVAL charHandle, BYVAL readWrite) AS

INTEGER
DIM value$

IF charHandle==hMyChar THEN

IF readWrite != 0x0 THEN
rc=BleAuthorizeDesc (connHandle, charHandle, -2 ,3) //grant access
if readWrite == 0x10000 then
PRINT "\nBroadcasts have been disabled by client"
ELSE
PRINT "\nBroadcasts have been enabled by client"
endif
ENDIF
ELSE
PRINT "\nThis is for some other characteristic"
ENDIF
ENDFUNC 1

ONEVENT EVBLEMSG CALL HndlrBleMsg

https://www.lairdconnect.com/ 72
Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

ONEVENT EVAUTHSCCD CALL HndlrAuthSccd
ONEVENT EVGPIOCHAN1l CALL HndlrBtnOPr

IF OnStartup ()==0 THEN
rc = BleCharValueRead (hMyChar,at$)
PRINT "\nCharacteristic Value: ";at$
PRINT "\nYou can write to the SCCD attribute."
PRINT "\nThe BL652 will then indicate a new characteristic value"

PRINT "\n--- Press button 0 to exit\n"
ELSE

PRINT "\nFailure OnStartup"
ENDIF
WAITEVENT

PRINT "\nExiting..."

Expected Output:

Characteristic Value: Hi

You can write to the SCCD attribute.

The BL652 will then indicate a new characteristic value
-—— Press button 0 to exit

--— Connected to client
Broadcasts have been enabled by client

5.218 EVAUTHDESC

This event is thrown instead of EVCHARDESC when a writable descriptor of a characteristic with read and/or write
authorisation is being read or written by a remote GATT client. It comes with four parameters:

1. The connection handle of the gatt client

3. The characteristic handle that was returned when the characteristic was registered using the function
BleCharCommit()

4. The descriptor Handle Index
5. Will be 0x00000000 when this is a read attempt and 0x00010000 when write attempt

Call BleAuthorizeChar() to either grant or deny access.
The first three parameters in the event are supplied as-is as the first three parameters to the function BleAuthizeChar().

If this event is for a write then as soon as the function BleAuthorizeDesc() returns the descriptor contains the value and so
the function BleCharDescRead() can be called to read it.

Example:

// Example :: EvAuthDesc.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM hMyChar,rc,at$,conHndl, hOtherDescr

//
// Initialise and instantiate service, characteristic, start adverts
//
FUNCTION OnStartup$ ()

DIM rc, hSvc, at$, adRpt$, addr$, scRpt$, hOtherDscr,attr$, attr2s

attr$="Hi"

DIM charMet : charMet = BleAttrMetaData(l,1,20,0,rc)

https://www.lairdconnect.com/ 73 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

//Commit svc with handle 'hSvcUuid'

rc=BleServiceNew (1,BleHandleUuidl6 (0x18EE), hSvc)
//Initialise char, read/write enabled, accept signed writes
rc=BleCharNew (0x4A,BleHandleUuidl6 (1) ,charMet, 0,0)

//Add another descriptor

attr$="descr value"
rc=BleCharDescAdd (0x2905, attr$,BleAttrMetadataex(1,1,20,9,rc))

//Commit char initialised above, with initial value "hi" to service 'hMyChar'
attr2$="char value"

rc=BleCharCommit (hSvc, attr2$,hMyChar)

rc=BleServiceCommit (hSvc)

rc=BleAdvRptInit (adRpt$, 0x02,0,20)

rc=BleScanRptInit (scRpt$)

//Get UUID handle for other descriptor

hOtherDscr=BleHandleUuidl6 (0x2905)

//Add 'hSvc', 'hMyChar' and the other descriptor to the advert report

rc=BleAdvRptAddUuidlé (adRpt$, hSvc, hOtherDscr,-1,-1,-1,-1)

rc=BleAdvRptAddUuidlé (scRpt$, hOtherDscr,-1,-1,-1,-1,-1)

//Commit reports to GATT table - adRpt$ is empty

rc=BleAdvRptsCommit (adRpt$, scRpt$)

rc=BleAdvertStart (0,addr$,20,300000,0)

rc=GpioBindEvent (1,16,1) //Channel 1, bind to low transition on GPIO pin 16
ENDFUNC attr$

//
// Close connections so that we can run another app without problems
//
SUB CloseConnections ()
rc=BleDisconnect (conHndl)
rc=BleAdvertStop ()
rc=GpioUnbindEvent (1)
ENDSUB

//
// Ble event handler
//
FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)
conHndl=nCtx
IF nMsgID==1 THEN

PRINT "\n\n--- Disconnected from client"
EXITFUNC O
ELSEIF nMsgID==0 THEN
PRINT "\n--- Connected to client"
ENDIF
ENDFUNC 1
//
// Handler to service button 0 pressed
//
FUNCTION HndlrBtnOPr () AS INTEGER
CloseConnections ()
ENDFUNC 1
//
// Client has written to writeable descriptor
//

FUNCTION HndlrAuthDesc (BYVAL hConn AS INTEGER, BYVAL hChar AS INTEGER, BYVAL hDesc AS
INTEGER, BYVAL rw) AS INTEGER

dim duid, a$, rc

IF hChar == hMyChar THEN

https://www.lairdconnect.com/ 74 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

rc = BleAuthorizeDesc (hConn, hChar, hDesc, 3)
rc BleCharDescRead (hChar,hDesc, 0, 512,duid, a$)
IF rc ==0 THEN
PRINT "\nNew value for desriptor ";hDesc;" is ";a$

ELSE
PRINT "\nCould not access the uuid"
ENDIF
ELSE
PRINT "\nThis is for some other characteristic"
ENDIF
ENDFUNC 1
ONEVENT EVBLEMSG CALL HndlrBleMsg

ONEVENT EVAUTHDESC CALL HndlrAuthDesc
ONEVENT EVGPIOCHAN1 CALL HndlrBtnOPr

PRINT "\nOther Descriptor Value: ";OnStartup$ ()
PRINT "\nWrite a new value \n--- Press button 0 to exit\n"

WAITEVENT

PRINT "\nExiting..."

Expected Output:

Other Descriptor Value: descr value
Write a new value
--- Press button 0 to exit

-—-—- Connected to client
New value for desriptor 0 is cC

5.219 EVVSPRX

This event is thrown when the Virtual Serial Port service is open and data has arrived from the peer.
5.2.20 EVVSPRXOVRN

This event is thrown when the Virtual Serial Port service is open, data has arrived from the peer, and there is not enough
space in the receive ring buffer. This results in the appropriate amount of oldest data in the ring buffer being discarded to
make room for the new data.

5.2.21 EVVSPTXEMPTY

This event is thrown when the Virtual Serial Port service is open and the last block of data in the transmit buffer is sent via a
notify or indicate. See VSP (Virtual Serial Port) Events

5.2.22 EVCONNRSSI

This event message is thrown when rssi reporting is enabled for specific connections using the function BleConnRssiStart()
which takes the connection handle.

It consists of a two integers payload and the values are as follows:

= Integer 1 - The connection handle for which the rssi is being reported
= Integer 2 — The signed rssi value in units of dBm.

5.2.23 EVNOTIFYBUF

When in a connection and attribute data is sent to the GATT Client using a notify procedure (for example using the function
BleCharValueNotify()) or when a Write_with_no_response is sent by the GATT Client to a remote server, they are stored in

https://www.lairdconnect.com/ 75 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

temporary buffers in the underlying stack. There is a finite number of these temporary buffers. If they are exhausted, the
notify function or the write_with_no_resp command will fail with a result code of 0x6803 (BLE_NO_TX_BUFFERS). Once the
attribute data is transmitted over the air, given there are no acknowledges for Notify messages, the buffer is freed to be
reused.

This event is thrown when at least one buffer has been freed and so the smartBASIC application can handle this event to
retrigger the data pump for sending data using notifies or writes_with_no_resp commands.

Note: When sending data using Indications, this event is not thrown because those messages have to be confirmed by
the client which results in a EVCHARHVC message to the smartBASIC application. Likewise, writes which are
acknowledged also do not consume these buffers.

Example:

// Example :: EvNotifyBuf.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM hMyChar, rc,at$, conHndl,ntfyEnabled

//

// Initialise and instantiate service, characteristic, start adverts

//
FUNCTION OnStartup ()

DIM rc, hSvc, at$, attr$, adRpt$, addr$, scRpt$
attr$="Hi"

DIM mdCccd : mdCccd = BleAttrMetadata(1l,1,2,0,rc) //CCCD metadata for char

//Commit svc with handle 'hSvc'

rc=BleServiceNew (1, BleHandleUuidl6 (0x18EE), hSvc)

//initialise char, write/read enabled, accept signed writes, notifiable
rc=BleCharNew (0x12,BleHandleUuidl6 (1) ,BleAttrMetaData(1,0,20,0,rc),mdCccd, 0)
//commit char initialised above, with initial value "hi" to service 'hMyChar'
rc=BleCharCommit (hSvc,attr$, hMyChar)

//commit changes to service

rc=BleServiceCommit (hSvc)

rc=BleScanRptInit (scRpt$)

//Add 1 service handle to scan report

rc=BleAdvRptAddUuidl6 (scRpt$,0x18EE,-1,-1,-1,-1,-1)

//commit reports to GATT table - adRpt$ is empty
rc=BleAdvRptsCommit (adRpt$, scRptS)

rc=BleAdvertStart (0, addr$, 50,0, 0)

ENDFUNC rc

https://www.lairdconnect.com/ 76 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

//
// Close connections so that we can run another app without problems
//

SUB CloseConnections ()

rc=BleDisconnect (conHndl)
rc=BleAdvertStop ()

ENDSUB

SUB SendData ()
DIM tx$, count
IF ntfyEnabled then
PRINT "\n--- Notifying"
DO
tx$="SomeData"
rc=BleCharValueNotify (hMyChar, tx$)
count=count+1l
UNTIL rc!=0
PRINT "\n--- Buffer full"
PRINT "\nNotified ";count;" times"
ENDIF
ENDSUB

//
// Ble event handler
//
FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)

conHndl=nCtx
IF nMsgID==0 THEN
PRINT "\n--- Connected to client"

ELSEIF nMsgID THEN

PRINT "\n--- Disconnected from client"
EXITEFUNC O
ENDIF
ENDFUNC 1
//
// Tx Buffer free handler
//

FUNCTION HndlrNtfyBuf ()

https://www.lairdconnect.com/ 77 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY
User Guide

SendData ()

ENDFUNC O

//
// CCCD descriptor written handler
//
FUNCTION HndlrCharCccd (BYVAL charHandle, BYVAL nVal) AS INTEGER

DIM value$, tx$
IF charHandle==hMyChar THEN
IF nVal THEN
PRINT " : Notifications have been enabled by client"
ntfyEnabled=1
tx$="Hello"
rc=BleCharValueNotify (hMyChar, tx$)
ELSE
PRINT "\nNotifications have been disabled by client"
ntfyEnabled=0
ENDIF
ELSE
PRINT "\nThis is for some other characteristic"
ENDIF
ENDFUNC 1

ONEVENT EVNOTIFYBUF CALL HndlrNtfyBuf
ONEVENT EVBLEMSG CALL HndlrBleMsg
ONEVENT EVCHARCCCD CALL HndlrCharCccd

IF OnStartup ()==0 THEN
rc = BleCharValueRead (hMyChar, at$)
PRINT "\nYou can connect and write to the CCCD characteristic."
PRINT "\nThe BL652 will then send you data until buffer is full\n"
ELSE
PRINT "\nFailure OnStartup"
ENDIF

WAITEVENT
CloseConnections ()

PRINT "\nExiting..."

Expected Output:

https://www.lairdconnect.com/ 78 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

You can connect and write to the CCCD characteristic.
The BL652 will then send you data until buffer is full

-—-—- Connected to client

Notifications have been disabled by client : Notifications have been enabled by
client

--- Notifying

-—-— Buffer full

Notified 1818505336 times

Exiting...

5.2.24 EVCONNPARAMREQ

This event is only thrown for a central role connection when a peripheral requests an update to the connection parameters
via BleSetCurConnParams(). The user must turn manual parameter control to receive this message by using
BleConnectConfig(8,1). In this case auto accept is disabled and full control is given to the user.

The event contains the following integer values:

nConnHandle The handle of the connection where the peripheral is requesting a change.
nMinIntUs The minimum acceptable connection interval in microseconds.
nMaxIntUs The maximum acceptable connection interval in microseconds.
nSuprToutUs The link supervision timeout for the connection in microseconds.
nSlavelatency The number of connection interval polls that may be ignored.

Example:

//Example :: EvConnParamRed.sb

// In order to get the expected output, this application should be run against
// a peripheral device. The peripheral device should request new connection

// parameters upon connection, which in turn will trigger EVCONNPARAMREQ on

// this device.

// This is the target Bluetooth device to connect to, 7 bytes in hex
#define BTAddr "000016A4B75202"

// BLE EVENT MSG IDs

#define BLE EVBLEMSGID CONNECT 0 // msgCtx = connection handle
#define BLE_EVBLEMSGID DISCONNECT 1 // msgCtx = connection handle
#define BLE EVBLEMSGID CONN_PARMS UPDATE 14 //nCtx = connection handle
#define BLE_EVBLEMSGID CONN_PARMS UPDATE_ FAIL 15 //nCtx = connection handle
DIM rc

//

// This handler is called when there is a BLE message

//

FUNCTION HndlrBleMsg (BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER)
SELECT nMsgId
CASE BLE EVBLEMSGID CONNECT
PRINT "\nBLE Connection ";integer.h' nCtx;"\n"
CASE BLE EVBLEMSGID DISCONNECT
PRINT "\nDisconnected ";nCtx;"\n"

https://www.lairdconnect.com/ 79 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

CASE BLE EVBLEMSGID CONN PARMS UPDATE
// The connection parameter has been updated. Read connection parameters
dim intrvl, sprvto,slat
rc= BleGetCurConnParms (nCtx,intrvl, sprvto, slat)

print "--- Param Updated \n"
print "- interval:";intrvl;" supervision timeout:";sprvto;" latency:";slat;"\n"
CASE BLE EVBLEMSGID CONN PARMS UPDATE FAIL
print "--- Param Update Failed\n"
print "- interval:";intrvl;" supervision timeout:";sprvto;" latency:";slat;"\n"
CASE ELSE
PRINT "\nUnknown Ble Msg"
ENDSELECT
ENDFUNC 1
//
// This handler is called when peripheral requests new parameter
//

function HandlerParamReq (BYVAL hConn AS INTEGER, BYVAL intrvlmin AS INTEGER, BYVAL intrvlmax
AS INTEGER, BYVAL sprvto AS INTEGER, BYVAL slat AS INTEGER)

print "--- Param Request \n"

print "- intervalmin:";intrvlmin;" intervalmax:";intrvlmax;" supervision
timeout:";sprvto;" latency:";slat;"\n"

// Accept the peripheral's request by changing the connection's conn parameters

rc = BleSetCurConnParms (hConn, intrvlmin, intrvlmax, sprvto, slat)

endfunc 1

// Program starts here

// Disable auto accept so that we get an event when peripheral requests
// new connection parameteres. Set to 0 to re-enable auto accept

rc = BleConnectConfig(8,1)

// Connect to peripheral

DIM addr$: addr$ = BTAddr

addr$ = StrDehexize$ (addr$)

rc = BleConnect (addr$, 5000, 7500, 7700, 500000)

A R
// Enable synchronous event handlers

A R
ONEVENT EVBLEMSG CALL HndlrBleMsg

ONEVENT EVCONNPARAMREQ CALL HandlerParamReq

WAITEVENT

Expected Output:

BLE Connection 0001FFO00

—-—— Param Request

- intervalmin:45000 intervalmax:50000 supervision timeout:6000000 latency:0
-—-- Param Updated

- interval:50000 supervision timeout:6000000 latency:0

5.2.25 EVBLE_EXTADVDROPPED

This event message is thrown when too many extended advert reports or scan responses have been received and the
message queue does not have enough space to accommodate them. To mitigate this, call NVCFGKEYSET(45,n) to increase
the size of the message. This configuration change will only come into effect after a reset, so call RESET() to make the
change effective.

https://www.lairdconnect.com/ 80 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

5.2.26 EVBLE_EXTADVNOMEM

This event message is thrown when an extended advert report has been received and there is no heap space to allow for it
to be packaged into a STRING variable to be thrown to the smartBASIC user application in an event. The lack of space can
also apply when there is available memory but it is in smaller fragments in the free space managed by the heap.

5.2.27 EVBLE_SCAN_ABORTED

This event message is thrown when a scanning is in progress and an outgoing connection is started. Given a connection
attempt requires a scanning, then any existing scanning has to be aborted for that connection phase to work.

This event is to let the app know that it has been aborted so that it can be restarted when the connection fails or is
successful.

5.2.28 EVBLE_EXTADV_END

This event message is thrown when an extended advert identified by the set_id parameter in the message has terminated
and will also provide the reason for the termination.

It consists of a two integers payload with the following values:

= Integer 1-Setid
= Integer 2 — Reason for termination. O for timeout and for positive values specifies how many adverts were sent.

5.2.29 EVBLE_EXTADV_RPT

This event message is thrown when an extended advert report is to be conveyed to the application
It consists of 3 string and 1 integer in the following order :

= String 1 — Address of the device that send the advert

= String 2 — Payload of the advert consisting of many concatenated AD elements

= Integer 1 — RSSI of the receiced advert

= String 3 — Metadata of the associated advert. Use BleExtRptMetadata() to extract fields

5.2.30 EVBLE_EXTSCN_RPT

This event message is thrown when an extended advert scan response is to be conveyed to the application
It consists of 3 string and 1 integer in the following order :

= String 1 — Address of the device that send the scan response

= String 2 — Payload of the advert consisting of many concatenated AD elements

= Integer 1 — RSSI of the receiced scan response

= String 3 — Metadata of the scan response. Use BleExtRptMetadata() to extract fields

5.2.31EVBLE_EXTADV_RPT_INCOMPLETE

This event message is thrown when an extended advert or scan response is to be conveyed to the application which has
incomplete data. Use String 3 and function BleExtRptMetadata(metadata$,8) to determine if it was an advert report or a
scan response.

In addition, BleExtRptMetadata(metadata$,7,) will return the status field which will detail the reason why it is incomplete.
See the description for BleExtRptMetadata() for more details.

It consists of 3 string and 1 integer in the following order :
= String 1 — Address of the device that send the scan response
https://www.lairdconnect.com/ 81 Americas: +1-800-492-2320

Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

= String 2 — Payload of the advert consisting of many concatenated AD elements
= Integer 1 —RSSI of the receiced scan response
= String 3 — Metadata of the scan response. Use BleExtRptMetadata() to extract fields

5.3 Miscellaneous Functions

This section describes all BLE related functions that are not related to advertising, connection, security manager or GATT.
5.3.1 BleTxPowerSet

FUNCTION

This function sets the power of all packets that are transmitted subsequently.

Although this function can accept any value, the actual transmit power is determined by the internal power table which
supports -40, -20, -16, -12, -8, -4, 0, and 4 dBm. When a value is set, the highest transmit power that is less than or equal to
the desired power is used. SYSINFO(2008) and AT | 2008 can be used to return the power level set.

BLETXPOWERSET (nTxPower)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byVal nTxPower AS INTEGER.
nTxPower | Specifies the new transmit power in dBm units to be used for all subsequent tx packets.
The actual value is determined by the radios internal power table.

https://www.lairdconnect.com/ 82 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

Example:

// Example :: BleTxPowerSet.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM rc,dp

dp=1000 : rc = BleTxPowerSet (dp)

PRINT "\nrc = ";rc

PRINT "\nTx power : desired= ";dp," actual= "; SysInfo(2008)
dp=8 : rc = BleTxPowerSet (dp)

PRINT "\nTx power : desired= ";dp," "," actual= "; SysInfo(2008)
dp=2 : rc = BleTxPowerSet (dp)

PRINT "\nTx power : desired= ";dp," "," actual= "; SysInfo(2008)
dp=-10 : rc = BleTxPowerSet (dp)

PRINT "\nTx power : desired= ";dp," "," actual= "; SysInfo(2008)
dp=-25 : rc = BleTxPowerSet (dp)

PRINT "\nTx power : desired= ";dp," "," actual= "; SysInfo(2008)
dp=-45 : rc = BleTxPowerSet (dp)

PRINT "\nTx power : desired= ";dp," "," actual= "; SysInfo(2008)
dp=-1000 : rc = BleTxPowerSet (dp)

PRINT "\nTx power : desired= ";dp," actual= "; SysInfo (2008)

Expected Output:

rc = 0

Tx power : desired= 1000 actual= 4
Tx power : desired= 8 actual= 4
Tx power : desired= 2 actual= 0
Tx power : desired= -10 actual= -12
Tx power : desired= -25 actual= -40
Tx power : desired= -45 actual= -40
Tx power : desired= -1000 actual= -40

5.3.2 BleTxPwrWhilePairing

FUNCTION

This function sets the transmit power of all packets that are transmitted while a pairing is in progress. This mode of pairing
is referred to as Whisper Mode Pairing. The actual value is clipped to the transmit power for normal operation which is set
using BleTxPowerSet() function.

At any time SYSINFO(2018) returns the actual transmit power setting. Or when in command mode, uses the command AT |
2018.

Although this function can accept any value, the actual transmit power is determined by the internal power table which
supports -40, -20, -16, -12, -8, -4, 0, and 4 dBm, when a value is set the highest transmit power that is less than or equal to
the desired power is used. SYSINFO(2008) and AT | 2008 will return the power level set, and does not reflect the transmit
power level of the radio itself.

https://www.lairdconnect.com/ 83 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

BLETXPWRWHILEPAIRING (nTxPower)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byVal nTxPower AS INTEGER.

Specifies the new transmit power in dBm units to be used for all subsequent Tx packets while the
pairing is in progress and normal power is resumed when the transaction is complete. The actual
nTxPower | value is determined by the radios internal power table.

Please note that the tx power will be reduced to nTxPower for ALL connections, even on
connections that there is no pairing in progress.

Example:

// Example :: BleTxPwrWhilePairing.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM rc,dp

dp=1000 : rc = BleTxPwrWhilePairing (dp)

PRINT "\nrc = ";rc

PRINT "\nTx power while pairing: desired= ";dp," actual= "; SysInfo(2018)
dp=8 : rc = BleTxPwrWhilePairing (dp)

PRINT "\nTx power while pairing: desired= ";dp," "," actual= "; SysInfo(2018)
dp=2 : rc = BleTxPwrWhilePairing (dp)

PRINT "\nTx power while pairing: desired= ";dp," "," actual= "; SysInfo(2018)
dp=-10 : rc = BleTxPwrWhilePairing (dp)

PRINT "\nTx power while pairing: desired= ";dp," actual= "; SysInfo(2018)
dp=-25 : rc = BleTxPwrWhilePairing (dp)

PRINT "\nTx power while pairing: desired= ";dp," actual= "; SysInfo(2018)
dp=-45 : rc = BleTxPwrWhilePairing (dp)

PRINT "\nTx power while pairing: desired= ";dp," actual= "; SysInfo (2018)

dp=-1000 : rc = BleTxPwrWhilePairing (dp)

PRINT "\nTx power while pairing: desired= ";dp," actual= "; SysInfo(2018)

Expected Output:

rc = 0
Tx power while pairing: desired= 1000 actual= 10
Tx power while pairing: desired= 8 actual= 8
Tx power while pairing: desired= 2 actual= 2
Tx power while pairing: desired= -10 actual= -10
Tx power while pairing: desired= -25 actual= -20
Tx power while pairing: desired= -45 actual= -20
Tx power while pairing: desired= -1000 actual= -20
https://www.lairdconnect.com/ 84 Americas: +1-800-492-2320

Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

5.3.3 BleConfigDcDc

SUBROUTINE
This routine is used to configure the DC to DC converter to one of 2 states: ENABLED or DISABLED.

BLECONFIGDCDC (nNewState)

Returns None

Arguments

nNewState | byVal nNewState AS INTEGER.
Configure the internal DC to DC converter as follows:

0 Disabled

All other values | Enabled

BleConfigDcDc (2) //Set for automatic operation

5.3.4 BleChannelMap

FUNCTION

This function is used to enable or disable data channel usage when in a connection. Applies to data channels 0 to 36 only.

BLECHANNELMAP (chanMap$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byVal chanMap$ AS STRING.

This must be a string which is exactly 5 bytes long where a bit set means enable that channel to
be used and a 0 means to disable.

The mapping between bits in the 5 bytes to data channels in BLE are as follows:-
Bit 0 of byte index 0 : BLE channel 0

Bit 7 of byte index O : BLE channel 7

Bit 0 of byte index 1 : BLE channel 8

chanMap$ | Bit 7 of byte index 1 : BLE channel 15

Bit O of byte index 2 : BLE channel 16

Bit 7 of byte index 2 : BLE channel 23

Bit O of byte index 3 : BLE channel 24

Bit 7 of byte index 3 : BLE channel 31

Bit O of byte index 4 : BLE channel 32

Bit 4 of byte index 4 : BLE channel 36

Bit 5 to 7 of byte index 4 are ignored.

5.4 Advertising Functions

This section describes all the advertising-related routines.

An advertisement consists of a packet of information with a header identifying it as one of four types along with an optional
payload that consists of multiple advertising records, referred to as AD in the rest of this manual.

Each AD record consists of up to three fields:

= Field 1 - One octet in length and indicates the number of octets that follow it that belong to that record.

https://www.lairdconnect.com/ 85 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

= Field 2 —One octet in length and is a tag value which identifies the type of payload that starts at the next octet. Hence
the payload datais ‘length — 1",
= Field 3 — A special NULL AD record that consists of one field (the length field) when it contains only the 00 value.

The specification also allows custom AD records to be created using the Manufacturer Specific Data AD record.

Refer to the Supplement to the Bluetooth Core Specification, Version 1, Part A which contains the latest list of all AD records.
You must register as at least an adopter, which is free, to gain access to this information. It is available at
https://www.Bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=245130

5.4.1 BleAdvertStart

FUNCTION

This function causes a BLE advertisement event as per the Bluetooth specification. An advertisement event consists of an
advertising packet in each of the three advertising channels.

The type of advertisement packet is determined by the nAdvType argument and the data in the packet is initialised,
created, and submitted by the BLEADVRPTINIT, BLEADVRPTADDxxx, and BLEADVRPTCOMMIT functions respectively.

If the Advert packet type (nAdvType) is specified as 1 (ADV_DIRECT_IND), then the peerAddrS string must not be empty
and should be a valid address. When advertising with this packet type, the timeout is automatically set to 1280 ms.

When filter policy is enabled, the whitelist consisting of all bonded masters is submitted to the underlying stack so that only
those bonded masters result in scan and connection requests being serviced.

Note: nAdvTimeout is rounded up to the nearest 1000 msec.

In order to advertise over 2MPHY, BleAdvertConfig() should be called beforehand to set the secondary
advertising channel to 2MPHY. See BleAdvertConfig() for more details.

Extended advertising types (6-11) are only supported as experimental features in this release.

BLEADVERTSTART (nAdvType, peerAddrS, nAdvinterval, nAdvTimeout, nFilterPolicy)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
If a Ox6A01 resultcode is received, it implies a whitelist has been enabled but the Flags AD in the
advertising report is set for Limited and/or General Discoverability. The solution is to resubmit a new
advert report which is made up so that the nFlags argument to BleAdvRptInit() function is 0.
The BT 4.0 spec disallows discoverability when a whitelist is enabled during advertisement. See Volume
3, Sections 9.2.3.2 and 9.2.4.2.
Arguments:
byVal nAdvType AS INTEGER.
Specifies the advertisement type as follows:
0 ADV_IND Invites connection requests
Invites connection from addressed device.
nAdvertTimeout imust be <= 1280ms because
nAdvinterval is ignored and will advertise at a
nAdvType 1 | ADV_DIRECT IND rate of every 3:75m|II|sec0nds .W.hICh mean; this
type of advert is not power efficient and will
impact battery life.
See ADV_DIRECT_LOW_DUTYCYCLE_IND for a
more power efficient alternative.
2 ADV_SCAN_IND Invites scan request for more advert data
3 ADV_NONCONN_IND Does not accept connections/active scans
https://www.lairdconnect.com/ 86 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=245130

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

Invites connection from addressed device.

No limit on nAdvertTimeout as the advertising
interval is as per nAdvinterval, like a normal
advert but with the payload being the target
address.

See ADV_DIRECT_IND for an alternative.

4 | ADV_DIRECT_LOW_DUTYCYCLE_IND

5 Unused

Invites connection requests over the secondary
6 | ADV_EXT_CONN_NONSCAN advertising channel. This advertising type can be
used for CODED PHY connections.

Invites connection from addressed devices over
the secondary advertising channel. This
advertising type can be used for CODED PHY
connections.

Invites scan requests over the secondary
advertising channel.

Invites scan requests from addressed devices
over the secondary advertising channel.
Undirected nonconnecatable nonscannable
advertising using extended advertising packets.
Directed nonconnecatable nonscannable
advertising using extended advertising packets.

7 | ADV_EXT_CONN_NONSCAN_DIRECTED

8 | ADV_EXT_NONCONN_SCAN

9 | ADV_EXT_NONCONN_SCAN_DIRECTED

10 | ADV_EXT_NONCONN_NONSCAN

11 | ADV_EXT_NONCONN_NONSCAN_DIRECTED

peerAddrS

byRef peerAddrs AS STRING
It can be an empty string that is omitted if the advertisement type is not ADV_DIRECT_IND.
This is only required when nAdvType == 1. When not empty, a valid address string is exactly seven octets
long (for example: \00\11\22\33\44\55\66) where the first octet is the address type and the rest of the
six octets is the usual Bluetooth address in big endian format (so the most significant octet of the
address is at offset 1), whether public or random.

0 Public

1 Random Static

2 Random Private Resolvable

3 Random Private Non-Resolvable

All other values are illegal.

nAdvinterval

byVal nAdvinterval AS INTEGER.
The interval between two advertisement events (in milliseconds).

An advertisement event consists of a total of three packets being transmitted in the three advertising
channels.

Valid range is between 20 and 10240 milliseconds.

nAdvTimeout

byVal nAdvTimeout AS INTEGER.

The time after which the module stops advertising (in milliseconds). The range of this value is between 0
and 16383000 milliseconds and is rounded up to the nearest 1 seconds (1000ms).

A value of 0 means disable the timeout, but note that if limited advert modes was specified in
BleAdvRptlnit() then this function fails. When the advert type specified is ADV_DIRECT_IND , the timeout
is automatically set to 1280 ms as per the Bluetooth Specification.

WARNING: To save power, do not mistakenly set this to e.g. 100ms.

nFilterPolicy

byVal nFilterPolicy AS INTEGER.

Specifies the filter policy for the whitelist as follows:

0 ‘ Disable whitelist

https://www.lairdconnect.com/ 87 Americas: +1-800-492-2320

Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

1 Filter Policy — Filter scan request; allow connection request from any
2 Filter Policy — Filter connection request; allow scan request from any
3 Filter scan request and connection request
hhh A whitelist handle (for more details see section “Whitelist Management
Functions)

If the filter policy is not 0, but 1,2 or 3 the whitelist is enabled and filled with first 8 addresses and 8
identity resolving keys of devices in the trusted device database. Given the database can accommodate
more devices please note that if more than 8 devices exist than a partial whitelist is activated.

To cater for that limitation, a whitelist can be manually created using the API described in the section
“Whitelist Management Functions” and the handle returned from a manually created list can be
supplied for this parameter

Example:

// Example :: BleAdvertStart.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM addr$: addr$=""

FUNCTION HndlrBlrAdvTimOut ()
PRINT "\nAdvert stopped via timeout"
PRINT "\nExiting..."

ENDFUNC O

//The advertising interval is set to 25 milliseconds. The module will stop
//advertising after 60000 ms (1 minute)
IF BleAdvertStart (0,addr$,25,60000,0)==0 THEN

PRINT "\nAdverts Started"

PRINT "\nIf you search for Bluetooth devices on your device, you should see 'Laird
BL652""

ELSE
PRINT "\n\nAdvertisement not successful"

ENDIF

ONEVENT EVBLE ADV_ TIMEOUT CALL HndlrBlrAdvTimOut

WAITEVENT

Expected Output:

Adverts Started
If you search for Bluetooth devices on your device, you should see 'Laird BL652'

Advert stopped via timeout

https://www.lairdconnect.com/ 88 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

|Exiting...
5.4.2 BleAdvertStop

FUNCTION

This function causes the BLE module to stop advertising.

BLEADVERTSTOP ()

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments | None

Example:

// Example :: BleAdvertStop.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM addr$: addr$=""
DIM rc

FUNCTION HndlrBlrAdvTimOut ()
PRINT "\nAdvert stopped via timeout"
PRINT "\nExiting..."

ENDFUNC 0

FUNCTION BtnOPress ()

IF BleAdvertStop ()==0 THEN

PRINT "\nAdvertising Stopped"
ELSE

PRINT "\n\nAdvertising failed to stop"
ENDIF

PRINT "\nExiting..."
ENDFUNC O

IF BleAdvertStart (0,addr$,25,60000,0)==0 THEN

PRINT "\nAdverts Started. Press button 0 to stop.\n"
ELSE

PRINT "\n\nAdvertisement not successful"
ENDIF

rc = GpioSetFunc(1l1l,1,2)
rc GpioBindEvent (0,11,1)

ONEVENT EVBLE ADV TIMEOUT CALL HndlrBlrAdvTimOut
ONEVENT EVGPIOCHANO CALL BtnOPress

WAITEVENT

Expected Output:

Adverts Started. Press button 0 to stop.

Advertising Stopped
Exiting...

https://www.lairdconnect.com/ 89 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

5.4.3 BleAdvertConfig

FUNCTION

This function is used to modify the default parameters that are used when initiating an advertise operation using
BleAdvertStart().

The following lists the default values for the parameters:

Advert Channel Mask Bit field detailing the channels to advertise on.
Note: Set channel mask Bit O to enable advert channel 0, Bit 1 to enable advert channel 1, and Bit 2 to enable advert
channel 2.

BLEADVERTCONFIG (configID, configValue)

Returns ‘ INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byVal configiD AS INTEGER.
This identifies the value to update as follows:

0 Unused
1 Unused
2 Unused

Advert Channel Mask. Set to 0 to enable channel 37, bit 1 to enable channel 38, and bit
2 to enable channel 39

configlD Primary PHY to advertise on. Possible values are:-

4 1 - 1MPHY

All other values are invalide

Secondary PHY to advertise on. Possible values are:-
1- 1MPHY

2 — 2MPHY

All other values are invalid

For all other configID values the function returns an error.

byVal configValue AS INTEGER.
This contains the new value to set in the parameters indentified by configID.

5.4.4 BleAdvRptInit

FUNCTION

configValue

This function is used to create and initialise an advert report with a minimal set of ADs (advertising records) and store it the
string specified. It is not advertised until BLEADVRPTSCOMMIT is called.

This report is for use with advertisement packets.

BLEADVRPTINIT (advRptS, nFlagsAD, nAdvAppearance, nMaxDevName)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful
operation.
Arguments:
advRpts by!%ef adv{?ptS AS STRING.
This contains an advertisement report.
nFlagsAD | byVal nFlagsAD AS INTEGER.

https://www.lairdconnect.com/ 90 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY
User Guide

Specifies the flags AD bits where bit 0 is set for limited discoverability and bit 1 is set
for general discoverability. Bit 2 will be forced to 1 and bits 3 & 4 will be forced to 0.
Bits 3 to 7 are reserved for future use by the BT SIG and must be set to 0.

byVal nAdvAppearance AS INTEGER.

Determines whether the appearance advert should be added or omitted as follows:
nAdvAppearance 0

Omit appearance advert

Add appearance advert as specified in the GAP service which is supplied via
the BleGapSvclinit() function

byVal nMaxDevName AS INTEGER.

1

nMaxDevName | The |eftmost characters of the device name specified in the GAP service. If this

value is set to zero (0) then the device name is not included.

Example:

// Example :: BleAdvRptInit.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM advRpt$: advRpt$=""
DIM discovMode : discovMode=0
DIM advAppearance : advAppearance = 1

DIM maxDevName : maxDevName = 10

IF BleAdvRptInit (advRpt$, discovMode, advAppearance, maxDevName)==0 THEN
PRINT "\nAdvert report initialised"

ENDIF

Expected Output:

|Advert report initialised

5.4.5 BleScanRptInit
FUNCTION

This function is used to create and initialise a scan report which will be sent in a SCAN_RSP message. It will not be used until
BLEADVRPTSCOMMIT is called.

This report is for use with SCAN_RESPONSE packets.

BLESCANRPTINIT (scanRpt)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
Arguments:

ot | T ontins o san repor

Example:

// Example :: BleScanRptInit.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

https://www.lairdconnect.com/ 91 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

DIM scnRpt$: scnRpt$=""

IF BleScanRptInit (scnRpt$)==0 THEN
PRINT "\nScan report initialised"
ENDIF

Expected Output:

|Scan report initialised

5.4.6 BleAdvRptGetSpace

FUNCTION

This function returns the free space in the advert advRptS.

BLEADVRPTGETSPACE(advRpt)

Returns ‘ INTEGER, the free space in bytes.
Arguments:
byRef advRptS AS STRING.
dvRpt.
advRpts This contains an advert/scan report.
Example:
// Example :: BleAdvRptGetSpace.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples
dim rc, s$, dn$

rc=BleScanRptInit (s$)

dn$ = BleGetDeviceName$ ()

//Add device name to scan report
rc=BleAdvRptAppendAD (s$, 0x09,dns$)

print "\nFree space in scan report: "; BleAdvRptGetSpace (s$); " bytes"

Expected Output:

|Free space in scan report: 18 bytes

5.4.7 BleAdvRptAddUuid16
FUNCTION

This function is used to add a 16 bit UUID service list AD (Advertising record) to the advert report. This consists of all the 16
bit service UUIDs that the device supports as a server.

BLEADVRPTADDUUID16 (advRptS, nUuid1, nUuid2, nUuid3, nUuid4, nUuid5, nUuid6)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
Arguments:
AdvRpts byRef AdvRpt AS STRING. . o ‘
The advert report onto which the 16-bit uuids AD record is added.

https://www.lairdconnect.com/ 92 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

byVal uuid1 AS INTEGER

nUuid1 | UUID in the range 0 to FFFF; if the value is outside that range, it is ignored. Set the value to -1 to
have it ignored and then all further UUID arguments will also be ignored.

byVal uuid2 AS INTEGER

nUuid2 | UUID in the range 0 to FFFF; if the value is outside that range, it is ignored. Set the value to -1 to
have it ignored and then all further UUID arguments will also be ignored.

byVal uuid3 AS INTEGER

nUuid3 | UUID in the range 0 to FFFF; if the value is outside that range, it is ignored. Set the value to -1 to
have it ignored and then all further UUID arguments will also be ignored.

byVal uuid4 AS INTEGER

nUuid4 | UUID in the range 0 to FFFF; if the value is outside that range, it is ignored. Set the value to -1 to
have it ignored and then all further UUID arguments will also be ignored.

byVal uuid5 AS INTEGER

nUuid5 | UUID in the range 0 to FFFF; if the value is outside that range, it is ignored. Set the value to -1 to
have it ignored and then all further UUID arguments will also be ignored.

byVal uuid6 AS INTEGER

nUuid6 | UUID in the range 0 to FFFF; if the value is outside that range, it is ignored. Set the value to -1 to
have it ignored and then all further UUID arguments will also be ignored.

Example:

// Example :: BleAdvAddUuidlé6.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM advRpt$, rc
DIM discovMode : discovMode=0
DIM advAppearance : advAppearance = 1

DIM maxDevName : maxDevName = 10

rc = BleAdvRptInit (advRpt$, discovMode, advAppearance, maxDevName)

//BatteryService = 0x180F

//DeviceInfoService = 0x180A
IF BleAdvRptAddUuidlé6 (advRpt$, 0x180F, 0x180A, -1, -1, -1, -1)==0 THEN
PRINT "\nUUID Service List AD added"

ENDIF

//0nly the battery and device information services are included in the advert report

Expected Output:

UUID Service List AD added

https://www.lairdconnect.com/ 93 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY
User Guide

5.4.8 BleAdvRptAddUuid128
FUNCTION

This function is used to add a 128 bit UUID service list AD (Advertising record) to the advert report specified. Given that an
advert can have a maximum of only 31 bytes, it is not possible to have a full UUID list unless there is only one to advertise.

BLEADVRPTADDUUID128 (advRpt, nUuidHandle)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byRef AdvRpt AS STRING.
The advert report into which the 128-bit UUID AD record is to be added.

byVal nUuidHandle AS INTEGER
nUuidHandle | This is handle to a 128-bit UUID which was obtained using a function such as
BleHandleUuid128() or some other function which returns one.

advRpt

Example:

// Example :: BleAdvAddUuidl28.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM uuid$, hUuidCustom
DIM tx$,scRpt$,adRpt$,addrs$, hndl
ScRptS$=""

PRINT BleScanRptInit (scRpt$)

//create a custom uuid for my ble widget
uuid$ = "ced9d91366924a1287d56£2764762b2a"
uuid$ = StrDehexize$ (uuid$)

hUuidCustom = BleHandleUuidl28 (uuid$)

//Advertise the 128 bit uuid in a scan report

PRINT BleAdvRptAddUuidl28 (scRpt$, hUuidCustom)
adRpt$=""

PRINT BleAdvRptsCommit (adRpt$, scRpt$)

addr$="" //because we are not doing a DIRECT advert

PRINT BleAdvertStart (0,addr$,20,30000,0)

Expected Output:
[00000

5.4.9 BleAdvRptAppendAD

FUNCTION

This function adds an arbitrary AD (Advertising record) field to the advert report. An AD element consists of a
LEN:TAG:DATA construct where TAG can be any value from 0 to 255 and DATA is a sequence of octets.

https://www.lairdconnect.com/ 94 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

BLEADVRPTAPPENDAD (advRpt, nTag, stData$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
Arguments:
byRef AdvRpt AS STRING.
AdvRpt . .
The advert report onto which the AD record is to be appended.
- byVal nTag AS INTEGER
nTa
9 nTag should be in the range 0 to FF and is the TAG field for the record.
byRef stData$ AS STRING
stData$ | This is an octet string which can be 0 bytes long. The maximum length is governed by the space
available in AdvRpt, a maximum of 31 bytes long.

Example:

// Example :: BleAdvRptAppendAD.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM scnRpt$, ad$
ads="\01\02\03\04"

PRINT BleScanRptInit (scnRpt$)
IF BleAdvRptAppendAD (scnRpt$, 0x31,ad$)==0 THEN //6 bytes will be used up in the report

PRINT "\nAD with data '";ad$;"' was appended to the advert report"

ENDIF

Expected Output:

0
AD with data '\01\02\03\04' was appended to the advert report

5.4.10BleAdvRptsCommit

FUNCTION

This function is used to commit one or both advert reports. If the string is empty then that report type is not updated. Both
strings can be empty. In that case, this call will have no effect.

The advertisements will not happen until they are started using BleAdvertStart() function.

BLEADVRPTSCOMMIT (advRpt, scanRpt)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
Arguments:
byRef advRpt AS STRING.
advRpt The most recent advert report.
byRef scanRpt AS STRING.
scanRpt The most recent scan report.
https://www.lairdconnect.com/ 95 Americas: +1-800-492-2320

Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

Note: If any one of the two strings is not valid then the call will be aborted without updating the other report even if
this other report is valid.

Tip: You can commit advert reports to update your advertisement data while advertising.
Example:
// Example :: BleAdvRptsCommit.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM advRpt$: advRpts$=""
DIM scRpt$: scRptS$=""

DIM discovMode : discovMode = 0
DIM advApprnce : advApprnce = 1
DIM maxDevName : maxDevName = 10

PRINT BleAdvRptInit (advRpt$, discovMode, advApprnce, maxDevName)
PRINT BleAdvRptAddUuidlé6 (advRpt$, 0x180F,0x180A, -1, -1, -1, -1)
PRINT BleAdvRptsCommit (advRpt$, scRpt$)

// Only the advert report will be updated.

Expected Output:

000

https://www.lairdconnect.com/ 96 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

5.5 Extended Adverts Functions

This section describes all the extended adverts related routines, including ones for scanning and connecting which is an
enhancement that was introduced in the v5.0 specification.

This enhancement allows for the advertising payload to be greater than 31 and in addition the use of all 40 channels and
PHYs of 1M, 2M and LE_CODED.

As a recap, the specification labels the 40 channels from 0 to 39 and in the 4.x specification channels 37,38 and 39 were
dedicated as adverisement channels and they were always sent at 1M PHY as that was the only one possible.

In v5.0, advertisment channels 37,38 and 39 are now qualified as ‘Primary Advertising Channels’ and channels 0 to 36 which
were used exclusively for data in connections, they are now qualified as ‘Secondary Advertising Channels’.

In extended adverts, the adverts sent in the primary channels are still limited to a payload of not more than 31 bytes and
only those on secondary channels can have larger than 31 bytes.

Each advert packet sent on a secondary channel can now have up to 255 bytes of payload (concatenated AD elements) and
the specification allows for chaining up to 6 of those 255 byte packets so that up to 1650 bytes as a single object can be
broadcast. However, field experience has shown that relibility of receiving all those chained packets is not 100% and so
many stack vendors do not offer the chaining capability and so each advert can only have up to 255 bytes of payload. On
that basis, the Laird module also limits it to 255 bytes.

When extended adverts are sent, a newly created primary channel advert, called ADV_EXT_IND, is used with a special
payload that has a pointer to the advert that is subsequently sent on the secondary channel. That pointer object contains
the following information:-

e Time offset to the start of the packet in one of the secondary channels.
e The PHY that the advert will be sent out on, which will be one of 1M, 2M or LE_CODED
e Then channel number which will be in the range 0 to 36

Also note that for earlier specifications, the adverts on channels 37,38,39 were always sent on 1M PHY because that was
the only PHY available. Given that v5.x has introduced new PHYs, it is now possible to send the ADV_EXT_IND (which only
go out on primary channels) on LE_CODED, and that is to allow long range connections to be established. That is logical
because when the two peers are far apart, normal 1M PHY adverts are not going to reach the master device for it to initiate
connections.

An advert or scan response payload consists of multiple advertising records, referred to as AD in the rest of this manual.
Each AD record consists of up to three fields:

= Field 1 - One octet in length and indicates the number of octets that follow it that belong to that record.

= Field 2 —One octet in length and is a tag value which identifies the type of payload that starts at the next octet. Hence
the payload data is ‘length — 1'.
= Field 3 — A special NULL AD record that consists of one field (the length field) when it contains only the 00 value.

The specification also allows custom AD records to be created using the Manufacturer Specific Data AD record.

Refer to the Supplement to the Bluetooth Core Specification, Version 1, Part A which contains the latest list of all AD records.
You must register as at least an adopter, which is free, to gain access to this information. It is available at
https://www.Bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=245130

In the ‘legacy’ adverts smartBASIC api functions have been provided that allow AD elements to be appended to the advert
or scan response payload. Those functions are BleAdvRptlnit(), BleScanRptInit(), BleAdvRptAddUuid16(),
BleAdvRptAddUuid128() and BleAdvRptAppendAD() and they can still be used for extended adverts. However, if the report
will exceed 31 bytes then it will fail. Once that happens a new function called BleExtAdvRptAppendAD() has been added
that will allow any AD element to appended to an advert string and that new function will fail when the total length will
exceed 255 bytes.

https://www.lairdconnect.com/ 97 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=245130

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

The rest of this section will describe the new functions that have been added to facilitate extended adverts. In addition the
following events have been added which are are described in an earlier section and can be naviagted to by clicking them.

1. EVBLE_EXTADVDROPPED
EVBLE_EXTADVNOMEM
EVBLE_SCAN_ABORTED
EVBLE_EXTADV_END
EVBLE_EXTADV_RPT
EVBLE_EXTSCN_RPT
EVBLE_EXTADV_RPT_INCOMPLETE

NounbkwnN

To summarise, to start extended adverts the smartBASIC application will make the following function calls in the sequence
specified:-

1. BleAdvSetCreate()
2. BleAdvSetNewData()
3. BleAdvSetStart()

and once adverts are started BleAdvSetNewData() can be called as often as required to change the data that is currently
being advertised.

To stop adverts, call the following:-
1. BleAdvSetStop()

To scan for adverts, call the following, to stop use the existing function to do so and to preocess advert reports or scan
responses that are received register handlers for events EVBLE_EXTADV_RPT, EVBLE_EXTSCN_RPT and
EVBLE_EXTADV_RPT_INCOMPLETE. This scanning will also result in ‘legacy’ adverts being received which are processed in
the same way that has always existed, that is, be registering for the event EVBLE_ADV_REPORT.

1. BleScanStartEx()

To make connections, use the following function which will allow for making a long range connections. In fact it is
recommened that this new function should always be used as the existing function BleConnect() may be deprecated:-

2. BleConnectExtended()

5.5.1 BleAdvSetCreate

FUNCTION

This function is used to create a new advertising set identified by the nSetld parameter which is a value in the range 0 to N
where N is function of the firmware build. The set identified by nSetID value of 0 is always available and at runtime use
NvCfgKeyGet(217) to obtain the maximum sets that can be created.

Think of a set as the definition of an advertising object and when multiple are defined they can all be advertised
simultaneously in an interleaved manner so that it facilitates the transmission of say iBeacons and Eddystone beacons. Note
that at the time when this was written the underlying stack only allows up to 1 set to be created and resused as often as
desired.

If the nAdvProperties argument is specified with bit 2 set (directed), then the peerAddr$ string must not be empty and
should be a valid address.

When filter policy is enabled, the whitelist consisting of all bonded masters is submitted to the underlying stack so that only
those bonded masters result in scan and connection requests being serviced.

BLEADVSETCREATE (nSetld, nAdvProperties, nPriSecPhy, nFilterPolicy, peerAddr$, chanMask$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
https://www.lairdconnect.com/ 98 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

Arguments:
nSetid | byVal nSetld AS INTEGER.
Avalue in the range 0 to N where N is the value returned by command AT+CFG 127?
byVal nAdvProperties AS INTEGER.
Specifies a bitmask as follows:
Bit Description
0 Set for Connectable, clear for Unconnectable
1 Set for Scannable, clear for Unscannable.
Note when extended bit 3 is set, bits 0 and 1 cannot both be 1
2 Set for Directed and clear for Undirected
nAdvProperties 3 Set for Extended and clear for 4.x adverts
4
8
9

.7 Reserved for future use, set to 0
Set for High latency and clear for low latency when the directed bit 2 is set and will be
ignored if extended bit 3 is set
Set to omit adverisers address from all extended advert pdus so that it is anonymous
Set to include the TX_POWER info field in the CEAP payload of extended adverts.
See specification for more details
11..31 | Reserved for future use, set to 0
byVal nPriSecPhy AS INTEGER.
Bitmask to set Primary and Secondary PHYs
bit 0 : Primary Phy
- Clear for 1MPHY and Set for LE_CODED
- When set, Bit 3 (Extended) in nAdvProperties overriden as always set
bit 123 : Secondary Phy

nPriSecPhy

321
- 000 == Same Phy as Primary Phy
- 001 == IMPHY
- 010 == 2MPHY

-011 == LECODED

-100to 111 is reserved for future use
byVal nFilterPolicy AS INTEGER.
nFilterPolicy | A handle that will have been created using BleWhiteListCreate() that specifies the peer addresses
that will be whitelisted.
byRef peerAddrS AS STRING
It can be an empty string that is omitted if the advertisement type is not ADV_DIRECT_IND.
This is only required when nAdvType == 1. When not empty, a valid address string is exactly seven
octets long (for example: \00\11\22\33\44\55\66) where the first octet is the address type and the
rest of the six octets is the usual Bluetooth address in big endian format (so the most significant octet
peerAddrs | of the address is at offset 1), whether public or random.

0 Public

1 Random Static

2 Random Private Resolvable

3 Random Private Non-Resolvable

All other values are illegal.
byVal chanMaskS AS STRING
This is a string that will be exactly 0 or 5 bytes long that has 40 bits that map to the 40 channels
available in BLE. If a bit is 1 then the corresponding channel is not allowed.

chanMask
5 Bit 0 of the first byte is channel 0 and bit 7 of the 5 byte is channel 39.
At least one but corresponding to channels 37,38 and 39 must be clear.
See specification v5.0, Vol 6, Part B, Section 1.4.1
https://www.lairdconnect.com/ 99 Americas: +1-800-492-2320

Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

5.5.2 BleAdvSetNewData

FUNCTION

This function is used to attach advert and/or scan response data to the data set specified. If adverts are currently being
transmitted for the set specified they need to be stopped and the data will automatically be updated in the next adverts
sent.

This function assumes that the set specified has already been created using BleAdvSetCreate() and if not will return an
appropriate error code.

BLEADVSETNEWDATA (nSetld, advData$, scanData$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nsetid | byVal nSetid AS INTEGER.

Avalue in the range 0 to N where N is the value returned by command AT+CFG 127?

byRef advData$S AS STRING.

Contains concatenated AD elements to be transmitted. The string will have been created with either
BleAdvRptlnit() or BleScanRptlnit(). The latter when the advert is unconnectable so that it is created
with no AD elements. Depending on the type of advert, the length of the advert cannot be greater
than 31 or 238 or 255.

31 limit when nAdvProperties bit 3 is clear

238 limit when nAdvProperties bit 0 is set and bit 3 is set

255 limit when nAdvProperties bit O is clear and bit 3 is set

byRef scanData$ AS STRING.

Contains concatenated AD elements to be transmitted. The string will have been created with either
BleScanRptInit(). Depending on the type of advert, the length of the advert cannot be greater than 0,
scanData$ | 31 or 255.

0 when nAdvProperties bit 1 is clear

31 limit when nAdvProperties bit 3 is clear

255 limit when nAdvProperties bit 3

advData$

5.5.3 BleAdvSetStart

FUNCTION
This function is used to start adverts for the advertising set specified using interval and duration parameters specified.

If the nAdvMaxCount is non-zero then when that many adverts are sent, advertising will be automatically stopped
regardless of the value of the nAdvDuration parameter.

If nAdvMaxCount is zero and nAdvDuration is also 0 then advertising will not autoamtically stopped until either
BleAdvSetStop() with the same nSetID or BleAdvertStop() is called.

BLEADVSETSTART (nSetld, nAdvinterval, nAdvDuration, nAdvMaxCount, nAuxOffset)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

If a 0x6A01 resultcode is received, it implies a whitelist has been enabled but the Flags AD in the
advertising report is set for Limited and/or General Discoverability. The solution is to resubmit a new
advert report which is made up so that the nFlags argument to BleAdvRptInit() function is 0.

The BT spec disallows discoverability when a whitelist is enabled during advertisement.

Arguments:
nsetid | byVal nSetld AS INTEGER.

https://www.lairdconnect.com/ 100 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

A value in the range 0 to N where N is the value returned by command AT+CFG 127?

byVal nAdvinterval AS INTEGER.

nAdvinterval | The interval between two advertisement events (in milliseconds).

Valid range is between 20 and 10240 milliseconds.

byVal nAdvTimeout AS INTEGER.

The time after which the module stops advertising (in milliseconds). The range of this value is
between 0 and 16383000 milliseconds and is rounded up to the nearest 1 seconds (1000ms).
A value of 0 means disable the timeout

byVal nAdvMaxCount AS INTEGER.

This is a value in the range 0 to 255

nAdvDuration

nAdviMaxCount When non-zero, then advertising will automatically stop when this many adverts are sent. The event
EVBLE_EXTADV_END will be received with the reason set to the number of adverts sent.
byVal nAuxOffset AS INTEGER.
This is reserved for future use and must always be set to 0 which signifies the use of stack default
nAuxOffset

value which is around 4 milliseconds. No assumptions should be made on this value as the default
value is subject to change by the stack vendor.

5.5.4 BleAdvSetStop

FUNCTION

This function is used to stop adverts for the advertising set specified.

BLEADVSETSTOP (nSetld)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nSetid | byVal nSetld AS INTEGER.
Avalue in the range 0 to N where N is the value returned by command AT+CFG 127?

5.5.5 BleScanStartEx

FUNCTION

This function is used to start a scan for adverts which may result in at least one of the following events being thrown:

EVBLE_SCAN_TIMEOUT End of scanning

EVBLE_ADV_REPORT Advert report received

EVBLE_FAST_PAGED Peripheral inviting a connection to this module
EVBLE_EXTADVDROPPED Event message queue full and extended advert arrived
EVBLE_EXTADVNOMEM Extended advert or scan response arrived and malloc failed
EVBLE_EXTADV_RPT Received an extended advert report

EVBLE_EXTSCN_RPT Received an extended scan response
EVBLE_EXTADV_RPT_INCOMPLETE ::]izeri:/slcitaengaiztsgslzjjdvert report or scan response which has

= EVBLE_ADV_REPORT — Received when an advert has been successfully cached in a ring buffer. The handler should call
the function BleScanGetAdvReport() repeatedly to read all the advert reports that have been cached until the cache is
empty, otherwise there is a risk that advert reports will be discarded. The output parameter nDiscarded returns the
number of discarded reports, if any.

= EVBLE_FAST_PAGED — Received when a peripheral has sent an advert with the address of this module. The handler
should stop scanning using BleScanStop() and then initiate a connection using BleConnect().

https://www.lairdconnect.com/ 101 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

= EVBLE_EXTADV_RPT_INCOMPLETE is received when an advert report or scan response is received when the data is
incomplete. This can happened for example when a advertiser has sent an advert or scan response which is greater
than 255 by sending chained packets. The underlying code in this buffer does not provide a buffer larger than 255
bytes for the data to be stored in and so it has to be reported as incomplete.

There are two parameters used when initiating a scan that are configurable using BleScanConfig(), otherwise default values
are used:

= Scan Interval — Specify the duty cycle for listening for adverts. Default value: 80 milliseconds.
= Scan Window — Specify the duty cycle for listening for adverts. Default value: 40 milliseconds.

The values for these default parameters can be changed prior to invoking this function by calling the function
BleScanConfig() appropriately.

Scanning can be stopped at any time by called BleScanStop() or by starting a connection.

Note: Be aware that scanning is a memory intensive operation and so heap memory is used to manage a cache for
legacy adverts. If the heap is fragmented, it is likely this function will fail with an appropriate resultcode
returned. If that happens, call reset() and then attempt the scan start again. The memory that is allocated to
manage this scan process is NOT released when the scanning times out. To force release of that memory, we
recommend that you start the scan and then immediately call BleScanStop().

BLESCANSTARTEX(scanTimeoutMs, nPriPhyScan, chanMask$, nFilterHandle)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byVAL scanTimeoutMs AS INTEGER.
The length of time in milliseconds the scan for adverts lasts. If the timer times out then the
scanTimeoutMs | event EVBLE_SCAN_TIMEOUT is thrown to the smartBASIC application.
Valid range is 0 to 65535000 milliseconds (about 18 hours). If 0 is supplied, a timer is not
started and scanning can only be stopped by calling either BleScanAbort() or Ble ScanStop().
byVAL nPriPhyScan AS INTEGER
Bit Mask to specify the PHY to scan on in the primary channels and whether passive or active
scanning as follows
Note: At least one bit MUST be set.

Bit 0: Scan on IMPHY
nPriPhyScan Bit 1: Scan on LE_CODED
Bit 2: Set for Extended Scanning (If Bit 1 set, then this is overriden and always set)
Bit 3: Set for Passive Scanning and clear for Active Scanning

Note when Bit 2 is clear and bit 1 is not set, then the scanning is as per legacy scanning which
would if BleScanStart() was called.

byVal chanMaskS AS STRING

This is a string that will be exactly 0 or 5 bytes long that hass 40 bits that map to the 40
channels available in BLE. If a bit is 1 then the corresponding channel is not allowed.
Bit 0 of the first byte is channel 0 and bit 7 of the 5% byte is channel 39.

At least one but corresponding to channels 37,38 and 39 must be clear.

See specification v5.0, Vol 6, Part B, Section 1.4.1

byVal nFilterPolicy AS INTEGER.

nFilterHandle | A handle that will have been created using BleWhiteListCreate() that specifies the peer
addresses that will be whitelisted.

chanMask$

https://www.lairdconnect.com/ 102 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

5.5.6 BleExtRptMetadata

FUNCTION

This function is used to extract information from the metaData$ string parameter that is sent in the following events:-

EVBLE_EXTADV_RPT Received an extended advert report

EVBLE_EXTSCN_RPT Received an extended scan response

Received and extended advert report or scan response which has

EVBLE_EXTADV_RPT_INCOMPLETE | .
- - - incomplete data payload

BLEEXTRPTMETADATA (metaData$, ninfold)

Returns INTEGER, the value of the information field.
It will be 0x80000000 if the metaData$ string is of the wrong length.
It will be 0x80000001 if the metaData$ string is invalid due to not having correct magic header.

Arguments:

metaDatas | byRef metaData$ as STRING

The metadata$ string that arrived in one of the events listed above.

ninfold | byVal ninfold AS INTEGER.

The information extracted is as per the list below.

: Set_id

: data_id

: primary phy

: secondary phy

: channel_index

: tx_power (This field is set to 127 if the report does not contain the TxPower field)

: Status (0=Complete
1=INCOMPLETE_MORE_DATA - More data to be received
2=INCOMPLETE_TRUNCATED - Buffer size insufficient to receive more
3=INCOMPLETE_MISSED - Failed to receive the remaining data

8 : Packet type: O for Advert Report and 1 for Scan Response

NoubhwNR

All other id values will return 0.

5.5.7 BleConnectExtended

FUNCTION

This function is used to make normal or long range connections to a device in peripheral mode which is actively advertising
using filtering.

When the connection is complete, a EVBLEMSG message with msgld = 0 and context containing the handle are thrown to
the smartBASIC runtime engine.

If the connection times out, then the event EVBLE_CONN_TIMEOUT is thrown to the smartBASIC application.

When a connection is attempted, there are other parameters that are used and the default values for those are assumed;
for example, scan window, scan interval, and periodicity. The default values for those can be changed using the
BleConnectConfig() function. At any time, the current settings can be obtained via the SYSINFO() command.

BLECONNECTEXTENDED(peerAddrS, connTimeoutMs, minConnintUs, maxConnintUs, nSuprToutUs, nLongRange,hFilter)

Returns INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.
Arguments:
https://www.lairdconnect.com/ 103 Americas: +1-800-492-2320

Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

byRef peerAddrs AS STRING

peerAddrS | The Bluetooth address of the device to connect to which MUST be properly formatted and is
exactly seven bytes long.

byVal connTimeoutMs AS INTEGER.

connTimeoutMs | The length of time in milliseconds that the connection attempt lasts. If the timer times out
then the event EVBLE_CONN_TIMEOUT is thrown to the smartBASIC application.

byVal minConnintUs AS INTEGER.

minConnintUs | The minimum connection interval in microseconds. Valid range is between 7500 and
4000000 microseconds.

byVal maxConnintUs AS INTEGER.

maxConnintUs | The maximum connection interval in microseconds. Valid range is between 7500 and
4000000 microseconds

byVal nSuprToutUs AS INTEGER.

The link supervision timeout for the connection in microseconds.

byVal nLongRange AS INTEGER.

nLongRange | Set to 0 for normal IMPHY connections and 1 for long ragne connections off LE_CODED
adverts sent by the peer

byVal nFilter AS INTEGER.

hFilter | A handle that will have been created using BleWhiteListCreate() that specifies the peer
addresses that will be whitelisted.

nSuprToutUs

5.5.8 BleExtAdvRptAppendAD

FUNCTION

This function adds an arbitrary AD (Advertising record) field to the advert or scan report. An AD element consists of a
LEN:TAG:DATA construct where TAG can be any value from 0 to 255 and DATA is a sequence of octets.

This function is the only one that is able to add an AD element to a report when adding it will extend the report beyond 31
bytes. It will not succeed of the report will result in it being over 255 bytes long.

Use function BleExtAdvGetSpace() to determine current available space in advRptS string.

BLEEXTADVRPTAPPENDAD (advRpt$, nTag, stData$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
Arguments:
byRef AdvRptS AS STRING.
AdvRptS yRe gt : .
The advert report onto which the AD record is to be appended.
nTa byVal nTag AS INTEGER
g nTag should be in the range 0 to FF and is the TAG field for the record.
byRef stData$ AS STRING

stData$ | This is an octet string which can be 0 bytes long. The maximum length is governed by the space
available in AdvRpt, a maximum of 255 bytes long.

5.5.9 BleExtAdvRptAddUuidi16

FUNCTION

https://www.lairdconnect.com/ 104 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

This function is used to add a 16 bit UUID service list AD (Advertising record) to the extended advert report. This consists of
all the 16 bit service UUIDs that the device supports as a server. Up to six 16 bit UUIDs can be added.

BLEEXTADVRPTADDUUID16 (advRptS, nUuid1, nUuid2, nUuid3, nUuid4, nUuid5, nUuid6)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
Arguments:
AdvRptS byRef AdvRpt AS STRING. . . - .
The advert report onto which the 16-bit uuids AD record is added.
nUuid1 byVal uuid1 AS INTEGER
UUID in the range O to FFFF; if the value is outside that range, it is ignored.
byVal uuid2 AS INTEGER

nUuid2 | UUID in the range 0 to FFFF; if the value is outside that range, it is ignored. Set the value to -1 to
have it ignored and then all further UUID arguments will also be ignored.

byVal uuid3 AS INTEGER

nUuid3 | UUID in the range 0 to FFFF; if the value is outside that range, it is ignored. Set the value to -1 to
have it ignored and then all further UUID arguments will also be ignored.

byVal uuid4 AS INTEGER

nUuid4 | UUID in the range 0 to FFFF; if the value is outside that range, it is ignored. Set the value to -1 to
have it ignored and then all further UUID arguments will also be ignored.

byVal uuid5 AS INTEGER

nUuid5 | UUID in the range 0 to FFFF; if the value is outside that range, it is ignored. Set the value to -1 to
have it ignored and then all further UUID arguments will also be ignored.

byVal uuid6 AS INTEGER

nUuid6 | UUID in the range 0 to FFFF; if the value is outside that range, it is ignored. Set the value to -1 to
have it ignored and then all further UUID arguments will also be ignored.

5.5.10 BleExtAdvRptAddUuid128

FUNCTION

This function is used to add a 128 bit UUID service list AD (Advertising record) to the extended advert report. This consists
of all the 128 bit service UUIDs that the device supports as a server. Up to six 128 bit UUIDs can be added. If there isn’t
enough space to add an element with all the UUID’s specified then the AD element tag will be the incomplte list variant
which has the value 0x06 instead of 0x07 which denotes the fact that all UUIDs fitted.

The function takes UUID handles that will have been obtained using functions like BleHandleUuid128() and
BleHandleUuidSibling().

BLEEXTADVRPTADDUUID128 (advRpt$, hUuid1, hUuid2, hUuid3, hUuid4, hUuid5, hUuid6)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
Arguments:
AdvRptS byRef AdvRpt AS STRING. o .
The advert report onto which the 128-bit uuids AD record is added.
hUuid1 byVal hUuid1 AS INTEGER
UUID handle that will have been obtained using BleHandleUuid128() or BleHandleUuidSibling().
byVal hUuid2 AS INTEGER
hUuid2 UUID handle that will have been obtained using BleHandleUuid128() or BleHandleUuidSibling().
Set the value to 0 to have it ignored and then all further UUID handle arguments will also be
ignored.
byVal hUuid3 AS INTEGER

hUuid3 | UUID handle that will have been obtained using BleHandleUuid128() or BleHandleUuidSibling().
Set the value to 0 to have it ignored and then all further UUID handle arguments will also be

https://www.lairdconnect.com/ 105 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

ignored.
byVal hUuid4 AS INTEGER

hUuid4 UUID handle that will have been obtained using BleHandleUuid128() or BleHandleUuidSibling().
Set the value to 0 to have it ignored and then all further UUID handle arguments will also be
ignored.
byVal hUuid5 AS INTEGER

hUuids UUID handle that will have been obtained using BleHandleUuid128() or BleHandleUuidSibling().
Set the value to 0 to have it ignored and then all further UUID handle arguments will also be
ignored.
byVal hUuid6 AS INTEGER

hUuid6 UUID handle that will have been obtained using BleHandleUuid128() or BleHandleUuidSibling().
Set the value to 0 to have it ignored and then all further UUID handle arguments will also be
ignored.

5.5.11 BleExtAdvRptGetSpace

FUNCTION
This function returns the free space in the extended advert advRptS.

BLEEXTADVRPTGETSPACE(advRpt)

Returns ‘ INTEGER, the free space in bytes.
Arguments:
byRef advRpt$ AS STRING.
advRpt
pts This contains an advert/scan report.

5.6 Scanning Functions

When a peripheral advertises, the advert packet consists type of advert, address, RSSI, and some user data information.
A central role device enters scanning mode to receive these advert packets from any device that is advertising.

For each advert that is received, the data is cached in a ring buffer, if space exists, and the EVBLE_ADV_REPORT event is
thrown to the smartBASIC application so that it can invoke the function BleScanGetAdvReport() to read it.

The scan procedure ends when it times out (timeout parameter is supplied when scanning is initiated) or when explicity
instructed to abort or stop.

Note: While scanning for a long period of time, it is possible that a peripheral device is advertising for a connection to
it using the ADV_DIRECT_IND advert type. When this happens, it is good practice for the central device to stop
scanning and initiate the connection. To cater for this specific scenario, which would normally require the central
device to look out for that advert type and the self address, the EVBLE_FAST_PAGED event is thrown to the
application. This means that all the user app needs to do is to install a handler for that event which stops the
scan procedure and immediately starts a connection procedure.

For more information about adverts see the section Advertising Functions.

https://www.lairdconnect.com/ 106 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

5.6.1 BleScanStart

FUNCTION

This function is used to start a scan for adverts which may result in at least one of the following events being thrown:

EVBLE_SCAN_TIMEOUT | End of scanning

EVBLE_ADV_REPORT Advert report received
EVBLE_FAST_PAGED Peripheral inviting a connection to this module

= EVBLE_ADV_REPORT - Received when an advert has been successfully cached in a ring buffer. The handler should call
the function BleScanGetAdvReport() repeatedly to read all the advert reports that have been cached until the cache is
empty, otherwise there is a risk that advert reports will be discarded. The output parameter nDiscarded returns the
number of discarded reports, if any.
= EVBLE_FAST_PAGED — Received when a peripheral has sent an advert with the address of this module. The handler
should stop scanning using BleScanStop() and then initiate a connection using BleConnect().
There are three parameters used when initiating a scan that are configurable using BleScanConfig(), otherwise default
values are used:
= Scan Interval — Specify the duty cycle for listening for adverts. Default value: 80 milliseconds.
= Scan Window — Specify the duty cycle for listening for adverts. Default value: 40 milliseconds.
= Scan Type — Default scan type: Active
Active scanning means that for each advert received (if it is ADV_IND or ADV_DISCOVER_IND) a SCAN_REQ is sent to

the advertising device so that the data in the scan response can be appended to the data that has already been
received for the advert.

The values for these default parameters can be changed prior to invoking this function by calling the function
BleScanConfig() appropriately.

Note: Be aware that scanning is a memory intensive operation and so heap memory is used to manage a cache. If the
heap is fragmented, it is likely this function will fail with an appropriate resultcode returned. If that happens, call
reset() and then attempt the scan start again. The memory that is allocated to manage this scan process is NOT
released when the scanning times out. To force release of that memory, we recommend that you start the scan
and then immediately call BleScanStop().

Connections may not be established during a scan operation. If a continued scan is required, stop the scan or let
it timeout, connect, then restart the scan.

BLESCANSTART (scanTimeoutMs, nFilterHandle)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byVAL scanTimeoutMs AS INTEGER.

The length of time in milliseconds the scan for adverts lasts. If the timer times out then the
scanTimeoutMs | event EVBLE_SCAN_TIMEOUT is thrown to the smartBASIC application.

Valid range is 0 to 65535000 milliseconds (about 18 hours). If 0 is supplied, a timer is not
started and scanning can only be stopped by calling either BleScanAbort() or Ble ScanStop().
byVAL nFilterHandle AS INTEGER

nFilterHandle | This must be zero (0) to specify no filtering of adverts.

Note: In this current firmware version, this is only a placeholder.

Example:
{ // Example :: BleScanStart.sb
https://www.lairdconnect.com/ 107 Americas: +1-800-492-2320

Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples
DIM rc

'//Scan for 20 seconds with no filtering
rc = BleScanStart (20000, 0)

IF rc==0 THEN

PRINT "\nScanning"
ELSE

PRINT "\nError: "; INTEGER.H'rc
ENDIF

'//This handler will be called when scanning times out
FUNCTION HndlrScanTO ()
PRINT "\nScan timeout"
ENDFUNC 0
ONEVENT EVBLE SCAN TIMEOUT CALL HndlrScanTO

WAITEVENT

Expected Output:

Scanning
Scan timeout

5.6.2 BleScanAbort

FUNCTION

This function is used to cancel an ongoing scan for adverts which has not timed out. It takes no parameters as there can
only be one scan in progress.

Use the value returned by SYSINFO(2016) to determine if there is an ongoing scan operation in progress. The value is a bit
mask where:

= bit 0is set if advertising is in progress

= bit 1is set if there is already a connection in a peripheral role

= bit 2 is set if there is a current ongoing connection attempt

= bit 3 is set when scanning

= bit 4is set if there is already a connection to a peripheral
There is also BleScanStop() which cancels an ongoing scan. The difference is that, by calling BleScanAbort(), the memory

that was allocated from heap by BleScanStart() is not released back to the heap. The scan manager retains it for the next
scan operation.

BLESCANABORT ()

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments | None

Example:

// Example :: BleScanAbort.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM rc, startTick

https://www.lairdconnect.com/ 108 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

'//Scan for 20 seconds with no filtering

rc = BleScanStart (20000, 0)

IF rc==0 THEN
PRINT "\nScanning"
ELSE
PRINT "\nError: "; INTEGER.H'rc

ENDIF

'//Wait 2 seconds before aborting scan
startTick = GetTickCount ()

WHILE GetTickSince (startTick) < 2000
ENDWHILE

'//1f scan in progress, abort
IF SysInfo(2016) == 0x08 THEN
PRINT "\nAborting scan"
rc = BleScanAbort ()
IF SysInfo(2016) == 0 THEN
PRINT "\nScan aborted"
ENDIF
ENDIF

Expected Output:

Scanning
Aborting scan
Scan aborted

5.6.3 BleScanStop

FUNCTION

This function is used to cancel an ongoing scan for adverts which has not timed out. It takes no parameters, as there can
only be one scan in progress.

Use the value returned by SYSINFO(2016) to determine if there is an ongoing scan operation in progress. The value is a bit
mask where:

= bit 0is set if advertising is in progress

= bit1issetif thereis already a connection in a peripheral role

= bit 2is setif there is a current ongoing connection attempt

= bit 3 is set when scanning

= bit 4is set if there is already a connection to a peripheral

There is also BleScanAbort() which cancels an ongoing scan. The difference is that, by calling BleScanStop(), the memory
that was allocated from heap by BleScanStart() is released back to the heap. The scan manager must reallocate the memory
if BleScanStart() is called again.

https://www.lairdconnect.com/ 109 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

BLESCANSTOP ()

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments | None

Example:

// Example :: BleScanStop.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM rc, startTick

'//Scan for 20 seconds with no filtering

rc = BleScanStart (20000, 0)

IF rc==0 THEN

PRINT "\nScanning"
ELSE

PRINT "\nError: "; INTEGER.H'rc
ENDIF

'//Wait 2 seconds before aborting scan
startTick = GetTickCount ()

WHILE GetTickSince (startTick) < 2000
ENDWHILE

'//If scan in progress, abort
IF SysInfo(2016) == 0x08 THEN
PRINT "\nStop scanning. Freeing up allocated memory"
rc = BleScanStop ()
IF SysInfo(2016) == 0 THEN
PRINT "\nScan stopped"
ENDIF
ENDIF

Expected Output:

Scanning
Stop scanning. Freeing up allocated memory
Scan stopped

5.6.4 BleScanFlush

FUNCTION
This function is used to flush the ring buffer which stores incoming adverts which are later read.

https://www.lairdconnect.com/ 110 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

BLESCANFLUSH ()

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments | None

Example:

// Example :: BleScanFlush.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM rc, startTick

'//Scan for 20 seconds with no filtering

rc = BleScanStart (20000, 0)

IF rc==0 THEN

PRINT "\nScanning"
ELSE

PRINT "\nError: "; INTEGER.H'rc
ENDIF

'//Wait 2 seconds before aborting scan
startTick = GetTickCount ()

WHILE GetTickSince (startTick) < 2000
ENDWHILE

'//1f scan in progress, abort
IF SysInfo(2016) == 0x08 THEN
PRINT "\nAborting scan"
rc = BleScanAbort ()
IF SysInfo(2016) == 0 THEN
PRINT "\nScan aborted"

ENDIF

'//Free up memory
rc = BleScanFlush()
IF (rc == 0) THEN
PRINT "\nScan results flushed."
ENDIF
ENDIF

Expected Output:

Scanning
Aborting scan

https://www.lairdconnect.com/ 111 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

Scan aborted
Scan results flushed.

5.6.5 BleScanConfig

FUNCTION
This function is used to modify the default parameters that are used when initiating a scan operation using BleScanStart().

The following are the default values for the parameters:

Scan Interval 80 milliseconds
Scan Window 40 milliseconds
Scan Type (Active/Passive) Active
Minimum Reports in Cache 4
Note: The default Scan Window and Interval give a 50% duty cycle. The 50% duty cycle attempts to ensure that

connection events for existing connections are missed as infrequently as possible.

BLESCANCONFIG (configID, configValue)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byVal configiD AS INTEGER.
This identifies the value to update as follows:

0 Scan Interval in milliseconds (range 0..10240)
configlD 1 Scan Window in milliseconds (range 0..10240)

2 Scan Type (0O=Passive, 1=Active)

3 Advert Report Cache Slze

For all other configlD values the function returns an error.

byVal configValue AS INTEGER.

configValue - .
fig This contains the new value to set in the parameters indentified by configlD.
Example:
// Example :: BleScanConfig.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM rc, startTick

PRINT "\nScan Interval: "; SysInfo(2150) //get current scan interval
PRINT "\nScan Window: "; SysInfo(2151) //get current scan window
PRINT "\nScan Type: ";
IF SysInfo(2152)==0 THEN //get current scan type

PRINT "Passive"
ELSE

PRINT "Active"
ENDIF

PRINT "\nReport Cache Size: "; SysInfo(2153) //get report cache size

https://www.lairdconnect.com/ 112 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

PRINT "\n\nSetting new parameters..."

rc = BleScanConfig (0, 100) //set scan interval to 100

rc = BleScanConfig(1l, 50) //set scan window to 50

rc = BleScanConfig (2, 0) //set scan type to passive

rc = BleScanConfig (3, 3) //set report cache size

PRINT "\n\n--- New Parameters:"

PRINT "\nScan Interval: "; SysInfo(2150) //get current scan interval
PRINT "\nScan Window: "; SysInfo(2151) //get current scan window

PRINT "\nScan Type: ";
IF SysInfo(2152)==0 THEN //get current scan type
PRINT "Passive"
ELSE
PRINT "Active"
ENDIF
PRINT "\nReport Cache Size: "; SysInfo(2153) //get report cache size

Expected Output:

Scan Interval: 80
Scan Window: 40

Scan Type: Active
Report Cache Size: 4

Setting new parameters..

—-—-— New Parameters:
Scan Interval: 100
Scan Window: 50

Scan Type: Passive
Report Cache Size: 3

5.6.6 BleScanGetAdvReport

FUNCTION

When a scan is in progress after having called BleScanStart() for each advert report, the information is cached in a queue
buffer and an EVBLE_ADV_REPORT event is thrown to the smartBASIC application.

This function is used by the smartBASIC application to extract it from the queue for further processing in the handler for the
EVBLE_ADV_REPORT event.

The retrieved information consists of the address of the peripheral that sent the advert, the data payload, the number of
adverts (all, not just from that peripheral) that have been discarded since the last time this function was called and the RSSI
value for that packet.

Note: The RSSI can be used to determine the closest device. However, due to fading and reflections, it is possible that a
device further away could result in a higher RSSI value.

https://www.lairdconnect.com/ 113 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY
User Guide

BLESCANGETADVREPORT (periphAddr$, advData$, nDiscarded, nRssi)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byREF periphAddrs AS STRING

On return, this parameter is updated with the address of the peripheral that sent the advert.

byREF advDataS AS STRING

advData$ | On return, this parameter is updated with the data payload of the advert which consists of multiple
AD elements.

byREF nDiscarded AS INTEGER

nDiscarded | On return, this parameter is updated with the number of adverts that were discarded because there
was no space in the internal queue.

byREF nRssi AS INTEGER

On return, this parameter is updated with the RSSI as reported by the stack for that advert.

periphAddrs

nRssi
Note: Thisis NOT a value that is sent by the peripheral but a value that is calculated by the
receiver in this module.
Note: This code snippet was tested with another BL652 running the iBeacon app (see in smartBASIC_Sample_Apps

folder) on peripheral firmware.

Example:

// Example :: BleScanGetAdvReport.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM rc

'//Scan for 20 seconds with no filtering

rc = BleScanStart (5000, 0)

IF rc==0 THEN
PRINT "\nScanning"
ELSE
PRINT "\nError: "; INTEGER.H'rc

ENDIF

'//This handler will be called when scanning times out
FUNCTION HndlrScanTO ()
PRINT "\nScan timeout"

ENDFUNC 0

'//This handler will be called when an advert is received
FUNCTION HndlrAdvRpt ()

DIM periphAddr$, advData$, nDiscarded, nRssi

https://www.lairdconnect.com/ 114 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

'//Read all cached advert reports
rc=BleScanGetAdvReport (periphAddr$, advData$, nDiscarded, nRssi)
WHILE (rc == 0)

PRINT "\n\nPeer Address: "; StrHexize$ (periphAddr$)

PRINT "\nAdvert Data: ";StrHexize$ (advData$)

PRINT "\nNo. Discarded Adverts: ";nDiscarded

PRINT "\nRSSI: ";nRssi

rc=BleScanGetAdvReport (periphAddr$, advData$, nDiscarded, nRssi)

ENDWHILE
PRINT "\n\n --- No more adverts in cache"
ENDFUNC 1

ONEVENT EVBLE SCAN TIMEOUT CALL HndlrScanTO
ONEVENT EVBLE ADV REPORT CALL HndlrAdvRpt

WAITEVENT

Expected Output:

Scanning

Peer Address: 01D8CFCF14498D

Advert Data: 0201061AFF4C000215E2C56DB5DFFB48D2B060D0F5A71096E012345678C4
No. Discarded Adverts: O

RSSI: =97

Peer Address: 01D8CFCF14498D

Advert Data: 0201061AFF4C000215E2C56DB5DFFB48D2B060D0F5A71096E012345678C4
No. Discarded Adverts: O

RSSI: =97

-—— No more adverts in cache

Peer Address: 01D8CFCF14498D

Advert Data: 0201061AFF4C000215E2C56DB5DFFB48D2B060D0OF5A71096E012345678C4
No. Discarded Adverts: 0

RSSI: -92

Peer Address: 01D8CFCF14498D

Advert Data: 0201061AFF4C000215E2C56DB5DFFB48D2B060D0F5A71096E012345678C4
No. Discarded Adverts: O

RSSI: -92

-—— No more adverts in cache
Scan timeout

https://www.lairdconnect.com/ 115 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

5.6.7 BleScanGetAdvReportEx

When a scan is in progress after having called BleScanStart() for each advert report, the information is cached in a queue
buffer and an EVBLE_ADV_REPORT event is thrown to the smartBASIC application.

This function is used by the smartBASIC application to extract it from the queue for further processing in the handler for the
EVBLE_ADV_REPORT event.

The retrieved information consists of the address of the peripheral that sent the advert, the data payload, the number of
adverts (all, not just from that peripheral) that have been discarded since the last time this function was called and the RSSI
value for that packet, in addition to the advert type and the channel number on which the advert was received.

BLESCANGETADVREPORTEX (nAdvertType, periphAddrS, advData$, nDiscarded, nRssi, nChannel)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byREF nAdvertType AS STRING
On return, this parameter will contain the type of the advert that was read. Possible values are as

follows:-
nAdvertType 0 ADV_IND Invites connection requests
1 ADV_DIRECT_IND Invites connection from addressed device
2 ADV_SCAN_IND Invites scan request for more advert data
3 ADV_NONCONN_IND Does not accept connections/active scans

byREF periphAddrs AS STRING

On return, this parameter is updated with the address of the peripheral that sent the advert.

byREF advData S AS STRING

advData$ | On return, this parameter is updated with the data payload of the advert which consists of multiple AD
elements.

byREF nDiscarded AS INTEGER

nDiscarded | On return, this parameter is updated with the number of adverts that were discarded because there was
no space in the internal queue.

byREF nRssi AS INTEGER

On return, this parameter is updated with the RSSI as reported by the stack for that advert.

Note: Thisis NOT a value that is sent by the peripheral but a value that is calculated by the receiver in
this module.

byREF nChannel AS INTEGER

nChannel | On return, this parameter is set to the channel on which the advert has arrived. Valid values are 0, 1, or
2.

periphAddrs

nRssi

//Example :: BleScanGetAdvReportEx.sb

DIM rc

'//Scan for 5 seconds with no filtering
rc = BleScanStart (5000, 0)

IF rc==0 THEN

PRINT "\nScanning"
ELSE

PRINT "\nError: "; INTEGER.H'rc
ENDIF

'//This handler will be called when scanning times out

https://www.lairdconnect.com/ 116 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

FUNCTION HndlrScanTO ()
PRINT "\nScan timeout"
ENDFUNC 0

'//This handler will be called when an advert is received
FUNCTION HndlrAdvRpt ()
DIM nAdvType, periphAddr$, advData$, nDiscarded, nRssi, nChannel

'//Read all cached advert reports
rc=BleScanGetAdvReportEx (nAdvType, periphAddr$, advData$, nDiscarded, nRssi, nChannel)
WHILE (rc == 0)

PRINT "\n\nAdvert Type: "; nAdvIype

PRINT "\nPeer Address: "; StrHexize$ (periphAddr$)

PRINT "\nAdvert Data: ";StrHexize$ (advData$)

PRINT "\nNo. Discarded Adverts: ";nDiscarded

PRINT "\nRSSI: ";nRssi

PRINT "\nChannel: ";nChannel

rc=BleScanGetAdvReportEx (nAdvType, periphAddr$, advData$, nDiscarded, nRssi, nChannel)

ENDWHILE
PRINT "\n\n --- No more adverts in cache"
ENDFUNC 1

ONEVENT EVBLE SCAN TIMEOUT CALL HndlrScanTO
ONEVENT EVBLE ADV REPORT CALL HndlrAdvRpt

WAITEVENT

Scanning

Advert Type: 2
Peer Address: 01CDBD40C5A79A
Advert Data: 0201061AFFA4C000215E2C56DB5DFFB48D2B060D0OF5A71096E012345678C40409526F6E

No. Discarded Adverts: O
RSSI: -81
Channel: 1

-—— No more adverts in cache
Scan timeout
00

5.6.8 BleGetADbylndex

FUNCTION

This function is used to extract a copy of the nth (zero based) advertising data (AD) element from a string which is assumed
to contain the data portion of an advert report, incoming or outgoing.

Note: If the last AD element is malformed then it is treated as not existing. For example, it is malformed if the length
byte for that AD element suggests that more data bytes are required than actually exist in the report string.

BLEGETADBYINDEX (nindex, rptData$, nADtag, ADval$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

https://www.lairdconnect.com/ 117 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

byVAL nindex AS INTEGER

nindex | This is a zero-based index of the AD element that is copied into the output data parameter
ADvals.

byREF rptData$ AS STRING.

rptData$ | This parameter is a string that contains concatenated AD elements which were either
constructed for an outgoing advert or were received in a scan.

byREF nADTag AS INTEGER

nADTag | When the nth index is found, the single byte tag value for that AD element is returned in this
parameter.

byREF ADval$ AS STRING

ADval$s | When the nth index is found, the data excluding single byte the tag value for that AD element is
returned in this parameter.

Example:

// Example :: BleGetADbyIndex.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM rc, adl$, ad2$, fullADS$, nADTag, ADvals$

'//AD with length = 6 bytes, tag = 0xDD
adl1$="\06\DD\11\22\33\44\55"
'//AD with length = 7 bytes, tag = 0xDA

ad25="\07\EE\AA\BB\CC\DD\EE\FFE"

fullADS = adl$ + ad2$
PRINT "\n\n"; Strhexize$ (fullADS);"\n"

rc=BleGetADbyIndex (0, fullADS$, nADTag, ADval$)
IF rc==0 THEN

PRINT "\nFirst AD element with tag Ox"; INTEGER.H'nADTag ;" is ";StrHexize$ (ADval$)
ELSE

PRINT "\nError reading AD: " ;INTEGER.H'rc

ENDIF

rc=BleGetADbyIndex (1, fullAD$, nADTag, ADvals$)
IF rc==0 THEN

PRINT "\nSecond AD element with tag 0x"; INTEGER.H'nADTag ;" is ";StrHexize$ (ADval$)
ELSE

PRINT "\nError reading AD: "; INTEGER.H'rc

ENDIF

https://www.lairdconnect.com/ 118 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

'//Will fail because there are only 2 AD elements
rc=BleGetADbyIndex (2, fullADS$S , nADTag, ADval$)
IF rc==0 THEN
PRINT "\nThird AD element with tag O0x"; INTEGER.H'nADTag ;" is ";StrHexize$ (ADvals$)
ELSE
PRINT "\nError reading AD: "; INTEGER.H'rc

ENDIF

Expected Output:
06DD112233445507EEAABBCCDDEEFF

First AD element with tag 0x000000DD is 1122334455
Second AD element with tag 0x000000EE is AABBCCDDEEFF
Error reading AD: 00006060

5.6.9 BleGetADbyTag

FUNCTION

This function is used to extract a copy of the first advertising data (AD) element that has the tag byte specified from a string
which is assumed to contain the data portion of an advert report, incoming or outgoing. If multiple instances of that AD tag
type are suspected, then use the function BleGetADbylndex to extract.

Note: If the last AD element is malformed, then it is treated as nonexistent. For example, it is malformed if the length
byte for that AD element suggests that more data bytes are required than actually exist in the report string.

BLEGETADBYTAG (rptData$, nADtag, ADval$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byREF rptData$ AS STRING.
rptData$ | This parameter is a string that contains concatenated AD elements which were either
constructed for an outgoing advert or were received in a scan.

byVAL nADTag AS INTEGER

This parameter specifies the single byte tag value for the AD element that is to returned in the
ADvalS parameter. Only the first instance can be catered for. If multiple instances are suspected,
then use BleAdvADbyIndex() to extract it.

byREF ADval$ AS STRING

ADval$s | When the nth index is found, the data excluding single byte the tag value for that AT element is
returned in this parameter.

nADTag

Example:

// Example :: BleGetADbyTag.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM rc, adl$, ad2$, fullADS, nADTag, ADval$

https://www.lairdconnect.com/ 119 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

'//AD with length = 6 bytes, tag = 0xDD
adl$="\06\DD\11\22\33\44\55"

'//AD with length = 7 bytes, tag = 0xDA

ad2$="\07\EE\AA\BB\CC\DD\EE\FFE"

fullADS = adl$ + ad2s$
PRINT "\n\n"; Strhexize$ (fullADS);"\n"

nADTag = 0xDD
rc=BleGetADbyTag (fullADS$, nADTag, ADval$)
IF rc==0 THEN

PRINT "\nAD element with tag 0x"; INTEGER.H'nADTag ;" is ";StrHexize$ (ADval$)
ELSE

PRINT "\nError reading AD: " ;INTEGER.H'rc
ENDIF

nADTag = OxEE
rc=BleGetADbyTag (fullADS$, nADTag, ADval$)
IF rc==0 THEN
PRINT "\nAD element with tag 0x"; INTEGER.H'nADTag ;" is ";StrHexize$ (ADval$)
ELSE
PRINT "\nError reading AD: "; INTEGER.H'rc

ENDIF

nADTAG = OxFF
'//Will fail because no AD exists in 'fullADS$' with the tag 'FF'
rc=BleGetADbyTag (fullAD$, nADTag, ADvals$)
IF rc==0 THEN
PRINT "\nAD element with tag 0x"; INTEGER.H'nADTag ;" is ";StrHexize$ (ADval$)
ELSE
PRINT "\nError reading AD: "; INTEGER.H'rc

ENDIF

Expected Output:

06DD112233445507EEAABBCCDDEEFF

AD element with tag 0x000000DD is 1122334455
AD element with tag 0x000000EE is AABBCCDDEEFF
Error reading AD: 00006060

https://www.lairdconnect.com/ 120 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

5.6.10BleScanGetPagerAddr

FUNCTION

When a scan is in progress after calling BleScanStart(), an EVBLE_FAST_PAGED event is thrown whenever an
ADV_DIRECT_IND advert is received with the address of this module, requesting a connection to it.

This function returns the address of the peripheral requesting a connection and the RSSI. It should be used in the handler of
the EVBLE_FAST_PAGED event to get the peripheral’s address. Scanning should then be stopped using either
BleScanAbort() or BleScanStop(). You can then use the address supplied by this function to connect to the peripheral using
BleConnect() if that is the desired use case. The Bluetooth specification does NOT mandate a connection.

BLESCANGETPAGERADDR (periphAddrS, nRssi)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
Arguments:
, byREF periphAddr$ AS STRING
RELRRSEE On return, this parameter is updated with the address of the peripheral that sent the advert.
byREF nRssi AS INTEGER
On return, this parameter is updated with the RSSI as reported by the stack for that advert.
nRssi Note: This is NOT a value that is sent by the peripheral but a value that is calculated by the
receiver in this module.
Example:
// Example :: BleScanGetPagerAddr.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM rc

'//Scan for 20 seconds with no filtering

rc = BleScanStart (10000, 0)

IF rc==0 THEN
PRINT "\nScanning"
ELSE
PRINT "\nError: "; INTEGER.H'rc

ENDIF

'//This handler will be called when scanning times out
FUNCTION HndlrScanTO ()
PRINT "\nScan timeout"

ENDFUNC O

'//This handler will be called when an advert is received requesting a connection to this

https://www.lairdconnect.com/ 121 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

module
FUNCTION HndlrFastPaged ()
DIM periphAddr$, nRssi
rc = BleScanGetPagerAddr (periphAddr$, nRssi)

PRINT "\nAdvert received from peripheral "; StrHexize$ (periphAddr$); " with RSSI
";nRssi

PRINT "\nrequesting a connection to this module"
rc = BleScanStop ()
ENDFUNC O

ONEVENT EVBLE SCAN TIMEOUT CALL HndlrScanTO
ONEVENT EVBLE FAST PAGED CALL HndlrFastPaged

WAITEVENT

Expected Output:

Scanning
Advert received from peripheral 01D8CFCF14498D with RSSI -96
requesting a connection to this module

5.7 Connection Functions

This section describes all the connection manager-related routines.

The Bluetooth specification stipulates that a peripheral cannot initiate a connection but can perform disconnections. Only
Central Role devices are allowed to connect when an appropriate advertising packet is received from a peripheral.

5.7.1 Events and Messages

See also Events and Messages for BLE-related messages that are thrown to the application when there is a connection or
disconnection. The relevant message IDs are (0), (1), (14), (15), (16), (17), (18) and (20):

0 There is a connection and the context parameter contains the connection handle.

1 There is a disconnection and the context parameter contains the connection handle.
14 New connection parameters for connection associated with connection handle.

15 Request for new connection parameters failed for connection handle supplied.

16 The connection is to a bonded master

17 The bonding has been updated with a new long term key

18 The connection is encrypted

20 The connection is no longer encrypted

5.7.2 BleConnect

FUNCTION
This function is used to make a connection to a device in peripheral mode which is actively advertising.
https://www.lairdconnect.com/ 122 Americas: +1-800-492-2320

Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY
User Guide

Note: The peripheral device MUST be advertising with either ADV_IND or ADV_DIRECT_IND type of advert to be able
to successfully connect.

In the case of multiple connections, it is recommended that this function is not called in quick succession so that
the underlying stack is given time to complete the setup of the new connection before moving on to establish a
new connection. Calling this function in quick succession may cause newly established connections to be
dropped.

In order to perform connections over 2MPHY, BleConnectConfig() should be called beforehand to set the
connection PHYs to 1IMPHY or 2MPHY (3) and enable extended connection. See BleConnectConfig() for more
details.

When the connection is complete, a EVBLEMSG message with msgld = 0 and context containing the handle are thrown to
the smartBASIC runtime engine.

If the connection times out, then the event EVBLE_CONN_TIMEOUT is thrown to the smartBASIC application.

When a connection is attempted, there are other parameters that are used and the default values for those are assumed;
for example, scan window, scan interval, and periodicity. The default values for those can be changed using the
BleConnectConfig() function. At any time, the current settings can be obtained via the SYSINFO() command.

BLECONNECT (periphAddrS, connTimeoutMs, minConnintUs, maxConnIntUs, nSuprToutUs)

Returns INTEGER, a result code.
The most typical value is 0x0000, indicating a successful operation.

Arguments:

byRef periphAddrs AS STRING

periphAddrs | The Bluetooth address of the device to connect to which MUST be properly formatted and is
exactly seven bytes long.

byVal connTimeoutMs AS INTEGER.

connTimeoutMs | The length of time in milliseconds that the connection attempt lasts. If the timer times out
then the event EVBLE_CONN_TIMEOQUT is thrown to the smartBASIC application.

byVal minConnintUs AS INTEGER.

minConnintUs | The minimum connection interval in microseconds. Valid range is between 7500 and
4000000 microseconds.

byVal maxConnintUs AS INTEGER.

maxConnintUs | The maximum connection interval in microseconds. Valid range is between 7500 and
4000000 microseconds

byVal nSuprToutUs AS INTEGER.

nSuprToutUs . . . L
R The link supervision timeout for the connection in microseconds.
Example:
// Example :: BleConnect.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM rc, periphAddr$

'//Scan indefinitely

rc=BleScanStart (0, 0)

https://www.lairdconnect.com/ 123 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

IF rc==0 THEN
PRINT "\nScanning"
ELSE
PRINT "\nError: "; INTEGER.H'rc

ENDIF

'//This handler will be called when an advert is received
FUNCTION HndlrAdvRpt ()

DIM advData$, nDiscarded, nRssi

'//Read an advert report and connect to the sender
rc=BleScanGetAdvReport (periphAddr$, advData$, nDiscarded, nRssi)

rc=BleScanStop ()

'//Connect to device with Bluetooth address obtained above with 5s connection timeout,
'//20ms min connection interval, 75 max, 5 second supervision timeout.

rc=BleConnect (periphAddrs$, 5000, 20000, 75000, 5000000)

IF rc==0 THEN

PRINT "\n--- Connecting"
ELSE
PRINT "\nError: "; INTEGER.H'rc
ENDIF
ENDFUNC 1

'//This handler will be called in the event of a connection timeout
FUNCTION HndlrConnTO ()

PRINT "\n--- Connection timeout"

rc=BleScanStart (0, 0)

ENDFUNC 1

'//This handler will be called when there is a BLE message
FUNCTION HndlrBleMsg (nMsgId, nCtx)

IF nMsgId == 0 THEN
PRINT "\n--- Connected to device with Bluetooth address "; StrHexize$ (periphAddr$)
PRINT "\n--- Disconnecting now"

rc=BleDisconnect (nCtx)
ENDIF
ENDFUNC 1

https://www.lairdconnect.com/ 124 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

'//This handler will be called when a disconnection happens

FUNCTION HndlrDiscon (nCtx, nRsn)

ENDFUNC 0
ONEVENT EVBLEMSG CALL HndlrBleMsg
ONEVENT EVDISCON CALL HndlrDiscon

ONEVENT EVBLE ADV_ REPORT CALL HndlrAdvRpt
ONEVENT EVBLE CONN TIMEOUT CALL HndlrConnTO

WAITEVENT

Expected Output:

Scanning

-—-—- Connecting

--- Connected to device with Bluetooth address 01D8CFCF14498D
--- Disconnecting now

5.7.3 BleConnectCancel

FUNCTION

This function is used to cancel an ongoing connection attempt which has not timed out. It takes no parameters as there can
only be one attempt in progress.

Use the value returned by SYSINFO(2016) to determine if there is an ongoing scan operation in progress. The value is a bit
mask where:

= bit 0is set if advertising is in progress

= bit 1is set if there is already a connection in a peripheral role

= bit 2 is set if there is a current ongoing connection attempt

= bit 3 is set when scanning

= bit 4is set if there is already a connection to a peripheral

BLECONNECTCANCEL ()

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments | None

Example:

// Example :: BleConnectCancel.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM rc, periphAddr$

'//Scan indefinitely
rc=BleScanStart (0, O0)

https://www.lairdconnect.com/ 125 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions La » CONNECTIVITY

User Guide

IF rc==0 THEN
PRINT "\nScanning"
ELSE
PRINT "\nError: "; INTEGER.H'rc

ENDIF

'//This handler will be called when an advert is received
FUNCTION HndlrAdvRpt ()

DIM advData$, nDiscarded, nRssi

'//Read an advert report and connect to the sender
rc=BleScanGetAdvReport (periphAddr$, advData$, nDiscarded, nRssi)

rc=BleScanStop ()

'//Wait until module stops scanning
WHILE SysInfo (2016)==
ENDWHILE

'//Connect to device with Bluetooth address obtained above with 5s connection timeout,
'//20ms min connection interval, 75 max, 5 second supervision timeout.
rc=BleConnect (periphAddr$, 5000, 20000, 75000, 5000000)

IF rc==0 THEN

PRINT "\n--- Connecting \nCancel"
ELSE

PRINT "\nError: "; INTEGER.H'rc
ENDIF

'//Cancel current connection attempt

rc=BleConnectCancel ()

PRINT "\n--- Connection attempt cancelled"

ENDFUNC 0

ONEVENT EVBLE ADV REPORT CALL HndlrAdvRpt

WAITEVENT

126 Americas: +1-800-492-2320

Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

https://www.lairdconnect.com/

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

Expected Output:

Scanning

--- Connecting

Cancel

--- Connection attempt cancelled

5.7.4 BleConnectConfig

FUNCTION

This function is used to modify the default parameters that are used when attempting a connection using BleConnect(). At
any time they can be read by adding the configID to 2100 and then passing that value to SYSINFO().

When connecting, the central device must scan for adverts and then, when the particular peer address is encountered, it
can send the connection message to that peripheral.

Therefore, a connection attempt requires the underlying stack API to be supplied with a scan interval and scan window. In
addition, when multiple connections are in place, the radio has to be shared as efficiently as possible; one potential scheme
is to have all connection parmeters being integer multiples of a ‘base’ value. For the purpose of this documentation, this
parameter is referred to as multi-link connection interval periodicity.

The following are the default settings for these parameters:

Multi-link Connection Interval Periodicity 20 milliseconds
Scan Interval 80 milliseconds
Scan Window 40 milliseconds
Slave Latency 0
Notes: The Scan Window and Interval are multiple integers of the periodicity (although not required to be). The

scanning has a 50% duty cycle. The 50% duty cycle attempts to ensure that connection events for existing
connections are missed as infrequently as possible.

The Scan Window and Interval are internally stored in units of 0.625 milliseconds slots so reading back via
SYSINFO() does not accurately return the value you set.

BLECONNECTCONFIG (configlD, configValue)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byVal configiD AS INTEGER.
The following are the values to update:

0 Scan interval in milliseconds (range 0..10240)
1 Scan Window in milliseconds (range 0..10240)
2 Slave Latency (0..1000)
5 Multi-Link Connection Interval Periodicity (20..200)
3 Turn manual control for connection parameter update. See EvConnParamReq for
more details.
Action to take when a PHY change request is received from remote device as
follows:-
0: Automatically ccept incoming PHY change request from remote device. This is
the default operation.
1: Throw an event to the smartBASIC app to allow the user to accept or reject
incoming PHY change request. The event thrown is EVBLE_PHY_REQUEST. See LE

configlD

https://www.lairdconnect.com/ 127 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

2M PHY for more information.

BLE PHY to perform the connection on. Possible values are:-
1- 1IMPHY

3 — 1MPHY or 2MPHY

All other values are invalid

Extended Connection. Possible values are:-

11 | 0-Connect to device sending out legacy adverts

1 - Connect to device sending out legacy or extended adverts
For all other configID values, the function returns an error.

byVal configValue AS INTEGER.

10

configValue)
fig This contains the new value to set in the parameters indentified by configlD.
Example:
// Example :: BleConnectConfig.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM rc, startTick

SUB GetParms ()
//get default scan interval for connecting
PRINT "\nConn Scan Interval: "; SysInfo(2100);"ms"
//get default scan window for connecting
PRINT "\nConn Scan Window: "; SysInfo(2101);"ms”
//get default slave latency for connecting
PRINT "\nConn slave latency: "; SysInfo(2102)
//get current multi-link connection interval periodicity
PRINT "\nML Conn Interval Periodicity: "; SysInfo(2105);"ms"

ENDSUB

PRINT "\n\n--- Current Parameters:"

GetParms ()

PRINT "\n\nSetting new parameters..."

rc = BleConnectConfig (0, 60) //set scan interval to 60

rc = BleConnectConfig(l, 13) //set scan window to 13 (will round to 12)

rc = BleConnectConfig (2, 3) //set slave latency to 1

rc = BleConnectConfig (5, 30) //set ML connection interval periodicity to 30

PRINT "\n"; integer.h'rc

PRINT "\n\n--- New Parameters:"

GetParms ()

https://www.lairdconnect.com/ 128 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

Expected Output:

—-—— Current Parameters:

Conn Scan Interval: 80ms

Conn Scan Window: 40ms

Conn slave latency: 0

ML Conn Interval Periodicity: 20ms

Setting new parameters...

-—-— New Parameters:

Conn Scan Interval: 60ms

Conn Scan Window: 12ms

Conn slave latency: 3

ML Conn Interval Periodicity: 30ms

5.7.5 BleDisconnect

FUNCTION

This function causes an existing connection identified by a handle to be disconnected from the peer.

When the disconnection is complete, a EVBLEMSG message with msgld = 1 and context containing the handle is thrown to
the smartBASIC runtime engine.

BLEDISCONNECT (nConnHandle)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation
Arguments:
nConnHandle byVal nConnHandle AS INTEGER.
Specifies the handle of the connection that must be disconnected.
Example:
// Example :: BleDisconnect.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM addr$: addr$=""

DIM rc

FUNCTION HndlrBleMsg (BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER)
SELECT nMsgId
CASE 0
PRINT "\nNew Connection ";nCtx
rc = BleAuthenticate (nCtx)
PRINT BleDisconnect (nCtx)
CASE 1
PRINT "\nDisconnected ";nCtx;"\n"
EXITEFUNC O
ENDSELECT

https://www.lairdconnect.com/ 129 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

ENDFUNC 1

ONEVENT EVBLEMSG CALL HndlrBleMsg

IF BleAdvertStart (0,addr$,100,30000,0)==0 THEN
PRINT "\nAdverts Started\n"

ELSE
PRINT "\n\nAdvertisement not successful"

ENDIF

WAITEVENT

Expected Output:

Adverts Started

New Connection 35800
Disconnected 3580

5.7.6 BleSetCurConnParms

FUNCTION

This function triggers an existing connection identified by a handle to have new connection parameters. For example:
interval, slave latency, and link supervision timeout.

When the request is complete, a EVBLEMSG message with msgld = 14 and context containing the handle are thrown to the
smartBASIC runtime engine if it is successful. If the request to change the connection parameters fails, an EVBLEMSG
message with msgid = 15 is thrown to the smartBASIC runtime engine.

BLESETCURCONNPARMS (nConnHandle, nMinIntUs, nMaxIntUs, nSuprToutUs, nSlavelLatency)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
Arguments:
nConnHandle byVal nConnHandle AS INTEGER.
Specifies the handle of the connection that must have the connection parameters changed.
nMinintUs byVal f1I'VImlntUs AS INT!EGE‘R. o
The minimum acceptable connection interval in microseconds.
byVal nMaxintUs AS INTEGER.
nMaxIntUs . L .
The maximum acceptable connection interval in microseconds.
byVal nSuprToutUs AS INTEGER.

nSuprToutUs | The link supervision timeout for the connection in microseconds. It should be greater than the slave
latency times that granted the connection interval.

byVal nSlavelLatency AS INTEGER.

nSlaveLatency | The number of connection interval polls that the peripheral may ignore. This times the connection
interval shall not be greater than the link supervision timeout.

Note: Slave latency is a mechanism that reduces power usage in a peripheral device and maintains short latency.
Generally, a slave reduces power usage by setting the largest connection interval possible. This means the
latency is equivalent to that connection interval. To mitigate this, the peripheral can greatly reduce the
connection interval and then have a non-zero slave latency.

https://www.lairdconnect.com/ 130 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY
User Guide

For example, a keyboard could set the connection interval to 1000 msec and slave latency to 0. In this case, key
presses are reported to the central device once per second, a poor user experience. Instead, the connection
interval can be set to 50 msec, for example, and slave latency to 19. If there are no key presses, the power use is
the same as before because ((19+1) * 50) equals 1000. When a key is pressed, the peripheral knows that the
central device will poll within 50 msec, so it can send that keypress with a latency of 50 msec. A connection
interval of 50 and slave latency of 19 means the slave is allowed to NOT acknowledge a poll for up to 19 poll

messages from the central device.

Example:

// Example :: BleSetCurConnParms.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM rc

DIM addr$: addr$=""

DIM intrvl, sprvTo,sLat

SELECT nMsgId
CASE 0 //BLE_EVBLEMSGID CONNECT
PRINT "\n --- New Connection : ","",nCtx
rc=BleGetCurconnParms (nCtx,intrvl, sprvto, slat)
IF rc==0 THEN
PRINT "\nConn Interval","","",intrvl
PRINT "\nConn Supervision Timeout", sprvto
PRINT "\nConn Slave Latency","",slat
PRINT "\n\nRequest new parameters"
//request connection interval in range 50ms to 75ms and link
//supervision timeout of 4seconds with a slave latency of 19
rc = BleSetCurconnParms (nCtx, 50000,75000,4000000,19)
ENDIF
CASE 1 //BLE EVBLEMSGID DISCONNECT
PRINT "\n --- Disconnected : ",nCtx
EXITFUNC O
CASE 14 //BLE_EVBLEMSGID_CONN_PARMS_UPDATE
rc=BleGetCurconnParms (nCtx, intrvl, sprvto, slat)
IF rc==0 THEN
PRINT "\n\nConn Interval",intrvl
PRINT "\nConn Supervision Timeout", sprvto
PRINT "\nConn Slave Latency",slat
ENDIF

FUNCTION HandlerBleMsg (BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER) AS INTEGER

https://www.lairdconnect.com/ 131
Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY
User Guide

CASE 15 //BLE EVBLEMSGID CONN PARMS UPDATE FAIL
PRINT "\n ??? Conn Parm Negotiation FAILED"
CASE ELSE
PRINT "\nBle Msg",nMsgId
ENDSELECT
ENDFUNC 1

ONEVENT EVBLEMSG CALL HandlerBleMsg

IF BleAdvertStart (0,addr$,25,60000,0)==0 THEN
PRINT "\nAdverts Started\n"
PRINT "\nMake a connection to the BL652"
ELSE
PRINT "\n\nAdvertisement not successful"

ENDIF

WAITEVENT

Expected Output (Unsuccessful Negotiation):

Adverts Started

Make a connection to the BL652

-—-—- New Connection : 1352
Conn Interval 7500
Conn Supervision Timeout 7000000
Conn Slave Latency 0

Request new parameters
??? Conn Parm Negotiation FAILED
--- Disconnected : 1352

Expected Output (Successful Negotiation):

Adverts Started

Make a connection to the BL652
-—— New Connection : 134

Conn Interval 30000
Conn Supervision Timeout 720000
Conn Slave Latency 0

Request new parameters

New conn Interval 75000
New conn Supervision Timeout 4000000
New conn Slave Latency 19

--- Disconnected : 134

Note: The first set of parameters differ depending on your central device.

https://www.lairdconnect.com/ 132 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

5.7.7 BleGetCurConnParms

FUNCTION

This function gets the current connection parameters for the connection identified by the connection handle. Given there
are 3 connection parameters, the function takes three variables by reference so that the function can return the values in
those variables.

BLEGETCURCONNPARMS (nConnHandle, nintervalUs, nSuprToutUs, nSlavelLatency)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
Arguments:
nConnHandle byVal nConnHandle AS INTEGER.
Specifies the handle of the connection to read the connection parameters of
byRef nintervalUs AS INTEGER.
nintervalUs Lo L
The current connection interval in microseconds
byRef nSuprToutUs AS INTEGER.
Qeualentls The current link supervision timeout in microseconds for the connection.
byRef nSlavelLatency AS INTEGER.
The current number of connection interval polls that the peripheral may ignore. This value
multiplied by the connection interval will not be greater than the link supervision timeout.
nSlavelatency
Note: See Note on Slave Latency.

See previous example.
5.7.8 BleConnMngrUpdCfg
FUNCTION

This function is used to initialise the connection manager for slave/peripheral role.

BLECONNMNGRUPDCFG (nConnUpdateFirstDelay, nConnUpdateNextDelay, nConnUpdateMaxRetry)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful
operation.

Arguments:

byVal nConnUpdateFirstDelay AS INTEGER.
In milliseconds 100 to 32000
BYVAL nConnUpdateNextDelay AS INTEGER

nConnUpdateFirstDelay

nconnUpdateNextDelay In milliseconds 100 to 32000
BYVAL nC UpdateMaxRetry AS INTEGER
nConnUpdateMaxRetry nConnUpdateMaxRetry
In number of retries
Example:
dim rc

#define CONN_UPD FIRST DELAY 500
#define CONN_UPD NEXT DELAY 800
#define CONN_UPD MAX RETRY 800

rc=BleConnMngrUpdCfg (CONN_UPD FIRST DELAY, CONN UPD NEXT DELAY, CONN UPD MAX RETRY)

https://www.lairdconnect.com/ 133 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

if rc == 0 then

print "\nConnection manager successfully initialised"
else

print "\nError: ";integer.h'rc

endif

Expected Output:

|Connection manager successfully initialised

5.7.9 BleGetConnHandleFromAddr

FUNCTION

This function is used to get the connection handle from a specified Bluetooth address.

BLEGETCONNHANDLEFROMADDR (BtAddrBES, nConnHandle)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
Arguments:
byRef BtAddrBES AS STRING.
B BE.
LR The Bluetooth address of the connected remote device.
nConnHandle byRef nConnHand!e AS INTEGER.
Returned connection handle.
Example:
// Example :: BleGetConnHandleFromAddr.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM rc, periphAddr$

'//Scan indefinitely
rc=BleScanStart (0, 0)

IF rc==0 THEN

PRINT "\nScanning"
ELSE

PRINT "\nError: "; INTEGER.H'rc
ENDIF

'//This handler will be called when an advert is received
FUNCTION HndlrAdvRpt ()

DIM advData$, nDiscarded, nRssi

'//Read an advert report and connect to the sender

rc=BleScanGetAdvReport (periphAddr$, advData$, nDiscarded, nRssi)

https://www.lairdconnect.com/ 134 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

rc=BleScanStop ()

'//Connect to device with MAC address obtained above with 5s connection timeout,
'//20ms min connection interval, 75 max, 5 second supervision timeout.
rc=BleConnect (periphAddr$, 5000, 20000, 75000, 5000000)
IF rc==0 THEN
PRINT "\n--- Connecting"
ELSE
PRINT "\nError: "; INTEGER.H'rc
ENDIF
ENDFUNC 1

'//This handler will be called in the event of a connection timeout
FUNCTION HndlrConnTO ()

PRINT "\n--- Connection timeout"

rc=BleScanStart (0, O0)
ENDEUNC 1

'//This handler will be called when there is a BLE message
FUNCTION HndlrBleMsg (nMsgId, nCtx)
IF nMsgId == 0 THEN
dim h
rc=BleGetConnHandleFromAddr (periphAddr$, h)

PRINT "\n--- Connected to device with MAC address "; StrHexize$ (periphAddr$) ;"
Handle: ";h

PRINT "\n--- Disconnecting now"
rc=BleDisconnect (nCtx)
ENDIF
ENDFUNC 1

'//This handler will be called when a disconnection happens

FUNCTION HndlrDiscon (nCtx, nRsn)

ENDFUNC 0
ONEVENT EVBLEMSG CALL HndlrBleMsg
ONEVENT EVDISCON CALL HndlrDiscon

ONEVENT EVBLE ADV REPORT CALL HndlrAdvRpt
ONEVENT EVBLE CONN TIMEOUT CALL HndlrConnTO

WAITEVENT

Expected Output:

Scanning

https://www.lairdconnect.com/ 135 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

-—-- Connecting

-—-—- Connected to device with MAC address 000016A4093A64 Handle: 261888
--- Disconnecting now

00

5.7.10BleGetAddrFromConnHandle

FUNCTION

This function is used to get the Bluetooth address of a device from a connection handle.

BLEGETADDRFROMCONNHANDLE (nConnHandle, BtAddrBES)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
Arguments:
nConnHandle byRef nConnHandle AS INTEGER.
Connection handle from which to get Bluetooth address
byRef BtAddrBES AS STRING.
BtAddrBES Returned Bluetooth address.
Example:
// Example :: BleGetAddrFromConnHandle.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM rc, periphAddr$

'//Scan indefinitely
rc=BleScanStart (0, 0)

IF rc==0 THEN
PRINT "\nScanning"
ELSE
PRINT "\nError: "; INTEGER.H'rc

ENDIF

'//This handler will be called when an advert is received
FUNCTION HndlrAdvRpt ()

DIM advData$, nDiscarded, nRssi

'//Read an advert report and connect to the sender
rc=BleScanGetAdvReport (periphAddr$, advData$, nDiscarded, nRssi)

rc=BleScanStop ()

'//Connect to device with MAC address obtained above with 5s connection timeout,
'//20ms min connection interval, 75 max, 5 second supervision timeout.
rc=BleConnect (periphAddr$, 5000, 20000, 75000, 5000000)

IF rc==0 THEN

https://www.lairdconnect.com/ 136 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY
User Guide

PRINT "\n--- Connecting"
ELSE

PRINT "\nError: "; INTEGER.H'rc
ENDIF

ENDFUNC 1

'//This handler will be called in the event of a connection timeout
FUNCTION HndlrConnTO ()

PRINT "\n--- Connection timeout"

rc=BleScanStart (0, O0)
ENDFUNC 1

'//This handler will be called when there is a BLE message
FUNCTION HndlrBleMsg (nMsgId, nCtx)
IF nMsgId == 0 THEN
dim addr$
rc=BleGetAddrFromConnHandle (nCtx, addr$)
PRINT "\n--- Connected to device with MAC address "; StrHexize$ (addr$)
PRINT "\n--- Disconnecting now"
rc=BleDisconnect (nCtx)
ENDIF

ENDFUNC 1

'//This handler will be called when a disconnection happens

FUNCTION HndlrDiscon (nCtx, nRsn)

ENDFUNC 0
ONEVENT EVBLEMSG CALL HndlrBleMsg
ONEVENT EVDISCON CALL HndlrDiscon

ONEVENT EVBLE ADV_REPORT CALL HndlrAdvRpt
ONEVENT EVBLE CONN TIMEOUT CALL HndlrConnTO

WAITEVENT

Expected Output:

Scanning

--- Connecting

-—— Connected to device with MAC address 000016A4093A64
-——- Disconnecting now

00

https://www.lairdconnect.com/ 137
Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

5.7.11 BleConnRssiStart

FUNCTION

This function is used to enable RSSI reporting for a particular connection. Given an RSSI value is generated for every
connection event, this can result in a flood of events which will result in increased power consumption as the CPU will need
to be in active mode for longer to process them. To mitigate this, this function also takes a threshold dBm value and a
skipcount to reduce and manage these events.

The threshold dBm parameter ensures that a report is only generated if the change in detected RSSI value is greater or less
than the most reported value by this amount and the skipcount is how many times this condition has to occur for the event
to be thrown to the application.

BLECONNRSSISTART (nConnHandle, nThresholdDbm, nSkipCount)

INTEGER, a result code.

Returns . - .
Typical value: 0x0000 (indicates a successful operation)
Arguments
nConnHandle byVal nConnHandle AS INTEGER.
Specifies the handle of the connection for which rssi reporting is to be enabled
nThresholdDbm byVal nThresholdDbm AS INTEGER.

The minimum change in dBm before triggering the EVCONNRSSI event

byRef nSkipCount AS INTEGER.

nSkipCount | The number of RSSI samples with a change of nThresholdDbm or more before triggering
the EVCONNRSSI event

Example:

// Example :: BleConnRssiStart.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM rc,conHndl

DIM addr$: addrsS=""
//
// Initialise
//
FUNCTION OnStartup ()

rc=BleAdvertStart (0,addr$,50,0,0)
ENDFUNC rc
//
// Ble event handler
//
FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)

conHndl=nCtx

IF nMsgID==1 THEN

PRINT "\n\n--- Disconnected from client"
EXITFUNC O
https://www.lairdconnect.com/ 138 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY
User Guide

ELSEIF nMsgID==0 THEN
PRINT "\n--- Connected to client"
rc=BleConnRssiStart (conHndl, 4,10)
ENDIF
ENDFUNC 1
//
// Connection related RSSI events
//

FUNCTION HndlrConnRssi (BYVAL charHandle, BYVAL rssi) AS INTEGER

PRINT "\nRSSI=";rssi;" for connection "; integer.h' charHandle

IF rssi < -80 then
//too far away so stop monitoring the rssi (this is just an example)
//in reality use some other reason to stop

rc=BleConnRssiStop (conHndl)

ENDIF
ENDFUNC 1
//
//

ONEVENT EVBLEMSG CALL HndlrBleMsg
ONEVENT EVCONNRSSI CALL HndlrConnRssi

IF OnStartup () !=0 THEN
PRINT "\nFailure OnStartup"

ENDIF

//Wait for events

WAITEVENT

5.7.12 BleConnRssiStop

FUNCTION

This function is used to disable RSSI reporting for a particular connection which was enabled using the function
BleConnRssiStart described above.

On disconnection, reporting will automatically stop.

BLECONNRSSISTOP (nConnHandle)

INTEGER, a result code.
Returns . Lo .
Typical value: 0x0000 (indicates a successful operation)
Arguments
nConnHandle byVal nConnHandle AS INTEGER.
Specifies the handle of the connection for which rssi reporting is to be enabled
https://www.lairdconnect.com/ 139 Americas: +1-800-492-2320

Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

For example, see description of BleConnRssiStart() above.

5.8 Whitelist Management Functions

This section describes routines which are used to manage whitelists.

A whitelist is a list of Bluetooth addresses and Identity Resolving Keys (IRKs) which the baseband radio will use to gate
incoming packets upwards to the stack as they are received.

If the whitelist is active, then any radio packet whose source Bluetooth address is not in the list will be rejected. However,
note that in BLE for privacy reasons, resolvable Bluetooth addresses can be used and so the address will not match with one
in the list and so for that type of address the list of Indentity Resolving Keys in the whitelist is also consulted to see if the
resolvable address is a trusted device.

A trusted device by definition will have supplied its IRK key when the pairing and bonding happened in the past.
Hence treat this group of functions as a means of creating, maintaining and destroying that list of addresses and IRKs.

The operation that enables whitelisting is the function that starts advertising and scanning. So refer to the functions
BleAdvertStart() and BleScanStart().

5.8.1 BleWhitelistCreate

FUNCTION

This function is used to create a new whitelist to which addresses and identity resolving keys can be added using
BleWhitelistAddAddr() or BleWhitelistAddIndex().

BLEWHITELISTCREATE (hWIlist, nMaxAddrs, nMaxlIrks, nPktFilterMask)

INTEGER, a result code.

Typical value:

0x0000 indicates a successful operation

0x605E indicates too many whitelists already created.

Returns

Arguments

byRef hWiist AS INTEGER.
hWiist | If an empty whitelist is successfully created then this will be updated with a valid handle. If
not then this will contain -1 (OxFFFFFFFF)

byVal nMaxAddrs AS INTEGER.
Maximum addresses that will be stored in this whitelist

byVal nMaxirks AS INTEGER.
Maximum Identity Resolving Keys (IRKs) that will be stored in this whitelist

byVal nPktFilterMask AS INTEGER.
This is a bit mask which specifies what type of incoming packets this list will apply to, as
follows:

nMaxAddrs

nMaxlirks

= Bit0 :Setto 1 for Scan Request packets

= Bit1 :Setto 1for Connection Request packets
= Bit2 :Setto 1 for Advert Report Packets

= Bits 3to 31: reserved for future use

nPktFilterMask

Note: If all bits are 0, then a default mask of 7 is used for the BL652.

https://www.lairdconnect.com/ 140 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

Example:

// Example :: BleWhitelist.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM rc,conHndl,hWlist, wval

DIM addr$: addrs$=""

//
//

sub AssertRC (byval tag as integer)

if rc!=0 then
print "\nFailed with ";integer.h' rc;" at tag ";tag
endif

endsub

//
// Ble event handler
//
FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)

conHndl=nCtx

IF nMsgID==1 THEN
PRINT "\n\n--- Disconnected from client"
EXITFUNC O

ELSEIF nMsgID==0 THEN

PRINT "\n--- Connected to client"
ENDIF
ENDFUNC 1
//
// This handler is called when there is an advert report waiting to be read
//

function HandlerAdvRpt () as integer
dim ad$,dta$,ndisc, rsi
rc = BleScanGetAdvReport (ad$,dta$,ndisc, rsi)
while rc==
print "\nADV:";strhexize$ (ad$);" ";strhexize$ (dta$);" ";ndisc;" ";rsi
rc = BleScanGetAdvReport (ad$,dta$,ndisc, rsi)
endwhile

endfunc 1

https://www.lairdconnect.com/ 141 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

1/

// This handler is called when there is an advert report waiting to be read

//
sub WhiteListInit ()
//set invalid whitelist handle
hWwlist=-1
//now check maximum whitelists that can be defined and for that valid handle
//is not required
rc=BleWhiteListInfo (hWlist,0, val) //get max number of whitelists allowes
AssertRC (100)

print "\n Max allowed whitelists = "; wval

//create a whitelist
rc=BleWhitelistCreate (hWlist,8,8,0)
IF rc==0 THEN
//Add address we want to specifically look for
addr$="000016A40B1623"
rc=BleWhitelistAddAddr (hWlist, addr$)
AssertRC (110)
//Made a mistake so clear it
rc=BleWhitelistClear (hWlist)
AssertRC (120)
//now add the correct address
addr$="000016A40B1642"
rc=BleWhitelistAddAddr (hWlist, addr$)
AssertRC (130)
//now add first one in the trusted database
rc=BleWhitelistAddIndex (hWlist,0)
AssertRC (140)
//Change the filter property from default used in the create function
//so that connection requests are disallowed
rc=BleWhitelistSetFilter (hWlist, 1)
AssertRC (150)
//now check the whitelist by interogating the whitelist handle
rc=BleWhiteListInfo (hWlist,101, val) //get current number of mac addresses

AssertRC (160)

print "\n Current number of addresses = "; wval
ENDIF
https://www.lairdconnect.com/ 142 Americas: +1-800-492-2320

Copyright 2020 Laird. All Rights Reserved

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

endsub

//

//

ONEVENT EVBLEMSG CALL HndlrBleMsg
OnEvent EVBLE ADV REPORT CALL HandlerAdvRpt

//Initiliase a whitelist

WhiteListInit ()

//start adverts with whitelisting
addrs$=""

rc=BleAdvertStart (0,addr$,50,0,hWlist)
AssertRC (910)

//Wait for events

WAITEVENT

//destroy the whitelist
BleWhitelistDestroy (hWlist)

5.8.2 BleWhitelistDestroy

FUNCTION

This function is used to destroy an existing whitelist identified by a valid handle previously returned from
BleWhitelistCreate() so that new addresses and Identity Resolving Keys (IRKs) can be added. This function completely
destroys the whitelist of the given handle, and a new one will need to be created if necessary (using BleWhitelistCreate).

BLEWHITELISTDESTROY (hWIist)

INTEGER, a result code.

Returns . - .
Typical value: 0x0000 (indicates a successful operation)

Arguments

byRef hWiist AS INTEGER.

This is the handle of the whitelist and is passed as a reference so that on exit it will have
an invalid handle value so cannot be used inadvertently. The handle will have been
returned by BleWhitelistCreate()

hWiist

For example, see description of BleWhitelistCreate() above.
5.8.3 BleWhitelistClear

FUNCTION

https://www.lairdconnect.com/ 143 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

This function is used to clear an existing whitelist identified by a valid handle previously returned from BleWhitelistCreate()
so that new addresses and Identity Resolving Keys (IRKs) can be added. The handle of the whitelist is still valid so data can
be added to the whitelist without having to call BleWhitelistCreate again.

BLEWHITELISTCLEAR (hWIist)

INTEGER, a result code.

Returns . - :
Typical value: 0x0000 (indicates a successful operation)

Arguments

byVal hWiist AS INTEGER.
hWiist | This is the handle of the whitelist to clear and will have been returned by
BleWhitelistCreate()

For example, see description of BleWhitelistCreate() above.
5.8.4 BleWhitelistSetFilter

FUNCTION

This function is used to change the filter policy mask associated with the whitelist object identified by the handle.

BLEWHITELISTSETFILTER (hWlist, nPktFilterMask)

INTEGER, a result code.

Returns Typical value: 0x0000 (indicates a successful operation)

Arguments

hWiist

byRef hWiist AS INTEGER.
This is the handle of the whitelist and will have been returned by BleWhitelistCreate()
byVal nPktFilterMask AS INTEGER.
This is a bit mask which specifies what type of incoming packets this list will apply to, as
follows:
= Bit 0 :Setto 1 for Scan Request packets
nPktFilterMask | = Bit1 :Setto 1 for Connection Request packets
= Bit2 :Setto 1 for Advert Report Packets
= Bits 3 to 31 : reserved for future use

Note: If all bits are 0, then a default mask of 7 is used for the BL652.

For example, see description of BleWhitelistCreate() above.
5.8.5 BleWhitelistAddAddr

FUNCTION

This function is used to add a 7 byte BT address to the whitelist identified by the handle supplied. The function will
automatically check if the BT address is trusted by interrogating the trusted device database and if it is, then the address
stored there along with the IRK is added instead of the address supplied. This means that in smartphones with Android and
iOS (which make heavy use of resolvable addresses) there is seemless and hassle free integration.

BLEWHITELISTADDADDR (hWlist, addr$)

INTEGER, a result code.

Returns Typical value: 0x0000 (indicates a successful operation)
Arguments
hWiist byVal hWlist AS INTEGER.
This is the handle of the whitelist and will have been returned by BleWhitelistCreate()
https://www.lairdconnect.com/ 144 Americas: +1-800-492-2320

Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

byRef addr$ AS STRING.

This is the address that is to be added to the whitelist. It will be checked for presence in
trusted device database and if trusted, the IRK will also be added automatically to the
whitelist

addrs

For example, see description of BleWhitelistCreate() above.
5.8.6 BleWhitelistAddIndex

FUNCTION
This function is used to add the Nth indexed device in the trusted device database to the whitelist identified by the handle
supplied. If that Nth record exists in the database then the Identity Resolving Key will also be added automatically.

BLEWHITELISTADDINDEX (hWiIist, nindex)

INTEGER, a result code.

Returns Typical value: 0x0000 (indicates a successful operation)

Arguments

byVal hWiist AS INTEGER.

This is the handle of the whitelist and will have been returned by BleWhitelistCreate()
byVal nindex AS INTEGER.

This is the Nth index (zero based) of the record in the trusted device database to add to
the whitelist. The IRK will also be added automatically to the whitelist.

The index is the same entity per the function BleBondMngrGetinfo()

hWiist

nindex

For example, see description of BleWhitelistCreate() above.
5.8.7 BleWhitelistinfo

FUNCTION

This function is used to return information about the whitelist provided. This may be invalid for certain ninfolD values, as
that is information about the whitelist manager in general.

BLEWHITELISTINFO (hWIist, ninfolD, nValue)

INTEGER, a result code.

Returns Typical value: 0x0000 (indicates a successful operation)

Arguments

byVal hWiist AS INTEGER.

This is the handle of the whitelist and will have been returned by BleWhitelistCreate()
byVal ninfolD AS INTEGER.

This is ID of the information to be returned as follows:

hWiist

= 0 :maximum number of whitelists (hWilist is ignored)

= 1 :maximum number of Bluetooth addresses (hWlist is ignored)
ninfolD | = 2 :maximum number of IRKs (hWIlist is ignored)

= 101 :current number of addresses added

= 102 :current number of IRKs added

Note: For 101 and 102, the values will be cleared to 0 if BleWhitelistClear() is called.

byRef nValue AS INTEGER.

nValue
The information value is returned in this variable

For example, see description of BleWhitelistCreate() above.

https://www.lairdconnect.com/ 145 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

5.9 GATT Server Functions

This section describes all functions related to creating and managing services that collectively define a GATT table from a
GATT server role perspective. These functions allow the developer to create any service that has is described and adopted
by the Bluetooth SIG or any custom service that implements some custom unique functionality, within resource constraints
such as the limited RAM and FLASH memory that is exist in the module.

A GATT table is a collection of adopted or custom services which, in turn, are a collection of adopted or custom
characteristics. By definition, an adopted service cannot contain custom characteristics but the reverse is possible where a
custom service can include both adopted and custom characteristics.

Descriptions of services and characteristics are available in the Bluetooth Specification v4.0 or newer. Because these
descriptions are concise and difficult to understand, the following section attempts to familiarise you with these concepts
using the smartBASIC programming environment perspective.

To help understand service and characteristic better, think of a characteristic as a container (or a pot) of data where the pot
comes with space to store the data and a set of properties that are officially called Descriptors in the BT spec. In the pot
analogy, think of a descriptor as the color of the pot, whether it has a lid, whether the lid has a lock, whether it has a handle
or a spout, etc. For a full list of these descriptors online, see
http://developer.Bluetooth.org/GATT/descriptors/Pages/DescriptorsHomePage.aspx . These descriptors are assigned 16-bit
UUIDs (value 0x29xx) and are referenced in some of the smartBASIC API functions if you decide to add those to your
characteristic definition.

You can consider a service as a carrier bag to hold a group of related characterisics together where the printing on the
carrier bag is a UUID. From a smartBASIC developer’s perspective, a set of characteristics is what you need to manage and
the concept of service is only required at GATT table creation time.

A GATT table can have many services, each containing one or more characteristics. The difference between services and
characteristics is expedited using an identification number called a UUID (Universally Unique Identifier) which is a 128-bit
(16-byte) number. Adopted services or characteristics have a 16-bit (2-byte) shorthand identifier (which is an offset plus a
base 128-bit UUID defined and reserved by the Bluetooth SIG); custom service or characteristics have the full 128-bit UUID.
The logic behind this is that a 16-bit UUID implies that a specification has been published by the Bluetooth SIG whereas
using a 128-bit UUID does NOT require any central authority to maintain a register of those UUIDs or specifications
describing them.

The lack of the requirement for a central register is important to understand in the sense that, if a custom service or
characteristic must be created, the developer can use any publicly available UUID (sometimes also known as GUID)
generation utility.

These utilities use entropy from the real world to generate a 128-bit random number that has an extremely low probability
to be the same as that generated by someone else at the same time or in the past or future.

As an example, at the time of writing this document, the following website http://www.guidgenerator.com/online-guid-
generator.aspx offers an immediate UUID generation service, although it uses the term GUID. From the GUID Generator
website:

How unique is a GUID?

128-bits is big enough and the generation algorithm is unique enough that if 1,000,000,000 GUIDs per second
were generated for 1 year the probability of a duplicate would be only 50%. Or if every human on Earth
generated 600,000,000 GUIDs there would only be a 50% probability of a duplicate.

This extremely low probability of generating the same UUID is why there is no need for a central register maintained by the
Bluetooth SIG for custom UUIDs.

Please note that Laird does not guarantee that the UUID generated by this website or any other utility is unique. It is left to
the judgement of the developer whether to use it or not.

https://www.lairdconnect.com/ 146 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

http://developer.bluetooth.org/gatt/descriptors/Pages/DescriptorsHomePage.aspx
http://www.guidgenerator.com/online-guid-generator.aspx
http://www.guidgenerator.com/online-guid-generator.aspx

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

Note: If the developer intends to create custom services and/or characteristics then it is recommended that a single
UUID is generated and used from then on as a 128-bit (16 byte) company/developer unique base along with a
16-bit (2-byte) offset, in the same manner as the Bluetooth SIG.

This allows up to 65536 custom services and characteristics to be created, with the added advantage that it is
easier to maintain a list of 16-bit integers.

The main reason for avoiding more than one long UUID is to keep RAM usage down given that 16 bytes of RAM
is used to store a long UUID. smart BASIC functions have been provided to manage these custom 2-byte UUIDs
along with their 16-byte base UUIDs.

In this document, when a service or characteristic is described as adopted, it implies that the Bluetooth SIG published a
specification which defines that service or characteristic and there is a requirement that any device claiming to support
them has proof that the functionality has been tested and verified to behave as per that specification.

Currently there is no requirement for custom service and/or characteristics to have any approval. By definition,
interoperability is restricted to the provider and implementer.

A service is an abstraction of some collectivised functionality which, if broken down further, would cease to provide the
intended behaviour. Two examples in the BLE domain that have been adopted by the Bluetooth SIG are Blood Pressure
Service and Heart Rate Service. Each have sub-components that map to characteristics.

Blood pressure is defined by a collection of data entities such as Systolic Pressure, Diastolic Pressure, and Pulse Rate.
Likewise, a Heart Rate service has a collection which includes entities such as the Pulse Rate and Body Sensor Location.

A list of all the adopted services is at: http://developer.Bluetooth.org/GATT/services/Pages/ServicesHome.aspx. Laird
recommends that, if you decide to create a custom service, it should be defined and described in a similar fashion; your
goal should be to get the Bluetooth SIG to adopt it for everyone to use in an interoperable manner.

These services are also assigned 16-bit UUIDs (value 0x18xx) and are referenced in some of the smart BASIC API functions
described in this section.

Services, as described above, are a collection of one or more characteristics. A list of all adopted characteristics is found at:
http://developer.Bluetooth.org/GATT/characteristics/Pages/CharacteristicsHome.aspx. You should note that these
descriptors are also assigned 16-bit UUIDs (value 0x2Axx) and are referenced in some of the API functions described in this
section. Custom characteristics have 128-bit (16-byte) UUIDs and API functions are provided to handle those.

Note: If you intend to create a custom service or characteristic and adopt the recommendation of a single 16-byte base
UUID so that the service can be identified using a 2-byte UUID, then allocate a 16-bit value which is not going to
coincide with any adopted values to minimise confusion. Selecting a similar value is possible and legal given that
the base UUID is different.

The remainder of this introduction focuses on the specifics of how to create and manage a GATT table from a perspective of
the smart BASIC API functions in the module.

Recall that a service was described as a carrier bag that groups related characteristics together and a characteristic is a data
container (pot). Therefore, a remote GATT client looking at the server which is presented in your GATT table, sees multiple
carrier bags each containing one or more pots of data.

The GATT client (remote end of the wireless connection) msut see those carrier bags to determine the groupings and, once
it has identified the pots, it only needs to keep a list of references to the pots it is interested in. Once that list is made at the
client end, it can ‘throw away the carrier bag’.

https://www.lairdconnect.com/ 147 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

http://developer.bluetooth.org/gatt/services/Pages/ServicesHome.aspx
http://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicsHome.aspx

BL652 smartBASIC Extensions La » CONNECTIVITY

User Guide

Similarly in the module, once the GATT table |
is created and after each service is fully |

Create a UUID Handle for Service (16/128) |

populated with one or more characteristics, | BleHandleUuid() |
there is no need to keep that ‘carrier bag’. :
.., . Com_mltal?RIMARY or SEC_ONDARY
However, as each characterstic is ‘placed in service which returns a service handle
BleSvcCommit ()

the carrier bag’ using the appropriate
smartBASIC API function, a receipt is returned

and is referred to as a char_handle. The T
developer must then keep those handles to

be able to interact with that characteristic. e e ot
The handle does not care whether the Slrecinens vy aliae
characteristic is adopted or custom because,

from then on the firmware managing it -~
Notifiable OR
Indicatable

behind the scenes in smartBASIC does not
Broadcastable

Create a metadata object which
defines the permissions for the
characteristic CCCD attribute
BleAttrMetadata ()

care.

From the smartBASIC application developer’s
logical perspective, a GATT table looks
nothing like the table that is presented in
most BLE literature. Instead, the GATT table is

Create a metadata object which
defines the permissions for the
characteristic SCCD attribute
BleAttrMetadata ()

$|mp|y a collection of char handles that Btart the definition of a new characteristic|
. T hich will be later commited to the GATT|
reference the characteristics (data table i a single transaction
BleCharNew ()

containers) which have been registered with
the underlying GATT table in the BLE stack.

Create a metadata object which
defines the permissions for the
User Desc Descriptor
BleAttrMetadata()

User Desc
Descriptor?

A particular char_handle is used to make
something happen to the referenced
characteristic (data container) using a smart ha Bas;arrgifzéscgsccﬁgf nef
BASIC function and conversely, if data is Biecharpesciserpescl)
written into that characteristic (data
container) by a remote GATT client, then an i
event is thrown in the form of a message, Descriptor?
into the smart BASIC runtime engine which is
processed if and only if a handler function
has been registered by the apps developer

Add parameters for creation of

using the ONEVENT statement. other Descriptor e
BleCharDescAdd ()

Add parameters for creation of
Presentation Format Descriptor —
BleCharDescPrstnFrmt ()

With this simple model in mind, an overview
of how the smart BASIC functions are used to
register services and characteristics is
illustrated in the flowchart on the right and

Commit the Characteristic to the

Samp|e code follows on the next page. Gatt ServerTable in single transaction
BleCharCommit () ~<.

More
haracteristics2

More
Services?

Create a metadata object which
defines the permissions for the
other Descriptor
BleAttrMetadata ()

Add other
Descriptor?

Save the handle
thatis returned
asitis used to

interact with the
characteristic

Yes

https://www.lairdconnect.com/ 148 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

Example:

// Example :: ServicesAndCharacteristics.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

//

//Register two Services in the GATT Table. Service 1 with 2 Characteristics and

//Service 2 with 1 characteristic. This implies a total of 3 characteristics to
//manage.

//The characteristic 2 in Service 1 will not be readable or writable but only
//indicatable

//The characteristic 1 in Service 2 will not be readable or writable but only
//notifyable

//

DIM rc //result code
DIM hSvc //service handle
DIM mdAttr

DIM mdCccd

DIM mdSccd

DIM chProp

DIM attr$

DIM hCharll // handles for characteristic 1 of Service 1
DIM hChar2l // handles for characteristic 2 of Service 1

DIM hCharl2 // handles for characteristic 1 of Service 2

DIM hUuidsl // handles for uuid of Service 1
DIM hUuidS2 // handles for uuid of Service 2
DIM hUuidCll // handles for uuid of characteristic 1 in Service 1
DIM hUuidCl2 // handles for uuid of characteristic 2 in Service 1

DIM hUuidC21 // handles for uuid of characteristic 1 in Service 2

//---Register Service 1
hUuidS1l = BleHandleUuidl6 (0x180D)

rc = BleServiceNew (BLE SERVICE PRIMARY, hUuidS1, hSvc)

//---Register Characteristic 1 in Service 1
mdAttr = BleAttrMetadata (BLE_ATTR_ACCESS_OPEN, BLE ATTR ACCESS OPEN, 10,0, rc)
mdCccd = BLE_CHAR METADATA ATTR NOT PRESENT

https://www.lairdconnect.com/ 149 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

mdSccd = BLE CHAR METADATA ATTR NOT PRESENT

chProp BLE CHAR PROPERTIES READ + BLE CHAR PROPERTIES WRITE
hUuidCll = BleHandleUuidl6 (0x2A37)

rc = BleCharNew (chProp, hUuidCll,mdAttr,mdCccd,mdSccd)

rc = BleCharCommit (shHrs,hrs$,hCharll)
//-—-Register Characteristic 2 in Service 1
mdAttr = BleAttrMetadata(BLE_ATTR_ACCESS_OPEN,BLE_ATTR_ACCESS_OPEN,l0,0,rC)

mdCccd = BleAttrMetadata (BLE ATTR ACCESS OPEN,BLE ATTR ACCESS OPEN, 2,0, rc)
mdSccd

BLE CHAR METADATA ATTR NOT PRESENT

chProp = BLE CHAR PROPERTIES INDICATE

hUuidCl2 = BleHandleUuidl6 (0x2A39)

rc = BleCharNew (chProp, hUuidCl2,mdAttr,mdCccd,mdSccd)
attr$="\00\00"

rc = BleCharCommit (hSvc,attr$, hChar2l)

rc BleServiceCommit (hSvc)
//---Register Service 2 (can now reuse the service handle)
hUuidS2 = BleHandleUuidl6 (0x1856)

rc = BleServiceNew (BLE SERVICE PRIMARY, hUuidS2, hsvc)

//-—-Register Characteristic 1 in Service 2

mdAttr = BleAttrMetadata (BLE ATTR ACCESS NONE,BLE ATTR ACCESS NONE,10,0,rc)
mdCccd = BleAttrMetadata (BLE ATTR ACCESS OPEN,BLE ATTR ACCESS OPEN, 2,0, rc)
mdSccd = BLE CHAR METADATA ATTR NOT PRESENT

chProp = BLE CHAR PROPERTIES NOTIFY

hUuidC21 = BleHandleUuidl6 (0x2A54)

rc = BleCharNew (chProp, hUuidC21l,mdAttr,mdCccd,mdSccd)

attr$="\00\00\00\00"

rc = BleCharCommit (hSvc,attr$, hCharl2)

rc = BleServiceCommit (hSvc)

//===The 2 services are now visible in the gatt table

Writes into a characteristic from a remote client are detected and processed as follows:

// To deal with writes from a GATT client into characteristic 1 of Service 1

// which has the handle hCharll

// This handler is called when there is a EVCHARVAL message

https://www.lairdconnect.com/ 150 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

FUNCTION HandlerCharVal (BYVAL hChar AS INTEGER) AS INTEGER
DIM attrs$
IF hChar == hCharll THEN
rc = BleCharValueRead (hCharll,attr$)

print "Svcl/Charl has been writen with = ";attr$

ENDIF
ENDFUNC 1

//enable characteristic value write handler

OnEvent EVCHARVAL call HandlerCharVal

WAITEVENT

Assuming there is a connection and notify has been enabled, a value notification is expedited as follows:

attr$="somevalue"

rc = BleCharValueNotify (hCharl2,attr$)

Assuming there is a connection and indicate has been enabled, a value indication is expedited as follows:

// indicate a value for characteristic 2 in service 1

// This handler is called when there is a EVCHARHVC message
FUNCTION HandlerCharHvc (BYVAL hChar AS INTEGER) AS INTEGER

IF hChar == hCharl2 THEN
PRINT "Svcl/Char2 indicate has been confirmed"
ENDIF
ENDFUNC 1

//enable characteristic value indication confirm handler

OnEvent EVCHARHVC CALL HandlerCharHvc

attr$="somevalue"
rc = BleCharValueIndicate (hCharl2,attrs$)

The rest of this section details all the smartBASIC functions that help create that framework.
5.9.1 Events and Messages

See also Events and Messages for the messages that are thrown to the application which are related to the generic
characteristics API. The relevant messages are those that start with EVCHARxxx.

https://www.lairdconnect.com/ 151 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

5.9.2 BleGapSvclinit

FUNCTION

This function updates the GAP service, which is mandatory for all approved devices to expose, with the information
provided. If it is not called before adverts are started, default values are exposed. Given this is a mandatory service, unlike
other services which must be registered, this one must only be initialised as the underlying BLE stack unconditionally
registers it when starting up.

The GAP service contains five characteristics as listed at the following site:

http://developer.Bluetooth.org/GATT/services/Pages/ServiceViewer.aspx?u=org.Bluetooth.service.generic_access.xml

BLEGAPSVCINIT (deviceName, nameWritable, nAppearance, nMinConninterval, nMaxConnlnterval, nSupervisionTout,
nSlavelatency)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation

Arguments:

byRef deviceName AS STRING
The name of the device (such as Laird_Thermometer) to store in the Device Name
characteristic of the GAP service.

Note: When an advert report is created using BLEADVRPTINIT(), this field is read from
the service and an attempt is made to append it in the Device Name AD. If the
name is too long, that function fails to initialise the advert report and a default
name is transmitted. We recommend that the device name submitted in this
call be as short as possible.

deviceName

byVal nameWritable AS INTEGER

nameWritable | |f non-zero, the peer device is allowed to write the device name. Some profiles allow this
to be made optional.

byVal nAppearance AS INTEGER

Field lists the external appearance of the device and updates the Appearance
characteristic of the GAP service. Possible values:
org.Bluetooth.characteristic.gap.appearance

byVal nMinConninterval AS INTEGER

The preferred minimum connection interval, updates the ‘Peripheral Preferred
nMinConnlinterval | Connection Parameters’ characteristic of the GAP service.

Range is between 7500 and 4000000 microseconds (rounded to the nearest 1250
microseconds). This must be smaller than nMaxConninterval.

byVal nMaxConninterval AS INTEGER

The preferred maximum connection interval, updates the ‘Peripheral Preferred
nMaxConninterval | Connection Parameters’ characteristic of the GAP service.

Range is between 7500 and 4000000 microseconds (rounded to the nearest 1250
microseconds). This must be larger than nMinConninterval.

byVal nSupervisionTimeout AS INTEGER

The preferred link supervision timeout and updates the ‘Peripheral Preferred Connection
nSupervisionTimeout | Parameters’ characteristic of the GAP service.

Range is between 100000 to 32000000 microseconds (rounded to the nearest 10000
microseconds).

nAppearance

https://www.lairdconnect.com/ 152 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

http://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.generic_access.xml
https://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicViewer.aspx?u=org.bluetooth.characteristic.gap.appearance.xml

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

byVal nSlaveLatency AS INTEGER

The preferred slave latency is the number of communication intervals that a slave may
ignore without losing the connection and updates the ‘Peripheral Preferred Connection

nSlavelatenc L .
Y| parameters’ characteristic of the GAP service.
This value must be smaller than (nSupervisionTimeout/ nMaxConnlinterval) -1. i.e.
nSlavelatency < (nSupervisionTimeout / nMaxConnlnterval) -1
Example:
// Example :: BleGapSvcInit.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM rc,dvcNme$, nmeWrtble, apprnce,MinConnInt,MaxConnInt, ConnSupTO, sL, s$

dvcNme$= "Laird TS"

nmeWrtble = 0 //Device name will not be writable by peer

apprnce = 768 //The device will appear as a Generic Thermometer
MinConnInt = 500000 //Minimum acceptable connection interval is 0.5 seconds
MaxConnInt = 1000000 //Maximum acceptable connection interval is 1 second
ConnSupTO = 4000000 //Connection supervisory timeout is 4 seconds

sL = 0 //Slave latency--number of conn events that can be missed

rc=BleGapSvcInit (dvcNme$, nmeWrtble, apprnce,MinConnInt,MaxConnInt, ConnSupTO, sL)

IF !rc THEN
PRINT "\nSuccess"
ELSE
PRINT "\nFailed 0x"; INTEGER.H'rc //Print result code as 4 hex digits

ENDIF

Expected Output:

|Success

5.9.3 BleGetDeviceName$

FUNCTION

This function reads the device name characteristic value from the local GATT table. This value is the same as that supplied in
BleGapSvclnit() if the ‘nameWritable’ parameter was 0, otherwise it may be different.

EVBLEMSG event is thrown with ‘msgid’ == 21 when the GATT client writes a new value and is the best time to call this
function.

BLEGETDEVICENAMES ()

Returns STRING, the current device name in the local GATT table. It is the same as that supplied in
BleGapSvclnit() if the ‘nameWritable’ parameter was 0, otherwise it can be different.
EVBLEMSG event is thrown with ‘msgid’ == 21 when the GATT client writes a new value.

https://www.lairdconnect.com/ 153 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

Arguments None
Example:
// Example :: BleGetDeviceName$.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM rc,dvcNme$,nmeWrtble, apprnce,MinConnInt,MaxConnInt, ConnSupTO, sL

PRINT "\n --- DevName : "; BleGetDeviceNames$ ()

// Changing device name manually
dvcNme$= "My BL652"

nmeWrtble = 0

apprnce = 768

MinConnInt = 500000

MaxConnInt = 1000000
ConnSupTO = 4000000
sL = 0

rc = BleGapSvcInit (dvcNme$, nmeWrtble, apprnce,MinConnInt,MaxConnInt, ConnSupTO, sL)

PRINT "\n --- New DevName : "; BleGetDeviceName$ ()

Expected Output:

--- DevName : LAIRD BL652
--- New DevName : My BL652

5.9.4 BleSvcRegDevinfo

FUNCTION

This function is used to register the Device Information service with the GATT server. The Device Information service
contains nine characteristics as listed at the following website:
http://developer.Bluetooth.org/GATT/services/Pages/ServiceViewer.aspx?u=org.Bluetooth.service.device_information.xml

The firmware revision string is always set to BL652:vW.X.Y.Z where W,X,Y,Z are as per the revision information which is
returned to the command AT | 4.

BLESVCREGDEVINFO (manfName$, modelNumS$, serialNum$, hwRev$, swRev$, sysldS$, regDatalListS, pnpldS)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
Arguments:
byVal manfName$ AS STRING
manfNames$ The device manufacturer. Can be set empty to omit submission.
byVal modeINum$ AS STRING
modelNum$) . o
The device model number. Can be set empty to omit submission.
https://www.lairdconnect.com/ 154 Americas: +1-800-492-2320

Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

http://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.device_information.xml

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

byVal serialNum$S AS STRING

The device serial number. Can be set empty to omit submission.

byVal hwRevS AS STRING

The device hardware revision string. Can be set empty to omit submission.
byVal swRevS AS STRING

The device software revision string. Can be set empty to omit submission.

byVal sysid$ AS STRING
The device system ID as defined in the specifications. Can be set empty to omit submission.

serialNum$

hwRevS

swRevS

Otherwise it shall be a string exactly eight octets long, where:
syslds Byte 0..4 := Manufacturer Identifier
Byte 5..7 := Organisationally Unique Identifier

If the string is one character long and contains @, the system ID is created from the Bluetooth address
if (and only if) an IEEE public address is set. If the address is the random static variety, this
characteristic is omitted.

byVal regDatalistS AS STRING

regDatalist$ | The device’s regulatory certification data list as defined in the specification. It can be set as an empty
string to omit submission.

byVal pnpldS AS STRING

The device’s plug and play ID as defined in the specification. Can be set empty to omit submission.
Otherwise, it shall be exactly 7 octets long, where:

pnplds | * ByteO :=Vendor Id Source

= Byte 1,2 :=Vendor Id (Byte 1 is LSB)

= Byte 3,4 := Product Id (Byte 3 is LSB)

= Byte 5,6 := Product Version (Byte 5 is LSB)

Example:

// Example :: BleSvcRegDevInfo.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM rc,manfNme$,mdlNum$, sr1Num$, hwRev$, swRev$, sysId$, regDtalst$, pnpId$

manfNme$ = "Laird Technologies"

mdlNum$ = "BL652"

srlNum$ = "" //empty to omit submission
hwRev$ = "1.0"

swRev$ = "1.0"

sysIds = "" //empty to omit submission
regDtalst$ = "" //empty to omit submission
pnpId$ = "" //empty to omit submission

rc=BleSvcRegDevInfo (manfNme$, md1Num$, sr1Num$, hwRev$, swRev$, sysIds$, regDtaLst$, pnpId$)

https://www.lairdconnect.com/ 155 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

IF !rc THEN
PRINT "\nSuccess"
ELSE
PRINT "\nFailed Ox"; INTEGER.H'rc

ENDIF

Expected Output:

|Success

5.9.5 BleHandleUuidl16

FUNCTION

This function takes an integer in the range 0 to 65535 and converts it into a 32-bit integer handle that associates the integer
as an offset into the Bluetooth SIG 128-bit (16-byte) base UUID which is used for all adopted services, characteristics, and
descriptors.

If the input value is not in the valid range, then an invalid handle (0) is returned.
The returned handle is treated by the developer as an opaque entity and no further logic is based on the bit content, apart

from all zeros which represent an invalid UUID handle.

BLEHANDLEUUID16 (nUuid16)

Returns INTEGER, a nonzero handle shorthand for the UUID. Zero is an invalid UUID handle

Arguments:

byVal nUuid16 AS INTEGER
nUuid16 | nUuid16 is first bitwise ANDed with OxFFFF and the result is treated as an offset into the Bluetooth SIG
128 bit base UUID

Example:

// Example :: BleHandleUuidlé6.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM uuid

DIM hUuidHRS

uuid = 0x180D //this is UUID for Heart Rate Service
hUuidHRS = BleHandleUuidlé6 (uuid)
IF hUuidHRS == 0 THEN
PRINT "\nFailed to create a handle"
ELSE
PRINT "Handle for HRS Uuid is "; integer.h' hUuidHRS;" (";hUuidHRS;")"

ENDIF

Expected Output:

Handle for HRS Uuid is FE01180D (-33482739)

https://www.lairdconnect.com/ 156 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

5.9.6 BleHandleUuid128

FUNCTION

This function takes a 16-byte string and converts it into a 32-bit integer handle. The handle consists of a 16-bit (2-byte)
offset into a new 128-bit base UUID.

The base UUID is created by taking the 16-byte input string and setting bytes 12 and 13 to zero after extracting those bytes
and storing them in the handle object. The handle also contains an index into an array of these 16-byte base UUIDs which
are managed opaquely in the underlying stack.

The returned handle shall be treated by the developer as an opaque entity and no further logic shall be based on the bit
content. However, note that a string of zeroes represents an invalid UUID handle.

Note: Ensure that you use a 16-byte UUID that has been generated using a random number generator with sufficient
entropy to minimise duplication and that the first byte of the array is the most significant byte of the UUID.

BLEHANDLEUUID128 (stUuid$)

Returns INTEGER, A handle representing the shorthand UUID.
If zero, which is an invalid UUID handle, there is either no spare RAM memory to save the 16-byte base
or more than 253 custom base UUIDs have been registered.

Arguments:

byRef stUuidS AS STRING
stUuid$ | Any 16-byte string that was generated using a UUID generation utility that has enough entropy to ensure
that it is random. The first byte of the string is the MSB of the UUID (big endian format).

Example:

//Example :: BleHandleUuidl28.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM uuid$, hUuidCustom

//create a custom uuid for my ble widget
uuid$ = "ced9d91366924a1287d56£2764762b2a"
uuid$ = StrDehexize$ (uuid$)
hUuidCustom = BleHandleUuidl28 (uuid$)
IF hUuidCustom == 0 THEN
PRINT "\nFailed to create a handle"
ELSE
PRINT "Handle for custom Uuid is ";integer.h’ hUuidCustom; " (";hUuidCustom;")"
ENDIF
// hUuidCustom now references an object which points to
// a base uuid = ced9d91366924a1287d56f2747622b2a (note 0's in byte position 2/3)
// and an offset = 0xd913

Expected Output:

Handle for custom Uuid is FC03D913 (-66856685)

https://www.lairdconnect.com/ 157 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

5.9.7 BleHandleUuidSibling

FUNCTION

This function takes an integer in the range 0 to 65535 along with a UUID handle which had been previously created using
BleHandleUuid16() or BleHandleUuid128() to create a new UUID handle. This handle references the same 128 base UUID as
the one referenced by the UUID handle supplied as the input parameter.

The returned handle shall be treated by the developer as an opaque entity and no further logic shall be based on the bit
content, apart from all zeroes (which represents an invalid UUID handle).

BLEHANDLEUUIDSIBLING (nUuidHandle, nUuid16)

Returns INTEGER, a handle representing the shorthand UUID and can be zero which is an invalid UUID handle,
if nUuidHandle is an invalid handle in the first place.
Arguments:
nUuidHandle byVal nUuidHandle AS INTEGER

A handle that was previously created using either BleHandleUui16() or BleHandleUuid128().

byVal nUuid16 AS INTEGER
nUuid16 | A UUID value in the range 0 t0 65535 which is treated as an offset into the 128-bit base UUID
referenced by nUuidHandle.

Example:

// Example :: BleHandleUuidSibling.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM uuid$,hUuidl, hUuid2 //hUuid2 will have the same base uuid as hUuidl

//create a custom uuid for my ble widget
uuid$ = "ced9d91366924a1287d56£2764762b2a"
uuid$ = StrDehexize$ (uuid$)
hUuidl = BleHandleUuid128 (uuid$)
IF hUuidl == 0 THEN
PRINT "\nFailed to create a handle"
ELSE
PRINT "Handle for custom Uuid is ";integer.h' hUuidl;" (";hUuidl;")"
ENDIF
// hUuidl now references an object which points to
// a base uuid = ced9000066924a1287d56f2747622b2a (note 0's in byte position 2/3)
// and an offset = 0xd913

hUuid2 = BleHandleUuidSibling (hUuidl, 0x1234)
IF hUuid2 == 0 THEN

PRINT "\nFailed to create a handle"
ELSE

PRINT "\nHandle for custom sibling Uuid is ";integer.h'hUuid2;" (";hUuid2;")"

https://www.lairdconnect.com/ 158 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

ENDIF

// hUuid2 now references an object which also points to

// the base uuid = ced9000066924a1287d56£2700004762 (note 0's in byte position 2/3)
// and has the offset = 0x1234

Expected Output:

Handle for custom Uuid is FCO03D913 (-66856685)
Handle for custom sibling Uuid is FC031234 (-66907596)

5.9.8 BleServiceNew

FUNCTION

As explained in GATT Server Functions, a service in the context of a GATT table is a collection of related characteristics. This
function is used to inform the underlying GATT table manager that one or more related characteristics are going to be
created and installed in the GATT table and that, until the next call of this function, they will be associated with the service
handle that it provides upon return of this call.

Under the hood, this call results in a single attribute being installed in the GATT table with a type signifying a PRIMARY or a
SECONDARY service. The value for this attribute is the UUID that identifies this service and in turn have been precreated
using one of the functions: BleHandleUuid16(), BleHandleUuid128(), or BleHandleUuidSibling().

Note: When a GATT client queries a GATT server for services over a BLE connection, it only receives a list of PRIMARY
services. SECONDARY services are a mechanism for multiple PRIMARY services to reference single instances of
shared characteristics that are collected in a SECONDARY service. This referencing is expedited within the
definition of a service using the concept of INCLUDED SERVICE which is an attribute that is grouped with the
PRIMARY service definition. An Included Service is expedited using the function BleSvcAddIncludeSvc() which is
described immediately after this function.

This function now replaces BleSvcCom() and marks the beginning of a service definition in the GATT server table. When the
last descriptor of the last characteristic has been registered the service definition should be terminated by calling
BleServiceCommit().

BLESERVICENEW (nSvcType, nUuidHandle, hService)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byVal nSvcType AS INTEGER
nSvcType | This is zero for a SECONDARY service and 1 for a PRIMARY service. All other values are reserved for
future use and result in this function failing with an appropriate result code.

byVal nUuidHandle AS INTEGER
This is a handle to a 16-bit or 128-bit UUID that identifies the type of service function provided by all

the characteristics collected under it. It has been pre-created using one of the three functions:
BleHandleUuid16(), BleHandleUuid128(), or BleHandleUuidSibling().

byRef hService AS INTEGER

If the service attribute is created in the GATT table, then this contains a composite handle which
hService | references the actual attribute handle. This is then subsequently used when adding characteristics
to the GATT table. If the function fails to install the service attribute for any reason, this variable will
contain 0 and the returned result code will be non-zero.

nUuidHandle

Example:

https://www.lairdconnect.com/ 159 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

// Example :: BleServiceNew.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

#DEFINE BLE SERVICE SECONDARY 0

#DEFINE BLE SERVICE PRIMARY 1

[/ == mm oo oo oo
//Create a Health Thermometer PRIMARY service attribute which has a uuid of 0x1809
e

DIM hHtsSvc //composite handle for hts primary service

DIM hUuidHT : hUuidHT = BleHandleUuidl6 (0x1809) //HT Svc UUID Handle

IF BleServiceNew (BLE SERVICE PRIMARY,hUuidHT, hHtsSvc)==0 THEN
PRINT "\nHealth Thermometer Service attribute written to GATT table"
PRINT "\nUUID Handle value: ";hUuidHT
PRINT "\nService Attribute Handle value: ";hHtsSvc

ELSE

PRINT "\nService Commit Failed"

ENDIF
[/ = m oo
//Create a Battery PRIMARY service attribute which has a uuid of 0x180F
=
DIM hBatSvc //composite handle for battery primary service

//or we could have reused nHtsSvc
DIM hUuidBatt : hUuidBatt = BleHandleUuidl6 (0x180F) //Batt Svc UUID Handle

IF BleServiceNew (BLE SERVICE PRIMARY, hUuidBatt,hBatSvc)==0 THEN
PRINT "\n\nBattery Service attribute written to GATT table"
PRINT "\nUUID Handle value: ";hUuidBatt
PRINT "\nService Attribute Handle value: ";hBatSvc

ELSE
PRINT "\nService Commit Failed"

ENDIF

Expected Output:

Health Thermometer Service attribute written to GATT table
UUID Handle value: -33482743
Service Attribute Handle value: 16

Battery Service attribute written to GATT table
UUID Handle value: -33482737
Service Attribute Handle value: 17

https://www.lairdconnect.com/ 160 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

5.9.9 BleServiceCommit

This function in the BL652 is used to commit a defined service using BleServiceNew() to the GATT table and should be called
after the last characteristic/description has been created/commited for that service.

BLESERVICECOMMIT (hService)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byVal hService AS INTEGER

hservice This handle is returned from BleServiceNew().

See example for BleCharCommit().
5.9.10 BleSvcAddincludeSvc

FUNCTION

Note: This function is currently not available for use on this module

This function is used to add a reference to a service within another service. This is usually, but not necessarily, a
SECONDARY service which is virtually identical to a PRIMARY service from the GATT server perspective. The only difference
is that, when a GATT client queries a device for all services, it does not receive mention of SECONDARY services.

When a GATT client encounters an INCLUDED SERVICE object when querying a particular service it performs a sub-
procedure to get handles to all the characteristics that are part of that INCLUDED service.

This mechanism is provided to allow for a single set of characteristics to be shared by multiple primary services. This is most
relevant if a characteristic is defined so that it can have only one instance in a GATT table but needs to be offered in
multiple PRIMARY services. A typical implementation, where a characteristic is part of many PRIMARY services, installs that
characteristic in a SECONDARY service (see BleSvcCommit()) and then uses the function defined in this section to add it to
all the PRIMARY services that want to have that characteristic as part of their group.

It is possible to include a service which is also a PRIMARY or SECONDARY service, which in turn can include further PRIMARY
or SECONDARY services. The only restriction to nested includes is that there cannot be recursion.

Note: If a service has INCLUDED services, then they is installed in the GATT table immediately after a service is created
using BleSvcCommit() and before BleCharCommit(). The BT 4.0 specification mandates that any ‘included service’
attribute be present before any characteristic attributes within a particular service group declaration.

BleSvcAddIncludeSvc (hService)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation
Arguments:
hService byVal hService AS INTEGER
This argument contains a handle that was previously created using the function BleSvcCommit().
Example:
// Example :: BleSvcAddIncludeSvc.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples
#define BLE_ SERVICE SECONDARY 0
#define BLE SERVICE PRIMARY 1
https://www.lairdconnect.com/ 161 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY
User Guide

dim hBatSvc //composite handle for batteru primary service

dim rc //or we could have reused nHtsSvc

dim metaSuccess

DIM charMet : charMet = BleAttrMetaData(l,1,10,1,metaSuccess)

DIM s$: s$ = "Hello" //initial value of char in Battery Service

DIM hBatChar

rc = BleServiceNew (BLE SERVICE SECONDARY, BleHandleUuidl6 (0x180F), hBatSvc)

rc = BleCharNew (3,BleHandleUuidl6 (0x2A1C), charMet,0,0)

rc = BleCharCommit (hBatSvc, s$,hBatChar)

rc = BleServiceCommit (hBatSvc)

[e e e e e e e e e e e e e e 5 5 5 5 0 5 5 0 5 5 5 5 8 S D D S S S e e

DIM hHtsSvc //composite handle for hts primary service

rc = BleServiceNew (BLE SERVICE PRIMARY, BleHandleUuidl6 (0x1809), hHtsSvc)

rc = BleServiceCommit (hHtsSvc)

//Have to add includes before any characteristics are committed

PRINT INTEGER.h'BleSvcAddIncludeSvc (hBatSvce)

5.9.11 BleAttrMetadataEx

FUNCTION

A GATT Table is an array of attributes which are grouped into Characteristics which in turn are further grouped into
Services. Each attribute consists of a data value which can be anything from 1 to 512 bytes long according to the
specification and properties such as read and write permissions, authentication and security properties. When Services and
Characteristics are added to a GATT server table, multiple attributes with appropriate data and properties get added.

This function allows a 32 bit integer to be created, which is an opaque object, which defines those properties and is then
submitted along with other information to add the attribute to the GATT table.

When adding a Service attribute (not the whole service, in this present context), the properties are defined in the BT
specification so that it is open for reads without any security requirements but cannot be written and always has the same
data content structure. This implies that a metadata object does NOT need to be created.

However, when adding Characteristics, which consists of a minimum of 2 attributes, one similar in function as the
aforementioned Service attribute and the other the actual data container, then properties for the value attribute must be
specified. Here, ‘properties’ refers to properties for the attribute, not properties for the Characteristic container as a whole.
These also exist and must be specified, but that is done in a different manner as explained later.

https://www.lairdconnect.com/ 162 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

For example, the value attribute must be specified for read/write permission and whether it needs security and
authentication to be accessed.

If the Characteristic is capable of notification and indication, the client implicitly must be able to enable or disable that. This
is done through a Characteristic Descriptor which is also another attribute. The attribute will also need to have a metadata
supplied when the Characteristic is created and registered in the GATT table. This attribute, if it exists, is called a Client
Characteristic Configuration Descriptor or CCCD for short. A CCCD always has two bytes of data and currently only two bits
are used as on/off settings for notification and indication.

A Characteristic can also optionally be capable of broadcasting its value data in advertisements. For the GATT client to be
able to control this, there is yet another type of Characteristic Descriptor which also needs a metadata object to be supplied
when the Characteristic is created and registered in the GATT table. This attribute, if it exists, is called a Server
Characteristic Configuration Descriptor or SCCD for short. A SCCD always has two bytes of data and currently only one bit is
used as on/off settings for broadcasts.

Finally if the Characteristic has other Descriptors to qualify its behaviour, a separate API function is also supplied to add that
to the GATT table and when setting up a metadata object will also need to be supplied.

In a nutshell, think of a metadata object as a note to define how an attribute will behave and the GATT table manager will
need that before it is added. Some attributes have those ‘notes’ specified by the BT specification and so the GATT table
manager will not need to be provided with any, but the rest require it.

This function helps write that metadata.

BLEATTRMETADATAEX (nReadRights, nWriteRights, nMaxDataLen, nFlags, resCode)

Returns INTEGER, a 32-bit opaque data object to be used in subsequent calls when adding
Characteristics to a GATT table.
Arguments:

byVal nReadRights AS INTEGER

This specifies the read rights and shall have one of the following values:
0 No access

nReadRights E Open

2 Encrypted with No Man-In-The-Middle (MITM) protection
3 Encrypted with Man-In-The-Middle (MITM) protection
4 Signed with No Man-In-The-Middle (MITM) protection (not available)
5 Signed with Man-In-The-Middle (MITM) protection (not available)

byVal nWriteRights AS INTEGER

This specifies the write rights and shall have one of the following values:
0 No access

nWriteRights ! Open

2 Encrypted with No Man-In-The-Middle (MITM) protection
3 Encrypted with Man-In-The-Middle (MITM) protection
4 Signed with No Man-In-The-Middle (MITM) protection (not available)
5 Signed with Man-In-The-Middle (MITM) protection (not available)

byVal nMaxDatalen AS INTEGER

nMaxDatalen This specifies the maximum data length of the VALUE attribute.
Range is from 1 to 512 bytes according to the BT specification; the stack implemented in the
module may limit it for early versions.
https://www.lairdconnect.com/ 163 Americas: +1-800-492-2320

Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

byVal nFlags AS INTEGER

This is a bit mask where the bits are defined as follows:

= Bit 0: Set this to 1 only if you want the attribute to automatically shorten it’s length
according to the number of bytes written by the client. For example, if the initial length is
2 and the client writes only 1 byte, then if this is 0, then only the first byte gets updated
and the rest remain unchanged. If this parameter is set to 1, then when a single byte is
written the attribute will shorten it’s length to accommodate. If the client tries to write
more bytes than the initial maximum length, then the client will get an error response.

= Bit 1: Set this to 1 to ensure that the memory for the attribute is allocated from User
space (and hence less memory available for smartBASIC) so that a larger gatt table can be
nFlags created. This bit is ignored for all attributes other than for characteristic value.

= Bit 2: Set this to 1 to require authorisation for reads. When an attempt to read is made
by the client then one of the events EVAUTHVAL, EVAUTHCCCD, EVAUTHSCCD or
EVAUTHDESC is thrown to the app and in the handler for that event, either
BleAuthorizeChar() or BleAuthorizeDesc() is called with appropriate parameters to grant
or deny access.

= Bit 3: Set this to 1 to require authorisation for writes. When an attempt to write is made
by the client then one of the events EVAUTHVAL, EVAUTHCCCD, EVAUTHSCCD or
EVAUTHDESC is thrown to the app and in the handler for that event, either
BleAuthorizeChar() or BleAuthorizeDesc() is called with appropriate parameters to grant
or deny access.

byRef resCode AS INTEGER

resCode | This variable is updated with a result code which is 0 if a metadata object was successfully
returned by this call. Any other value implies a metadata object did not get created.

Example:

// Example :: BleAttrMetadata.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM mdvVal //metadata for value attribute of Characteristic
DIM mdCccd //metadata for CCCD attribute of Characteristic
DIM mdSccd //metadata for SCCD attribute of Characteristic

DIM rc

[/ ++++
// Create the metadata for the value attribute in the characteristic
// and Heart Rate attribute has variable length

[/ ++++

//There is always a Value attribute in a characteristic
mdVal=BleAttrMetadatakEx (17,0,20,0,rc)
//There is a CCCD and SCCD in this characteristic

mdCccd=BleAttrMetadatakEx (1,2,2,0,rc)

https://www.lairdconnect.com/ 164 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

ELSE

ENDIF

mdSccd=BleAttrMetadatakEx(0,0,2,0,rc)
//Create the Characteristic object
IF BleCharNew (3,BleHandleUuidl6 (0x2A1C) ,mdVal, mdCccd, mdSccd)==0 THEN

PRINT "\nSuccess"

PRINT "\nFailed"

Expected Output:

|Success

5.9.12 BleCharNew

FUNCTION

When a characteristic is to be added to a GATT table, multiple attribute objects must be precreated. After they are created
successfully, they are committed to the GATT table in a single atomic transaction.

This function is the first function that is called to start the process of creating those multiple attribute objects. It is used to
select the characteristic properties (which are distinct and different from attribute properties), the UUID to be allocated for
it and then up to three metadata objects for the value attribute, and CCCD/SCCD Descriptors respectively.

BLECHARNEW (nCharProps, nUuidHandle, mdVal, mdCccd, mdSccd)

Returns

INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

nCharProps

byVal nCharProps AS INTEGER

This variable contains a bit mask to specify the following high level properties for the
characteristic that is added to the GATT table:

Broadcast capable (SCCD descriptor must be present)

Can be read by the client

Can be written by the client without a response

Can be written

Can be notifiable (CCCD descriptor must be present)

Can be indicatable (CCCD descriptor must be present)

v b~ |wW N |- | O

Can accept signed writes

7 Reliable writes

nUuidHandle

byVal nUuidHandle AS INTEGER

This specifies the UUID that is allocated to the characteristic, either 16 or 128 bits. This
variable is a handle, pre-created using one of the following functions:
BleHandleUuid16(), BleHandleUuid128(), BleHandleUuidSibling().

mdVal

byVal mdVal AS INTEGER

This is the mandatory metadata used to define the properties of the Value attribute that is
created in the characteristic and is pre-created with help from function BleAttrMetadata().

https://www.lairdconnect.com/

165 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

byVal mdCccd AS INTEGER

This is an optional metadata that is used to define the properties of the CCCD descriptor
attribute that is created in the characteristic and is pre-created using the help of the function
BleAttrMetadata() or set to 0 if CCCD is not to be created.

If nCharProps specifies that the characteristic is notifiable or indicatable and this value
contains 0, this function will treat the descriptor so that read and write access is open.

byVal mdSccd AS INTEGER

This is an optional metadata that is used to define the properties of the SCCD descriptor
attribute that is created in the characteristic and is pre-created using the help of the function
BleAttrMetadata() or set to 0 if SCCD is not to be created.

If nCharProps specifies that the characteristic is broadcastable and this value contains 0, this
function will treat the descriptor so that read and write access is open.

mdCccd

mdSccd

Example:

// Example :: BleCharNew.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM rc

DIM charUuid : charUuid = BleHandleUuidl6 (2) //Characteristic's UUID

DIM mdVal : mdVal = BleAttrMetadataEx(1,0,20,0,rc) //Metadata for value attribute
DIM mdCccd : mdCccd = BleAttrMetadatakEx(1,1,2,0,rc) //Metadata for CCCD attribute of
Characteristic

//

// Create a new char:

// --- Indicatable, not Broadcastable (so mdCccd is included, but not mdSccd)

// —--- Can be read, not written (shown in mdVal as well)

//

IF BleCharNew (0x22, charUuid, mdvVal, mdCccd, 0)==0 THEN
PRINT "\nNew Characteristic created"

ELSE
PRINT "\nFailed"

ENDIF

Expected Output:

|New Characteristic created

5.9.13BleCharDescUserDesc

FUNCTION

This function adds an optional User Description Descriptor to a Characteristic and can only be called after BleCharNew()
starts the process of describing a new characteristic.

The BT 4.0 specification describes the User Description Descriptor as “.. a UTF-8 string of variable size that is a textual
description of the characteristic value.” It further stipulates that this attribute is optionally writable and so a metadata

https://www.lairdconnect.com/ 166 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

argument exists to configure it as such. The metadata automatically updates the Writable Auxilliaries properties flag for the
characteristic. This is why that flag bit is NOT specified for the nCharProps argument to the BleCharNew() function.

BLECHARDESCUSERDESC (userDesc$, mdUser)

Returns
Arguments:

INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

byRef userDescS AS STRING

userDesc$ | The user description string with which to initiliase the descriptor. If the length of the string exceeds the
maximum length of an attribute then this function aborts with an error result code.

byVal mdUser AS INTEGER

This is a mandatory metadata that defines the properties of the User Description Descriptor attribute
mduUser | created in the characteristic and pre-created using the help of BleAttrMetadata(). If the write rights are
set to 1 or greater, the attribute is marked as writable and the client is able to provide a user
description that overwrites the one provided in this call.

Example:

// Example :: BleCharDescUserDesc.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM rc, metaSuccess,usrDesc$: usrDesc$="A description"

DIM charUuid : charUuid = BleHandleUuidlé6 (1)

DIM charMet : charMet = BleAttrMetaData(l,1,20,0,metaSuccess)
DIM mdUsrDsc : mdUsrDsc = BleAttrMetaData(l,1,20,0,metaSuccess)

DIM mdSccd : mdSccd = BleAttrMetadata(1l,1,2,0,rc) //CCCD metadata for char

//initialise char, write/read enabled, accept signed writes, indicatable
rc=BleCharNew (0x4B, charUuid, charMet, 0, mdSccd)

rc=BleCharDescUserDesc (usrDesc$, mdUsrDsc)

IF rc==0 THEN

PRINT "\nChar created and User Description '";usrDesc$;"' added"
ELSE

PRINT "\nFailed"

ENDIF

Expected Output:

|Char created and User Description 'A description' added

5.9.14BleCharDescPrstnFrmt

FUNCTION

This function adds an optional Presentation Format Descriptor to a characteristic and can only be called after BleCharNew()
has started the process of describing a new characteristic. It adds the descriptor to the GATT table with open read
permission and no write access, which means a metadata parameter is not required.

https://www.lairdconnect.com/ 167 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

The BT 4.0 specification states that one or more presentation format descriptors can occur in a characteristic and that if
more than one, then an Aggregate Format description is also included.

The book Bluetooth Low Energy: The Developer's Handbook by Robin Heydon, says the following on the subject of the
Presentation Format Descriptor:

“One of the goals for the Generic Attribute Profile was to enable generic clients. A generic client is defined as a
device that can read the values of a characteristic and display them to the user without understanding what they
mean.

The most important aspect that denotes if a characteristic can be used by a generic client is the Characteristic
Presentation Format descriptor. If this exists, it’s possible for the generic client to display its value, and it is safe to

read this value.”

BLECHARDESCPRSTNFRMT (nFormat, nExponent, nUnit, nNameSpace, nNSdesc)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byVal nFormat AS INTEGER

Valid range 0 to 255.

The format specifies how the data in the Value attribute is structured. A list of valid values for this
argument is found at http://developer.Bluetooth.org/GATT/Pages/FormatTypes.aspx and the
enumeration is described in the BT 4.0 spec, section 3.3.3.5.2.

The following is the enumeration list at the time of writing:

0x00 RFU 0x01 boolean
0x02 2bit 0x03 nibble
0x04 unit8 0x05 uintl2
0x06 uintl6 0x07 uint24

nFormat 0x08 uint32 0x09 uint48
0x0A uint64 0x0B uint128
0x0C sint8 0x0D sintl12
OxOE sintl6 OxOF sint24
0x10 sint32 Ox11 sint48
0x12 sint64 0x13 sint128
0x14 float32 0x15 float64
0x16 SFLOAT 0x17 FLOAT
0x18 duintl6 0x19 utf8s
Ox1A utf16s 0x1B struct

0x1C-OxFF RFU

byVal nExponent AS INTEGER

This value is used with integer data types given by the enumeration in nFormat to further qualify the
nExponent | value so that the actual value is:

actual value = Characteristic Value * 10 to the power of nExponent.

Valid range -128 to 127

byVal nUnit AS INTEGER

This value is a 16-bit UUID used as an enumeration to specify the units which are listed in the
nUnit | Assigned Numbers document published by the Bluetooth SIG, found at:
http://developer.Bluetooth.org/GATT/units/Pages/default.aspx

Valid range 0 to 65535.

byVal nNameSpace AS INTEGER

The value identifies the organization, defined in the Assigned Numbers document published by the

nNamespace Bluetooth SIG, found at:
https://developer.Bluetooth.org/GATT/Pages/GATTNamespaceDescriptors.aspx
https://www.lairdconnect.com/ 168 Americas: +1-800-492-2320

Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

http://developer.bluetooth.org/gatt/Pages/FormatTypes.aspx
http://developer.bluetooth.org/gatt/units/Pages/default.aspx
https://developer.bluetooth.org/gatt/Pages/GattNamespaceDescriptors.aspx

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

Valid range 0 to 255.

byVal nNSdesc AS INTEGER

nNSdesc | This value is a description of the organisation specified by nNameSpace.
Valid range 0 to 65535.

Example:

// Example :: BleCharDescPrstnFrmt.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM rc, metaSuccess,usrDesc$: usrDesc$="A description"

DIM charUuid : charUuid = BleHandleUuidlo6 (1)

DIM charMet : charMet = BleAttrMetaData(l,1,20,0,metaSuccess)
DIM mdUsrDsc : mdUsrDsc = BleAttrMetaData(l,1,20,0,metaSuccess)

DIM mdSccd : mdSccd = BleAttrMetadata(1l,1,2,0,rc) //CCCD metadata for char

//initialise char, write/read enabled, accept signed writes, indicatable
rc=BleCharNew (0x4B, charUuid, charMet, 0, mdSccd)

rc=BleCharDescUserDesc (usrDesc$, mdUsrDsc)

IF rc==0 THEN

PRINT "\nChar created and User Description '";usrDesc$;"' added"
ELSE

PRINT "\nFailed"

ENDIF

[/~ ~ ~
// other optional descriptors

/]~~~

// 16 bit signed integer = 0x0E

// exponent = 2

// unit = 0x271A (amount concentration (mole per cubic metre))

// namespace = 0x01 == Bluetooth SIG

// description = 0x0000 == unknown

IF BleCharDescPrstnFrmt (0x0E,2,0x271A,0x01,0x0000)==0 THEN
PRINT "\nPresentation Format Descriptor added"

ELSE
PRINT "\nPresentation Format Descriptor not added"

ENDIF

Expected Output:

https://www.lairdconnect.com/ 169 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

Char created and User Description 'A description' added
Presentation Format Descriptor added

5.9.15BleCharDescAdd

FUNCTION

This function is used to add any Characteristic Descriptor as long as its UUID is not in the range 0x2900 to 0x2904 inclusive,
as they are treated specially using dedicated API functions. For example, 0x2904 is the Presentation Format Descriptor and
it is catered for by the API function BleCharDescPrstnFrmt().

Since this function allows existing /future defined Descriptors to be added that may or may not have write access or require
security requirements, a metadata object must be supplied allowing that to be configured.

BLECHARDESCADD (nUuid16, attr$, mdDesc)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byVal nUuid16 AS INTEGER
This is a value in the range 0x2905 to 0x2999
Note: This is the actual UUID value, NOT the handle.

nUuid16
The highest value at the time of writing is 0x290E, defined for the Report Reference Descriptor.
See http://developer.Bluetooth.org/GATT/descriptors/Pages/DescriptorsHomePage.aspx for a list of
Descriptors defined and adopted by the Bluetooth SIG.
attrs byRef attrS AS STRING

This is the data that is saved in the Descriptor’s attribute

byValn AS INTEGER

This is mandatory metadata that is used to define the properties of the Descriptor attribute that is
mdDesc | created in the Characteristic and was pre-created using the help of the function BleAttrMetadata(). If
the write rights are set to 1 or greater, then the attribute is marked as writable and the client is able
to modify the attribute value.

Example:

// Example :: BleCharDescAdd.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM rc, metaSuccess,usrDesc$: usrDesc$="A description"

DIM charUuid : charUuid = BleHandleUuidl6 (1)

DIM charMet : charMet = BleAttrMetaData(l,1,20,0,metaSuccess)
DIM mdUsrDsc : mdUsrDsc = charMet

DIM mdSccd : mdSccd = charMet

//initialise char, write/read enabled, accept signed writes, indicatable
rc=BleCharNew (0x4B, charUuid, charMet, 0, mdSccd)
rc=BleCharDescUserDesc (usrDesc$, mdUsrDsc)

rc=BleCharDescPrstnFrmt (0x0E, 2, 0x271A, 0x01,0x0000)

https://www.lairdconnect.com/ 170 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

http://developer.bluetooth.org/gatt/descriptors/Pages/DescriptorsHomePage.aspx

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

/) =~ =~ =
// other descriptors

/]~

[/ ++++

//Add the other Descriptor 0x29XX -- first one

[/ ++++

DIM mdChrDsc : mdChrDsc = BleAttrMetadata(l,0,20,0,metaSuccess)
DIM attr$: attr$="some valuel"

rc=BleCharDescAdd (0x2905,attr$, mdChrDsc)

[/ ++++

//Add the other Descriptor 0x29XX -- second one
[/ ++++

attr$="some valuel"

rc=rc+BleCharDescAdd (0x2906,attr$, mdChrDsc)

[/ ++++

//Add the other Descriptor 0x29XX -- last one
[/ ++++

attr$="some value3"

rc=rc+BleCharDescAdd (0x2907, attr$, mdChrDsc)

IF rc==0 THEN

PRINT "\nOther descriptors added successfully"
ELSE

PRINT "\nFailed"

ENDIF

Expected Output:

|Other descriptors added successfully

5.9.16 BleCharCommit

FUNCTION

This function commits a characteristic which was prepared by calling BleCharNew() and optionally
BleCharDescUserDesc(),BleCharDescPrstnFrmt() or BleCharDescAdd().

It is an instruction to the GATT table manager that all relevant attributes that make up the characteristic should appear in
the GATT table in a single atomic transaction. If it successfully created, a single composite characteristic handle is returned
which should not be confused with GATT table attribute handles. If the Characteristic was not accepted then this function
returns a non-zero result code which conveys the reason and the handle argument that is returned has a special invalid
handle of 0.

https://www.lairdconnect.com/ 171 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

The characteristic handle that is returned references an internal opaque object that is a linked list of all the attribute
handles in the characteristic which by definition implies that there is a minimum of 1 (for the characteristic value attribute)
and more as appropriate. For example, if the characteristic’s property specified is notifiable then a single CCCD attribute
also exists.

Note: In the GATT table, when a characteristic is registered, there are actually a minimum of two attribute handles,
one for the Characteristic Declaration and the other for the Value. However there is no need for the smart BASIC
apps developer to access it, so it is not exposed. Access is not required because the characteristic was created by
the application developer and so shall already know its content — which never changes once created.

BLECHARCOMMIT (hService, attr$, charHandle)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byVal hService AS INTEGER
hService | This is the handle of the service to which the characteristic belongs, which in turn was created using
the function BleSvcCommit().

byRef attrS AS STRING
attrS | This string contains the initial value of the value attribute in the characteristic. The content of this
string is copied into the GATT table and the variable can be reused after this function returns.

byRef charHandle AS INTEGER

The composite handle for the newly created characteristic is returned in this argument. It is zero if the
function fails with a non-zero result code. This handle is then used as an argument in subsequent
function calls to perform read/write actions, so it is must be placed in a global smartBASIC variable.
charHandle | When a significant event occurs as a result of action by a remote client, an event message is sent to
the application which can be serviced using a handler. That message contains a handle field
corresponding to this composite characteristic handle. Standard procedure is to select on that value to
determine for which characteristic the message is intended.

See event messages: EVCHARHVC, EVCHARVAL, EVCHARCCCD, EVCHARSCCD, EVCHARDESC.

Example:

// Example :: BleCharCommit.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

#DEFINE BLE SERVICE SECONDARY 0
#DEFINE BLE SERVICE PRIMARY 1
DIM rc

DIM attr$,usrDesc$: usrDesc$="A description"

DIM hHtsSvc //composite handle for hts primary service
DIM mdCharVal : mdCharVal = BleAttrMetaData(1l,1,20,0,rc)
DIM mdCccd : mdCccd = BleAttrMetadata(l,1,2,0,rc)

DIM mdUsrDsc : mdUsrDsc = BleAttrMetaData(l,1,20,0,zrc)

https://www.lairdconnect.com/ 172 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

DIM hHtsMeas //composite handle for htsMeas characteristic

//Create the Measurement Characteristic object, add user description descriptor

rc=BleCharNew (0x2A,BleHandleUuidl6 (0x2A1C) ,mdCharVal, mdCccd, 0)

rc=BleCharDescUserDesc (usrDesc$, mdUsrDsc)

attr$="hello\00worl\64"

IF BleCharCommit (hHtsSvc,attr$, hHtsMeas)==0 THEN
PRINT "\nCharacteristic Commited"

ELSE
PRINT "\nFailed"

ENDIF

rc=BleServiceCommit (hHtsSvc)

//the characteristic will now be visible in the GATT table

//and is refrenced by ‘hHtsMeas’ for subsequent calls

Expected Output:

|Characteristic Commited

5.9.17 BleCharValueRead

FUNCTION

This function reads the current content of a characteristic identified by a composite handle that was previously returned by
the function BleCharCommit().

In most cases a read will be performed when a GATT client writes to a characteristic value attribute. The write event is
presented asynchronously to the smart BASIC application in the form of EVCHARVAL event. This function will most often be
accessed from the handler that services that event.

BLECHARVALUEREAD (charHandle, attr$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

https://www.lairdconnect.com/ 173 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

Arguments:

byVal charHandle AS INTEGER

charHandle | This is the handle to the characteristic whose value must be read which was returned when

BleCharCommit() was called.

byRef attr$ AS STRING

attr. L.
4 This string variable contains the new value from the characteristic.

Example:

// Example :: BleCharValueRead.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM hMyChar,rc, conHndl

//

// Initialise and instantiate service, characteristic,

//

FUNCTION OnStartup ()
DIM rc, hSvc, scRpt$, adRpt$, addr$, attr$: attr$="Hi"

//commit service
rc=BleServiceNew (1, BleHandleUuidl6 (0x18EE), hSvc)
//initialise char, write/read enabled, accept signed writes
rc=BleCharNew (0x0A,BleHandleUuidl6 (1) ,BleAttrMetaData(1,1,20,0,rc),0,0)
//commit char initialised above, with initial value "hi" to service 'hSvc'
rc=BleCharCommit (hSvc,attr$, hMyChar)
//commit changes to service
rc=BleServiceCommit (hSvc)
//initialise scan report
rc=BleScanRptInit (scRpt$)
//Add 1 service handle to scan report
rc=BleAdvRptAddUuidlé6 (scRpt$,0x18EE,-1,-1,-1,-1,-1)
//commit reports to GATT table - adRpt$ is empty
rc=BleAdvRptsCommit (adRpt$, scRptS)
rc=BleAdvertStart (0,addr$,150,0,0)
ENDFUNC rc

//
// New char value handler

//

https://www.lairdconnect.com/ 174
Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

FUNCTION HndlrChar (BYVAL chrHndl, BYVAL offset, BYVAL len)

dim s$
IF chrHndl == hMyChar THEN
PRINT "\n";len;" byte(s) have been written to char value attribute from offset
";offset
rc=BleCharValueRead (hMyChar, s$)
PRINT "\nNew Char Value: ";s$
ENDIF

rc=BleAdvertStop ()

rc=BleDisconnect (conHndl)

ENDFUNC 0

//

// Get the connnection handle
//

FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtn)
conHndl=nCtn
ENDFUNC 1

IF OnStartup()==0 THEN
DIM at$: rc = BleCharValueRead (hMyChar,at$)

PRINT "\nCharacteristic value attribute: ";at$;"\nConnect to BL652 and send a new
value\n"

ELSE
PRINT "\nFailure OnStartup"

ENDIF

ONEVENT EVCHARVAL CALL HndlrChar
ONEVENT EVBLEMSG CALL HndlrBleMsg

WAITEVENT

PRINT "\nExiting..."

Expected Output:

Characteristic value attribute: Hi
Connect to BL652 and send a new value

New characteristic value: Laird
Exiting...

https://www.lairdconnect.com/ 175 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

5.9.18 BleCharValueWrite

FUNCTION

This function writes new data into the VALUE attribute of a Characteristic, which is in turn identified by a composite handle
returned by the function BleCharCommit().

BLECHARVALUEWRITE (charHandle, attr$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byVal charHandle AS INTEGER
charHandle | This is the handle to the characteristic whose value must be updated which was returned when
BleCharCommit() was called.

byRef attr$ AS STRING
String variable, contains new value to write to the characteristic.

attrs

Example:

// Example :: BleCharValueWrite.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM hMyChar, rc

//
// Initialise and instantiate service, characteristic,
//
FUNCTION OnStartup ()

DIM rc, hSvc, attr$: attr$="Hi"

//commit service
rc = BleServiceNew(l, BleHandleUuidlo6 (0x18EE), hSvc)
//initialise char, write/read enabled, accept signed writes
rc=BleCharNew (0x4A,BleHandleUuidl6 (1) ,BleAttrMetabData(1,1,20,0,rc),0,0)
//commit char initialised above, with initial value "hi" to service 'hSvc'
rc=BleCharCommit (hSvc,attr$, hMyChar)
//commit changes to service
rc = BleServiceCommit (hSvc)
ENDFUNC rc

//
// Uart Rx handler - write input to characteristic
//
FUNCTION HndlrUartRx ()

TimerStart (0,10,0)
ENDFUNC 1

//
// Timer(O timeout handler
//
FUNCTION HndlrTmrO ()

DIM t$: rc=UartRead (t$)

rc = BleCharValueWrite (hMyChar,t$)

IF rc==0 THEN

PRINT "\nNew characteristic value: ";t$

ELSE
PRINT "\nFailed to write new characteristic value ";integer.h'rc;"\n"
ENDIF
ENDFUNC O
https://www.lairdconnect.com/ 176 Americas: +1-800-492-2320

Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

IF OnStartup ()==0 THEN
DIM at$: rc = BleCharValueRead (hMyChar, at$)
PRINT "\nCharacteristic value attribute: ";at$;"\nType a new value\n"
ELSE
PRINT "\nFailure OnStartup"
ENDIF
ONEVENT EVUARTRX CALL HndlrUartRx
ONEVENT EVTMRO CALL HndlrTmrO
WAITEVENT
PRINT "\nExiting..."

Expected Output:

Characteristic value attribute: Hi
Send a new value
Laird

New characteristic value: Laird
Exiting...

5.9.19BleCharValueWriteEx

FUNCTION

This function writes new data into the VALUE attribute of a Characteristic, which is in turn identified by a composite handle
returned by the function BleCharCommit(). It differs from the original BleCharValueWrite in that the offset at which to write
the data can now be specified.

BLECHARVALUEWRITEEX (charHandle, offset, attr$)

Returns \ INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
Arguments:

byVal charHandle AS INTEGER

charHandle | This is the handle to the characteristic whose value must be updated which was returned when
BleCharCommit() was called.

byVal charHandle AS INTEGER

This is the offset at which to write the characteristic value.

byRef attr$ AS STRING

String variable, contains new value to write to the characteristic.

offset

attrS

See example for EVAUTHVALEX
5.9.20 BleCharValueNotify

FUNCTION

If there is BLE connection, this function writes new data into the VALUE attribute of a characteristic so that it can be sent as
a notification to the GATT client. The characteristic is identified by a composite handle that is returned by the function
BleCharCommit().

A notification does not result in an acknowledgement from the client.

BLECHARVALUENOTIFY (charHandle, attr$)

Returns ‘ INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
Arguments:
https://www.lairdconnect.com/ 177 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY
User Guide

byVal charHandle AS INTEGER

charHandle | This is the handle to the characteristic whose value must be updated which is returned when
BleCharCommit() is called.

byRef attr$ AS STRING

attrS | String variable containing new value to write to the characteristic and then send as a notification to
the client. If there is no connection, this function fails with an appropriate result code.

Example:

// Example :: BleCharValueNotify.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM hMyChar, rc,at$, conHndl
//
// Initialise and instantiate service, characteristic, start adverts
//
FUNCTION OnStartup ()

DIM rc, hSvc, at$, attr$, adRpt$, addr$, scRpt$

attr$="Hi"

DIM mdCccd : mdCccd = BleAttrMetadata(l,1,2,0,rc) //CCCD metadata for char

//Commit svc with handle 'hSvcUuid'
rc=BleServiceNew (1, BleHandleUuidl6 (0x18EE), hSvc)
//initialise char, write/read enabled, accept signed writes, notifiable
rc=BleCharNew (0x12,BleHandleUuidl6 (1) ,BleAttrMetabData(1,0,20,0,rc),mdCccd, 0)
//commit char initialised above, with initial value "hi" to service 'hMyChar'
rc=BleCharCommit (hSvc,attr$, hMyChar)
//commit changes to service
rc=BleServiceCommit (hSvc)
rc=BleScanRptInit (scRpt$)
//Add 1 service handle to scan report
rc=BleAdvRptAddUuidl6 (scRpt$,0x18EE,-1,-1,-1,-1,-1)
//commit reports to GATT table - adRpt$ is empty
rc=BleAdvRptsCommit (adRpt$, scRpt$)
rc=BleAdvertStart (0,addr$, 50,0, 0)
ENDFUNC rc

//

// Close connections so that we can run another app without problems

//

SUB CloseConnections ()
rc=BleDisconnect (conHndl)
rc=BleAdvertStop ()

ENDSUB

//
// Ble event handler
//
FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)
conHndl=nCtx
IF nMsgID==1 THEN

PRINT "\n\n--- Disconnected from client"
EXITFUNC O
ELSEIF nMsgID==0 THEN
PRINT "\n--- Connected to client"
ENDIF
ENDFUNC 1
//
// CCCD descriptor written handler
//
FUNCTION HndlrCharCccd (BYVAL charHandle, BYVAL nVal) AS INTEGER
https://www.lairdconnect.com/ 178 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

DIM value$
IF charHandle==hMyChar THEN
PRINT "\nCCCD Val: ";nVal
IF nVal THEN
PRINT " : Notifications have been enabled by client"
value$="hello"
IF BleCharValueNotify (hMyChar,value$) !=0 THEN
PRINT "\nFailed to notify new value :";INTEGER.H'rc

ELSE
PRINT "\nSuccessful notification of new value"
EXITFUNC O
ENDIF
ELSE
PRINT " : Notifications have been disabled by client"
ENDIF
ELSE
PRINT "\nThis is for some other characteristic"
ENDIF
ENDFUNC 1

ONEVENT EVBLEMSG CALL HndlrBleMsg
ONEVENT EVCHARCCCD CALL HndlrCharCccd

IF OnStartup ()==0 THEN
rc = BleCharValueRead (hMyChar, at$)
PRINT "\nCharacteristic Value: ";at$
PRINT "\nYou can connect and write to the CCCD characteristic."
PRINT "\nThe BL652 will then notify your device of a new characteristic value\n"

ELSE
PRINT "\nFailure OnStartup"
ENDIF
WAITEVENT
CloseConnections ()

PRINT "\nExiting..."

Expected Output:

Characteristic Value: Hi
You can connect and write to the CCCD characteristic.
The BL652 will then notify your device of a new characteristic wvalue

--— Connected to client

CCCD Val: 0 : Notifications have been disabled by client
CCCD Val: 1 : Notifications have been enabled by client
Successful notification of new value

Exiting...

5.9.21BleCharValuelndicate

FUNCTION

If there is BLE connection, this function is used to write new data into the VALUE attribute of a characteristic so that it can
be sent as an indication to the GATT client. The characteristic is identified by a composite handle returned by the function
BleCharCommit().

An indication results in an acknowledgement from the client and that is presented to the smartBASIC application as the
EVCHARHVC event.

https://www.lairdconnect.com/ 179 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

BLECHARVALUEINDICATE (charHandle, attr$)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byVal charHandle AS INTEGER

charHandle | This is the handle to the characteristic whose value must be updated which is returned when
BleCharCommit() was called.

byRef attr$ AS STRING

attrS | String variable containing new value to write to the characteristic and then to send as a notification to
the client. If there is no connection, this function fails with an appropriate result code.

Example:

// Example :: BleCharValuelIndicate.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples
DIM hMyChar, rc,at$, conHndl

//
// Initialise and instantiate service, characteristic, start adverts
//
FUNCTION OnStartup ()

DIM rc, hSvc, at$, attr$, adRpt$, addr$, scRpt$

attr$="Hi"

DIM mdCccd : mdCccd = BleAttrMetadata(1l,1,2,0,rc) //CCCD metadata for char

//Commit svc with handle 'hSvcUuid'

rc=BleServiceNew (1, BleHandleUuidl6 (0x18EE), hSvc)

//initialise char, write/read enabled, accept signed writes, notifiable
rc=BleCharNew (0x22,BleHandleUuidl6 (1) ,BleAttrMetabData (1,0,20,0,rc),mdCccd, 0)
//commit char initialised above, with initial value "hi" to service 'hMyChar'
rc=BleCharCommit (hSvc,attr$, hMyChar)

//commit changes to service

rc=BleServiceCommit (hSvc)

rc=BleScanRptInit (scRpt$)

//Add 1 service handle to scan report
rc=BleAdvRptAddUuidl6 (scRpt$, 0x18EE,-1,-1,-1,-1,-1)

//commit reports to GATT table - adRpt$ is empty
rc=BleAdvRptsCommit (adRpt$, scRptS)

rc=BleAdvertStart (0, addr$,50,0,0)

ENDFUNC rc

//

// Ble event handler
//

FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)
conHndl=nCtx
IF nMsgID==1 THEN

PRINT "\n\n--- Disconnected from client"
EXITFUNC O
ELSEIF nMsgID==0 THEN
PRINT "\n--- Connected to client"
ENDIF
ENDFUNC 1
//
// CCCD descriptor written handler
//
FUNCTION HndlrCharCccd (BYVAL charHandle, BYVAL nVal)
DIM value$
IF charHandle==hMyChar THEN
PRINT "\nCCCD Val: ";nVal
https://www.lairdconnect.com/ 180 Americas: +1-800-492-2320

Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

IF nVal THEN
PRINT " : Indications have been enabled by client"
value$="hello"
rc=BleCharValueIndicate (hMyChar,value$)
IF rc!=0 THEN
PRINT "\nFailed to indicate new value :";INTEGER.H'rc

ELSE
PRINT "\nSuccessful indication of new value"
EXITFUNC 1
ENDIF
ELSE
PRINT " : Indications have been disabled by client"
ENDIF
ELSE
PRINT "\nThis is for some other characteristic"
ENDIF
ENDFUNC 1
//
// Indication Acknowledgement Handler
//

FUNCTION HndlrChrHvc (BYVAL charHandle)
IF charHandle == hMyChar THEN
PRINT "\n\nGot confirmation of recent indication"

ELSE
PRINT "\n\nGot confirmation of some other indication: ";charHandle
ENDIF
ENDFUNC 0
ONEVENT EVBLEMSG CALL HndlrBleMsg

ONEVENT EVCHARCCCD CALL HndlrCharCccd
ONEVENT EVCHARHVC CALL HndlrChrHvc

IF OnStartup ()==0 THEN
rc = BleCharValueRead (hMyChar, at$)
PRINT "\nCharacteristic Value: ";at$
PRINT "\nYou can connect and write to the CCCD characteristic."
PRINT "\nThe BL652 will then indicate a new characteristic value\n"
ELSE
PRINT "\nFailure OnStartup"
ENDIF

WAITEVENT
rc=BleDisconnect (conHndl)

rc=BleAdvertStop ()
PRINT "\nExiting..."

Expected Output:

Characteristic Value: Hi
You can connect and write to the CCCD characteristic.
The BL652 will then indicate a new characteristic value

--- Connected to client

CCCD Val: 0 : Indications have been disabled by client
CCCD Val: 2 : Indications have been enabled by client
Successful indication of new value

Got confirmation of recent indication
Exiting...

https://www.lairdconnect.com/ 181 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

5.9.22 BleCharDescRead

FUNCTION

This function reads the current content of a writable Characteristic Descriptor identified by the two parameters supplied in
the EVCHARDESC event message after a GATT client writes to it.

In most cases a local read is performed when a GATT client writes to a characteristic descriptor attribute. The write event is
presented asynchronously to the smartBASIC application in the form of an EVCHARDESC event and so this function is most
often accessed from the handler that services that event.

BLECHARDESCREAD (charHandle, nDescHandle, nOffset, nLength, nDescUuidHandle, attr$)

Returns INTEGER, a result code. The typical value is 0x0000, indicating a successful operation.

Arguments:

byVal charHandle AS INTEGER
charHandle | This is the handle to the characteristic whose descriptor must be read which is returned when
BleCharCommit() is called and is been supplied in the EVCHARDESC event message.

byVal nDescHandle AS INTEGER
nDescHandle | This is an index into an opaque array of descriptor handles inside the charHandle and is supplied
as the second parameter in the EVCHARDESC event message.

byVal nOffset AS INTEGER
nOffset | This is the offset into the descriptor attribute from which the data shoud be read and copied
into attrS.

byVal nLength AS INTEGER
nLength | This is the number of bytes to read from the descriptor attribute from offset nOffset and copied
into attrS.

byRef nDescUuidHandle AS INTEGER

nDescUuidHandle On exit, this is updated with the uuid handle of the descriptor that got updated.
ttr byRef attr$ AS STRING
attr.
On exit, this string variable contains the new value from the characteristic descriptor.
Example:
// Example :: BleCharDescRead.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples
DIM rc,conHndl, hMyChar

SUB OnStartup ()
DIM hSvc,attr$,scRpt$,adRpt$,addrs
rc = BleServiceNew (1, BleHandleUuidlé6 (0x18FF), hSvc)
//Add one or more characteristics
rc = BleCharNew (0x0a,BleHandleUuidl6 (0x2AFF),BleAttrMetadata(l,1,20,1,rc),0,0)

//Add a user description
DIM s$: s$="You can change this"
rc=BleCharDescUserDesc (s$,BleAttrMetadata(1,1,20,0,rc))

attr$="\00" //no initial alert
rc = BleCharCommit (hSvc,attr$, hMyChar)
//Commit the service

https://www.lairdconnect.com/ 182 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

rc = BleServiceCommit (hSvc)
rc=BleScanRptInit (scRpt$)
//Add 1 char handle to scan report
rc=BleAdvRptAddUuidl6 (scRpt$, 0x2AFF,-1,-1,-1,-1,-1)
//commit reports to GATT table - adRpt$ is empty
rc=BleAdvRptsCommit (adRpt$, scRpt$)
rc=BleAdvertStart (0,addr$,200,0,0)

ENDSUB

//

// Close connections so that we can run another app without problems

//

SUB CloseConnections ()
rc=BleDisconnect (conHndl)
rc=BleAdvertStop ()

ENDSUB

//

// Ble event handler - Just to get the connection handle

//

FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)
conHndl=nCtx

ENDFUNC 1

//

// Handler to service writes to descriptors by a GATT client

//

FUNCTION HandlerCharDesc (BYVAL hChar AS INTEGER, BYVAL hDesc AS INTEGER)
DIM instnc,nUuid,a$, offset,duid

IF hChar == hMyChar THEN
rc = BleCharDescRead (hChar,hDesc,0,20,duid, a$)
IF rc==0 THEN
PRINT "\nRead 20 bytes from index ";offset;" in new char value."

PRINT "\n ::New Descriptor Data: ";StrHexize$ (a$):;
PRINT "\n ::Length=";StrLen (a$)
PRINT "\n ::Descriptor UUID ";integer.h' duid
EXITFUNC O
ELSE
PRINT "\nCould not access the uuid"
ENDIF
ELSE
PRINT "\nThis is for some other characteristic"
ENDIF
ENDFUNC 1

//install a handler for writes to characteristic values
ONEVENT EVCHARDESC CALL HandlerCharDesc
ONEVENT EVBLEMSG CALL HndlrBleMsg

OnStartup ()
PRINT "\nWrite to the User Descriptor with UUID 0x2999"

//wait for events and messages
WAITEVENT

CloseConnections ()
PRINT "\nExiting..."

Expected Output:

Write to the User Descriptor with UUID 0x2999
Read 20 bytes from index 0 in new char value.

https://www.lairdconnect.com/ 183
Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY
User Guide

::New Descriptor Data: 4C61697264

::Length=5

::Descriptor UUID FE012999
Exiting...
5.9.23 BleAuthorizeChar
FUNCTION

This function is used to grant or deny a read or write access of characteristic and is called in the handler for the event
EVAUTHVAL. When the function returns and if write access was requested and granted then the characteristic value is
deemed to be updated and so function BleCharValueRead() can be used to get the new value.

BLEAUTHORIZECHAR (connHandle, charHandle, readWrite)

INTEGER, a result code.
Typical value: 0x0000 (indicates a successful operation)

Returns

Arguments

byVal connHandle AS INTEGER

connHandle | This is the connection handle of the gatt client requesting the read or write access and
will have been supplied in the EVAUTHVAL message.

byVal charHandle AS INTEGER

charHandle This is the handle to the characteristic whose value must be read which was returned
when BleCharCommit() was called and will have been supplied in the EVAUTHVAL event
message.

byVal readWrite AS INTEGER

This will be to

0 to deny read access

1 to allow read access
2 to deny write access
3 to allow write access

readWrite

//Example :: See description for EVAUTHVAL

5.9.24 BleAuthorizeDesc
FUNCTION

This function is used to grant or deny a read or write access of characteristic descriptor and is called in the handler for the
three events EVAUTHCCCD, EVAUTHSCCD and EVAUTHDESC. When the function returns and if write access was requested
and granted then the characteristic descriptor value is deemed to be updated and so function BleCharDescRead() can be
used to get the new value of the descriptor when the event is EVAUTHDESC. For events EVAUTHCCCD and EVAUTHSCCD the
event itself will have supplied the new value.

BLEAUTHORIZEDESC (connHandle, charHandle, nDescType, readWrite)

INTEGER, a result code.

Returns . R -
Typical value: 0x0000 (indicates a successful operation)

Arguments
byVal connHandle AS INTEGER

connHandle o .)) .
This is the connection handle of the gatt client requesting the read or write access and
https://www.lairdconnect.com/ 184 Americas: +1-800-492-2320

Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

will have been supplied in the EVAUTHVAL message.

byVal charHandle AS INTEGER

This is the handle to the characteristic whose descriptor must be read which was
returned when BleCharCommit() was called and will have been supplied in the
EVAUTHVAL event message.

byVal nDescType AS INTEGER

This is as was supplied in the EVAUTHDESC event

byVal readWrite AS INTEGER
This will be to

0 to deny read access

1 to allow read access

2 to deny write access

3 to allow write access

charHandle

nDescType

readWrite

//Example :: See description for EVAUTHCCCD, EVAUTHSCCD or EVAUTHDESC

5.9.25 BleServiceChangedNtfy

FUNCTION

This function causes an indication of the Service Changed Characteristic of the GATT Service and specifies a start attribute
handle and an end attribute handle, which the client shall mark as changed so that it can update it’s cache if need be.

The EVBLEMSG event will be thown with subevent ID set to BLE_EVBLEMSGID_SRVCCHNG_IND_CNF when other
indications can be sent.

Note that if on connection to a bonded device the CCCD CRC does not match with the current GATT table then a Service
Change Indication is automatically sent to the client. Additionally, the local application is sent the event
BLE_EVBLEMSGID_SRVCCHNG_IND_SENT.

BLESERVICECHANGEDNTFY (nConnHandle, nStartHandle, nEndHandle)

INTEGER, a result code.

Returns . Lo .
Typical value: 0x0000 (indicates a successful operation)
Arguments
nConnHandle byVal nConnHandle AS INTEGER.

Specifies the handle of the connection that must be disconnected.

byVal nStartHandle AS INTEGER.
nStartHandle | Specifies the start attribute handle of GATT table that has changed. Set to 0 to mark the
entire table as changed.

byVal nEndHandle AS INTEGER.
nEndHandle | Specifies the end attribute handle of GATT table that has changed. Set to 0 to mark the
entire table as changed.

5.10 GATT Client Functions

This section describes all functions related to GATT client capability which enables interaction with GATT servers of a
connected BLE device. The Bluetooth Specification 4.0 and newer allows for a device to be a GATT server and/or GATT

https://www.lairdconnect.com/ 185 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions

User Guide

La i rd‘ J»» CONNECTIVITY

client simultaneously; the fact that a peripheral mode device accepts a connection and has a GATT server table does not
preclude it from interacting with a GATT table in the central role device with which it is connected.

These GATT client functions allow the developer to discover services, characteristics and descriptors, read and write to

characteristics and descriptors, and handle either notifications or indications.

To interact with a remote GATT server, it is important to have a good understanding of how it is constructed. It is best to
see it as a table consisting of many rows and three visible columns (handle, type, value) and at least one more invisible
column whose content affects access to the data column.

16 bit Handle

Type (16 or 128 bit)

Value (1 to 512 bytes)

Permissions

These rows are grouped into collections called services and characteristics. The grouping is achieved by creating a row with
Type = 0x2800 or 0x2801 for services (primary and secondary respectively) and 0x2803 for characteristics.

A table should be scanned from top to bottom; the specification stipulates that the 16-bit handle field contains values in the
range 1 to 65535 and SHALL be in ascending order. Gaps are allowed.

When scanning, if a row is encountered with the value 0x2800 or 0x2801 in the Type column, then it is understood as the
start of a primary or secondary service which in turn contains at least one charactestic or one ‘included service’ which have
Type=0x2803 and 0x2802 respectively.

When a row with Type = 0x2803 (a characteristic) is encountered, then the next row contains the value for that
characteristic; afterwards, there may be zero or more descriptors.

This means each characteristic consists of at least two rows in the table; and if descriptors exist for that characteristic, then

a single row per descriptor.

0x0001 0x2800 UUID of the Service Primary Service 1 Start
0x0002 0x2803 Properties, Value Handle, Value UUID1 Characteristic 1 Start
0x0003 Value UUID1 Value : 1to 512 bytes Actual data

0x0004 0x2803 Properties, Value Handle, Value UUID2 Characteristic 2 Start
0x0005 Value UUID2 Value : 1 to 512 bytes Actual data

0x0006 0x2902 Value Descriptor 1(CCCD)
0x0007 0x2903 Value Descriptor 2 (SCCD)
0x0008 0x2800 UUID of the Service Primary Service 2 Start
0x0009 0x2803 Properties, Value Handle, Value UUID3 Characteristic 1 Start
0x000A Value UUID3 Value : 1 to 512 bytes Actual data

0x000B 0x2800 UUID of the Service Primary Service 3 Start
0x000C 0x2803 Properties, Value Handle, Value UUID3 Characteristic 3 Start
0x000D Value UUID3 Value : 1to 512 bytes Actual data

0x000E 0x2902 Value Descriptor 1(CCCD)
0x000F 0x2903 Value Descriptor 2 (SCCD)
0x0010 0x2904 Value (presentation format data) Descriptor 3

https://www.lairdconnect.com/

186
Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

0x00111 0x2906 Value (valid range) Descriptor 4 (Range)

A colour highlighted example of a GATT server table is shown above. There are three services (at handles 0x0001,0x0008
and 0x000B) because there are three rows where the Type = 0x2800. All rows up to the next instance of a row with
Type=0x2800 or 2801 belong to that service.

In each group of rows for a service, there is one or more characteristics where Type=0x2803. For example the service
beginning at handle 0x0008 has one characteristic which contains two rows identified by handles 0x0009 and 0x000A and
the actual value for the characteristic starting at 0x0009 is in the row identified by 0xO00A.

Likewise, each characteristic starts with a row with Type=0x2803 and all rows following it (up to a row with type =
0x2800/2801/2803) are considered belonging to that characteristic. For example, the characteristic at row with handle =
0x0004 has the mandatory value row and then two descriptors.

The Bluetooth specification allows for multiple instances of the same service or characteristics or descriptors and they are
differentiated by the unique handle. This ensures no ambiguity.

Each GATT server table allocates the handle numbers, the only stipulation being that they be in ascending order (gaps are
allowed). This is important to understand because two devices containing the same services and characteristic and in
EXACTLY the same order may NOT allocate the same handle values, especially if one device increments handles by 1 and
another with some other arbitrary random value. The specification does stipulate that once the handle values are allocated,
they are fixed for all subsequent connections unless the device exposes a GATT service which allows for indications to the
client that the handle order has changed and thus force it to flush its cache and rescan the GATT table.

When a connection is first established, there is no prior knowledge as to which services exist or their handles. Therefore,
the GATT protocol which is used to interact with GATT servers, provides procedures that allow for the GATT table to be
scanned so that the client can ascertain which services are offered. This section describes smartBASIC functions which
encapsulate and manage those procedures to enable a smartBASIC application to map the table.

These helper functions have been written to help gather the handles of all the rows which contain the value type for
appropriate characteristics as those are the ones that will be read or written to. The smartBASIC internal engine also
maintains data objects so that it is possible to interact with descriptors associated with the characteristic.

Basically, the table scanning process reveals characteristic handles (as handles of handles) which are used in other GATT
client related smartBASIC functions to interact with the table to, for example, read/write or accept and process incoming
notifications and indications.

This approach ensures that the least amount of RAM resource is required to implement a GATT client and, given that these
procedures operate at speeds many orders of magnitude slower compared to the speed of the CPU and energy
consumption is to be kept as low as possible, the response to a command is delivered asynchronously as an event for which
a handler must be specified in the user smartBASIC application.

The rest of this chapter details all GATT client commands, responses, and events along with example code demonstrating
usage and expected output.

5.10.1 Events and Messages

The nature of GATT client operation consists of multiple queries and acting on the responses. Because the connection
intervals are slower than the CPU speed, responses can arrive many tens of milliseconds after the procudure is triggered;
these are delivered to an application using an event or message. Since these event/messages are tightly coupled with the
appropriate commands, all but one is described when the command that triggers them is described.

The event EVGATTCTOUT is applicable for all GATT client-related functions which result in transactions over the air. The
Bluetooth specification states that if an operation is initiated and is not completed within 30 seconds then the connection is
dropped as no further GATT client transaction can be initiated.

https://www.lairdconnect.com/ 187 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

5.10.1.1 EVGATTCTOUT
This event message is thrown if a GATT client transaction takes longer than 30 seconds. It contains one INTEGER parameter:
= Connection Handle

Example:

// Example :: EVGATTCTOUT.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM rc,conHndl

//
// Initialise and instantiate service, characteristic, start adverts
//
FUNCTION OnStartup ()
DIM rc, adRpt$, addr$, scRpt$
rc=BleAdvRptInit (adRpt$, 2, 0, 10)

IF rc==0 THEN : rc=BleScanRptInit (scRpt$) : ENDIF
IF rc==0 THEN : rc=BleAdvRptsCommit (adRpt$,scRpt$) : ENDIF
IF rc==0 THEN : rc=BleAdvertStart (0,addr$,50,0,0) : ENDIF
//open the GATT client with default notify/indicate ring buffer size
IF rc==0 THEN : rc = BleGATTcOpen(0,0) : ENDIF
ENDFUNC rc
//
// Ble event handler
//

FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)
conHndl=nCtx
IF nMsgID==1 THEN
PRINT "\n\n- Disconnected"
EXITFUNC O
ELSEIF nMsgID==0 THEN
PRINT "\n- Connected"
ENDIF
ENDFUNC 1

'//
'//
FUNCTION HandlerGATTcTout (cHndl) AS INTEGER

PRINT "\nEVGATTCTOUT connHandle=";cHndl

ENDFUNC 1

//

// Main () equivalent

//

ONEVENT EVBLEMSG CALL HndlrBleMsg
OnEvent EVGATTCTOUT call HandlerGATTcTout

rc = OnStartup ()

WAITEVENT

Expected Output:

EVGATTCTOUT connHandle=123

https://www.lairdconnect.com/ 188 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

5.10.1.2 EVDISCPRIMSVC

This event message is thrown if either BleDiscServiceFirst() or BleDiscServiceNext() returns a success. The message contains
the following four INTEGER parameters:

= Connection Handle

= Service UUID Handle

= Start Handle of the service in the GATT table

= End Handle for the service

If no additional services were discovered because the end of the table was reached, then all parameters contain zero apart
from the Connection Handle.

5.10.1.3 EVDISCCHAR

This event message is thrown if either BleDiscCharFirst() or BleDiscCharNext() returns a success. The message contains the
following INTEGER parameters:

= Connection Handle

= Characteristic UUID Handle

= Characteristic properties

= Handle for the value attribute of the characteristic

= Included Service UUID Handle

If no more characteristics were discovered because the end of the table was reached, then all parameters contain zero
apart from the Connection Handle.

‘Characteristic Uuid Handle’ contains the UUID of the characteristic and supplied as a handle.

‘Characteristic Properties’ contains the properties of the characteristic and is a bit mask as follows:

Bit O Set if BROADCAST is enabled

Bit1 Set if READ is enabled

Bit 2 Set if WRITE_WITHOUT_RESPONSE is enabled

Bit 3 Set if WRITE is enabled

Bit 4 Set if NOTIFY is enabled

Bit 5 Set if INDICATE is enabled

Bit 6 Set if AUTHENTICATED_SIGNED_WRITE is enabled

Bit 7 Set if RELIABLE_WRITE is enabled

‘Handle for the Value Attribute of the Characteristic’ is the handle for the value attribute and is the value to store to keep
track of important characteristics in a GATT server for later read/write operations.

‘Included Service Uuid Handle’ is for future use and is always 0.

5.10.1.4 EVDISCDESC

This event message is thrown if either BleDissDescFirst() or BleDiscDescNext() returns a success. The message contains the
following INTEGER parameters:

= Connection Handle
= Descriptor Uuid Handle
= Handle for the Descriptor in the remote GATT Table

If no more descriptors were discovered because the end of the table was reached, then all parameters contain zero apart
from the Connection Handle.

‘Descriptor Uuid Handle’ contains the UUID of the descriptor and is supplied as a handle.

https://www.lairdconnect.com/ 189 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

‘Handle for the Descriptor in the remote GATT Table’ is the handle for the descriptor as well as the value to store to keep
track of important characteristics in a GATT server for later read/write operations.

5.10.1.5 EVFINDCHAR

This event message is thrown if BleGATTcFindChar() returns a success. The message contains the following INTEGER
parameters:

= Connection Handle

= Characteristic Properties

= Handle for the Value Attribute of the Characteristic
= Included Service Uuid Handle

If the specified instance of the service/characteristic is not present in the remote GATT server table, then all parameters
contain zero apart from the Connection Handle.

‘Characteristic Properties’ contains the properties of the characteristic and is a bit mask as follows:
Bt Descripton
Set if BROADCAST is enabled

Set if READ is enabled

Set if WRITE_WITHOUT_RESPONSE is enabled

Set if WRITE is enabled

Set if NOTIFY is enabled

Set if INDICATE is enabled

Set if AUTHENTICATED_SIGNED_WRITE is enabled

Set if RELIABLE_WRITE is enabled

N|o o bW |N|[FRL | O

[any
(%2}

Set if the characteristic has extended properties

‘Handle for the Value Attribute of the Characteristic’ is the handle for the value attribute and is the value to store to keep
track of important characteristics in a GATT server for later read/write operations.

‘Included Service Uuid Handle’ is for future use and is always 0.
5.10.1.6 EVFINDDESC

This event message is thrown if BleGATTcFindDesc() returned a success. The message contains the following INTEGER
parameters:

= Connection Handle
= Handle of the Descriptor

If the specified instance of the service/characteristic/descriptor is not present in the remote GATT server table, then all
parameters contain zero apart from the Connection Handle.

‘Handle of the Descriptor’ is the handle for the descriptor and is the value to store to keep track of important descriptors in
a GATT server for later read/write operations — for example, CCCDs to enable notifications and/or indications.

5.10.1.7 EVATTRREAD
This event message is thrown if BleGattcRead() returns a success. The message contains the following INTEGER parameters:

= Connection Handle
= Handle of the Attribute
= GATT status of the read operation

https://www.lairdconnect.com/ 190 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

‘GATT status of the read operation’ is one of the following values, where 0 implies the read was successfully expedited and
the data can be obtained by calling BlePubGattClientReadData().

Hex Dec Description
0x0000 O Success
0x0001 1 Unknown or not applicable status

0x0100 256 ATT Error: Invalid Error Code

0x0101 257 ATT Error: Invalid Attribute Handle

0x0102 258 ATT Error: Read not permitted

0x0103 259 ATT Error: Write not permitted

0x0104 260 ATT Error: Used in ATT as Invalid PDU

0x0105 261 ATT Error: Authenticated link required

0x0106 262 ATT Error: Used in ATT as Request Not Supported

0x0107 263 ATT Error: Offset specified was past the end of the attribute

0x0108 264 ATT Error: Used in ATT as Insufficient Authorisation

0x0109 265 ATT Error: Used in ATT as Prepare Queue Full

0x010A 266 ATT Error: Used in ATT as Attribute not found

0x010B 267 ATT Error: Attribute cannot be read or written using read/write blob requests

0x010C 268 ATT Error: Encryption key size used is insufficient

0x010D 269 ATT Error: Invalid value size

0x010E 270 ATT Error: Very unlikely error

0x010F 271 ATT Error: Encrypted link required

0x0110 272 ATT Error: Attribute type is not a supported grouping attribute

0x0111 273 ATT Error: Encrypted link required

0x0112 274 ATT Error: Reserved for Future Use range #1 begin

0x017F 383 ATT Error: Reserved for Future Use range #1 end

0x0180 384 ATT Error: Application range begin

0x019F 415 ATT Error: Application range end

0x01A0 416 ATT Error: Reserved for Future Use range #2 begin

0x01DF 479 ATT Error: Reserved for Future Use range #2 end

0x01E0 480 ATT Error: Reserved for Future Use range #3 begin

0x01FC 508 ATT Error: Reserved for Future Use range #3 end

0x01FD 509 ATT Common Profile and Service Error: Client Characteristic Config Descriptor
(CCCD) improperly configured

0x01FE 510 ATT Common Profile and Service Error:Procedure Already in Progress

0x01lFF 511 ATT Common Profile and Service Error: Out Of Range

5.10.1.8 EVATTRWRITE

This event message is thrown if BleGattcWrite() returns a success. The message contains the following INTEGER
parameters:

= Connection Handle
= Handle of the Attribute
= GATT status of the write operation

‘GATT status of the write operation’ is one of the following values, where 0 implies the write was successfully expedited.

Hex Dec Description

0x0000 O Success

0x0001 1 Unknown or not applicable status

0x0100 256 ATT Error: Invalid Error Code

0x0101 257 ATT Error: Invalid Attribute Handle

0x0102 258 ATT Error: Read not permitted

0x0103 259 ATT Error: Write not permitted

0x0104 260 ATT Error: Used in ATT as Invalid PDU

0x0105 261 ATT Error: Authenticated link required

0x0106 262 ATT Error: Used in ATT as Request Not Supported
0x0107 263 ATT Error: Offset specified was past the end of the attribute
0x0108 264 ATT Error: Used in ATT as Insufficient Authorisation
0x0109 265 ATT Error: Used in ATT as Prepare Queue Full

https://www.lairdconnect.com/ 191 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

0x010A 266 ATT Error: Used in ATT as Attribute not found

0x010B 267 ATT Error: Attribute cannot be read or written using read/write blob requests

0x010C 268 ATT Error: Encryption key size used is insufficient

0x010D 269 ATT Error: Invalid value size

0x010E 270 ATT Error: Very unlikely error

0x010F 271 ATT Error: Encrypted link required

0x0110 272 ATT Error: Attribute type is not a supported grouping attribute

0x0111 273 ATT Error: Encrypted link required

0x0112 274 ATT Error: Reserved for Future Use range #1 begin

0x017F 383 ATT Error: Reserved for Future Use range #1 end

0x0180 384 ATT Error: Application range begin

0x019F 415 ATT Error: Application range end

0x01A0 416 ATT Error: Reserved for Future Use range #2 begin

0x01DF 479 ATT Error: Reserved for Future Use range #2 end

0x01EQ0 480 ATT Error: Reserved for Future Use range #3 begin

0x01FC 508 ATT Error: Reserved for Future Use range #3 end

0x01FD 509 ATT Common Profile and Service Error: Client Characteristic Config Descriptor
(CCCD) improperly configured

0x01FE 510 ATT Common Profile and Service Error:Procedure Already in Progress

0x01FF 511 ATT Common Profile and Service Error: Out Of Range

5.10.1.9 EVNOTIFYBUF
This event message is thrown if BleGattcWriteCmd() returned a success. The message contains no parameters.
5.10.1.10 EVATTRNOTIFY

This event is thrown when an notification or an indication arrives from a GATT server. The event contains no parameters.
Please note that if one notification/indication arrives or many, like in the case of UART events, the same event mask bit is
asserted. The smartBASIC application is informed that it must go and service the ring buffer using the function
BleGattcNotifyRead. This event is only thrown if at+cfg 213=0. See BleGattcNotifyRead for usage.

5.10.1.11 EVATTRNOTIFYEX

This message from the underlying BLE manager informs the app that the remote has sent characteristic
notifications/indications. The difference between this event and EVATTRNOTIFY is that this event contains the paramers
such as the connection handle and the notification data. Data_length and strLen(Data$) should be of equal length. This
event is only thrown if at+cfg 213=1. See BleGattcNotifyRead for usage.

The event comes with the following parameters:-

= Connection Handle — The handle of the connection that wrote to the characteristic value.

= Char Handle — Characteristic handle for which the value is being notified.

= Type-0: Invalid, 1: Notification, 2: Indication.

= Data_Length — The length of the data that was notified. If negative, then this value indicates the amount of data lost.
= Data$ - The string data that was notified from the attribute.

5.10.2BleGattcOpen

FUNCTION

This function is used to initialise the GATT client functionality for immediate use so that appropriate buffers for caching
GATT responses are created in the heap memory. About 300 bytes of RAM is required by the GATT client manager; given
that a majority of BL652 use cases do not use it, the sacrifice of 300 bytes is not worth the permament allocation of
memory.

There are various buffers that are needed for scanning a remote GATT table which are of fixed size. The ring buffer can be
configured by the smartBASIC apps developer; this buffer is used to store incoming notifiable and indicatable
characteristics. At the time of writing this user guide, the default minimum size is 64 unless a bigger one is desired; in that

https://www.lairdconnect.com/ 192 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

case, the input parameter to this function specifies that size. A maximum of 2048 bytes is allowed, but this can result in
unreliable operation as the smartBASIC runtime engine is quickly starved of memory.

Use SYSINFO(2019) to obtain the actual default size and SYSINFO(2020) to obtain the maximum allowed. The same
information can be obtained in interactive mode using the commands AT | 2019 and 2020 respectively.

Note: When the ring buffer for the notifiable and indicatable characteristics is full, then any new messages are
discarded. Depending on the flags parameter, the indicates are or are not confirmed.

This function is safe to call when the GATT client manager is already open. However, in that case, the parameters are
ignored and existing values are retained. Existing GATT client operations are not interrupted.

It is recommended that this function NOT be called when in a connection.

BLEGATTCOPEN (nNotifyBufLen, nFlags)

Returns ‘ INTEGER, a result code. The typical value is 0x0000, indicating a successful operation.

Arguments:

byVal nNotifyBufLen AS INTEGER
nNotifyBufLen | This is the size of the ring buffer used for incoming notifiable and indicatable characteristic data.
Set to 0 to use the default size.

byVal nFlags AS INTEGER
Bit 0 — Set to 1 to disable automatic indication confirmations. If the buffer is full then the Handle

nFlags Value Confirmation is only sent when BleGattcNotifyRead() is called to read the ring buffer.
Bit 1..31 — Reserved for future use and must be set to Os.
Example:
// Example :: BleGattcOpen.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples
DIM rc
//open the GATT client with default notify/indicate ring buffer size
rc = BleGATTcOpen (0,0)
IF rc == 0 THEN
PRINT "\nGATT Client is now open"
ENDIF
//open the client with default notify/indicate ring buffer size - again
rc = BleGattcOpen (128,1)
IF rc == 0 THEN
PRINT "\nGATT Client is still open, because already open"
ENDIF

Expected Output:

GATT Client is now open
GATT Client is still open, because already open

5.10.3BleGattcClose

SUBROUTINE

This function is used to close the GATT client manager and is safe to call if it is already closed.

It is recommended that this function NOT be called when in a connection.

BLEGATTCCLOSE ()

Returns

https://www.lairdconnect.com/ 193 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

Arguments None
Example:
// Example :: BleGattcClose.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM rc
//open the GATT client with default notify/indicate ring buffer size
rc = BleGattcOpen (0,0)
IF rc == 0 THEN
PRINT "\nGATT Client is now open"
ENDIF
BleGattcClose ()
PRINT "\nGATT Client is now closed"
BleGattcClose ()
PRINT "\nGATT Client is closed - was safe to call when already closed"

Expected Output:

GATT Client is now open
GATT Client is now closed
GATT Client is closed - was safe to call when already closed

5.10.4BleDiscServiceFirst / BleDiscServiceNext

FUNCTIONS

This pair of functions is used to scan the remote GATT server for all primary services with the help of the EVDISCPRIMSVC
message event. When called, a handler for the event message must be registered as the discovered primary service
information is passed back in that message.

A generic or UUID-based scan can be initiated. The former scans for all primary services and the latter scans for a primary
service with a particular UUID, the handle of which must be supplied and is generated by using either BleHandleUuid16() or
BleHandleUuid128().

While the scan is in progress and waiting for the next piece of data from a GATT server, the module enters low power state
as the WAITEVENT statement is used as normal to wait for events and messages.

Depending on the size of the remote GATT server table and the connection interval, the scan of all primary may take many
hundreds of milliseconds. While this is in progress, it is safe to do other non-GATT-related operations such as servicing
sensors and displays or any of the onboard peripherals.

BLEDISCSERVICEFIRST (connHandle, startAttrHandle, uuidHandle)

A typical pseudo code for discovering primary services involves first calling BleDiscServiceFirst(), then waiting for the
EVDISCPRIMSVC event message and depending on the information returned in that message calling BleDiscServiceNext(),
which in turn will result in another EVDISCPRIMSVC event message and typically is as follows:

Register a handler for the EVDISCPRIMSVC event message

On EVDISCPRIMSVC event message
If Start/End Handle == 0 then scan is complete
Else Process information then
call BleDiscServiceNext ()
if BleDiscServiceNext () not OK then scan complete

Call BleDiscServiceFirst ()
If BleDiscServiceFirst() ok then Wait for EVDISCPRIMSVC

https://www.lairdconnect.com/ 194 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

Returns INTEGER, a result code. The typical value is 0x0000, indicating a successful operation. This means
an EVDISCPRIMSVC event message is thrown by the smartBASIC runtime engine containing the
results. A non-zero return value implies an EVDISCPRIMSVC message is NOT thrown.

Arguments:

byVal nConnHandle AS INTEGER

This is the connection handle as returned in the on-connect event for the connection on which the
remote GATT server can be accessed. This is returned in the EVBLEMSG event message with msgld
== 0 and msgCtx is the connection handle.

byVal startAttrHandle AS INTEGER
startAttrHandle | This is the attribute handle from where the scan for primary services will be started and you can
typically set it to 0 to ensure that the entire remote GATT Server is scanned

byVal uuidHandle AS INTEGER
uuidHandle | Set this to 0 if you want to scan for any service, otherwise this value will have been generated
either by BleHandleUuid16() or BleHandleUuid128() or BleHandleUuidSibling().

connHandle

BLEDISCSERVICENEXT (connHandle)
Calling this assumes that BleDiscServiceFirst() was called at least once to set up the internal primary services scanning state

machine.
Returns INTEGER, a result code.
The typical value is 0x0000, indicating a successful operation and it means an EVDISCPRIMSVC event
message is thrown by the smartBASIC runtime engine containing the results. A non-zero return value
implies an EVDISCPRIMSVC message is not thrown.
Arguments:
byVal nConnHandle AS INTEGER
This is the connection handle as returned in the on-connect event for the connection on which the
connHandle . . .
remote GATT server can be accessed. This is returned in the EVBLEMSG event message with msgld ==
and msgCtx is the connection handle
Example:
// Example :: BleDiscServiceFirst.Next.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

//

//Remote server has 5 prim services with 16 bit uuid and 3 with 128 bit uuids
// 3 of the 16 bit uuid are the same value O0xDEAD and

// 2 of the 128 bit uuids are also the same 112233445566778899AABBCCDDEEFF
//

// Server created using BleGATTcTblDiscPrimSvc.sub invoked in OpenMcp.scr

// using Nordic Usb Dongle PC10000

DIM rc,at$,conHndl, ulHndl,uuid$

//
// Initialise and instantiate service, characteristic, start adverts
//
FUNCTION OnStartup ()
DIM rc, adRpt$, addr$, scRpt$
rc=BleAdvRptInit (adRpt$, 2, 0, 10)

IF rc==0 THEN : rc=BleScanRptInit (scRpt$) : ENDIF
IF rc==0 THEN : rc=BleAdvRptsCommit (adRpt$,scRpt$) : ENDIF
IF rc==0 THEN : rc=BleAdvertStart (0,addr$,50,0,0) : ENDIF

//open the GATT client with default notify/indicate ring buffer size
IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF

https://www.lairdconnect.com/ 195 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

ENDFUNC rc

//

// Close connections so that we can run another app without problems

//

SUB CloseConnections ()
rc=BleDisconnect (conHndl)
rc=BleAdvertStop ()

ENDSUB

//
// Ble event handler
//
FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)
DIM uu$
conHndl=nCtx
IF nMsgID==1 THEN
PRINT "\n\n- Disconnected"
EXITFUNC 0
ELSEIF nMsgID==0 THEN

PRINT "\n- Connected, so scan remote GATT Table for ALL services"
rc = BleDiscServiceFirst (conHndl,0,0)
IF rc==0 THEN
//HandlerPrimSvc () will exit with O when operation is complete
WAITEVENT

PRINT "\nScan for service with uuid = O0xDEAD"

uHndl = BleHandleUuidl6 (OxDEAD)

rc = BleDiscServiceFirst (conHndl, 0, uHndl)

IF rc==0 THEN
//HandlerPrimSvc () will exit with 0 when operation is complete
WAITEVENT

uu$ = "112233445566778899AABBCCDDEEFF00"
PRINT "\nScan for service with custom uuid ";uu$
uu$ = StrDehexize$ (uu$)
uHndl = BleHandleUuid128 (uu$)
rc = BleDiscServiceFirst (conHndl, 0, uHndl)
IF rc==0 THEN
//HandlerPrimSvc () will exit with 0 when operation is complete
WAITEVENT
ENDIF
ENDIF
ENDIF
CloseConnections ()
ENDIF
ENDFUNC 1

//
// EVDISCPRIMSVC event handler
//
FUNCTION HandlerPrimSvc (cHndl, svcUuid, sHndl,eHndl) AS INTEGER

PRINT "\nEVDISCPRIMSVC :"

PRINT " cHndl=";cHndl

PRINT " svcUuid=";integer.h' svcUuid

PRINT " sHndl=";sHndl

PRINT " eHndl=";eHndl

IF sHndl == 0 THEN

PRINT "\nScan complete"

EXITFUNC O
ELSE

https://www.lairdconnect.com/ 196 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions
User Guide

La i rd J»» CONNECTIVITY

rc BleDiscServiceNext (cHndl)
IF rc != 0 THEN
PRINT "\nScan abort"

EXITFUNC O
ENDIF
ENDIF
endfunc 1

//

// Main () equivalent

//
ONEVENT EVBLEMSG
OnEvent EVDISCPRIMSVC

CALL HndlrBleMsg
call HandlerPrimSvc

//Register base uuids with the underlying stack,

otherwise the services with the

//128bit uuid's will be delivered with a uuid handle == FF000000 == UNKNOWN
uuid$ = "112233445566778899AABBCCDDEEFF00"
uuid$ = StrDehexize$ (uuid$)
uHndl = BleHandleUuidl28 (uuid$)
uuid$ = "1122DEAD5566778899AABBCCDDBEEFO00"
uuid$ = StrDehexize$ (uuid$)
uHndl = BleHandleUuidl28 (uuid$)
IF OnStartup ()==0 THEN

PRINT "\nAdvertising, and GATT Client is open\n"
ELSE

PRINT "\nFailure OnStartup"
ENDIF
WAITEVENT
PRINT "\nExiting..."
Expected Output:
Advertising, and GATT Client is open
- Connected, so scan remote GATT Table for ALL services
EVDISCPRIMSVC : cHndl=2804 svcUuid=FEO1FEO1l sHndl=1 eHndl=3
EVDISCPRIMSVC cHnd1=2804 svcUuid=FC033344 sHndl=4 eHndl=6
EVDISCPRIMSVC cHnd1=2804 svcUuid=FEO1DEAD sHndl=7 eHndl=9
EVDISCPRIMSVC cHndl1=2804 svcUuid=FBO4BEEF sHndl=10 eHndl=12
EVDISCPRIMSVC cHnd1=2804 svcUuid=FC033344 sHndl=13 eHndl=15
EVDISCPRIMSVC cHndl1=2804 svcUuid=FEQ1DEAD sHndl=16 eHndl=18
EVDISCPRIMSVC cHnd1=2804 svcUuid=FEO1FEO3 sHndl=19 eHndl=21
EVDISCPRIMSVC cHnd1=2804 svcUuid=FEO1DEAD sHndl=22 eHndl=24
EVDISCPRIMSVC cHnd1=2804 svcUuid=00000000 sHndl=0 eHndl=0

Scan complete
Scan for service with uuid

0xDEAD

EVDISCPRIMSVC cHnd1=2804 svcUuid=FEO1DEAD
EVDISCPRIMSVC cHnd1=2804 svcUuid=FEO1DEAD
EVDISCPRIMSVC cHnd1=2804 svcUuid=FEO1DEAD

Scan abort

sHndl=7 eHndl=9
sHndl=16 eHndl=18
sHnd1l=22 eHndl=65535

Scan for service with custom uuid 112233445566778899AABBCCDDEEFF00

EVDISCPRIMSVC cHnd1=2804 svcUuid=FC033344 sHndl=4 eHndl=6
EVDISCPRIMSVC cHnd1=2804 svcUuid=FC033344 sHndl=13 eHndl=15
EVDISCPRIMSVC cHnd1=2804 svcUuid=00000000 sHndl=0 eHndl=0

Scan complete

197
Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

https://www.lairdconnect.com/

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

- Disconnected
Exiting...

5.10.5BleDiscCharFirst / BleDiscCharNext

FUNCTIONS

These pair of functions are used to scan the remote GATT server for characteristics in a service with the help of the
EVDISCCHAR message event. When called, a handler for the event message must be registered because the discovered
characteristics information is passed back in that message.

A generic or UUID based scan can be initiated. The generic version scans for all characteristics; the UUID version scans for a
characteristic with a particular UUID, the handle of which must be supplied and is generated by using either
BleHandleUuid16() or BleHandleUuid128().

If a GATT table has a specific service and a specific characteristic, then it is more efficient to locate details of that
characteristic by using the function BleGATTcFindChar(). This function is described later.

While the scan is in progress and waiting for the next piece of data from a GATT server, the module enters low power state
as the WAITEVENT statement is used as normal to wait for events and messages.

Depending on the size of the remote GATT server table and the connection interval, the scan of all characteristics may take
many hundreds of milliseconds. While this is in progress, it is safe to do other non- GATT-related operations such as
servicing sensors and displays or any of the onboard peripherals.

Note: It is not currently possible to scan for characteristics in included services. This is planned for a future release.

BLEDISCCHARFIRST (connHandle, charUuidHandle, startAttrHandle, endAttrHandle)

A typical pseudo code for discovering characteristic involves first calling BleDiscCharFirst() with information obtained from a
primary services scan, waiting for the EVDISCCHAR event message, and (depending on the information returned in that
message) calling BleDiscCharNext(). This in turn results in another EVDISCCHAR event message and typically is as follows:

Register a handler for the EVDISCCHAR event message

On EVDISCCHAR event message
If Char Value Handle == 0 then scan is complete
Else Process information then
call BleDiscCharNext()
if BleDiscCharNext() not OK then scan complete

Call BleDiscCharFirst(--information from EVDISCPRIMSVC)
If BleDiscCharFirst() ok then Wait for EVDISCCHAR

Returns INTEGER, a result code.

The typical value is 0x0000, indicating a successful operation and it means an EVDISCCHAR event
message is thrown by the smartBASIC runtime engine containing the results. A non-zero return
value implies an EVDISCCHAR message is not thrown.

Arguments:

byVal nConnHandle AS INTEGER

This is the connection handle as returned in the on-connect event for the connection on which
the remote GATT server can be accessed. This is returned in the EVBLEMSG event message with
msgld == 0 and msgCtx is the connection handle.

charUuidHandle | byVal charUuidHandle AS INTEGER

connHandle

https://www.lairdconnect.com/ 198 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

Set this to 0 if you want to scan for any characteristic in the service, otherwise this value is
generated either by BleHandleUuid16() or BleHandleUuid128() or BleHandleUuidSibling().
byVal startAttrHandle AS INTEGER

startAttrHandle | This is the attribute handle from where the scan for characteristic is started and is acquired by
doing a primary services scan, which returns the start and end handles of services.

byVal endAttrHandle AS INTEGER

endAttrHandle | This is the end attribute handle for the scan and is acquired by doing a primary services scan,
which returns the start and end handles of services.

BLEDISCCHARNEXT (connHandle)

Calling this assumes that BleDiscCharFirst() has been called at least once to set up the internal characteristics scanning state
machine. It scans for the next characteristic.

Returns INTEGER, a result code.

The typical value is 0x0000, indicating a successful operation. It means an EVDISCCHAR event message
is thrown by the smartBASIC runtime engine containing the results. A non-zero return value implies an
EVDISCCHAR message is not thrown.

Arguments:
byVal nConnHandle AS INTEGER
This is the connection handle as returned in the on-connect event for the connection on which the
connHandle L . .

remote GATT server can be accessed. This is returned in the EVBLEMSG event message with msgld ==
0 and msgCtx is the connection handle.

Example:

// Example :: BleDiscCharFirst.Next.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

//

//Remote server has 1 prim service with 16 bit uuid and 8 characteristics where
// 5 uuids are 16 bit and 3 are 128 bit

// 3 of the 16 bit uuid are the same value 0xDEAD and

// 2 of the 128 bit uuids are also the same 112233445566778899AABBCCDDEEFF

//

// Server created using BleGATTcTblDiscChar.sub invoked in OpenMcp.scr

// using Nordic Usb Dongle PC10000

DIM rc,at$,conHndl, ulHndl,uuid$, sAttr,eAttr

//
// Initialise and instantiate service, characteristic, start adverts
//
FUNCTION OnStartup ()
DIM rc, adRpt$, addr$, scRpt$s
rc=BleAdvRptInit (adRpt$, 2, 0, 10)

IF rc==0 THEN : rc=BleScanRptInit (scRpt$) : ENDIF
IF rc==0 THEN : rc=BleAdvRptsCommit (adRpt$,scRpt$) : ENDIF
IF rc==0 THEN : rc=BleAdvertStart (0,addr$,50,0,0) : ENDIF

//open the GATT client with default notify/indicate ring buffer size
IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF

ENDEFUNC rc

//

// Close connections so that we can run another app without problems
//

SUB CloseConnections ()
rc=BleDisconnect (conHndl)
rc=BleAdvertStop ()

https://www.lairdconnect.com/ 199 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions La » CONNECTIVITY
User Guide

ENDSUB

//
// Ble event handler
//
FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)
DIM uu$
conHndl=nCtx
IF nMsgID==1 THEN
PRINT "\n\n- Disconnected"
EXITFUNC O
ELSEIF nMsgID==0 THEN
PRINT "\n- Connected, so scan remote GATT Table for first service"
PRINT "\n- and a characeristic scan will be initiated in the event"
rc = BleDiscServiceFirst (conHndl, 0,0)
IF rc==0 THEN
//wait for start and end handles for first primary service
WAITEVENT
PRINT "\n\nScan for characteristic with uuid = OxDEAD"
uHndl = BleHandleUuidl6 (0xXDEAD)
rc = BleDiscCharFirst (conHndl,uHndl, sAttr,eAttr)

IF rc == 0 THEN
//HandlerCharDisc () will exit with 0 when operation is complete
WAITEVENT
uu$ = "112233445566778899AABBCCDDEEFF00"
PRINT "\n\nScan for service with custom uuid ";uu$
uu$ = StrDehexize$ (uu$)

uHndl = BleHandleUuidl28 (uu$)
rc = BleDiscCharFirst (conHndl,uHndl, sAttr,eAttr)
IF rc==0 THEN
//HandlerCharDisc () will exit with 0 when operation is complete
WAITEVENT
ENDIF
ENDIF
ENDIF
CloseConnections ()
ENDIF
ENDFUNC 1

//
// EVDISCPRIMSVC event handler
//
FUNCTION HandlerPrimSvc (cHndl, svcUuid, sHndl, eHndl) AS INTEGER

PRINT "\nEVDISCPRIMSVC :"

PRINT " cHndl=";cHndl

PRINT " svcUuid=";integer.h' svcUuid

PRINT " sHndl=";sHndl

PRINT " eHndl=";eHndl

IF sHndl == 0 THEN
PRINT "\nPrimary Service Scan complete"
EXITFUNC O

ELSE

PRINT "\nGot first primary service so scan for ALL characteristics"
sAttr = sHndl
eAttr = eHndl
rc = BleDiscCharFirst (conHndl, 0, sAttr,eAttr)
IF rc != 0 THEN
PRINT "\nScan characteristics failed"
EXITFUNC O
ENDIF
ENDIF
endfunc 1

https://www.lairdconnect.com/ 200 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions

La i rd‘ J»» CONNECTIVITY

User Guide
'//
// EVDISCCHAR event handler
'//
function HandlerCharDisc (cHndl, cUuid, cProp,hVal,isUuid) as integer
print "\nEVDISCCHAR :"
print " cHndl=";cHndl
print " chUuid=";integer.h' cUuid
print " Props=";cProp
print " valHndl=";hVal
print " ISvcUuid=";isUuid
IF hval == 0 THEN
PRINT "\nCharacteristic Scan complete"
EXITFUNC O
ELSE
rc = BleDiscCharNext (conHndl)
IF rc != 0 THEN
PRINT "\nCharacteristics scan abort"
EXITFUNC O
ENDIF
ENDIF
endfunc 1
//
// Main () equivalent
//
ONEVENT EVBLEMSG CALL HndlrBleMsg
OnEvent EVDISCPRIMSVC call HandlerPrimSvc

OnEvent EVDISCCHAR call HandlerCharDisc

//Register base uuids with the underlying stack, otherwise the services with the
//128bit uuid's will be delivered with a uuid handle FF000000 UNKNOWN

uuid$ = "112233445566778899AABBCCDDEEFF00"
uuid$ = StrDehexize$ (uuid$)
uHndl = BleHandleUuidl28 (uuid$)
uuid$ = "1122DEAD5566778899AABBCCDDBEEF00"
uuid$ = StrDehexize$ (uuids)
uHndl = BleHandleUuidl28 (uuid$)
IF OnStartup ()==0 THEN
PRINT "\nAdvertising, and GATT Client is open\n"
ELSE
PRINT "\nFailure OnStartup"
ENDIF
WAITEVENT

PRINT "\nExiting..."

Expected Output:

Advertising, and GATT Client is open

- Connected, so scan remote GATT Table for first service

- and a characeristic scan will be initiated in the event
EVDISCPRIMSVC cHnd1l=3549 svcUuid=FEO1FEO2 sHndl=1 eHndl=17
Got first primary service so scan for ALL characteristics

EVDISCCHAR cHnd1=3549 chUuid=FEO1FC21 Props=2 valHndl=3 ISvcUuid=0
EVDISCCHAR cHnd1=3549 chUuid=FC033344 Props=2 valHndl=5 ISvcUuid=0
EVDISCCHAR cHnd1=3549 chUuid=FEQ01DEAD Props=2 valHndl=7 ISvcUuid=0
EVDISCCHAR cHnd1=3549 chUuid=FB04BEEF Props=2 valHndl=9 ISvcUuid=0
EVDISCCHAR cHnd1=3549 chUuid=FC033344 Props=2 valHndl=11 ISvcUuid=0
EVDISCCHAR cHnd1=3549 chUuid=FEO1FC23 Props=2 valHndl=13 ISvcUuid=0
EVDISCCHAR cHnd1=3549 chUuid=FEO1DEAD Props=2 valHndl=15 ISvcUuid=0
EVDISCCHAR cHnd1=3549 chUuid=FEQ01DEAD Props=2 valHndl=17 ISvcUuid=0

https://www.lairdconnect.com/

201

Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

EVDISCCHAR : cHndl=3549 chUuid=00000000 Props=0 valHndl=0 ISvcUuid=0
Characteristic Scan complete

Scan for characteristic with uuid = OxDEAD

EVDISCCHAR : cHndl=3549 chUuid=FEQ1DEAD Props=2 valHndl=7 ISvcUuid=0
EVDISCCHAR : cHndl=3549 chUuid=FEO1DEAD Props=2 valHndl=15 ISvcUuid=0
EVDISCCHAR : cHndl=3549 chUuid=FEO1DEAD Props=2 valHndl=17 ISvcUuid=0
EVDISCCHAR : cHndl=3549 chUuid=00000000 Props=0 valHndl=0 ISvcUuid=0
Characteristic Scan complete

Scan for service with custom uuid 112233445566778899AABBCCDDEEFF00
EVDISCCHAR : cHndl=3549 chUuid=FC033344 Props=2 valHndl=5 ISvcUuid=0
EVDISCCHAR : cHndl=3549 chUuid=FC033344 Props=2 valHndl=11 ISvcUuid=0
EVDISCCHAR : cHndl=3549 chUuid=00000000 Props=0 valHndl=0 ISvcUuid=0
Characteristic Scan complete

- Disconnected
Exiting...

5.10.6BleDiscDescFirst /BleDiscDescNext

FUNCTIONS

This pair of functions is used to scan the remote GATT server for descriptors in a characteristic with the help of the
EVDISCDESC message event. When called, a handler for the event message must be registered because the discovered
descriptor information is passed back in that message.

A generic or UUID-based scan can be initiated. The generic version scans for all descriptors; The UUID version scans for a
descriptor with a particular UUID, the handle of which must be supplied and is generated by using either BleHandleUuid16()
or BleHandleUuid128().

If a GATT table has a specific service, characteristic, and a specific descriptor, then it is more efficient to locate the
characteristic’s details by using the function BleGATTcFindDesc(). This is described later.

While the scan is in progress and waiting for the next piece of data from a GATT server, the module enters low power state
as the WAITEVENT statement is used as normal to wait for events and messages.

Depending on the size of the remote GATT server table and the connection interval, the scan of all descriptors may take
many hundreds of milliseconds. While this is in progress, it is safe to do other non-GATT-related operations such as
servicing sensors and displays or any of the onboard peripherals.

BLEDISCDESCFIRST (connHandle, descUuidHandle, charValHandle)

A typical pseudo code for discovering descriptors involves first calling BleDiscDescFirst() with information obtained from a
characteristics scan and then waiting for the EVDISCDESC event message. Depending on the information returned in that
message, calling BleDiscDescNext() results in another EVDISCDESC event message and typically is as follows:

Register a handler for the EVDISCDESC event message

On EVDISCDESC event message
If Descriptor Handle == 0 then scan is complete
Else Process information then
call BleDiscDescNext ()
if BleDiscDescNext () not OK then scan complete

Call BleDiscDescFirst(—-—-information from EVDISCCHAR)
If BleDiscDescFirst () ok then Wait for EVDISCDESC

https://www.lairdconnect.com/ 202 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

Returns INTEGER, a result code.

The typical value is 0x0000, indicating a successful operation and it means an EVDISCDESC
event message is thrown by the smartBASIC runtime engine containing the results. A non-
zero return value implies an EVDISCDESC message is not thrown.

Arguments:

byVal nConnHandle AS INTEGER

This is the connection handle as returned in the on-connect event for the connection on
which the remote GATT server can be accessed. This is returned in the EVBLEMSG event
message with msgld == 0 and msgCtx is the connection handle.

byVal descUuidHandle AS INTEGER
descUuidHandle | Set this to 0 if you want to scan for any descriptor in the characteristic, otherwise this value
is generated either by BleHandleUuid16() or BleHandleUuid128() or BleHandleUuidSibling().

byVal charValHandle AS INTEGER
charValHandle | This is the value attribute handle of the characteristic on which the descriptor scan is to be
performed. It will have been acquired from an EVDISCCHAR event.

connHandle

BLEDISCDESCNEXT (connHandle)

Calling this assumes that BleDiscCharFirst() has been called at least once to set up the internal characteristics scanning state
machine and that BleDiscDescFirst() has been called at least once to start the descriptor discovery process.

Returns INTEGER, a result code.

The typical value is 0x0000, indicating a successful operation and it means an EVDISCDESC event
message is thrown by the smartBASIC runtime engine containing the results. A non-zero return
value implies an EVDISCDESC message is not thrown.

Arguments:
byVal nConnHandle AS INTEGER
connHandle This is the connection handle as returned in the on-connect event for the connection on which
the remote GATT server can be accessed. This is returned in the EVBLEMSG event message with
msgld == 0 and msgCtx is the connection handle.
Example:
// Example :: BleDiscDescFirst.Next.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

//

//Remote server has 1 prim service with 16 bit uuid and 1 characteristics
// which contains 8 descriptors, that are

// 5 uuids are 16 bit and 3 are 128 bit

// 3 of the 16 bit uuid are the same value O0xDEAD and

// 2 of the 128 bit uuids are also the same 112233445566778899AABBCCDDEEFF
//

// Server created using BleGATTcTblDiscDesc.sub invoked in OpenMcp.scr

// using Nordic Usb Dongle PC10000

DIM rc,at$,conHndl,uHndl,uuid$, sAttr,eAttr, cValAttr

//
// Initialise and instantiate service, characteristic, start adverts
//
FUNCTION OnStartup ()
DIM rc, adRpt$, addr$, scRpt$
rc=BleAdvRptInit (adRpt$, 2, 0, 10)

https://www.lairdconnect.com/ 203 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions La » CONNECTIVITY

User Guide
IF rc==0 THEN : rc=BleScanRptInit (scRpt$) : ENDIF
IF rc==0 THEN : rc=BleAdvRptsCommit (adRpt$,scRpt$) : ENDIF
IF rc==0 THEN : rc=BleAdvertStart (0,addr$,50,0,0) : ENDIF
//open the GATT client with default notify/indicate ring buffer size
IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF
ENDFUNC rc

//

// Close connections so that we can run another app without problems

//

SUB CloseConnections ()
rc=BleDisconnect (conHndl)
rc=BleAdvertStop ()

ENDSUB

//

// Ble event handler
//

FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)
DIM uu$
conHndl=nCtx
IF nMsgID==1 THEN
PRINT "\n\n- Disconnected"
EXITFUNC 0
ELSEIF nMsgID==0 THEN
PRINT "\n- Connected, so scan remote GATT Table for first service"
PRINT "\n- and a characeristic scan will be initiated in the event"
rc = BleDiscServiceFirst (conHndl,0,0)
IF rc==0 THEN
//wait for start and end handles for first primary service
WAITEVENT
PRINT "\n\nScan for descritors with uuid = OxDEAD"
uHndl = BleHandleUuidl6 (0xDEAD)
rc = BleDiscDescFirst (conHndl,uHndl, cValAttr)

IF rc == 0 THEN
//HandlerDescDisc () will exit with O when operation is complete
WAITEVENT
uu$ = "112233445566778899AABBCCDDEEFF0Q"
PRINT "\n\nScan for service with custom uuid ";uu$
uu$ = StrDehexize$ (uu$)

uHndl = BleHandleUuidl28 (uu$)
rc = BleDiscDescFirst (conHndl,uHndl, cValAttr)
IF rc==0 THEN

WAITEVENT
ENDIF
ENDIF
ENDIF
CloseConnections ()
ENDIF
ENDEFUNC 1

//

//HandlerDescDisc () will exit with O when operation is complete

// EVDISCPRIMSVC event handler
//

FUNCTION HandlerPrimSvc (cHndl, svcUuid, sHndl,eHndl) AS INTEGER
PRINT "\nEVDISCPRIMSVC :"
PRINT " cHndl=";cHndl
PRINT " svcUuid=";integer.h' svcUuid
PRINT " sHndl=";sHndl
PRINT " eHndl=";eHndl

IF sHndl == 0 THEN
PRINT "\nPrimary Service Scan complete"
EXITFUNC O
https://www.lairdconnect.com/ 204 Americas: +1-800-492-2320

Copyright 2020 Laird. All Rights Reserved

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions
User Guide

La i rd‘ J»» CONNECTIVITY

ELSE
PRINT
sAttr = sHndl
eAttr = eHndl
rc = BleDiscCharFirst (conHndl, 0, sAttr,eAttr)
IF rc != 0 THEN

PRINT "\nScan characteristics failed"
EXITFUNC O
ENDIF
ENDIF
endfunc 1

"/

"\nGot first primary service so scan for ALL characteristics"

// EVDISCCHAR event handler
'//

function HandlerCharDisc (cHndl, cUuid, cProp,hVal,isUuid)

print "\nEVDISCCHAR :"
print " cHndl=";cHndl
print " chUuid=";integer.h'
print " Props=";cProp
print " valHndl=";hVal
print " ISvcUuid=";isUuid
IF hval 0 THEN

PRINT "\nCharacteristic Scan complete"

EXITFUNC O
ELSE

PRINT "\nGot first characteristic service at handle

PRINT "\nScan for ALL Descs"

cValAttr = hVal

rc = BleDiscDescFirst (conHndl, 0,cValAttr)

IF rc 0 THEN

PRINT "\nScan descriptors failed"
EXITFUNC O

ENDIF

ENDIF
endfunc 1

cUuid

"//

as integer

";hval

// EVDISCDESC event handler
'//

function HandlerDescDisc (cHndl,cUuid, hndl) as integer
print "\nEVDISCDESC"
print " cHndl=";cHndl
print " dscUuid=";integer.h'
print " dscHndl=";hndl
IF hndl 0 THEN
PRINT "\nDescriptor Scan complete"
EXITFUNC 0
ELSE
rc = BleDiscDescNext (cHndl)
IF rc 0 THEN
PRINT "\nDescriptor scan abort"
EXITFUNC O
ENDIF
ENDIF
endfunc 1

cUuid

//

// Main () equivalent

//

ONEVENT EVBLEMSG
OnEvent EVDISCPRIMSVC
OnEvent EVDISCCHAR

CALL HndlrBleMsg
call HandlerPrimSvc
call HandlerCharDisc

https://www.lairdconnect.com/ 205

Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions
User Guide

La i rd J»» CONNECTIVITY

OnEvent EVDISCDESC call HandlerDescDisc

//Register base uuids with the underlying stack, otherwise the services with the
//128bit uuid's will be delivered with a uuid handle == FF000000 == UNKNOWN

uuid$ = "112233445566778899AABBCCDDEEFF00"
uuid$ = StrDehexize$ (uuid$)
uHndl = BleHandleUuidl28 (uuid$)
uuid$ = "1122DEAD5566778899AABBCCDDBEEF0Q"
uuid$ = StrDehexize$ (uuid$)
uHndl = BleHandleUuidl28 (uuid$)
IF OnStartup ()==0 THEN
PRINT "\nAdvertising, and GATT Client is open\n"
ELSE
PRINT "\nFailure OnStartup"
ENDIF
WAITEVENT

PRINT "\nExiting..."

Expected Output:

Advertising, and GATT Client is open

- Connected, so scan remote GATT Table for first service

- and a characeristic scan will be initiated in the event
EVDISCPRIMSVC cHnd1=3790 svcUuid=FEO1FEO02 sHndl=1 eHndl=11

Got first primary service so scan for ALL characteristics
EVDISCCHAR cHndl1=3790 chUuid=FEQ1FC21 Props=2 valHndl=3 ISvcUuid=0
Got first characteristic service at handle 3

Scan for ALL Descs

EVDISCDESC
EVDISCDESC
EVDISCDESC
EVDISCDESC
EVDISCDESC
EVDISCDESC
EVDISCDESC
EVDISCDESC
EVDISCDESC
Descriptor

Scan for descritors with uuid

EVDISCDESC
EVDISCDESC
EVDISCDESC
EVDISCDESC
Descriptor

cHnd1=3790
cHnd1=3790
cHnd1=3790
cHnd1=3790
cHnd1=3790
cHnd1=3790
cHnd1=3790

dscUuid=FE01FD21
dscUuid=FC033344
dscUuid=FEO1DEAD
dscUuid=FBO4BEEF
dscUuid=FC033344
dscUuid=FE01FD23
dscUuid=FEO1DEAD
cHnd1=3790 dscUuid=FEQO1DEAD
cHnd1=3790 dscUuid=00000000
Scan complete

= 0xDEAD
cHnd1=3790 dscUuid=FEQ1DEAD
cHnd1=3790 dscUuid=FEO1DEAD
cHnd1=3790 dscUuid=FEO1DEAD
cHnd1=3790 dscUuid=00000000
Scan complete

dscHndl=4
dscHndl=5
dscHndl=6
dscHndl="7
dscHndl=8
dscHndl=9
dscHndl=10
dscHndl=11
dscHndl1l=0

dscHndl=6
dscHndl=10
dscHndl=11
dscHndl1l=0

Scan for service with custom uuid 112233445566778899AARBCCDDEEFF00
EVDISCDESC cHndl=3790 dscUuid=FC033344 dscHndl=5

EVDISCDESC cHndl=3790 dscUuid=FC033344 dscHndl=8

EVDISCDESC cHndl=3790 dscUuid=00000000 dscHndl=0

Descriptor Scan complete

- Disconnected
Exiting...

206
Copyright 2020 Laird. All Rights Reserved

https://www.lairdconnect.com/

Americas: +1-800-492-2320
Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

5.10.7BleGattcFindChar

FUNCTION

This function facilitates an efficient way of locating the details of a characteristic if the UUID is known along with the UUID
of the service containing it. The results are delived in an EVFINDCHAR event message. If the GATT server table has multiple
instances of the same service/characteristic combination then this function works because, in addition to the UUID handles
to be searched for, it also accepts instance parameters which are indexed from 0. This means the fourth instance of a
characteristic with the same UUID in the third instance of a service with the same UUID is located with index values 3 and 2
respectively.

Given that the results are returned in an event message, a handler must be registered for the EVFINDCHAR event.

Depending on the size of the remote GATT server table and the connection interval, the search of the characteristic may
take many hundreds of milliseconds. While this is in progress, it is safe to do other non-GATT-related operations such as
servicing sensors and displays or any of the onboard peripherals.

Note: It is not currently possible to scan for characteristics in included services. This is a future enhancement.

BLEGATTCFINDCHAR (connHandle, svcUuidHndl, svcindex, charUuidHndl, charindex)

A typical pseudo code for finding a characteristic involves calling BleGATTcFindChar() which in turn will result in the
EVFINDCHAR event message and typically is as follows:

Register a handler for the EVFINDCHAR event message

On EVFINDCHAR event message
If Char Value Handle == 0 then
Characteristic not found
Else
Characteristic has been found

Call BleGATTcFindChar ()
If BleGATTcFindChar () ok then Wait for EVFINDCHAR

Returns INTEGER, a result code.

The typical value is 0x0000, indicating a successful operation and it means an EVFINDCHAR
event message is thrown by the smartBASIC runtime engine containing the results. A non-zero
return value implies an EVFINDCHAR message is not thrown.

Arguments:

byVal nConnHandle AS INTEGER

This is the connection handle as returned in the on-connect event for the connection on
which the remote GATT server can be accessed. This is returned in the EVBLEMSG event
message with msgld == 0 and msgCtx is the connection handle.

byVal svcUuidHndl AS INTEGER
svcUuidHndl | Set this to the service UUID handle which is generated either by BleHandleUuid16() or
BleHandleUuid128() or BleHandleUuidSibling().

byVal svcindex AS INTEGER
svcindex | This is the instance of the service to look for with the UUID handle svcUuidHndl, where 0 is
the first instance, 1 is the second, and so on.

byVal charUuidHndI AS INTEGER
Set this to the characteristic UUID handle which is generated either by BleHandleUuid16() or

connHandle

charUuidHnd|

https://www.lairdconnect.com/ 207 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

BleHandleUuid128() or BleHandleUuidSibling().

byVal charindex AS INTEGER
charindex | This is the instance of the characteristic to look for with the UUID handle charUuidHnd],
where 0 is the first instance, 1 is the second, and so on.

Example:

// Example :: BleGATTcFindChar.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

//

//Remote server has 5 prim services with 16 bit uuid and 3 with 128 bit uuids
// 3 of the 16 bit uuid are the same value OxDEAD and

// 2 of the 128 bit uuids are also the same 112233445566778899AABBCCDDEEFF
//

// Server created using BleGATTcTblFindChar.sub invoked in OpenMcp.scr

// using Nordic Usb Dongle PC10000

DIM rc,at$,conHndl, uHndl,uuid$, sIdx, cIdx

//
// Initialise and instantiate service, characteristic, start adverts

//
FUNCTION OnStartup ()

DIM rc, adRpt$, addr$, scRpt$

rc=BleAdvRptInit (adRptS$, 2, 0, 10)

IF rc==0 THEN : rc=BleScanRptInit (scRpt$) : ENDIF

IF rc==0 THEN : rc=BleAdvRptsCommit (adRpt$,scRpt$) : ENDIF

IF rc==0 THEN : rc=BleAdvertStart (0,addr$,50,0,0) : ENDIF

//open the GATT client with default notify/indicate ring buffer size
IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF

ENDFUNC rc

//
// Close connections so that we can run another app without problems
//

SUB CloseConnections ()

rc=BleDisconnect (conHndl)

rc=BleAdvertStop ()

https://www.lairdconnect.com/ 208 Americas: +1-800-492-2320

Copyright 2020 Laird. All Rights Reserved

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY
User Guide

ENDSUB

//

// Ble event handler
//

FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)
DIM uu$,uHndS, uHndC
conHndl=nCtx
IF nMsgID==1 THEN
PRINT "\n\n- Disconnected"
EXITFUNC O
ELSEIF nMsgID==0 THEN
PRINT "\n- Connected, so scan remote GATT Table for an instance of char"

uHndS = BleHandleUuidl6 (0xDEAD)

uus "112233445566778899AABBCCDDEEFF00"

uu$ = StrDehexize$ (uu$)

uHndC = BleHandleUuidl28 (uu$)

sIdx = 2

cIdx = 1 //valHandle will be 32

rc = BleGattcFindChar (conHndl, uHndS, sIdx, uHndC, cIdx)

IF rc==0 THEN
//BleDiscCharFirst () will exit with 0 when operation is complete
WAITEVENT

ENDIF

sIdx = 1

cIdx = 3 //does not exist

rc = BleGattcFindChar (conHndl, uHndS, sIdx, uHndC, cIdx)

IF rc==0 THEN
//BleDiscCharFirst () will exit with 0 when operation is complete
WAITEVENT

ENDIF

CloseConnections ()

ENDIF
ENDFUNC 1

"/

"//

function HandlerFindChar (cHndl,cProp,hVal,isUuid) as integer

https://www.lairdconnect.com/ 209
Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

print "\nEVFINDCHAR "
print " cHndl=";cHndl
print " Props=";cProp
print " valHndl=";hVal
print " ISvcUuid=";isUuid
IF hval == 0 THEN

PRINT "\nDid NOT find the characteristic"

ELSE
PRINT "\nFound the characteristic at handle ";hVval
PRINT "\nSvc Idx=";sIdx;" Char Idx=";cIdx

ENDIF

endfunc 0

//

// Main () equivalent

//

ONEVENT EVBLEMSG CALL HndlrBleMsg
OnEvent EVFINDCHAR call HandlerFindChar

//Register base uuids with the underlying stack, otherwise the services with the
//128bit uuid's will be delivered with a uuid handle == FF000000 == UNKNOWN
uuid$ = "112233445566778899AABBCCDDEEFFO0"

uuid$ = StrDehexize$ (uuid$)

uHndl = BleHandleUuidl28 (uuid$)

uuid$ = "1122DEAD5566778899AABBCCDDBEEF00"

uuid$ = StrDehexize$ (uuid$)

uHndl = BleHandleUuidl28 (uuid$)

IF OnStartup ()==0 THEN

PRINT "\nAdvertising, and GATT Client is open\n"
ELSE

PRINT "\nFailure OnStartup"

ENDIF

WAITEVENT

PRINT "\nExiting..."

Expected Output:

Advertising, and GATT Client is open

https://www.lairdconnect.com/ 210
Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY
User Guide

- Connected, so scan remote GATT Table for an instance of char
EVFINDCHAR cHndl=866 Props=2 valHndl=32 ISvcUuid=0

Found the characteristic at handle 32

Svc Idx=2 Char Idx=1

EVFINDCHAR cHndl=866 Props=0 valHndl=0 ISvcUuid=0

Did NOT find the characteristic

- Disconnected
Exiting...

5.10.8BleGattcFindDesc

FUNCTION

This function facilitates an efficient way of locating the details of a descriptor if the UUID is known along with the UUID of
the service and the UUID of the characteristic containing it. The results are delivered in a EVFINDDESC event message. If the
GATT server table has multiple instances of the same service/characteristic/descriptor combination then this function
works because, in addition to the UUID handles to be searched for, it accepts instance parameters which are indexed from
0. This means that the second instance of a descriptor in the fourth instance of a characteristic with the same UUID in the
third instance of a service with the same UUID is located with index values 1, 3, and 2 respectively.

Given that the results are returned in an event message, a handler must be registered for the EVFINDDESC event.

Depending on the size of the remote GATT server table and the connection interval, the search of the characteristic may
take many hundreds of milliseconds. While this is in progress, it is safe to do other non-GATT-related operations such as
servicing sensors and displays or any of the onboard peripherals.

Note: It is not currently possible to scan for characteristics in included services. This planned for a future release.

BLEGATTCFINDDESC (connHndl, svcUuHndl, svcldx, charUuHndl, charldx,descUuHndl, descldx)

A typical pseudo code for finding a descrirptor involves calling BleGATTcFindDesc() which in turn results in the EVFINDDESC
event message and typically is as follows:

Register a handler for the EVFINDDESC event message

On EVFINDDESC event message
If Descriptor Handle == 0 then
Descriptor not found
Else
Descriptor has been found

Call BleGATTcFindDesc ()
If BleGATTcFindDesc () ok then Wait for EVFINDDESC

Returns INTEGER, a result code.

The typical value is 0x0000, indicating a successful operation and it means an EVFINDDESC event
message is thrown by the smartBASIC runtime engine containing the results. A non-zero return value
implies an EVFINDDESC message is not thrown

Arguments:

https://www.lairdconnect.com/ 211 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

byVal connHndl AS INTEGER

This is the connection handle as returned in the on-connect event for the connection on which the
remote GATT server can be accessed. This is returned in the EVBLEMSG event message with msgld ==0
and msgCtx is the connection handle.

byVal svcUuHndI AS INTEGER

svcUuHndl | Set this to the service UUID handle which is generated either by BleHandleUuid16() or
BleHandleUuid128() or BleHandleUuidSibling().

byVal svcldx AS INTEGER
svcldx | This is the instance of the service to look for with the UUID handle svcUuidHndl, where 0 is the first
instance, 1 is the second, and so on.

byVal charUuHndl AS INTEGER
charUuHndI | Set this to the characteristic UUID handle which is generated either by BleHandleUuid16() or
BleHandleUuid128() or BleHandleUuidSibling().

byVal charidx AS INTEGER
charldx | This is the instance of the characteristic to look for with the UUID handle charUuidHndl, where 0 is the
first instance, 1 is the second, and so on.

byVal descUuHndI AS INTEGER
descUuHndl | Set this to the descriptor uuid handle which is generated either by BleHandleUuid16() or
BleHandleUuid128() or BleHandleUuidSibling().

byVal descldx AS INTEGER
descldx | This is the instance of the descriptor to look for with the UUID handle charUuidHndl, where 0O is the first
instance, 1 is the second, and so on.

connHnd|

Example:

// Example :: BleGATTcFindDesc.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

//

//Remote server has 5 prim services with 16 bit uuid and 3 with 128 bit uuids
// 3 of the 16 bit uuid are the same value OxDEAD and

// 2 of the 128 bit uuids are also the same 112233445566778899AABBCCDDEEFF
//

// Server created using BleGATTcTblFindDesc.sub invoked in OpenMcp.scr

// using Nordic Usb Dongle PC10000

DIM rc,at$,conHndl, uHndl,uuid$, sIdx, cIdx,dIdx

//
// Initialise and instantiate service, characteristic, start adverts
//
FUNCTION OnStartup ()

DIM rc, adRpt$, addr$, scRpt$
rc=BleAdvRptInit (adRpt$, 2, 0, 10)

https://www.lairdconnect.com/ 212 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions

La i rd‘ J»» CONNECTIVITY

User Guide
IF rc==0 THEN : rc=BleScanRptInit (scRpt$) : ENDIF
IF rc==0 THEN : rc=BleAdvRptsCommit (adRpt$,scRpt$) : ENDIF
IF rc==0 THEN : rc=BleAdvertStart (0,addr$,50,0,0) : ENDIF

ENDFUNC rc

//open the GATT client with default notify/indicate ring buffer size

IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF

//

//

// Close connections so that we can run another app without problems

ENDSUB

//

SUB CloseConnections ()
rc=BleDisconnect (conHndl)

rc=BleAdvertStop ()

//

// Ble event handler

PRINT
uHndsS
uu$ =
uus =
uHndC
uus =
uu$ =
uHndD
sIdx
cIdx
dIdx

rc =

B

FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)
DIM uu$, uHndS, uHndC, uHndD
conHndl=nCtx
IF nMsgID==1 THEN
PRINT "\n\n- Disconnected"
EXITEFUNC O

ELSEIF nMsgID==0 THEN

"\n- Connected, so scan remote GATT Table for ALL services"
= BleHandleUuidl6 (0xDEAD)
"112233445566778899AABBCCDDEEFF00"
StrDehexize$ (uu$)
= BleHandleUuidl28 (uu$)
"1122C0ODE5566778899AABBCCDDEEFF0OQ"
StrDehexize$ (uu$)
= BleHandleUuidl28 (uu$)

2

1

1 // handle will be 37

leGattcFindDesc (conHndl, uHndS, sIdx, uHndC, cIdx, uHndD, dIdx)

IF rc==0 THEN

//BleDiscCharFirst () will exit with 0 when operation is complete

https://www.lairdconnect.com/ 213

Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

WAITEVENT
ENDIF
sIdx = 1
cIdx = 3

dIdx = 4 //does not exist
rc = BleGattcFindDesc (conHndl,uHndS, sIdx, udndC, cIdx, uHndD, dIdx)
IF rc==0 THEN
//BleDiscCharFirst () will exit with 0 when operation is complete
WAITEVENT
ENDIF
CloseConnections ()
ENDIF
ENDFUNC 1

'/

'/

function HandlerFindDesc (cHndl,hndl) as integer
print "\nEVFINDDESC "
print " cHndl=";cHndl
print " dscHndl=";hndl
IF hndl == 0 THEN
PRINT "\nDid NOT find the descriptor"
ELSE
PRINT "\nFound the descriptor at handle ";hndl
PRINT "\nSvc Idx=";sIdx;" Char Idx=";cIdx;" desc Idx=";dIdx
ENDIF

endfunc 0

//

// Main () equivalent

//

ONEVENT EVBLEMSG CALL HndlrBleMsg
OnEvent EVFINDDESC call HandlerFindDesc

//128bit uuid's will be delivered with a uuid handle == FF000000 == UNKNOWN

uuid$ "112233445566778899AABBCCDDEEFF00"

uuid$ = StrDehexize$ (uuid$)

//Register base uuids with the underlying stack, otherwise the services with the

https://www.lairdconnect.com/ 214
Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

uHndl = BleHandleUuidl1l28 (uuid$)
uuid$ = "1122DEAD5566778899AABBCCDDBEEF00"
uuid$ = StrDehexize$ (uuid$)

uHndl

BleHandleUuid1l28 (uuid$)

IF OnStartup ()==0 THEN

PRINT "\nAdvertising, and GATT Client is open\n"
ELSE

PRINT "\nFailure OnStartup"
ENDIF

WAITEVENT

PRINT "\nExiting..."

Expected Output:

Advertising, and GATT Client is open

- Connected, so scan remote GATT Table for ALL services
EVFINDDESC c¢cHndl=1106 dscHndl=37

Found the descriptor at handle 37

Svc Idx=2 Char Idx=1 desc Idx=1

EVFINDDESC c¢cHndl=1106 dscHndl=0

Did NOT find the descriptor

- Disconnected
Exiting...

5.10.9BleGattcRead/BleGattcReadData

FUNCTIONS

If the handle for an attribute is known, then these functions are used to read the content of that attribute from a specified
offset in the array of octets in that attribute value.

Given that the success or failure of this read operation is returned in an event message, a handler must be registered for
the EVATTRREAD event.

Depending on the connection interval, the read of the attribute may take many hundreds of milliseconds. While this is in
progress, it is safe to do other non-GATT-related operations such as servicing sensors and displays or any of the onboard
peripherals.

BleGATTcRead is used to trigger the procedure and BleGattcReadData is used to read the data from the underlying cache
when the EVATTRREAD event message is received with a success status.

BLEGATTCREAD (connHndl, attrHndl, offset)

A typical pseudo code for reading the content of an attribute calling BleGattcRead() which in turn results in the
EVATTRREAD event message and typically is as follows:

Register a handler for the EVATTRREAD event message

On EVATTRREAD event message

https://www.lairdconnect.com/ 215 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide
If GATT Status == 0 then
BleGattcReadData () //to actually get the data
Else

Attribute could not be read

Call BleGattcRead ()
If BleGattcRead () ok then Wait for EVATTRREAD

Returns INTEGER, a result code.
The typical value is 0x0000, indicating a successful operation and it means an EVATTRREAD event
message is thrown by the smartBASIC runtime engine containing the results. A non-zero return value
implies an EVATTRREAD message is not thrown.

Arguments:
byVal connHndl AS INTEGER
This is the connection handle as returned in the on-connect event for the connection on which the

connHnd| L . .
remote GATT server can be accessed. This is returned in the EVBLEMSG event message with msgld ==
and msgCtx is the connection handle.
attrHndl byVal attrHndl AS INTEGER
Set to the handle of the attribute to read. It is a value in the range 1 to 65535.
offset byVal offset AS INTEGER

This is the offset from which the data in the attribute is to be read.

BLEGATTCREADDATA (connHndl, attrHndl, offset, attrData$)

This function is used to collect the data from the underlying cache when the EVATTRREAD event message has a success
GATT status code.

Returns INTEGER, a result code. The typical value is 0x0000, indicating a successful read.

Arguments:

byVal connHndl AS INTEGER

This is the connection handle as returned in the on-connect event for the connection on which
the remote GATT server can be accessed. This is returned in the EVBLEMSG event message with
msgld == 0 and msgCtx is the connection handle.

byRef attrHndl AS INTEGER
attrHndl | The handle for the attribute that was read is returned in this variable. It is the same as the one
supplied in BleGATTcRead, but supplied here so that the code can be stateless.

byRef offset AS INTEGER
offset | The offset into the attribute data that was read is returned in this variable. It is the same as the
one supplied in BleGATTcRead, but supplied here so that the code can be stateless.

byRef attrData$ AS STRING

connHnd|

attrData . . . N .

5 The attribute data which was read is supplied in this parameter.
Example:

// Example :: BleGATTcRead.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

//

//Remote server has 3 prim services with 16 bit uuid. First service has one

https://www.lairdconnect.com/ 216 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

//characteristic whose value attribute is at handle 3 and has read/write props
//

// Server created using BleGattcTblRead.sub invoked in OpenMcp.scr

// using Nordic Usb Dongle PC10000

DIM rc,at$,conHndl,uHndl,nOff, atHndl

//

// Initialise and instantiate service, characteristic, start adverts

//

FUNCTION OnStartup ()
DIM rc, adRpt$, addr$, scRpt$
rc=BleAdvRptInit (adRpt$, 2, 0, 10)
IF rc==0 THEN : rc=BleScanRptInit (scRpt$) : ENDIF
IF rc==0 THEN : rc=BleAdvRptsCommit (adRpt$,scRpt$) : ENDIF
IF rc==0 THEN : rc=BleAdvertStart (0,addr$,50,0,0) : ENDIF
//open the GATT client with default notify/indicate ring buffer size
IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF
ENDFUNC rc

//

// Close connections so that we can run another app without problems

//

SUB CloseConnections ()
rc=BleDisconnect (conHndl)
rc=BleAdvertStop ()

ENDSUB

//
// Ble event handler

//

FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)
DIM uHndA
conHndl=nCtx
IF nMsgID==1 THEN
PRINT "\n\n- Disconnected"
EXITFUNC O
ELSEIF nMsgID==0 THEN

PRINT "\n- Connected, so read attibute handle 3"

https://www.lairdconnect.com/ 217
Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions
User Guide

La i rd J»» CONNECTIVITY

atHndl = 3
nOff = 0
rc=BleGattcRead (conHndl, atHndl, nOff)
IF rc==0 THEN

WAITEVENT
ENDIF
PRINT "\nread attibute handle 300 which does not exist"
atHndl = 300
nOff = 0
rc=BleGattcRead (conHndl, atHndl, nOff)
IF rc==0 THEN

WAITEVENT
ENDIF
CloseConnections ()

ENDIF
ENDFUNC 1

v/

v/

function HandlerAttrRead (cHndl,aHndl,nSts) as integer

dim nOfst,nAhndl, at$

print "\nEVATTRREAD "

print " cHndl=";cHndl

print " attrHndl=";aHndl

print " status=";integer.h' nSts
if nSts == 0 then

print "\nAttribute read OK"
rc = BleGattcReadData (cHndl,nAhndl,nOfst,at$)

print "\nData = ";StrHexize$ (at$)

print " Offset= ";nOfst

print " Len=";strlen (at$)

print "\nhandle = ";nAhndl
else

print "\nFailed to read attribute"
endif

endfunc 0

//

// Main () equivalent

//

https://www.lairdconnect.com/ 218

Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

ONEVENT EVBLEMSG CALL HndlrBleMsg
OnEvent EVATTRREAD call HandlerAttrRead
IF OnStartup ()==0 THEN

PRINT "\nAdvertising, and GATT Client is open\n"
ELSE

PRINT "\nFailure OnStartup"
ENDIF

WAITEVENT

PRINT "\nExiting..."

Expected Output:

Advertising, and GATT Client is open

- Connected, so read attibute handle 3

EVATTRREAD cHndl=2960 attrHndl=3 status=00000000
Attribute read OK

Data = 00000000 Offset= 0 Len=4

handle = 3

read attibute handle 300 which does not exist
EVATTRREAD c¢cHndl=2960 attrHndl=300 status=00000101
Failed to read attribute

- Disconnected

Exiting...

5.10.10 BleGattcWrite
FUNCTION

If the handle for an attribute is known then this function is used to write into an attribute starting at offset 0. The
acknowledgement is returned via a EVATTRWRITE event message.

Given that the success or failure of this write operation is returned in an event message, a handler must be registered for
the EVATTRWRITE event.

Depending on the connection interval, the write to the attribute may take many hundreds of milliseconds. While this is in
progress, it is safe to do other non GATT related operations such as servicing sensors and displays or any of the onboard
peripherals.

BLEGATTCWRITE (connHndl, attrHndl, attrData$)

A typical pseudo code for writing to an attribute which results in the EVATTRWRITE event message and typically is as
follows:

Register a handler for the EVATTRWRITE event message

On EVATTWRITE event message
If GATT Status == 0 then
Attribute was written successfully
Else
Attribute could not be written

https://www.lairdconnect.com/ 219 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

Call BleGattcWrite ()
If BleGattcWrite() ok then Wait for EVATTRWRITE

Returns INTEGER, a result code. The typical value is 0x0000, indicating a successful read.
Arguments:
byVal connHndl AS INTEGER
This is the connection handle as returned in the on-connect event for the connection on which the
connHnd| . . .
remote GATT server can be accessed. This is returned in the EVBLEMSG event message with msgld ==
and msgCtx is the connection handle.
byVal attrHndl AS INTEGER
attrhind| The handle for the attribute that is to be written to.
byRef attrData$ AS STRING
D
attrDatas The attribute data to write.
Example:
// Example :: BleGATTcWrite.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

//

//Remote server has 3 prim services with 16 bit uuid. First service has one
//characteristic whose value attribute is at handle 3 and has read/write props
//

// Server created using BleGATTcTblWrite.sub invoked in OpenMcp.scr

// using Nordic Usb Dongle PC10000

DIM rc,at$,conHndl, uHndl, atHndl

//
// Initialise and instantiate service, characteristic, start adverts

//
FUNCTION OnStartup ()

DIM rc, adRpt$, addr$, scRpt$

rc=BleAdvRptInit (adRpt$, 2, 0, 10)

IF rc==0 THEN : rc=BleScanRptInit (scRpt$) : ENDIF

IF rc==0 THEN : rc=BleAdvRptsCommit (adRpt$,scRpt$) : ENDIF

IF rc==0 THEN : rc=BleAdvertStart (0,addr$,50,0,0) : ENDIF

//open the GATT client with default notify/indicate ring buffer size
IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF

ENDFUNC rc

https://www.lairdconnect.com/ 220 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

//

// Close connections so that we can run another app without problems

//

SUB CloseConnections ()
rc=BleDisconnect (conHndl)
rc=BleAdvertStop ()

ENDSUB

//

// Ble event handler

//
FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)
DIM uHndA
conHndl=nCtx
IF nMsgID==1 THEN
PRINT "\n\n- Disconnected"
EXITEFUNC O
ELSEIF nMsgID==0 THEN
PRINT "\n- Connected, so write to attibute handle 3"
atHndl = 3
at$="\01\02\03\04"
rc=BleGattcWrite (conHndl, atHndl, at$)
IF rc==0 THEN
WAITEVENT
ENDIF
PRINT "\nwrite to attibute handle 300 which does not exist"
atHndl = 300
rc=BleGattcWrite (conHndl,atHndl, ats$)
IF rc==0 THEN
WAITEVENT
ENDIF
CloseConnections ()
ENDIF
ENDFUNC 1

'/

'/

function HandlerAttrWrite (cHndl,aHndl,nSts) as integer
dim nOfst,nAhndl, at$

https://www.lairdconnect.com/ 221
Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

print "\nEVATTRWRITE "
print " cHndl=";cHndl
print " attrHndl=";aHndl
print " status=";integer.h' nSts
if nSts == 0 then
print "\nAttribute write OK"
else
print "\nFailed to write attribute"
endif

endfunc 0

//

// Main () equivalent

//

ONEVENT EVBLEMSG CALL HndlrBleMsg
OnEvent EVATTRWRITE call HandlerAttrWrite
IF OnStartup()==0 THEN

PRINT "\nAdvertising, and GATT Client is open\n"
ELSE

PRINT "\nFailure OnStartup"
ENDIF

WAITEVENT

PRINT "\nExiting..."

Expected Output:

Advertising, and GATT Client is open

- Connected, so read attibute handle 3

EVATTRWRITE cHndl=2687 attrHndl=3 status=00000000
Attribute write OK

Write to attibute handle 300 which does not exist
EVATTRWRITE c¢cHndl=2687 attrHndl=300 status=00000101
Failed to write attribute

- Disconnected

Exiting...

5.10.1 BleGattcWriteCmd
FUNCTION

If the handle for an attribute is known, then this function is used to write into an attribute at offset 0 when no
acknowledgment response is expected. The signal that the command has actually been transmitted and that the remote
link layer has acknowledged is by the EVNOTIFYBUF event.

https://www.lairdconnect.com/ 222 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

Note: The acknowledgement received for the BleGattcWrite() command is from the higher level GATT layer. Do not

confuse this with the link layer ACK .

All packets are acknowledged at link layer level. If a packet fails to get through, then that condition manifests as

a connection drop due to the link supervision timeout.

Given that the transmission and link layer ACK of this write operation is indicated in an event message, a handler must be

registered for the EVNOTIBUF event.

Depending on the connection interval, the write to the attribute may take many hundreds of milliseconds. While this is in
progress, it is safe to do other non-GATT-related operations such as servicing sensors and displays or any of the onboard

peripherals.

BLEGATTCWRITECMD (connHndl, attrHndl, attrData$)

The following is a typical pseudo code for writing to an attribute which results in the EVNOTIFYBUF event:

Register a handler for the EVNOTIFYBUF event message

On EVNOTIFYBUF event message
Can now send another write command

Call BleGattcWriteCmd ()
If BleGattcWrite () ok then Wait for EVNOTIFYBUF

Returns INTEGER, a result code. The typical value is 0x0000, indicating a successful read.
Arguments:
byVal connHndl AS INTEGER
connHnd! This is the connection handle as returned in the on-connect event for the connection on which
the remote GATT Server can be accessed. This is returned in the EVBLEMSG event message with
msgld == 0 and msgCtx is the connection handle.
byVal attrHndl AS INTEGER
attrtind| The handle for the attribute that is to be written to.
byRef attrData$ AS STRING
attrData$ The attribute data to write.
Example:
// Example :: BleGATTcWriteCmd.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

//

//Remote server has 3 prim services with 16 bit uuid. First service has one
//characteristic whose value attribute is at handle 3 and has read/write props
//

// Server created using BleGATTcTblWriteCmd.sub invoked in OpenMcp.scr

// using Nordic Usb Dongle PC10000

https://www.lairdconnect.com/ 223
Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

DIM rc,at$,conHndl, uHndl, atHndl

//
// Initialise and instantiate service, characteristic, start adverts

//
FUNCTION OnStartup ()

DIM rc, adRpt$, addr$, scRpt$
rc=BleAdvRptInit (adRpt$, 2, 0, 10)

IF rc==0 THEN : rc=BleScanRptInit (scRpt$) : ENDIF
IF rc==0 THEN : rc=BleAdvRptsCommit (adRpt$,scRpt$) : ENDIF
IF rc==0 THEN : rc=BleAdvertStart (0,addr$,50,0,0) : ENDIF

//open the GATT client with default notify/indicate ring buffer size

IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF
ENDFUNC rc
//
// Close connections so that we can run another app without problems
//

SUB CloseConnections ()
rc=BleDisconnect (conHndl)
rc=BleAdvertStop ()

ENDSUB

//
// Ble event handler
//
FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)

DIM uHndA

conHndl=nCtx

IF nMsgID==1 THEN
PRINT "\n\n- Disconnected"
EXITFUNC O

ELSEIF nMsgID==0 THEN
PRINT "\n- Connected, so write to attribute handle 3"
atHndl = 3
at$="\01\02\03\04"
rc=BleGattcWriteCmd (conHndl, atHndl, at$)
IF rc==0 THEN

WAITEVENT

https://www.lairdconnect.com/ 224 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

ENDIF
PRINT "\n- write again to attribute handle 3"
atHndl = 3
at$="\05\06\07\08"
rc=BleGattcWriteCmd (conHndl, atHndl, at$)
IF rc==0 THEN
WAITEVENT
ENDIF
PRINT "\n- write again to attribute handle 3"
atHndl = 3
at$="\09\0A\0B\0OC"
rc=BleGattcWriteCmd (conHndl, atHndl, at$)
IF rc==0 THEN
WAITEVENT
ENDIF
PRINT "\nwrite to attribute handle 300 which does not exist"
atHndl = 300
rc=BleGattcWriteCmd (conHndl, atHndl, at$)
IF rc==0 THEN
PRINT "\nEven when the attribute does not exist an event will
WAITEVENT
ENDIF
CloseConnections ()
ENDIF
ENDFUNC 1

occur"

'/

"//

function HandlerNotifyBuf () as integer
print "\nEVNOTIFYBUF Event"

endfunc 0 '//need to progress the WAITEVENT

//

// Main () equivalent

//

ONEVENT EVBLEMSG CALL HndlrBleMsg

OnEvent EVNOTIFYBUF call HandlerNotifyBuf

IF OnStartup ()==0 THEN

https://www.lairdconnect.com/ 225 Americas: +1-800-492-2320

Copyright 2020 Laird. All Rights Reserved

Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

PRINT "\nAdvertising, and GATT Client is open\n"
ELSE
PRINT "\nFailure OnStartup"

ENDIF

WAITEVENT

PRINT "\nExiting..."

Expected Output:

Advertising, and GATT Client is open

- Connected, so write to attribute handle 3

EVNOTIFYBUF Event

- write again to attribute handle 3

EVNOTIFYBUF Event

- write again to attribute handle 3

EVNOTIFYBUF Event

write to attribute handle 300 which does not exist

Even when the attribute does not exist an event will occur
EVNOTIFYBUF Event

- Disconnected

Exiting...

5.10.12 BleGattcWritePrepare
FUNCTION

The Write Prepare and Write Execute functions are used to perform the Long Write procedure. Long Writes are used when
the value handle is known, but the length of the characteristic value is longer than can be sent in a single Write Request
message.

BleGattcWritePrepare requests that the GATT server prepares to write the attribute value. This function can be used
multiple times as long as a BleGattcWriteExec function is used at the end to perform the full Long Write.

BLEGATTCWRITEPREPARE (connHndl, attrHndl, offset, attrData$)

Returns INTEGER, a result code. The typical value is 0x0000, indicating a successful read.
Arguments:
byVal connHndl AS INTEGER
connHnd! This is the connection handle as returned in the on-connect event for the connection on which
the remote GATT Server can be accessed. This is returned in the EVBLEMSG event message with
msgld == 0 and msgCtx is the connection handle.
byVal attrHndl AS INTEGER
attrHndl The handle for the attribute that is to be written to.
offset byVal attrHndl AS INTEGER
This is the offset at which the data in the attribute is to be written.
byRef attrData$ AS STRING
attrData$ The attribute data to write.
https://www.lairdconnect.com/ 226 Americas: +1-800-492-2320

Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

5.10.13 BleGattcWriteExec

FUNCTION

The BleGattcWriteExecute function is used by the GATT client to request the server to write or cancel the write of all the
values that have been prepare with the BleGattcWritePrepare function. It is used as the final step in a long write operation.

BLEGATTCWRITEEXEC (connHndl, Flags)

Returns INTEGER, a result code. The typical value is 0x0000, indicating a successful read.
Arguments:
byVal connHndl AS INTEGER
connHndl This is the connection handle as returned in the on-connect event for the connection on which
the remote GATT Server can be accessed. This is returned in the EVBLEMSG event message with
msgld == 0 and msgCtx is the connection handle.
byVal Flags AS INTEGER
Flags
g Cancel all prepared writes
1 Immediately write all pending prepared values
5.10.14 BleGattcNotifyRead
FUNCTION

A GATT server has the ability to notify or indicate the value attribute of a characteristic when enabled via the Client
Characeristic Configuration Descriptor (CCCD). This means data arrives from a GATT server at any time and must be
managed so that it can synchronised with the smartBASIC runtime engine.

Data arriving via a notification does not require GATT acknowledgements, however indications require them. This GATT
client manager saves data arriving via a notification in the same ring buffer for later extraction using the command
BleGattcNotifyRead(); for indications, an automatic GATT acknowledgement is sent when the data is saved in the ring
buffer. This acknowledgment happens even if the data is discarded because the ring buffer is full. If the data must not be
acknowledged when it is discarded on a full buffer, set the flags parameter in the BleGattcOpen() function where the GATT
client manager is opened.

In the case when an ACK is NOT sent on data discard, the GATT server is throttled and no further data is notified or
indicated by it until BleGattNotifyRead() is called to extract data from the ring buffer to create space and it triggers a
delayed acknowledgement.

When the GATT client manager is opened using BleGattcOpen(), it is possible to specify the size of the ring buffer. If a value
of 0 is supplied, then a default size is created. SYSINFO(2019) in a smartBASIC application or the interactive mode command
AT 1 2019 returns the default size. Likewise SYSINFO(2020) or the command AT | 2020 returns the maximum size.

Data that arrives via notifications or indications get stored in the ring buffer. At the same time, a EVATTRNOTIFY event is
thrown to the smartBASIC runtime engine. This is an event, in the same way an incoming UART receive character generates
an event; that is, no data payload is attached to the event.

BLEGATTCNOTIFYREAD (connHndl, attrHndl, attrData$, discardCount)

The following is a typical pseudo code for handling and accessing notification/indication data:

Register a handler for the EVATTRNOTIFY event message

On EVATTRNOTIFY event
BleGattcNotifyRead () //to actually get the data

https://www.lairdconnect.com/ 227 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

Process the data

Enable notifications and/or indications via CCCD descriptors

Returns INTEGER, a result code. The typical value is 0x0000, indicating data was successful read.

Arguments:

byRef connHndl AS INTEGER
connHndl | On exit, this is the connection handle of the GATT server that sent the notification or
indication.

byRef attrHndl AS INTEGER
On exit, this is the handle of the characteristic value attribute in the notification or indication.

byRef attrData$ AS STRING
attrDataS | On exit, this is the data of the characteristic value attribute in the notification or indication. It
is always from offset 0 of the source attribute.

byRef discardedCount AS INTEGER

On exit, this should contain 0. It signifies the total number of notifications or indications that
discardedCount | got discared because the ring buffer in the GATT client manager was full.

If non-zero values are encountered, it is recommended that the ring buffer size be increased
by using BleGattcClose() when the GATT client was opened using BleGattcOpen().

attrHnd|

Example:

// Example :: BleGATTcNotifyRead.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples
//

// Charactersitic at handle 15 has notify (16==cccd)
// Charactersitic at handle 18 has indicate (19==cccd)

DIM rc,at$,conHndl, uHndl, atHndl

//
// Initialise and instantiate service, characteristic, start adverts
//
FUNCTION OnStartup ()
DIM rc, adRpt$, addr$, scRpt$
rc=BleAdvRptInit (adRpt$, 2, 0, 10)
IF rc==0 THEN : rc=BleScanRptInit (scRpt$) : ENDIF
IF rc==0 THEN : rc=BleAdvRptsCommit (adRpt$,scRpt$) : ENDIF
IF rc==0 THEN : rc=BleAdvertStart (0,addr$,50,0,0) : ENDIF
//open the gatt client with default notify/indicate ring buffer size

IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF
ENDFUNC rc
//
// Close connections so that we can run another app without problems
//

SUB CloseConnections ()
rc=BleDisconnect (conHndl)
rc=BleAdvertStop ()

ENDSUB
//
// Ble event handler
//
FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)
https://www.lairdconnect.com/ 228 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY
User Guide

conHndl=nCtx
IF nMsgID==1 THEN
PRINT "\n\n- Disconnected"
EXITFUNC O
ELSEIF nMsgID==0 THEN
PRINT "\n- Connected, so enable notification for char with cccd at 16"
atHndl = 16
ats$="\01\00"
rc=BleGattcWrite (conHndl, atHndl, at$)
IF rc==0 THEN
WAITEVENT
ENDIF
PRINT "\n- enable indication for char with cccd at 19"
atHndl = 19
ats="\02\00"
rc=BleGattcWrite (conHndl, atHndl, at$)
IF rc==0 THEN
WAITEVENT
ENDIF
ENDIF
ENDFUNC 1

v/
'/
function HandlerAttrWrite (cHndl,aHndl,nSts) as integer

dim nOfst,nAhndl, at$

print " \nEVATTRWRITE "

print " cHndl=";cHndl

print " attrHndl=";aHndl

print " status=";integer.h' nSts

if nSts == 0 then

print "\nAttribute write OK"
else

print "\nFailed to write attribute"
endif

endfunc 0

'/
'// Thrown when AT+CFG 213 = 0
'/
function HandlerAttrNotify () as integer
dim chndl, aHndl,att$,dscd
print "\nEVATTRNOTIFY Event \n"
rc=BleGattcNotifyRead (cHndl, aHndl,att$,dscd)
print "\n BleGattcNotifyRead ()"
if rc==0 then
print " Connection Handle=";cHndl
print " Characteristic Handle=";aHndl
print " Data=";StrHexize$ (att$)
print " Discarded=";dscd
else
print " failed with ";integer.h' rc
endif
endfunc 1

'/
'// Thrown when AT+CFG 213 = 1
'/
function HandlerAttrNotifyEx (BYVAL hConn, BYVAL hChar, BYVAL nType, BYVAL nlLen, BYVAL
Data$) as integer

print "\nEVATTRNOTIFYEX Event :: "
if nType == 1 then

https://www.lairdconnect.com/ 229 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY
User Guide

print "Notification\n"

elseif nType == 2 then
print "Indication\n"
endif

print " Connection Handle=";hConn
print " Characteristic Handle=";hChar
print " Data=";Data$

endfunc 1

//
// Main () equivalent
//
ONEVENT EVBLEMSG CALL HndlrBleMsg
OnEvent EVATTRWRITE call HandlerAttrWrite
OnEvent EVATTRNOTIFY call HandlerAttrNotify // Thrown when AT+CFG 213 = 0O
OnEvent EVATTRNOTIFYEX call HandlerAttrNotifyEx // Thrown when AT+CFG 213 = 1
IF OnStartup()==0 THEN
PRINT "\nAdvertising, and Gatt Client is open\n"
ELSE
PRINT "\nFailure OnStartup"
ENDIF
WAITEVENT

PRINT "\nExiting..."

Expected Output:

Advertising, and GATT Client is open

- Connected, so enable notification for char with cccd at 16
EVATTRWRITE cHndl=877 attrHndl=16 status=00000000
Attribute write OK
- enable indication for char with cccd at 19
EVATTRWRITE cHndl=877 attrHndl=19 status=00000000
Attribute write OK
EVATTRNOTIFY Event

BleGATTcNotifyRead () cHndl=877 attrHndl=15 data=BAADCODE discarded=0
EVATTRNOTIFY Event

BleGATTcNotifyRead () cHndl=877 attrHndl=18 data=DEADBEEF discarded=0
EVATTRNOTIFY Event

BleGATTcNotifyRead () cHndl=877 attrHndl=15 data=BAADCODE discarded=0
EVATTRNOTIFY Event

BleGATTcNotifyRead () cHndl=877 attrHndl=18 data=DEADBEEF discarded=0

5.11 Attribute Encoding Functions

Data for characteristics are stored in value attributes, arrays of bytes. Multibyte Characteristic Descriptors content is stored
similarly. Those bytes are manipulated in smartBASIC applications using STRING variables.

The Bluetooth specification stipulates that multibyte data entities are stored in little endian format and so all data
manipulation is done similarly. Little endian means that a multibyte data entity is stored so that lowest significant byte is
positioned at the lowest memory address and likewise, when transported, the lowest byte is on the wire first.

This section describes all the encoding functions which allow those strings to be written in smaller bytewise subfields in a
more efficient manner compared to the generic STRXXXX functions that are made available in smartBASIC.

https://www.lairdconnect.com/ 230 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

Note: CCCD and SCCD descriptors are special cases; they have two bytes which are treated as 16-bit integers. This is
reflected in smartBASIC applications so that INTEGER variables are used to manipulate those values instead of
STRINGS.

5.11.1 BleEncode8

FUNCTION

This function overwrites a single byte in a string at a specified offset. If the string is not long enough, then it is extended
with the new extended block uninitialized and then the byte specified is overwritten.

If the nindex is such that the new string length exceeds the maximum attribute length, this function fails. The maximum
attribute length can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth specification allows a length
between 1 and 512.

BLEENCODES (attr$, nData, nindex)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
Arguments:
attrs byRef attrsS AS STRING
This argument is the string that is written to an attribute.
nData byVal nData AS INTEGER
The least significant byte of this integer is saved. The rest is ignored.
byVal nindex AS INTEGER
nindex This is the zero-based index into the string attr$ where the new data fragment is written to. If the string
attrS is not long enough to fit the index plus the length of the fragment, it is extended. If the extended
length exceeds the maximum allowable length of an attribute (see SYSINFO(2013)), this function fails.
Example:
// Example :: BleEncode8.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM rc

DIM attr$

attr$="Laird"

PRINT "\nattr$=";attr$

//Remember: - 4 bytes are used to store an integer on the BL652
//write 'C' to index 2 -- '111' will be ignored

rc=BleEncode8 (attr$,0x11143,2)

//write 'A' to index 0

rc=BleEncode8 (attr$, 0x41,0)

//write 'B' to index 1

rc=BleEncodeS8 (attr$, 0x42,1)

https://www.lairdconnect.com/ 231 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

//write 'D' to index 3
rc=BleEncodeS8 (attr$, 0x44, 3)

//write 'y' to index 7 -- attr$ will be extended
rc=BleEncodeS8 (attr$, 0x67, 7)

PRINT "\nattr$ now = ";attr$

Expected Output:

attr$=Laird
attr$ now = ABCDd\00\00g

5.11.2 BleEncodel6

FUNCTION

This function overwrites two bytes in a string at a specified offset. If the string is not long enough, then it is extended with
the new extended block uninitialized and then the bytes specified are overwritten.

If the nindex is such that the new string length exceeds the maximum attribute length, this function fails. The maximum
attribute length can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth specification allows a length
between 1 and 512.

BLEENCODE16 (attr$, nData, nindex)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
Arguments:
trs byRef attrS AS STRING
attr.
This argument is the string that is written to an attribute.
D EGE
nData byVal nData AS INTEGER

The two least significant bytes of this integer is saved. The rest is ignored.

byVal nindex AS INTEGER

This is the zero based index into the string attr$ where the new fragment of data is written. If
nindex | the string attr$ is not long enough to accommodate the index plus the length of the fragment, it
is extended. If the extended length exceeds the maximum allowable length of an attribute (see
SYSINFO(2013)), this function fails.

Example:

// Example :: BleEncodel6.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM rc, attr$
attr$="Laird"
PRINT "\nattr$=";attr$

//write 'CD' to index 2

rc=BleEncodel6 (attr$,0x4443,2)

//write 'AB' to index 0 - '2222' will be ignored
rc=BleEncodel6 (attr$, 0x22224241,0)

//write 'EF' to index 3
rc=BleEncodel6 (attr$, 0x4645, 4)

PRINT "\nattr$ now = ";attr$

https://www.lairdconnect.com/ 232 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

Expected Output:

attr$=Laird
attr$ now = ABCDEF

5.11.3 BleEncode24

FUNCTION

This function overwrites three bytes in a string at a specified offset. If the string is not long enough, then it is extended with
the new extended block uninitialized and then the bytes specified are overwritten.

If the nindex is such that the new string length exceeds the maximum attribute length, this function fails. The maximum
attribute length can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth specification allows a length
between 1 and 512.

BLEENCODE24 (attr$, nData, nindex)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
Arguments:
attrs byRef attrsS AS STRING
This argument is the string that is written to an attribute.
byVal nData AS INTEGER
nData

The three least significant bytes of this integer is saved. The rest is ignored.

byVal nindex AS INTEGER

This is the zero based index into the string attrS where the new fragment of data is written. If the string
nindex | attr$ is not long enough to accommodate the index plus the length of the fragment, it is extended. If
the extended length exceeds the maximum allowable length of an attribute (see SYSINFO(2013)), this
function fails.

Example:

// Example :: BleEncode24.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM rc

DIM attr$: attr$="Laird"

//write 'BCD' to index 1
rc=BleEncode24 (attr$,0x444342,1)
//write 'A' to index 0
rc=BleEncode8 (attr$, 0x41,0)
//write 'EF'to index 4

rc=BleEncodel6 (attr$, 0x4645, 4)

PRINT "attr$=";attrs$

Expected Output:

attr$=ABCDEF

https://www.lairdconnect.com/ 233 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY
User Guide

511.4 BleEncode32
FUNCTION

This function overwrites four bytes in a string at a specified offset. If the string is not long enough, then it is extended with
the new extended block uninitialized and then the bytes specified are overwritten.

If the nindex is such that the new string length exceeds the maximum attribute length, this function fails. The maximum
attribute length can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth specification allows a length
between 1 and 512.

BLEENCODE32(attr$,nData, nindex)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
Arguments:
attrs byRef attrsS AS STRING
This argument is the string that is written to an attribute.
byVal nData AS INTEGER
nData

The four bytes of this integer is saved. The rest is ignored.

byVal nindex AS INTEGER

This is the zero based index into the string attrS where the new fragment of data is written. If the
nindex | string attr$ is not long enough to accommodate the index plus the length of the fragment, it is
extended. If the extended length exceeds the maximum allowable length of an attribute (see
SYSINFO(2013)), this function fails.

Example:

// Example :: BleEncode32.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM rc

DIM attr$: attr$="Laird"

//write 'BCDE' to index 1
rc=BleEncode32 (attr$, 0x45444342,1)
//write 'A' to index 0

rc=BleEncodeS8 (attr$, 0x41,0)

PRINT "attr$=";attr$

Expected Output:

| attr$=ABCDE
5.11.5 BleEncodeFLOAT

FUNCTION

This function overwrites four bytes in a string at a specified offset. If the string is not long enough, it is extended with the
new extended block uninitialized and then the byte specified is overwritten.

https://www.lairdconnect.com/ 234 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

If the nindex is such that the new string length exceeds the maximum attribute length, this function fails. The maximum
attribute length can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth specification allows a length
between 1 and 512.

BLEENCODEFLOAT (attr$, nMatissa, nExponent, nindex)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
Arguments:
attrs byRef attrs AS STRING

This argument is the string that is written to an attribute.

byVal nMantissa AS INTEGER

This value must be in the range -8388600 to +8388600 or the function fails. The data is written in little
endian so that the least significant byte is at the lower memory address.

Note: The range is not +/- 2048 because after encoding the following 2 byte values have special
meaning:
nMatissa
0x007FFFFF NaN (Not a Number)
0x00800000 NRes (Not at this resolution)
0x007FFFFE + INFINITY
0x00800002 - INFINITY
0x00800001 Reserved for future use
byVal nExponent AS INTEGER
nExponent

This value must be in the range -128 to 127 or the function fails.

byVal nindex AS INTEGER

This is the zero based index into the string attrS where the new fragment of data is written. If the string
nindex | attr$ is not long enough to accommodate the index plus the length of the fragment, it is extended. If
the extended length exceeds the maximum allowable length of an attribute (see SYSINFO(2013)), this
function fails.

Example:

// Example :: BleEncodeFloat.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM rc

DIM attr$: attrs$=""

//write 1234567 x 107°-54 as FLOAT to index 2

PRINT BleEncodeFLOAT (attr$,123456,-54,0)

//write 1234567 x 1071000 as FLOAT to index 2 and it will fail
//because the exponent is too large, it has to be < 127
IF BleEncodeFLOAT (attr$,1234567,1000,2) !=0 THEN

PRINT "\nFailed to encode to FLOAT"

ENDIF

//write 10000000 x 10°0 as FLOAT to index 2 and it will fail

https://www.lairdconnect.com/ 235 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

//because the mantissa is too large, it has to be < 8388600
IF BleEncodeFLOAT (attr$,10000000,0,2) !=0 THEN
PRINT "\nFailed to encode to FLOAT"

ENDIF

Expected Output:

0
Failed to encode to FLOAT
Failed to encode to FLOAT

5.11.6 BleEncodeSFLOATEX

FUNCTION

This function overwrites two bytes in a string at a specified offset as short 16-bit float value. If the string is not long enough,
it is extended with the extended block uninitialized. Then the bytes are overwritten.

If the nindex is such that the new string length exceeds the maximum attribute length, this function fails. The maximum
attribute length can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth specification allows a length
between 1 and 512.

BLEENCODESFLOATEX (attr$, nData, nindex)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
Arguments:
attrs byRef attrsS AS STRING
This argument is the string that is written to an attribute
byVal nData AS INTEGER
nData The 32 bit value is converted into a 2-byte IEEE-11073 16-bit SFLOAT consisting of a 12-bit signed

mantissa and a 4-bit signed exponent. This means a signed 32-bit value always fits in such a FLOAT
enitity, but there is a loss in significance to 12 from 32.

byVal nindex AS INTEGER

This is the zero-based index into the string attr$ where the new fragment of data is written. If the string
nindex | attr$ is not long enough to accommodate the index plus the length of the fragment, it is extended. If
the new length exceeds the maximum allowable length of an attribute (see SYSINFO(2013)), this
function fails.

Example:

// Example :: BleEncodeSFloatEx.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM rc, mantissa, exp

DIM attr$: attrs$=""

//write 2,147,483,647 as SFLOAT to index 0
rc=BleEncodeSFloatEX (attr$,2147483647,0)
rc=BleDecodeSFloat (attr$,mantissa,exp,0)

PRINT "\nThe number stored is ";mantissa;" x 10"";exp

https://www.lairdconnect.com/ 236 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

Expected Output:

| The number stored is 214 x 107

5.11.7 BleEncodeSFLOAT

FUNCTION

This function overwrites two bytes in a string at a specified offset as short 16-bit float value. If the string is not long enough,
it is extended with the new block uninitialized. Then the byte specified is overwritten.

If the nindex is such that the new string length exceeds the maximum attribute length, this function fails. The maximum
attribute length can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth specification allows a length
between 1 and 512.

BLEENCODESFLOAT (attrS$, nMatissa, nExponent, nindex)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
Arguments:
attrs byRef attrs AS STRING

This argument is the string that is written to an attribute.

byVal nMantissa AS INTEGER
This must be in the range -2046 to +2046 or the function fails. The data is written in little endian so the
least significant byte is at the lower memory address.

Note: The range is not +/- 2048 because after encoding, the following 2-byte values have special

meaning:
nMatissa 0x007FF NaN (Not a Number)
0x00800 NRes (Not at this resolution)
0x007FE + INFINITY
0x00802 - INFINITY
0x00801 Reserved for future use

byVal nExponent AS INTEGER
This value must be in the range -8 to 7 or the function fails.

byVal nindex AS INTEGER

This is the zero based index into the string attr$ where the new fragment of data is written. If the string
nindex | attr$ is not long enough to accommodate the index plus the length of the fragment, it is extended. If
the new length exceeds the maximum allowable length of an attribute (see SYSINFO(2013)), this
function fails.

nExponent

Example:

// Example :: BleEncodeSFloat.sb

// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples
DIM rc

DIM attr$: attr$=""

SUB Encode (BYVAL mantissa, BYVAL exp)
IF BleEncodeSFloat (attr$,mantissa,exp,2) !=0 THEN
PRINT "\nFailed to encode to SFLOAT"
ELSE

https://www.lairdconnect.com/ 237 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

PRINT "\nSuccess"
ENDIF
ENDSUB
Encode (1234, -4) //1234 x 10"-4
Encode (1234,10) //1234 x 10710 will fail because exponent too large
Encode (10000, 0) //10000 x 1070 will fail because mantissa too large

Expected Output:

Success
Failed to encode to SFLOAT
Failed to encode to SFLOAT

5.11.8 BleEncodeTIMESTAMP

FUNCTION

This function overwrites a 7-byte string into the string at a specified offset. If the string is not long enough, it is extended
with the new extended block uninitialized and then the byte specified is overwritten.

The 7-byte string consists of a byte each for century, year, month, day, hour, minute and second. If (year * month) is zero, it
is taken as “not noted” year and all the other fields are set zero (not noted).

For example, 5 May 2013 10:31:24 is represented as \14\0D\05\05\0A\1F\18.

If the nindex is such that the new string length exceeds the maximum attribute length, this function fails. The maximum
length of an attribute as implemented can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth
specification allows a length between 1 and 512.

Note: When the attr$ string variable is updated, the two byte year field is converted into a 16-bit integer. Hence
\14\0D gets converted to \DD\07

BLEENCODETIMESTAMP (attr$, timestamp$, nindex)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byRef attrsS AS STRING

This argument is the string that is written to an attribute.

byRef timestamp$ AS STRING

timestamp$ | This is a 7-byte string as described above. For example 5 May 2013 10:31:24 is entered
\14\0D\05\05\0A\1F\18.

byVal nindex AS INTEGER

This is the zero based index into the string attrS where the new fragment of data is written. If the string
nindex | attr$ is not long enough to accommodate the index plus the length of the fragment it is extended. If the
new length exceeds the maximum allowable length of an attribute (see SYSINFO(2013)), this function
fails.

attrS

Example:

// Example :: BleEncodeTimestamp.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM rc, ts$

DIM attr$: attr$=""

https://www.lairdconnect.com/ 238 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

//write the timestamp <5 May 2013 10:31:24>
ts$="\14\0D\05\05\0A\1F\18"

PRINT BleEncodeTimestamp (attr$,ts$,0)

Expected Output:

Ik
5.11.9 BleEncodeSTRING
FUNCTION

This function overwrites a substring at a specified offset with data from another substring of a string. If the destination
string is not long enough, it is extended with the new block uninitialized. Then the byte is overwritten.

If the nindex is such that the new string length exceeds the maximum attribute length, this function fails. The maximum
length of an attribute as implemented can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth
specification allows a length between 1 and 512.

BleEncodeSTRING (attr$, nindex1 str$, nindex2, nLen)

Returns | INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.
Arguments:
attrs byRef attrsS AS STRING

This argument is the string is written to an attribute

byVal nindex1 AS INTEGER

This is the zero based index into the string attrS where the new fragment of data is written If the string
nindex1 | attr$ is not long enough to accommodate the index plus the length of the fragment it is extended. If the
new length exceeds the maximum allowable length of an attribute (see SYSINFO(2013)), this function
fails.

byRef strS AS STRING

This contains the source data which is qualified by the nindex2 and nLen arguments that follow.

byVal nindex2 AS INTEGER

nindex2 | This is the zero based index into the string strS from which data is copied. No data is copied if this is
negative or greater than the string.

byVal nLen AS INTEGER

nLen | This specifies the number of bytes from offset nindex2 to be copied into the destination string. It is
clipped to the number of bytes left to copy after the index.

strS

Example:

// Example :: BleEncodeString.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM rc, attr$, ts$: ts$S="Hello World"

//write "Wor" from "Hello World" to the attribute at index 2
rc=BleEncodeString (attr$, 2, ts$, 6,3)

PRINT attr$

Expected Output:

|\00\00Wor

https://www.lairdconnect.com/ 239 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY
User Guide

5.11.10 BleEncodeBITS

FUNCTION

This function overwrites some bits of a string at a specified bit offset with data from an integer which is treated as a bit
array of length 32. If the destination string is not long enough, it is extended with the new extended block uninitialized.
Then the bits specified are overwritten.

If the nindex is such that the new string length exceeds the maximum attribute length, this function fails. The maximum
length of an attribute as implemented can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth
specification allows a length between 1 and 512; hence the (nDstldx + nBitLen) cannot be greater than the maximum
attribute length times eight.

BleEncodeBITS (attr$, nDstldx, srcBitArr , nSrcldx, nBitLen)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

byRef attrsS AS STRING

This is the string written to an attribute. It is treated as a bit array.

byVal nDstldx AS INTEGER

This is the zero based bit index into the string attrS, treated as a bit array, where the new fragment of
nDstldx | data bits is written. If the string attr$ is not long enough to accommodate the index plus the length of
the fragment it is extended. If the new length exceeds the maximum allowable length of an attribute
(see SYSINFO(2013)), this function fails.

byVal srcBitArr AS INTEGER

This contains the source data bits which is qualified by the nSrcldx and nBitLen arguments that follow.
byVal nSrcidx AS INTEGER

nSrcldx | This is the zero-based bit index into the bit array contained in srcBitArr from where the data bits is
copied. No data is copied if this index is negative or greater than 32.

byVal nBitLen AS INTEGER

nBitLen | This specifies the number of bits from offset nSrcldx to be copied into the destination bit array
represented by the string attrS. It is clipped to the number of bits left to copy after the index nSrcldx.

attrS

srcBitArr

Example:

// Example :: BleEncodeBits.sb
// https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples

DIM attr$, rc, bA: bA=b'1110100001111

rc=BleEncodeBits (attr$,20,bA,7,5) : PRINT attr$ //copy 5 bits from index 7 to attr$

Expected Output:
[\00\00\20\01

5.12 Attribute Decoding Functions

Data in a characteristic is stored in a value attribute, a byte array. Multibyte characteristic descriptors content is stored
similarly. Those bytes are manipulated in smartBASIC applications using STRING variables.

Attibute data is stored in little endian format.

This section describes decoding functions that allow attribute strings to be read from smaller bytewise subfields more
efficiently than the generic STRXXXX functions that are made available in smart BASIC.

https://www.lairdconnect.com/ 240 Americas: +1-800-492-2320
Copyright 2020 Laird. All Rights Reserved Europe: +44-1628-858-940
Hong Kong: +852 2923 0610

BL652 smartBASIC Extensions Laird » CONNECTIVITY

User Guide

Note: CCCD and SCCD descriptors are special cases as they