

Version 3.4

From version 3.0 onwards, smartBASIC is enhanced with FLOAT variable types. This user guide
describes its use when applicable.

Please note that the FLOAT capability is an optional feature. Although many Laird platforms
may expose version 3.0 or newer capability, they may not have FLOAT; the need for extra code
memory may prevent it from being added to the build.

Where FLOAT is mentioned in this guide, an explicit comment is not made to state that it is an
optional feature.

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

2

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Version Date Notes Contributors Approver

2.0-r1 1 Feb 2013 Created by splitting from BL600 user manual Mahendra Tailor

2.0-r2 14 Aug 2014 Fix typo errors Mahendra Tailor

2.0-r3 16 Mar 2015 Added #cmpif nnn statement Mahendra Tailor

2.0-r4 22 May 2015 Added ‘STRING from INTEGER’ section Mahendra Tailor

2.1-r0 18 Aug 2015 AT I 0xC12C Mahendra Tailor

2.51 31 Aug 2016
Changed to new template; general edits and
formatting

 Mahendra Tailor

 10 Jul 2017
Updated FOR/NEXT description to remove
"Note: In smart BASIC the Statement Block is
ALWAYS executed at least once."

 Mahendra Tailor

3.0 2 Feb 2018 Added FLOAT variable type details Mahendra Tailor

3.1 19 June 2018 Updated for the BL652 product release Youssif Saeed Jonathan Kaye

3.2 14 Feb 2019 Updated logos and URLs Sue White

3.3 19 Nov 2019 Added StrEncodeX() and StrDecodeX() functions
Mahendra
Tailor

3.4 16 Jun 2020
Updated Crypto functions for support of CBC
256-bit encryption

Kieran Mackey Jonathan Kaye

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

3

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

1 smartBASIC Documentation.. 5

2 Introduction to smartBASIC .. 5

2.1 Why Do We Need smartBASIC? ... 6

2.2 Why Write Applications? .. 6

2.3 What Does a Wireless Module Contain? .. 6

2.4 smartBASIC Essentials .. 7

2.5 Developing with smartBASIC .. 8

2.6 smartBASIC Operating Modes .. 8

2.7 Types of Applications ... 9

2.8 Non Volatile Memory ... 10

2.9 Using the Module’s Flash File System .. 10

3 Getting Started .. 10

3.1 Requirements ... 10

3.2 Connecting Things Up... 11

3.3 UWTerminal ... 11

3.4 Your First smartBASIC Application ... 15

4 Interactive Mode Commands.. 27

4.1 AT ... 28

5 smartBASIC Commands... 43

5.1 Syntax ... 43

5.2 Functions .. 43

5.3 Subroutines .. 43

5.4 Statements ... 44

5.5 Exceptions .. 44

5.6 Language Definitions .. 44

5.7 Variables ... 45

5.8 Constants .. 49

5.9 Compiler Related Commands and Directives ... 50

5.10 Arithmetic Expressions ... 51

5.11 Conditionals.. 53

5.12 Error Handling .. 60

5.13 Event Handling ... 61

5.14 Miscellaneous Commands.. 64

6 Core Language Built-in Routines ... 69

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

4

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

6.1 Result Codes ... 69

6.2 Information Routines ... 70

6.3 Event & Messaging Routines .. 73

6.4 Arithmetic Routines (Integer) ... 74

6.5 Arithmetic Routines (Floating Point) .. 76

6.6 String Routines ... 86

6.7 Table Routines .. 118

6.8 Miscellaneous Routines.. 122

6.9 Random Number Generation Routines .. 122

6.10 Timer Routines ... 125

6.11 Circular Buffer Management Functions ... 132

6.12 Serial Communications Routines .. 139

6.13 UART (Universal Asynchronous Receive Transmit) .. 140

6.14 I2C (Two Wire Interface or TWI) .. 157

6.15 SPI Interface ... 171

6.16 Cryptographic Functions .. 177

6.17 File I/O Functions ... 183

6.18 Non-Volatile Memory Management Routines ... 188

6.19 Input/Output Interface Routines ... 193

6.20 User Routines ... 195

7 Events and Messages .. 197

8 Module Configuration ... 198

9 Acknowledgements ... 199

9.1 License Terms ... 199

9.2 Disclaimer ... 199

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

5

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

This Core Functionality user guide provides detailed information on the core aspects of Laird’s smartBASIC language which
is embedded inside Laird modules. This guide, designed to make handling BLE-enabled end products a straightforward
process, includes the following:

▪ An explanation of the language’s core functionality

▪ Instructions on how to start using the tools

▪ A detailed description of all language components and example of their use

A module-specific user guide is also available to provide detailed information on applicable smartBASIC extensions relating
to Bluetooth, BLE, and so on. Both the Core Functionality and the module-specific smartBASIC extensions user guides are
included in the firmware .zip file.

From version 3.0 onwards, smartBASIC is enhanced with FLOAT variable types. This user guide describes
its use when applicable.

Please note that the FLOAT capability is an optional feature. Although many Laird platforms may
expose version 3.0 or newer capability, they may not have FLOAT; the need for extra code memory may
prevent it from being added to the build.

Where FLOAT is mentioned in this guide, an explicit comment is not made to state that it is an optional
feature.

For those with programming experience, smartBASIC is easy to use because it is derived from the BASIC language. BASIC,
which stands for Beginners All-Purpose Symbolic Instruction Code, was developed in the early 1960s as a tool for teaching
computer programming to undergraduates at Dartmouth College in the United States. From the early 70s to the mid-80s,
BASIC, in various forms, was one of the most popular programming languages and the only user programming language in
the first IBM PC to be sold in the early 80s. Prior to that, the first Apple computers were also deployed with BASIC.

Both BASIC and smartBASIC are interpreted languages – but in the interest of run-time speed on an embedded platform
which has limited resources, smartBASIC’s program text is parsed and saved as bytecodes which are subsequently
interpreted by the run-time engine to execute the application. On some module platforms which have limited code flash
space, the parsing from source code to bytecode is done on a Windows PC using a free cross-compiler supplied by Laird on
can even be done online when using the Laird utility UwTerminalX. Other platforms with more firmware code space also
offer on-board compiling capabilities in addition to the external cross-compilation utility.

The early BASIC implementations were based on source code statements which, because they were line numbered,
resulted in non-structured applications that liberally used GOTO statements.

At the outset, smartBASIC was developed by Laird to offer structured programming constructs. It is not line number based
and it offers the usual modern constructs like subroutines, functions, while, if and for loops.

smartBASIC offers further enhancement which acknowledges the fact that user applications are always in unattended use
cases. It forces the development of applications that have an event driven structure as opposed to the classical sequential
processing for which many BASIC applications were written. This means that a typical smartBASIC application source code
consists of the following:

▪ Variable declarations and initializations

▪ Subroutine definitions

▪ Event handler routines

▪ Startup code

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

6

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

The source code ends with a final statement called WAITEVENT, which never returns. Once the run-time engine reaches the
WAITEVENT statement, it waits for events to happen and, when they do, the appropriate handlers written by the user are
called to service them.

Programming languages are mostly designed for arithmetic operations, data processing, string manipulation, and flow
control. Where a program needs to interact with the outside world, like in a BLE device, it becomes more complex due to
the diversity of different input and output options. When wireless connections are involved, the complexity increases. To
compound the problem, almost all wireless standards are different, requiring a deep knowledge of the specification and
silicon implementations to make them work.

We believe that if wireless connectivity is going to be widely accepted, there must be an easier way to manage it.
smartBASIC was developed and designed to extend a simple BASIC-like programming language with all the tokens that
control a wireless connection using modern language programming constructs.

smartBASIC differs from an object-oriented language in that the order of execution is generally the same as the order of the
text commands. This makes it simpler to construct and understand, particularly if you’re not using it every day.

Our other aim in developing smartBASIC from the ground up is to make wireless design of products both simple and similar
in look and feel for all platforms. To do this we are embedding smartBASIC within our wireless modules along with all the
embedded drivers and protocol stacks that are needed to connect and transfer data. A run-time engine interprets the
customer applications (reduced to bytecode) that are stored there, allowing a complete product design to be implemented
without the need for any additional external processing capability.

smartBASIC has been designed to make wireless development quick and simple, vastly cutting down time to market. There
are three good reasons for writing applications in smartBASIC:

▪ Since the module can auto launch the application each time it powers up, you can implement a complete design
within the module. At one end, the radio connects and communicates while, at the other end, external interactions
are available through the physical interfaces such as GPIOs, ADCs, I2C, SPI, and UART.

▪ If you want to add a range of different wireless options to an existing product, you can load applications into a range
of modules with different wireless functionality. This presents a consistent API interface defined to your host system
and allows you to select the wireless standard at the final stage of production.

▪ If you already have a product with a wired communications link, such as a modem, you can write a smartBASIC
application for one of our wireless modules that copies the interface for your wired module. This provides a fast way
for you to upgrade your product range with a minimum number of changes to any existing end user firmware.

In many cases, the example applications on our website and the specific user manual for the module can be modified to
speed up the development process.

Our smartBASIC-based modules are designed to provide a complete wireless processing solution. Each module contains the
following:

▪ A highly integrated radio with an integrated antenna (external antenna options are also available)

▪ Radio Physical and Link Layer

▪ Higher level stack

▪ Multiple GPIO and ADC

▪ Wired communication interfaces like UART, I2C, and SPI

▪ A smartBASIC run-time engine

http://www.lairdtech.com/product-categories/embedded-wireless/bluetooth-modules/bluetooth-v40-v42

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

7

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

▪ Program accessible flash memory which contains a robust flash file system exposing a conventional file system and a
database for storing user configuration data

▪ Voltage regulators and brown-out detectors

For simple end devices, these modules can completely replace the host in an embedded processing system.

The following block diagram (Figure 1) illustrates the structure of a BLE smartBASIC module from a hardware perspective on
the left and a firmware/software perspective on the right.

smartBASIC

run-time engine
(provides safe access to
BLE stack, drivers and

non-vol stores)

Non-Vol

File

System

for

smartBASIC

Apps

Non-Vol

Data

Store

I/
O

,
U

A
R

T
,I
2
C

,S
P

I
D

ri
v
e
rs

Bluetooth Low Energy Stack

User smartBASIC Application

Example App

 PRINT "Laird BL600 Module"

 WaitEvent

44 connection pads

UART GPIO ADC I2C SPI

16K RAM

256K Flash

BLE Radio

OR UFL
Internal

Antenna

ARM Cortex M0

(smartBASIC)

Figure 1: Example BLE smartBASIC module block diagram

smartBASIC is based upon the BASIC language. It has been designed to be highly efficient in terms of memory use, making it
ideal for low cost embedded systems with limited RAM and code memory.

The core language, which is common throughout all smartBASIC implementations, provides the standard functionality of
any program, such as:

▪ Variables (integer, float, and string)

▪ Arithmetic functions

▪ Binary operators

▪ Conditionals

▪ Looping

▪ Functions and subroutines

▪ String processing functions

▪ Arrays (single dimension only)

▪ I/O functions

▪ Memory management

▪ Event handling

The language on the various platforms differs by having a sophisticated set of target-specific extensions, such as BLE.

These extensions have been implemented as additional program functions that control the wireless connectivity of the
module including, but not limited to, the following and are described in a module specific extension user guide:

▪ Advertising

▪ Connecting

▪ Security – encryption and authentication

▪ Power management

▪ Wireless status

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

8

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC is one of the simplest embedded environments on which to develop because much of the functionality comes
prepackaged. The compiler, which can be internal or external on a Windows PC (or online), compiles source text on a line-
by-line basis into a stream of bytes (or bytecode) that can be stored to a custom-designed flash file system. Following that,
the run-time engine interprets the application bytecode in-situ from flash.

To further simplify development, Laird provides its own custom developed application called UWTerminalX which is a full
blown customized terminal emulator for Windows, available upon request at no cost. Refer to the UWTerminalX section for
information on writing smartBASIC applications using UWTerminalX.

UWTerminalX also can upload your smartBASIC source to an online server where it can be compiled.

Any platform running smartBASIC has up to three modes of operation:

▪ Interactive Mode – In this mode, commands are sent via a streaming interface which is usually a UART, and are
executed immediately. This similar to the behavior of a modem using AT commands. Interactive mode can be used by
a host processor to directly configure the module. It is also used to manage the download and storage of smartBASIC
applications in the flash file system subsequently used in run-time mode.

▪ Application Load Mode – This mode is only available if the platform includes the compiler in the firmware image.
Some platforms have limited firmware space and so compilation is only possible outside the platform using a
smartBASIC cross-compiler which is provided for free.

If this feature is available, then the platform switches into Load mode when the compile (AT+CMP) command is sent
by the host.

In this mode the relevant application is checked for syntax correctness on a line-by-line basis, tokenised to minimize
storage requirements, and then stored in a non-volatile file system as the compiled application. This application can
then be run at any time and can even be designated as the application to be automatically launched upon power up.

▪ Run-time Mode – In Run-time mode, pre-compiled smartBASIC applications are read from program memory and
executed in-situ from flash. The ability to run the application from flash ensures that as much RAM memory as
possible is available to the user application for use as data variables.

On startup, an external GPIO input pin is checked. If the state of the input pin is asserted (high or low, depending on the
platform) and a compiled application called $autorun$ exists in the file system, the device enters directly into Run-time
mode and the application is automatically launched. If that input pin is not asserted, then regardless of the existence of the
autorun file, it enters Interactive mode.

If the auto-run application completes or encounters a STOP or END statement, then the module returns to Interactive
mode.

It is therefore possible to write autorun applications that continue to run and control the module’s behavior until power-
down, which provides a complete embedded application.

The modes of the module and transitions are illustrated in Figure 2.

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

9

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Power Up/Start

autorun input

asserted

AND

$autorun$ app

exists

autorun input

deasserted

OR

$autorun$ app

missing

Interactive

mode
Run mode

command

' AT+RUN "file" '

STOP or

END statement or

runtime error and no ONERROR handler

Figure 2: Module modes and transitions

There are two types of applications used within a smartBASIC module. In terms of composition, they are the same but they
run at different times.

▪ Autorun – This is a normal application named $autorun$ (case insensitive). When a smartBASIC module powers up, it
looks for the $autorun$ application. If it finds it and if the nAutoRUN pin of the module is asserted then it executes it.
Autorun applications may be used to initialize the module to a customer’s desired state, make a wireless connection,
or provide a complete application program. At the completion of the autorun application, which is when the last
statement returns or a STOP or END statement is encountered, a smartBASIC module reverts to Interactive mode.

In unattended use cases, the autorun application is expected to never terminate. It is typical for the last statement in
an application to be the WAITEVENT statement.

Be aware that an autorun application does not need to complete and exit to Interactive mode. The application can be
a complete program that runs within the smartBASIC module, removing the requirement for an external processor.

Applications can access the GPIOs and ADCs and use ports (UART, I2C, and SPI, for example) to interface with
peripherals such as displays and sensors.

Note: By default, when the autorun application starts up and if the STDOUT is the UART, then it is in a closed
state to minimise power consumption. If a PRINT statement is encountered which results in output,
then the UART is automatically opened using default comms parameters.

▪ Other – Applications can be loaded into the BASIC module and run under the control of an external host processor
using the AT+RUN command or the app name alone. The flash memory supports the storage of multiple applications.

Note: The storage space is platform-dependent. Check the individual platform data sheet.

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

10

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

All smartBASIC modules contain user-accessible flash memory. The quantity of memory varies between modules; check the
applicable datasheet.

The flash memory is available for three purposes:

▪ File storage – Files which are not applications can also be stored in flash memory (for example X.509 certificates). The
most common non-application files are data files for application which can be read by an application using file i/o
functions exposed in the language.

▪ Application storage – Storage of user applications and the AT+RUN command (or the filename on its own) is used to
select which application runs.

▪ Non-volatile records – Individual blocks of data can be stored in non-volatile memory in a dictionary where each
record consists of a 16-bit user defined ID and data consisting of variable length. This is useful for cases where
program specific data needs to be preserved across power cycles. For example, passwords.

All smartBASIC modules hold data and application files in a simple flash file system which was developed by Laird and has
some similarity to a DOS file system. Unlike DOS, it consists of a single directory in which all the files are stored.

Note: When files are deleted from the flash file system, the flash memory used by that file is not released. Therefore,
repeated downloads and deletions eventually fill the file system, requiring it to be completely emptied using the
AT&F 1 command.

The command AT I 6 returns statistics related to the flash file system when in interactive mode. From within a smartBASIC
application, the function SYSINFO(x), where x is 601 to 606 inclusive, returns similar information.

Note: Non-volatile records are stored in a special flash segment that is capable of coping with cases where there is no
free unwritten flash but there are many deleted records.

This section is a quick start guide for using smartBASIC to program an application. It shows the key elements of the BASIC
language as implemented in the module and guides your use of UWTerminalX (a free Laird Terminal Emulation utility
available) and Laird’s Development Kit to test and debug your application.

The examples in this section are based upon Laird’s BL600, a BLE module. However, the principles apply to any smartBASIC-
enabled module.

To replicate this example, you need the following items:

▪ A BL600 series development kit

▪ UWTerminalX application (contact Laird for the latest version) and can run on Windows, Linux, and Mac.

▪ A cross-compiler application with a name typically formatted as XComp_dddddddd_aaaa_bbbb.exe, where dddddddd
is the first non-space eight characters from the response to the AT I 0 command and aaaa/bbbb is the hexadecimal
output to the command AT I 13.
This is not mandatory as UwTerminalX will search online for the cross-compiler if it is not available locally.

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

11

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Note: aaaa/bbbb is a hash signature of the module so that the correct cross-compiler is used to generate the
bytecode for download. When an application is launched in the module, the hash value is compared
against the signature in the run-time engine and, if there is a mismatch, the application is aborted.

The simplest way to power the development board and module is to connect a USB cable to the PC. The development
board regulates the USB power rail and feeds it to the module.

Note: The current requirement is typically a few milliamps with peak currents not exceeding 20 milliamps. We
recommend connecting to a powered USB hub or a primary USB port.

UWTerminal is a terminal emulation application with additional GUI extensions to allow easy interactions with a
smartBASIC-enabled module. It is similar to other well-known terminal applications such as HyperTerminal. As well as a
serial interface, it can also open a TCP/IP connection either as a client or as a server. This aspect of UWTerminal is more
advanced and is covered in the UWTerminal User’s Guide. The focus of this chapter is its serial mode.

In addition to its function as a terminal emulator it also has smartBASIC embedded so you can locally write and run
smartBASIC applications. This allows you to write smartBASIC applications which use the terminal emulation extensions
that enable you to automate the functionality of the terminal emulator.

It may be possible in the future to add BLE extensions so that when UWTerminal is running on a Windows 8 PC with
Bluetooth 4.0 hardware, an application that runs on a BLE module also runs in the UwTerminal environment.

Before starting UWTerminal, note the serial port number to which the development kit is connected.

Note: The USB to serial chipset driver on the development kit generates a virtual COM port. Check the port by
selecting My Computer > Properties > Hardware > Device Manager > Ports (COM & LPT).

To use UWTerminal, follow the steps below. Note that the screen shots may differ slightly as it is a continually evolving
Windows application:

1. Switch on the development board, if applicable.

2. Start the UWTerminal application on your PC to access the opening screen (Figure 3).

Figure 3: UWTerminal opening screen

3. Click Accept to open the configuration screen.

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

12

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Figure 4: UWTerminal Configuration screen

4. Enter the COM port that you have used to connect the development board. The other default parameters should be:

Baudrate 9600

Parity None

Stop Bits 1

Data Bits 8

Handshaking CTS/RTS

Note: Comport (not TCP Socket) should be selected on the left.

Other modules may use different settings, please check the corresponding extension manuals for this
information.

5. Select Poll for port to enable a feature that attempts to re-open the comport if the development kit is unplugged
from the PC causing the virtual comport to disappear.

6. In Line Terminator, select the characters that are sent when you type ENTER.

7. Once these settings are correct, click OK to bring up the main terminal screen.

Figure 5: UWTerminal tabs and status lights

The following tabs are located at the top of the UWTerminal:

▪ Terminal – Main terminal window. Used to communicate with the serial module.

▪ BASIC – smartBASIC window. Can be used to run BASIC applications locally without a device connected to the serial
port.

Note: You can use any text editor, such as notepad, for writing your smartBASIC applications. However, if you use
an advanced text editor or word processor you need to take care that non-standard formatting characters
are not incorporated into your smartBASIC application.

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

13

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

▪ Config – Configuration window. Used to set up various parameters within UWTerminal.

▪ About – Information window that displays when you start UWTerminal. It contains command line arguments and
information that can facilitate the creation of a shortcut to the application and launch the emulator directly into the
terminal screen.

The four LED-type indicators below the tabs display the status of the RS-232 control lines that are inputs to the PC. The
colors are red, green, or white. White signifies that the serial port is not open.

Note: According to RS-232 convention, these are inverted from the logic levels at the GPIO pin outputs on the module.
A 0v on the appropriate pin at the module signifies an asserted state

▪ CTS – Clear to Send. Green indicates that the module is ready to receive data.

▪ DSR – Data Set Ready. Typically connected to the DTR output of a peripheral.

▪ DCD – Data Carrier Detect.

▪ RI – Ring Indicate.

If the module is operating correctly and there is no radio activity, then CTS should be asserted (green), while DSR, DCD, and
RI are deasserted (red). Again, note that if all four are white (Figure 6), it means that the serial port of the PC has not been
opened and the button labelled OpenPort can be used to open the port.

Figure 6: White lights

Note: At the time of this manual being written, the DSR line on the BL600 DevKit is connected to the SIO25 signal on
the module which has to be configured as an output in a smartBASIC application so that it drives the PC’s DSR
line. The DCD line (input on a PC) is connected to SIO29 and should be configured as an output in an application
and finally the RI line (again an input on a PC) is connected to SIO30. Please request a schematic of the BL600
development kit to ensure that these SIO lines on the modules are correct.

Figure 7: Control options

Next to the indicators are several control options (Figure 7) which can be used to set the signals that appear on inputs to
the module.

▪ RTS and DTR – The two additional control lines for the RS-232 interface.

Note: If CTS/RTS handshaking is enabled, the RTS checkbox has no effect on the actual physical RTS output pin as
it is automatically controlled via the underlying Windows driver. To gain manual control of the RTS output,
disable Handshaking in the Configuration window.

▪ BREAK – Used to assert a break condition over the Rx line at the module. It must be deasserted after use. A Tx pin is
normally at logic high (> 3v for RS232 voltage levels) when idle; a BREAK condition is where the Tx output pin is held
low for more than the time it takes to transmit 10 bits.

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

14

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

If the BREAK checkbox is ticked, the Tx output is at non-idle state and no communication is possible with the UART
device connected to the serial port.

▪ LocalEcho – Enables local echoing of any characters typed at the terminal. In default operation, this option box should
be selected because modules do not reflect commands entered in the terminal emulator.

▪ LineMode – Delays transmission of characters entered into UWTerminal until you press Enter. Enabling LineMode
means that Backspace can be used to correct mistakes. We recommend that you select this option.

▪ Clear – Removes all characters from the terminal screen.

▪ ClosePort – Closes the serial port. This is useful when a USB to serial adaptor is being used to drive the development
board which has been briefly disconnected from the PC.

▪ OpenPort – Re-opens the serial port after it has been manually closed.

There are several shortcuts that can speed up the use of UWTerminal.

Each time UWTerminal starts, it asks you to acknowledge the Accept screen and to enter the COM port details. If you are
not going to change these, you can skip these screens by entering the applicable command line parameters in a shortcut
link.

Follow these steps to create a shortcut to UWTerminal on your desktop:

1. Locate and right-click the UwTerminal.exe file, and then drag and drop it onto your desktop. In the dialog box, select
Create Shortcut.

2. Right-click the newly created shortcut.

3. Select Properties.

4. Edit the Target line to add the following commands (Figure 8):

accept com=n baud=bbb linemode

(where n is the COM port that is connected to the dev kit and bbb is the baud rate)

Figure 8: Shortcut properties

Starting UWTerminal from this shortcut launches it directly into the terminal screen. At any time, the status bar on the
bottom left (Figure 9) shows the comms parameters being used at that time. The two counts on the bottom right (Tx and
Rx) display the number of characters transmitted and received.

The information within { } denotes the characters sent when you press ENTER on the keyboard.

Figure 9: Terminal screen status bar

The first thing to do is to check that the module is communicating with UWTerminal. To do this, follow these steps:

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

15

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

1. Check that the CTS light is green (DSR, DCD, and RI should be red).

2. Type at.

3. Press Enter. You should get a 00 response (Figure 10).

Figure 10: Interactive command access

UWTerminal supports a range of interactive commands to interact directly with the module. The following ones are
typical:

▪ AT – Returns 00 if the module is working correctly.

▪ AT I 3 – Shows the revision of module firmware. Check to see that it is the latest version.

▪ AT I 13 – Shows the hash value of the smartBASIC build.

▪ AT I 4 – Shows the MAC address of the module.

▪ AT+DIR – Lists all the applications loaded on the module.

▪ AT+DEL “filename” – Deletes an application from the module.

▪ AT+RUN “filename” – Runs an application that is already loaded on the module. Please be aware that if a
filename does not contain any spaces, it is possible to launch an application by just entering the filename as
the command.

The next chapter lists all the Interactive commands.

First, check to see what is loaded on the module by typing AT+DIR and Enter:

at+dir

06 $factory$

00

If the module has not been used before, you should not see any lines starting with the two-digit 06 sequence.

Let’s start where every other programming manual starts… with a simple program to display “Hello World” on the screen.
We use Notepad to write the smartBASIC application.

To write this smartBASIC application, follow these steps:

1. Open Notepad.

2. Enter the following text:

print "\nHello World\n"

3. Save the file with single line test1.sb.

Note the following:

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

16

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC source code files can have any extension. UWTerminalX, which is used to download an application to the
module, strips all letters including and after the first ‘.’ when the file is downloaded to the module.

For example, a file called “this.is.my.first.file.sb” is downloaded as “this”, as is “this.is.my.second.file.sb”; but
“that.is.my.other.file.sb” is downloaded as “that”. This has special significance when you want to manage the special
smartBASIC file called “$autorun$” which is run automatically on power up.

It means that you can have files called “$autorun$.heart.rate.sb” and “$autorun$.blood.pressure.sb” in a single folder and
yet ensure that when downloaded they get saved as “$autorun$”

We recommend always using the extension .sb to make it easier to distinguish between smartBASIC files and other files.
You can also associate this extension with your favorite editor and enable appropriate syntax highlighting. You may also
encounter files with extension .sblib which are library source files provided by Laird to make developing code easier. They
are included in your application using the #include statement which is described later in this manual.

As you start to develop more complex applications, you may want to use a more fully-featured editor such as TextPad (trial
version downloadable from www.textpad.com) or Notepad++ (free and downloadable from https://notepad-plus-
plus.org/download).

Tip: Laird recommends using TextPad and Notepad++￼ because appropriate syntax highlighting files are available for
each build of the firmware which means all tokens recognized by smartBASIC are highlighted in various colors.

If you use Notepad++, do the following:

1. Copy the file smartBASIC(notepad++).xml to the Notepad++ install folder.

2. Launch Notepad++.

3. From the menu, select Language > Define your Language.

4. In the new dialog box, click Import… and select the smartBASIC(notepad++).xml file from the folder you saved it
to. A confirmation dialog box displays stating that the import was successful.

5. Close the User-defined Language dialog box and then the Notepad++ application.

6. Reopen Notepad++ and select Language > smartBASIC from the menu.

If you use TextPad, do the following:

1. Copy the smartBASIC(Textpad).syn file from the firmware upgrade zip file to the Textpad install folder
(specifically, the system subfolder).

2. As a one-time procedure, start TextPad.

3. Ensure no documents are currently open.

4. From the menu, select Configure > Preferences.

5. Select Document Classes.

6. In the User defined classes list box, add smartBASIC.

7. Click the plus sign (+) to expand Document Classes and select smartBASIC.

8. In the new Files in class smartBASIC list box, add the following two lines:

 *.sb
 *.sblib

8. Click + to expand smartBASIC and select Syntax.

9. Select Enable syntax highlighting to enable it.

10. In the Syntax definition file dropdown menu, enter or select the smartBASIC(textpad).syn file.

11. Click OK.

You should now have TextPad configured so that any file with file extension .sb or .sblib is displayed with color
syntax highlighting. To change the colors of the syntax highlighting, do the following:

1. From the Configure/Preferences dialog box, select the Document Classes plus sign (+) (next to smartBASIC)
and select Colors.

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

17

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

2. Change the color of any of the items as necessary.
For example, smartBASIC FUNCTIONs are ‘Keywords 2’, smartBASIC SUBs are ‘Keywords 3’ and smartBASIC
Event and Message IDs (as used in the ONEVENT statement) are ‘Keywords 4’

Figure 11 displays a sample of what a smartBASIC code fragment looks like in TextPad.

Figure 11: Example of a smartBASIC code fragment in TextPad

You must now load the compiled output of this file into the smartBASIC module’s File System so that you can run it. To do
this, follow these steps:

1. To manage file downloads, right click on any part of the black UWTerminalX screen to display the drop-down menu
(Figure 12).

Figure 12: Right-click UWTerminalX screen

2. Click XCompile+Load and navigate to the directory where you’ve stored your test1.sb file.

Note: Do not select Compile+Load.

3. Click Open. In UWTerminalX, you should see the following display:

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

18

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Behind the scenes, the shortcut uses Interactive Commands to load the file onto the module. The first two AT I
commands are used to identify the module so that the correct cross compiler can be invoked resulting in the text
<<Cross Compiling [test1.sb]>>.

In this example, since the compilation is successful, the generated binary file must be downloaded and the AT+DEL
“filename” + deletes any previous file with the same name that might already be on the module. The new file is
downloaded using the AT+FOW, AT+FWRH, and AT+FCL commands. The strings following AT+FWRH consist of the
binary data generated by the cross compiler.

There may be a possible failure in this process if the cross compiler cannot be located. In this case, the following
window displays:

AT I 0

10 0 Bl600Med

AT I 13

10 13 9E56 5F81

??? Cross Compiler [XComp_Bl600Med_9E56_5F81.exe] not found ???

To fix this issue, locate the cross-compiler application mentioned in between the [] brackets and save it to either the
folder containing UWTerminalX.exe or the folder that contains the smartBASIC application test1.sb

A compilation error may be another cause of failure. For example, if the print statement contains an error in the
form of a missing end of string delimiter, then the following should display in a separate window:

Figure 13: Compilation error window

Now that the application has been downloaded into the module, run it by issuing test1 or AT+RUN “test1”.

AT I 0

10 0 Bl600Med

AT I 13

10 13 9E56 5F81

<<Cross Compiling [test1.sb]>>

AT+DEL "test1" +

AT+FOW "test1"

AT+FWRH "FE900002250000000000FFFFFFFF569E815FFC10"

AT+FWRH "FB70090054455354312E555743000110CE211000"

AT+FWRH "FB0009000D000A48656C6C6F20576F726C640A00"

AT+FWRH "CC211400A52000000110FD10F510"

AT+FCL

+++ DONE +++

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

19

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Note: smartBASIC commands, variables, and filenames are not case sensitive; smartBASIC treats Test1, test1
and TEST1 as the same file.

The screen should display the following results (when both forms of the command are entered):

at+run "test1"

Hello World

00

Test1

Hello World

00

You can check the file system on the module by typing AT+DIR and pressing Enter, you should see the following:

06 test1

00

You have just written and run your first smartBASIC program.

To make it a little more complex, try printing Hello World ten times. For this we can use the conditional functions within
smartBASIC. We also introduce the concept of variables and print formatting. Later chapters go into much more detail, but
this gives a flavor of the way they work.

Before we do that, it’s worth laying out the rules of the application source syntax.

The format of any line of smartBASIC is defined in the following manner:

{ COMMENT | COMMAND | STATEMENT | DIRECTIVE } < COMMENT > { TERMINATOR }

Anything in { } is mandatory and anything in < > is optional. Within each set of { } or < > brackets, the character | is used to
denote a choice of values.

The various elements of each line are:

▪ COMMENT – A COMMENT token is a ‘ or // followed by any sequence of characters. Any text after the token is
ignored by the parser. A comment can occupy its own line or be placed at the end of a STATEMENT or COMMAND.
COMMAND – An Interactive command; one of the commands that can be executed from Interactive mode.

▪ STATEMENT – A valid BASIC statement(s) separated by the : character if there are more than one statement.

Note: When compiling an application, a line can be made of several statements which are separated by the :
character.

▪ DIRECTIVE – A line starting with the # character. It is used as an instruction to the parser to modify its behavior. For
example, #DEFINE and #INCLUDE.

▪ TERMINATOR – The \r character which corresponds to the Enter key on the keyboard.

The smartBASIC implementation consists of a command parser and a single line/single pass compiler. It takes each line of
text (a series of tokens) and does one of the following (depending on its content and operating mode):

▪ Acts on them immediately (such as with AT commands).

▪ If the build includes the compiler, generates a compiled output which is stored and processed later by the run-time
engine. This capability is not present in the BL600 due to flash memory constraint.

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

20

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC has been designed to work on embedded systems where there is often a very limited amount of RAM. To make
it efficient, you must declare every variable that you intend to use by using the DIM statement. The compiler can then
allocate the appropriate amount of memory space.

In the following example program, we are using the variable “i” to count how many times we print “Hello World”.
smartBASIC allows a couple of different variable types, numbers (32-bit signed integers) and strings.

Our program (stored in a file called HelloWorld.sb’) looks like the following:

//Example :: HelloWorld.sb

DIM i as integer //declare our variable

for i=1 to 10 //Perform the print ten times

 print "Hello World \n" //The \n forces a new line each time

next

Some notes regarding the previous program:

▪ Any line that starts with an apostrophe (‘) is a comment and is ignored by the compiler from the token onwards. In
other words, the opening line is ignored. You can also add a comment to a program line by adding an apostrophe
proceeded by a space to start the comment.
If you have C++ language experience, you can also use the // token to indicate that the rest of the line is a comment.

▪ The second item of interest is the line feed character ‘\n’ which we’ve added after Hello World in the print statement.
This tells the print command to start a new line. If left out, the ten Hello World’s would have been concatenated
together on the screen. You can try removing it to see what would happen.

Compile and download the file HelloWorld.sb to the module (using XCompile+Load in UwTerminalX) and then run the
application in the usual way:

AT+RUN “helloworld”

The following output displays:

If you now change the print statement in the application to

print "Hello World ";i;"\n" //The \n forces a new line each time

… the following output displays:

Hello World

Hello World

Hello World

Hello World

Hello World

Hello World

Hello World

Hello World

Hello World

Hello World

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

21

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

If you run AT+DIR, both programs are now loaded in memory. They remain there until you remove them with AT+DEL.

06 test1

06 HelloWorld

00

Note: All responses to interactive commands are of the format
\nNN\tOptionalText1\tOptionalText2…\r
where NN is always a two-digit number and \t is the tab character and is terminated by \r.
This format has been provided to assist with developing host code that can parse these responses in a stateless
fashion. The NN always allows the host to attach meaning to any response from the module.

One of the major features of a smartBASIC module is its ability to launch an application autonomously when power is
applied. To demonstrate, we use the same HelloWorld example.

An autorun application is identical to any other smartBASIC application except for its name, which must be called
$autorun$. Whenever a smartBASIC module is powered up, it checks its nAutoRUN input line (see your module’s pinout)
and, if it is asserted (0v on BL600 module), it looks for and executes the autorun application.

In our development kits, the nAutoRUN input pin of the module is connected to the DTR output pin of the USB to UART
chip. This means the DTR checkbox in UWTerminalX can be used to affect the state of that pin on the module. The DTR
checkbox is always selected by default (in asserted state), which translates to a 0v at the nAutoRUN input of the module.
This means if an autorun application exists in the module’s file system, it is automatically launched on power up.

Copy the smartBASIC source file HelloWorld.sb to $autorun$.sb and then cross-compile and download to the module. After
it is downloaded, enter the AT+DIR command and the following displays:

at+dir

06 test1

06 HelloWorld

06 $autorun$

00

TIP: A useful feature of UWTerminalX is that the download function strips off the filename extension when it
downloads a file into the module file system. This means that you can store several different autorun

Hello World 1

Hello World 2

Hello World 3

Hello World 4

Hello World 5

Hello World 6

Hello World 7

Hello World 8

Hello World 9

Hello World 10

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

22

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

applications on your PC by giving them longer, more descriptive extension names. For example:

$autorun$.HelloWorld

By doing this, each $autorun$ file on your PC is unique and the list is simpler to manage.

Note: If Windows adds a text extension, rename the file to remove it. Do not use multiple extensions in filenames
(such as filename.ext1.ext2). The resulting files (after being stripped) may overwrite other files.

Clear the UWTerminalX screen by clicking the Clear button on the toolbar and then enter the command ATZ to force the
module to reset itself. You could also click Reset on the development kit to achieve the same outcome.

Warning: If the JLINK debugger is connected to the development kit via the ribbon, then the reset button has no effect on
the BL600.

The following output displays:

In UWTerminalX, next clear the screen using the Clear button and then unselect the checkbox labelled DTR so that the
nAutoRUN input of the module is not asserted. After a reset (ATZ or the button), the screen remains blank which signifies
that the autorun application was NOT invoked automatically.

The reason for providing this capability (suppressing the launching of the autorun application) is to ensure that if your
autorun application has the WAITEVENT as the last statement. This allows you to regain control of the module’s command
interpreter for further development work.

One difference with smartBASIC is that it does not have program labels (or line numbers). Because it is designed for a single
line compilation in a memory constrained embedded environment, it is more efficient to work without them.

Because of the absence of labels, smartBASIC provides facilities for debugging an application by inserting breakpoints into
the source code prior to compilation and execution. Multiple breakpoints can be inserted and each breakpoint can have a
unique identifier associated with it. These IDs can be used to aid the developer in locating which breakpoint resulted in the
break. It is up to the programmer to ensure that all IDs are unique. The compiler does not check for repeated values.

Each breakpoint statement has the following syntax: BP nnnn

Where nnnn should be a unique number which is echoed back when the breakpoint is encountered at runtime. It is up to
the developer to keep all the nnnn’s unique as they are not validated when the source is compiled.

Breakpoints are ignored if the application is launched using the command AT+RUN (or name alone). This allows the
application to be run at full speed with breaks, if required. However, if the command AT+DBG is used to run the application,
then all debugging commands are enabled.

When the breakpoint is encountered, the runtime engine is halted and the command line interface becomes active. At this
point, the response seen in UWTerminal is in the following form:

<linefeed>21 BREAKPOINT nnnn<carriage return>

Hello World 1

Hello World 2

Hello World 3

Hello World 4

Hello World 5

Hello World 6

Hello World 7

Hello World 8

Hello World 9

Hello World 10

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

23

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Where nnnn is the identifier associated with the BP nnnn statement that caused the halt in execution. As the nnnn
identifier is unique, this allows you to locate the breakpoint line in the source code.

For example, if you create an application called test2.sb with the following content:

//Example :: test2.sb (See in BL600CodeSnippets)

 DIM i as integer

 for i=1 to 10

 print "Hello World”;i;”\n"

 if i==3 then

 bp 3333

 endif

 next

When you launch the application using AT+RUN, the following displays:

If you launch the application using AT+DBG, the following displays:

Having been returned to Interactive mode, the command ? varname can be used to interrogate the value of any of the
application variables, which are preserved during the break from execution. The command = varname newvalue can then
be used to change the value of a variable, if required. For example:

The single step command SO (Step Over) can then be invoked to step through the next statements individually (note the
first SO reruns the BP statement).

Hello World 1

Hello World 2

Hello World 3

Hello World 4

Hello World 5

Hello World 6

Hello World 7

Hello World 8

Hello World 9

Hello World 10

Hello World 1

Hello World 2

Hello World 3

21 BREAKPOINT 3333

? i

08 3

00

= I 42

? i

08 42

00

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

24

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

When required, the command RESUME can be used to resume the run-time engine from the current application position as
shown below:

Applications must follow smartBASIC syntax rules. However, the single pass compiler places some restrictions on how the
application needs to be arranged. This section explains these rules and suggests a structure for writing applications which
should adhere to the event driven paradigm.

Typically, do something only when something happens. This smartBASIC implementation has been designed from the
outset to feed events into the user application to facilitate that architecture and, while waiting for events, the module is
designed to remain in the lowest power state.

smartBASIC uses a single pass compiler which can be extremely efficient in systems with limited memory. They are called
“single pass” as the source application is only passed through the parser line by line once. That means that it has no
knowledge of any line which it has not yet encountered and it forgets any previous line as soon as the first character of the
next line arrives. The implication is that variables and subroutines need to be placed in position before they are first
referenced by any function which dictates the structure of a typical application.

In practice, this results in the following structure for most applications:

▪ Opening Comments – Any initial text comments to help document the application.

▪ Includes – The cross compiler which is automatically invoked by UWTerminalX allows the use of #DEFINE and
#INCLUDE directives to bring in additional source files and data elements.

▪ Variable Declarations – Declare any global variables. Local variables can be declared within subroutines and functions.

▪ Subroutines and Functions – These should be cited here, prior to any program references. If any of them refer to
other subroutines or functions, these referred ones should be placed first. The golden rule is that nothing on any line
of the application should be “new”. Either it should be an inbuilt
smartBASIC function or it should have been defined higher up within the application.

▪ Event and error handlers – Normally these reference subroutines, so they should be placed here.

▪ Main program – The final part of the application is the main program. In many cases this may be as simple as an
invocation of one of the user functions or subroutines and then finally the WAITEVENT statement.

The following is an example of an application (btn.button.led.test.sb) which monitors button presses and reflects them to
LEDs on the BL600 development kit:

//**

// Laird Technologies (c) 2013

//

// +++

// +++++ ++

// +++++ When UwTerminal downloads the app it will store it as a filenname ++

// +++++ which consists of all characters up to the first . and excluding it ++

Hello World 1

Hello World 2

Hello World 3

21 BREAKPOINT 3333

= I 8

resume

Hello World 8

Hello World 9

Hello World 10

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

25

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

// +++++ ++

// +++

//

//

// Simple development board button and LED test

// Tests the functionality of button 0, button 1, LED 0 and LED 1 on the development board

// DVK-BL600-V01

//

// 24/01/2013 Initial version

//

//**

//**

// Definitions

//**

//**

// Library Import

//**

//#include "$.lib.ble.sb"

//**

// Global Variable Declarations

//**

dim rc // declare rc as integer variable

//**

// Function and Subroutine definitions

//**

//==

//==

function button0release() //this function is called when the button 0 is released"

gpiowrite(18,0) // turns LED 0 off

print "Button 0 has been released \n" //these lines are printed to the UART when the button is released

print "LED 0 should now go out \n\n"

endfunc 1

//==

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

26

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

//==

function button0press() //this function is called when the button 0 is pressed"

gpiowrite(18,1) // turns LED 0 on

print "Button 0 has been pressed \n" //these lines are printed to the UART when the button is pressed

print "LED 0 will light while the button is pressed \n"

endfunc 1

//==

//==

function button1release() //this function is called when the button 1 is released"

gpiowrite(19,0) //turns LED 1 off

print "Button 1 has been released \n" //these lines are printed to the UART when the button is released

print "LED 1 should now go out \n\n"

endfunc 1

//==

//==

function button1press() //this function is called when the button 1 is pressed"

gpiowrite(19,1) // turns LED 1 on

print "Button 1 has been pressed \n" //these lines are printed to the UART when the button is pressed

print "LED 1 will light while the button is pressed \n"

endfunc 1

//**

// Handler definitions

//**

//**

// Equivalent to main() in C

//**

rc = gpiosetfunc(16,1,2) //sets sio16 (Button 0) as a digital in with a weak pull up resistor

rc = gpiosetfunc(17,1,2) //sets sio17 (Button 1) as a digital in with a weak pull up resistor

rc = gpiosetfunc(18,2,0) //sets sio18 (LED0) as a digital out

rc = gpiosetfunc(19,2,0) //sets sio19 (LED1) as a digital out

rc = gpiobindevent(0,16,0) //binds a gpio transition high to an event. sio16 (button 0)

rc = gpiobindevent(1,16,1) //binds a gpio transition low to an event. sio16 (button 0)

rc = gpiobindevent(2,17,0) //binds a gpio transition high to an event. sio17 (button 1)

rc = gpiobindevent(3,17,1) //binds a gpio transition low to an event. sio17 (button 1)

onevent evgpiochan0 call button0release //detects when button 0 is released and calls the function

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

27

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

onevent evgpiochan1 call button0press //detects when button 0 is pressed and calls the function

onevent evgpiochan2 call button1release //detects when button 1 is released and calls the function

onevent evgpiochan3 call button1press //detects when button 1 is pressed and calls the function

print "Ready to begn button and LED test \n" //these lines are printed to the UART when the program is run

print "Please press button 0 or button 1 \n\n"

//--

// Wait for a synchronous event.

// An application can have multiple <WaitEvent> statements

//--

waitevent //when program is run it waits here until an event is detected

When this application is launched and appropriate buttons are pressed and released, the output is as follows:

Interactive mode commands allow a host processor or terminal emulator to interrogate and control the operation of a
smartBASIC based module. Many of these emulate the functionality of AT commands. Others add extra functionality for
controlling the filing system and compilation process.

Syntax Unlike commands for AT modems, a space character must be inserted between AT, the command, and
subsequent parameters. This allows the smartBASIC tokeniser to efficiently distinguish between AT commands
and other tokens or variables starting with the letters “at”.

‘Example:

AT I 3

The response to every Interactive mode command has the following form:

<linefeed character> response text <carriage return>

This format simplifies the parsing within the host processor. The response may be one or multiple lines. Where more than
one line is returned, the last line has one of the following formats:

<lf>00<cr> for a successful outcome, or

<lf>01<tab> hex number <tab> optional verbose explanation <cr> for failure.

Ready to begin button and LED test

Please press button 0 or button 1

Button 0 has been pressed

LED 0 will light while the button is pressed

Button 0 has been released

LED 0 should now go out

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

28

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Note: In the case of the 01 response, the “<tab>optional_verbose_explanation” is missing in resource constrained
platforms like the BL600 modules. The ‘verbose explanation’ is a constant string and since there are over 1000
error codes, these verbose strings can occupy more than 10 kilobytes of flash memory.

The hex number in the response is the error result code consisting of two digits which can be used to help investigate the
problem causing the failure. Rather than provide a list of all the error codes in this manual, you can use UWTerminalX to
obtain a verbose description of an error when it is not provided on a platform.

To get the verbose description highlight the error code, right click on UwTerminal screen and select one of the many
options that have ‘lookup’ text in them.

If you get the text “UNKNOWN RESULT CODE 0xHHHH”, please contact Laird for the latest version of UWterminalX.

AT is an Interactive mode command. It must be terminated by a carriage return for it to be processed.

It performs no action other than to respond with \n00\r. It exists to emulate the behavior of a device which is controlled
using the AT protocol. This is a good command to use to check if the UART has been correctly configured and connected to
the host.

COMMAND

Provides compatibility with the AT command set of Laird’s standard Bluetooth modules.

AT i num

Returns \n10\tMM\tInformation\r

\n00\r

Where

\n = linefeed character 0x0A
\t = horizontal tab character 0x09
MM = a number (see below)
Information = string consisting of information requested associated with MM
\r = carriage return character 0x0D

Arguments

num Integer Constant
A number in the range of 0 to 65,535. Currently defined numbers are:

0 Name of device

3 Version number of module firmware

4 MAC address in the form TT AAAAAAAAAAAA

5 Chipset name

6 Flash File System size stats (data segment): Total/Free/Deleted

7 Flash File System size stats (FAT segment): Total/Free/Deleted

12 Last error code

13 Language hash value

16 NvRecord Memory Store stats: Total/Free/Deleted

33 BASIC core version number

36 Config Keys Store stats: Total/Free/Deleted

601 Flash File System: Data Segment: Total Space

602 Flash File System: Data Segment: Free Space

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

29

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

603 Flash File System: Data Segment: Deleted Space

604 Flash File System: FAT Segment: Total Space

605 Flash File System: FAT Segment: Free Space

606 Flash File System: FAT Segment: Deleted Space

631 NvRecord Memory Store Segment: Total Space

632 NvRecord Memory Store Segment: Free Space

633 NvRecord Memory Store Segment: Deleted Space

1000..1999 See SYSINFO() function definition

2000..2999 See SYSINFO() function definition

0xC12C

(See Note 2 below)

Returns a 16-bit running CRC for data downloaded for files using AT+FWR or
AT+FWRH.

All other numbers currently return the manufacturer’s name.

For ATi4 the TT in the response is the type of address as follows:

00 Public IEEE format address

01 Random static address (default as shipped)

02 Random Private Resolvable (used with bonded devices)

03 Random Private Non-Resolvable (used for reconnections)

Please refer to the Bluetooth specification for a further description of the types.

Interactive
Command

Yes

This is an Interactive mode command and must be terminated by a carriage return for it to be processed.

‘Example:

AT i 3

10 3 2.0.1.2

00

AT I 4

10 4 01 D31A920731B0

AT i is a core command.

Note 1: The information returned by this Interactive command can be useful from within a running application; a built-in
function called SYSINFO(cmdId) can be used to return the same information and cmdid is the same value as used
in the list above.

Note 2: 0xC12C works only if enabled in the build. (12 looks like an R so a mnemonic for CRC)
The CRC is generated using the ‘C’ function Calc16bitCrcNonTableMethod() defined below, with the
starting value of 0x0000

This is an Interactive mode command and must be terminated by a carriage return for it to be processed.

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

30

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

/*===*/

/*

** Given an array of bytes, a new 16 bit CRC is calculated using the slow

** method. Slow method because it is used once to calc lang hash.

**

** 16 12 5

** this is the CCITT CRC 16 polynomial X + X + X + 1.

** This works out to be 0x1021, but the way the algorithm works

** lets us use 0x8408 (the reverse of the bit pattern). The high

** bit is always assumed to be set, thus we only use 16 bits to

** represent the 17 bit value.

**

*/

#define POLY 0x8408

/*===*/

unsigned short

Calc16bitCrc(

 unsigned short nCrc16, /* init value or a previously calculated value*/

 const unsigned char *pSrcStr,

 unsigned short nSrcLen /* in bytes */

)

{

 unsigned char i;

 unsigned short data;

 while(nSrcLen--)

 {

 for(i=0, data=(unsigned int)0xff & *pSrcStr++;

 i < 8;

 i++, data >>= 1)

 {

 if ((nCrc16 & 0x0001) ^ (data & 0x0001))

 {

 nCrc16 = (nCrc16 >> 1) ^ POLY;

 }

 else

 {

 nCrc16 >>= 1;

 }

 }

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

31

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 }

 nCrc16 = ~nCrc16;

 data = nCrc16;

 nCrc16 = (nCrc16 << 8) | (data >> 8 & 0xff);

 return nCrc16;

}

COMMAND

Lists all application or data files in the module’s flash file system.

AT+DIR <”string”>

Returns \n06\tFILENAME1\r
\n06\tFILENAME2\r
\n06\tFILENAMEn\r
\n00\r

If there are no files within the module memory, then only \n00\r is sent.

Arguments:

string string_constant An optional pattern match string.

If included AT+DIR only returns application names which include this string.

Note: The match string is not case sensitive.

Interactive
Command

Yes

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be processed.

‘Examples:

AT+DIR

AT+DIR “new”

AT+DIR is a core command.

COMMAND

This command deletes a file from the module’s flash file system.

When the file is deleted, the space it occupied does not get marked as free for use again. Eventually, after many deletions,
the file system does not have free space for new files. When this happens, the module responds with an appropriate error
code when a new file write is attempted. Use the command AT&F 1 to completely erase and reformat the file system.

At any time, you can use the command AT I 6 to get information about the file system. It responds with the following:

10 6 aaaa,bbbb,cccc

Where aaaa is the total size of the file system, bbbb is the free space available, and cccc is the deleted space.

From within a smartBASIC application you can get aaaa by calling SYSINFO(601), bbbb by calling SYSINFO(602), and cccc by
calling SYSINFO(603).

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

32

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Note: After AT&F 1 is processed, because the file system manager context is unstable, there is an automatic self-
reboot.

AT+DEL “filename” (+)

Returns OK

If the file does not exist or if it was successfully erased, it responds with
\n00\r.

Arguments:

filename string_constant.
The name of the file to be deleted. The maximum length of filename is
24 characters and should not include the following characters :*?"<>|

Interactive
Command

Yes

This is an Interactive Mode command and must be terminated by a carriage return for it to be processed.

Adding the “+” sign to an AT+DEL command can be used to force the deletion of an open file. For example, use AT+DEL
“filename” + to delete an application which you have just exited after running it.

‘Examples:

AT+DEL “data”

AT+DEL “myapp” +

AT+DEL is a core command.

COMMAND

AT+RUN runs a precompiled application that is stored in the module’s flash file system. Debugging statements in the
application are disabled when it is launched using AT+RUN.

AT+RUN “filename”

Returns If the filename does not exist, the AT+RUN responds with an error response starting with a 01 and a
hex value describing the type of error. When the application aborts or if the application reaches its
end, a deferred \n00\r response is sent.

If the compiled file was generated with a non-matching language hash, then it does not run with an
error value of 0707 or 070C

Arguments:

filename string_constant.
The name of the file to be run. The maximum length of filename is 24 characters
and should not include the following characters :*?"<>|

Interactive
Command

Yes

This is an Interactive mode command and must be terminated by a carriage return for it to be processed.

Note: Debugging is disabled when using AT+RUN, hence all BP nnnn statements are inactive. To run an application
with debugging active, use AT+DBG.

If any variables exist from a previous run, they are destroyed before the specified application is serviced.

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

33

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Note: The application “filename” can also be invoked by entering the name if it does not contain any spaces.

‘Examples:

AT+RUN “NewApp”

 or

 NewApp

AT+RUN is a core command.

COMMAND

AT+DBG runs a precompiled application that is stored in the flash file system. In contrast to AT+RUN, debugging is enabled.

AT+DBG “filename”

Returns If the filename does not exist, the AT+DBG responds with an error response. When the application
aborts or if the application reaches its end, a deferred \n00\r response is sent.

Arguments:

filename string_constant.
The name of the file to be run. The maximum length of filename is 24 characters and should not
include the following characters :*?"<>|

Interactive
Command

Yes

This is an Interactive mode command and must be terminated by a carriage return for it to be processed.

Debugging is enabled when using AT+DBG, which means that all BP nnnn statements are active. To launch an application
without the debugging capability, use AT+RUN. You do not need to recompile the application, but this is at the expense of
using more memory to store the application.

If any variables exist from a previous run, they are destroyed before the specified application is serviced.

‘Examples:

AT+DBG “NewApp”

AT+DBG is a core command.

This command has been deprecated, please use the new presentation command AT+CFG num value instead.

This command has been deprecated, please use the new command AT+CFG num ? instead.

COMMAND

AT+CFG is used to set a non-volatile configuration key. Configuration keys are comparable to S registers in modems. Their
values are kept over a power cycle but are deleted if the AT&F* command is used to clear the file system.

If a configuration key that you need isn’t listed below, use the functions NvRecordSet() and NvRecordGet() to set and get
these keys respectively.

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

34

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

The ‘num value’ syntax is used to set a new value and the ‘num ?’ syntax is used to query the current value. When the value
is read the syntax of the response is

27 0xhhhhhhhh (dddd)

…where 0xhhhhhhhh is an eight hexdigit number which is 0 padded at the left and ‘dddd’ is the decimal signed value.

AT+CFG num value
or
AT+CFG num ?

Returns If the config key is successfully updated or read, the response is \n00\r.

Arguments:

num Integer Constant
The ID of the required configuration key. All the configuration keys are stored as an
array of 16-bit words.

value Integer_constant
This is the new value for the configuration key and the syntax allows decimal, octal,
hexadecimal or binary values.

Interactive
Command

Yes

This is an Interactive mode command and MUST be terminated by a carriage return for it to be processed.

The following Configuration Key IDs are defined.

40 Maximum size of local simple variables

This refers to the total amount of space the runtime engine allocates for simple variables (like INTEGER)
declared as local variables in user functions (FUNCTION) and subroutines (SUB). Note that if an array of
10 is declared then it takes up 10 locations. This means that if there is a nest of function calls, then in
total they should not end up declaring space exceeding this amount.

41 Maximum size of local complex variables
This refers to the total amount of space the runtime engine allocates for complex variables (like STRING)
declared as local variables in user functions (FUNCTION) and subroutines (SUB). Note that if an array of
10 is declared then it takes up 10 locations. This means that if there is a nest of function calls, then in
total they should not end up declaring space exceeding this amount.

42 Maximum depth of nested user defined functions and subroutines

43 The size of stack for storing user functions simple variables
This is the total depth of the stack which is used to expedite reverse polish notation for arithmetic
expressions. This needs to be extended only if some very complex nested brackets exist in an arithmetic
expression

44 The size of stack for storing user functions complex variables
This is the stack used for performing complex expressions, like for example A$=A$+”hello”+”world”

45 The size of the message argument queue length

AT+CFG is a core command.

Note: These values revert to factory default values if the flash file system is deleted using the
“AT & F *” interactive command.

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

35

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

COMMAND

AT+CFGEX is used to set a non-volatile configuration key with a string constant as opposed to an integer constant with the
at+cfg command. Configuration keys are comparable to S registers in modems. Their values are kept over a power cycle but
are deleted if the AT&F* command is used to clear the file system.

The ‘num “value”’ syntax is used to set a new value and the ‘num ?’ syntax is used to query the current value. Note that the
value must be enclosed by “” so that the system can recognize that it is a string. When the value is read the syntax of the
response is

27 1234567890abcdef

…where 1234567890abcdef is the string that is stored in the key.

AT+CFGEX num “value” or AT+CFGEX num ?

Returns If the config key is successfully updated or read, the response is \n00\r.

Arguments:

num Integer Constant
The ID of the required configuration key. All the configuration keys are stored as an
array of 16-bit words.

value String_constant
This is the new value for the configuration key and the syntax allows only strings
enclosed in "".

Interactive
Command

Yes

This is an Interactive mode command and MUST be terminated by a carriage return for it to be processed.

AT+CFGEX is a core command. It is currently only available on some platforms. Please refer to the relevant plat
documentation for a list of the Configuration Ids that are supported for that platform.

Note: These values revert to factory default values if the flash file system is deleted using the
“AT & F *” interactive command.

COMMAND

AT+FOW opens a file to allow it to be written with raw data. The group of commands (AT+FOW, AT+FWR, AT+FWRH and
AT+FCL) are typically used for downloading files to the module’s flash filing system. For example, web pages, x.509
certificates, or BLE data.

AT+FOW “filename”

Returns If the filename is valid, AT+FOW responds with \n00\r.

Arguments:

filename string_constant.

The name of the file to be opened. The maximum length of filename is 24 characters
and should not include the following characters :*?"<>|

Interactive
Command

Yes

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

36

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be processed.

‘Examples:

AT+FOW “myapp”

AT+FOW is a core command.

COMMAND

AT+FWR writes a string to a file that has previously been opened for writing using AT+FOW. The group of commands
(AT+FOW, AT+FWR, AT+FWRH and AT+FCL) are typically used for downloading files to the module’s flash filing system. For
example, web pages, x.509 certificates, or BLE data.

AT+FWR “string”

Returns If the string is successfully written, AT+FWR responds with \n00\r.

Arguments:

string string_constant – A string that is appended to a previously opened file. Any \NN or \r or \n
characters present within the string are de-escaped before they are written to the file.

Interactive
Command

Yes

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be processed.

‘Examples:

AT+FWR “\nhelloworld\r”

AT+FWR “\00\01\02”

AT+FWR is a core command.

COMMAND

AT+FWRH writes a string to a file that has previously been opened for writing using AT+FOW. The group of commands
(AT+FOW, AT+FWR, AT+FWRH and AT+FCL) are typically used for downloading files to the module’s flash filing system. For
example, web pages, x.509 certificates, or BLE data.

AT+FWRH “string”

Returns If the string is successfully written, AT+FWRH responds with \n00\r.

Arguments

string string_constant – A string that is appended to a previously opened file. Only hexadecimal
characters are allowed and the string is first converted to binary and then appended to the
file.

Interactive
Command

Yes

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be processed.

‘Examples:

AT+FWRH “FE900002250DEDBEEF”

AT+FWRH “000102”

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

37

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

‘Invalid example

AT+FWRH “hello world” ‘because not a valid hex string

AT+FWRH is a core command.

COMMAND

AT+FCL closes a file that has previously been opened for writing using AT+FOW. The group of commands; AT+FOW,
AT+FWR, AT+FWRH and AT+FCL are typically used for downloading files to the module’s flash filing system.

AT+FCL

Returns If the filename exists, AT+FCL responds with \n00\r.

Arguments:

None

Interactive
Command

Yes

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be processed.

‘Examples:

AT+FCL

AT+FCL is a core command.

COMMAND

When an application encounters a STOP, BPnnn, or END statement, it falls into the Interactive mode of operation and does
not discard any global variables created by the application. This allows them to be referenced in Interactive mode.

Please note: local variables defined inside functions or subroutines cannot be accessed like this and if you wish to monitor
such variables, then the woraround is to relocate that variable so that it becomes a global variable.

? var <[index]>

Returns Displays the value of the variable if it had been created by the application. If the variable is an
array, then the element index MUST be specified using the [n] syntax.

If the variable exists and it is a simple type, then the response to this command is

 \n08\tnnnnnn\r

 \n00\r

If the variable is a string type, then the response is

 \n08\t"Hello World"\r

 \n00\r

If the variable does not exist, then the response to this command is

 \n01\tE023\r

Where \n = linefeed, \t = horizontal tab and \r = carriage return

Note: If the optional type prefix is present, the output value, when it is an integer constant, is
displayed in that base. For example:

 ? h’ var returns

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

38

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 \n08\tH'nnnnnn\r

 \n00\r

Arguments:

Var <[n]> Any valid variable with mandatory [n] if the variable is an array.

For integer variables, the display format can be selected by prefixing the variable
with one of the integer type prefixes:

D' := Decimal
H' := Hexadecimal
O' := Octal
B' := Binary

Interactive

Command
Yes

This is an Interactive mode command and MUST be terminated by a carriage return for it to be processed.

‘Examples:

? argc

08 11

00

? h’argc

08 H’0000000B

00

? B’argc

08 B’000000000000000000000001011

? argv[0]

08 “hello”

00

? is a core command.

COMMAND

When an application encounters a STOP, BPnnn, or END statement, it falls into the Interactive mode of operation and does
not discard the global variables so that they can be referenced in Interactive Mode. The = command is used to change the
content of a known variable. When the application is resumed, the variable contains the new value. It is useful when
debugging applications.

= var<[n]> value

Returns If the variable exists and the value is of a compatible type, then the variable value is overwritten and
the response to this command is:

 \n00\r

If the variable exists and it is NOT of compatible type, then the response to this command is
 \n01\tE027\r

If the variable does not exist, then the response to this command is
 \n01\tE023\r

If the variable exists but the new value is missing, then the response to this command is
 \n01\tE26\r

Where \n = linefeed, \t = horizontal tab and \r = carriage return

Arguments:

Var<[n]> The variable whose value is to be changed

value A string_constant or integer_constant of appropriate form for the variable.

Interactive Yes

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

39

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Command

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be processed.

Examples: (after an app exits which had DIM’d a global variable called ‘argc’)

? argc

08 11

00

= argc 23

00

? argc

08 23

00

= is a core command.

SO (Step Over) is used to execute the next line of code in Interactive Mode after a break point has been encountered when
an application had been launched using the AT+DBG command.

Use this command after a breakpoint is encountered in an application to process the next statement. SO can then be used
repeatedly for single line execution

SO is normally used as part of the debugging process after examining variables using the ? Interactive Command and
possibly the = command to change the value of a variable.

See also the BP nnnn, AT+DBG, ABORT, and RESUME commands for more details to aid debugging.

SO is a core function.

COMMAND

RESUME is used to continue operation of an application from Interactive Mode which had been previously halted. Normally
this occurs because of an execution of a STOP or BP statement within the application. On execution of RESUME, application
operation continues at the next statement after the STEP or BP statement.

If used after a SO command, application execution commences at the next statement.

RESUME

Returns If there is nothing to resume (e.g. immediately after reset or if there are no more statements within
the application), then an error response is sent.

\n01\tE029\r

Interactive
Command

Yes

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be processed

‘Examples:

RESUME

RESUME is a core function.

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

40

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

COMMAND

Abort is an Interactive Mode command which is used to abandon an application, whose execution has halted because it has
processed a STOP or BP statement.

ABORT

Returns Abort is an Interactive Mode command which is used to abandon an application, whose execution
has halted because it had processed a STOP or BP statement. If there is nothing to aborts, then it
returns a success 00 response.

Interactive
Command

Yes

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be processed.

‘Examples:

‘(Assume the application someapp.sb has a STOP statement somewhere which invokes

interactive mode)

AT+RUN “someapp”

ABORT

ABORT is a core command.

COMMAND

Renames an existing file.

AT+REN “oldname” “newname”

Returns OK if the file is successfully renamed.

Arguments

oldname string_constant. The name of the file to be renamed.

Newname string_constant. The new name for the file.

The maximum length of filename is 24 characters.

Interactive
Command

Yes

oldname and newname must contain a valid filename, which cannot contain the following seven characters

: * ? " < > |

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be processed.

‘Examples:

AT+REN “oldscript.txt” “newscript.txt”

AT+REN is a core command.

COMMAND

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

41

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

AT&F provides facilities for erasing various portions of the module’s non-volatile memory.

AT&F integermask

Returns OK if file successfully erased.

Arguments

Integermask Integer corresponding to a bit mask or the “*” character

Interactive
Command

Yes

The mask is an additive integer mask, with the following meaning:

0x00000001 Erases normal file system and system config keys
(see AT+CFG for examples of config keys)

0x00000002 Erases the Sequential File System, if exists in the build

0x00000004 Erases the Worm Segment (Debug builds only)

0x00000008 Erases the non-volatile heap, if exists in the build

0x00000010

0x00000200

0x00040000

Erases the User non-vol records (NvRecordGet/Set)

(Other bit values exist for legacy reasons and achieve the same effect)

0x00000020 Erases the Transactional Configuration Database, if exists in the build

0x00000040 Erase all Dictionary type segments (DEPRECATED – please do not use)

0x00000100 Erases the System Config Keys Dictionary and set to defaults. Values affected by the AT+CFG
command

0x00000200 Erase User Nvrecords Dictionary (bit 18 also does the same)

* Erases all data segments

Else Not applicable to current modules

If an asterisk is used in place of a number, then the module is configured back to the factory default state by erasing all
flash file segments.

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be processed.

AT&F 1 ‘delete the file system only

AT&F 16 ‘delete the user non volatile keys (0x0010)

AT&F * ‘delete all data segments

AT&F is a core command.

Resets the CPU.

AT Z

Returns \n00\r

Arguments: None

Interactive
Command

Yes

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

42

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be processed.

‘Examples:

AT Z

AT Z is a core command.

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

43

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC contains a wide variety of commands and statements. These include a core set of programming commands
found in most languages and extension commands, found in your module’s extension manual, that are designed to expose
specific functionality of the platform. For example, Bluetooth Low Energy’s GATT, GAP, and security functions.

Because smartBASIC is designed to be a very efficient embedded language, you must take care of command syntax.

smartBASIC commands are classified as one of the following:

▪ Functions

▪ Subroutines

▪ Statements

A function is a command that generates a return value and is normally used in an expression. For example:

newstr$ = LEFT$ (oldstring$, num)

In other words, functions cannot appear on the left side of an assignment statement (which has the equals sign). However,
a function may affect the value of variables used as parameters if it accepts them as references rather than as values. This
subtle difference is described further in the next section.

A subroutine does not generate a return value and is generally used as the only command on a line. Like a function, it may
affect the value of variables used as parameters if it accepts them as references rather than values. For example:

STRSHIFTLEFT (string$, num)

This brings us to the definition of the different forms an argument can take, both for a function and a subroutine. When a
function is defined, its arguments are also defined in the form of how they are passed – either as byVal or byRef.

Passing Arguments as
byVal

If an argument is passed as byVal, then the function or subroutine only sees a copy of
the value. While it can change the copy of the variable upon exit, all changes are lost.

Passing Arguments as
byRef

If an argument is passed as byRef, then the function or subroutine can modify the
variable and, upon exit, the variable that was passed to the routine contains the new
value.

To understand, look at the smartBASIC subroutine STRSHIFTLEFT. It takes a string and shifts the characters to the left by a
specified number of places:

STRSHIFTLEFT (string$, num)

It is used as a command on string$, which is defined as being passed as byRef. This means that when the rotation is
complete, string$ is returned with its new value. num defines the number of places that the string is shifted and is passed
as byVal; the original variable num is unchanged by this subroutine.

Note: Throughout the definition of the following commands, arguments are explicitly stated as being byVal or byRef.

Functions, as opposed to subroutines, always return a value. Arguments may be either byVal or byRef. Generally and by
default, string arguments are passed byRef. The reason for this is twofold:

▪ It saves valuable memory space because a copy of the string (which may be long) does not need to be copied to the
stack.

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

44

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

▪ A string copy operation is lengthy in terms of CPU execution time. However, in some cases the valuables are passed
byVal and in that case, when the function or subroutine is invoked, a constant string in the form “string” can be passed
to it.

Note: For arguments specified as byRef, it is not possible to pass a constant value – whether number or string.

Statements do not take arguments, but instead take arithmetic or string expression lists. The only Statements in
smartBASIC are PRINT and SPRINT.

Developing a software application that is error free is virtually an impossible task. All functions and subroutines act on the
data that is passed to them and there are occasions when the values do not make sense. For example, when a divide
operation is requested and the divisor passed to the function is the value zero. In these types of cases it is impossible to
generate a return of meaningful value, but the event needs to be trapped so that the effects of doing that operation can be
lessened.

The mitigation process is via the inclusion of an ONERROR handler as explained in detail later in this manual. If the
application does not provide an ONERROR handler and if an exception is encountered at run-time, then the application
aborts to Interactive mode.

Note: This is disastrous for unattended use cases. A good catchall ONERROR is to invoke a handler in which the module
is reset; then at least the module resets from a known condition.

Throughout the rest of this manual, the following convention is used to describe smartBASIC commands and statements:

FUNCTION / SUBROUTINE / STATEMENT

Description of the command.

COMMAND (<byRef | byval> arg1 <AS type>,..)

Returns

TYPE Description. Value that a function returns (always byVal).

Exceptions

ERRVAL Description of the error.

Arguments (a list of the arguments for the command)

arg1 byRef TYPE A description, with type, of the variable.

argn byVal TYPE A description, with type, of the variable.

Interactive
Command

Whether the command can be run in Interactive Mode using the ! token.

‘Examples:

Examples using the command.

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

45

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Note: Always consult the release notes for a particular firmware release when using this manual. Due to continual
firmware development, there may be limitations or known bugs in some commands that cause them to differ
from the descriptions given in the following chapters.

One of the important rules is that variables used within an application MUST be declared before they are referenced within
the application. In most cases the best place is at the start of the application. Declaring a variable can be thought of as
reserving a portion of memory for it. smartBASIC does not support forward declarations. If an application references a
variable that has not been declared, the parser reports an ERROR and aborts the compilation.

Variables are characterized by two attributes:

▪ Variable Scope

▪ Variable Class

The Declare statement is used to declare several variables of assorted types to be defined in a single statement.

If it is used within a FUNCTION or SUB block of code, then those variables only have local scope. Otherwise they have
validity throughout the application. If a variable is declared within a FUNCTION or SUB and a variable of the same name
already exists with global scope, then this declaration takes over whilst inside the FUNCTION or SUB. However, this practice
should be avoided.

DIM var<,var<,…>>

Arguments

Var A complete variable definition with the syntax varname <AS type>. Multiple variables can be
defined in any order with each definition being separated by a comma.

Each variable (var) consists of one mandatory element varname and one optional element AS type
separated by whitespaces and described as follows:

▪ Varname – A valid variable name.

▪ AS type – Where ‘type’ is INTEGER, FLOAT, or STRING. If this element is missing, then varname
is used to define the type of the variable so that if the name ends with a $ character, then it
defaults to a STRING; otherwise an INTEGER. FLOAT variables must be explicitly typed as there
is no implicit way to declare them.

A variable can be declared as an array, although only one dimension is allowed. Arrays must always
be defined with their size, e.g.

array [20] – The (20) with round brackets is also allowed.

The size of an array cannot be changed after it is declared and the maximum size of an array is
platform dependent which is determined at firmware build time.

Interactive
Command

No

//Example :: DimEx1.sb (See in Firmware Zip file)

DIM temp1 AS INTEGER

DIM temp2 //Will be an INTEGER by default

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

46

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

DIM temp3$ AS STRING

DIM temp4$ //Will be a STRING by default

DIM temp5$ AS INTEGER //Allowed but not recommended practice as there

//is a $ at end of name

DIM temp6 AS STRING //Allowed but not recommended practice as no $

//at end of name

DIM a1,a2,a3$,a4 //3 INTEGER variables and 1 STRING variable

print "We will now print each variable on screen \n"

print temp1, temp2, temp3$, temp4$, temp5$, temp6, a1, a2, a3$, a4

//Since the variables have not been instantiated, they hold default values

//The comma inserts a TAB

Expected Output:

The scope of a variable defines where it can be used within an application.

▪ Local Variable – The most restricted scope. These are used within functions or subroutines and are only valid within
the function or subroutine. They are declared within the function or subroutine.

▪ Global Variable – Any variables not declared in the body of a subroutine or a function and are valid from the place
they are declared within an application. Global Variables remain in scope at the end of an application, which allows
the user or host processor to interrogate and modify them using the ? and = commands respectively.
As soon as a new application is run, they are discarded.

Note: If a local variable in a routine body has the same name as a global variable, then within a function or a
subroutine, that global variable cannot be accessed.

smartBASIC supports two generic classes of variables:

▪ Simple – Numeric variables. There are currently two types: INTEGER and FLOAT

▪ Simple variables are scalar and can be used within arithmetic expressions as described later. Beware of auto-casting
that the compiler performs in expression if it encounters different types of variables in a single expression. Use this
with care.

▪ Complex – Non-numeric variables. There is currently only one type: STRING.

STRING is an object of concatenated byte characters of any length up to a maximum of 65280 bytes but for platforms
with limited memory, it is further limited and that value can be obtained by submitting the AT I 1004 command when
in Interactive mode and using the SYSINFO(1004) function from within an application.

For example, in the BL600 module, the limit is 512 bytes since it is always the largest data length for any attribute.

We will now print each variable on screen

0 0 0 0 0 0

 0 0 0 0

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

47

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Complex variables can be used in expressions which are dedicated for that type of variable. In the current
implementation of smartBASIC, the only general-purpose operator that can be used with strings is the '+' operator
which is used to concatenate strings.

 //Example :: DimEx2.sb (See in Firmware Zip file)

 DIM i$ as STRING

 DIM a$ as STRING

 a$ = "Laird"

 i$ = a$ + "Rocks!" //Here we are concatenating the two strings

 print i$

Expected Output:

Note: To preserve memory, smartBASIC only allocates memory to string variables when they are first used and not when
they are declared. If too many variables and strings are declared in a limited memory environment it is possible
to run out of memory at run time. If this occurs an ERROR is generated and the module returns to Interactive
Mode. The point at which this happens depends on the free memory so it varies between different modules.

 This return to Interactive Mode is NOT desirable for unattended embedded systems. To prevent this, every
application MUST have an ONERROR handler which is described later in this user manual.

Note: Unlike in the “C” programming language, strings are not null terminated but defined by a length field.

Variables can be created as arrays of single dimensions; their size (number of elements) must be explicitly stated when
they are first declared using the nomenclature [x] or (x) after the variable name, e.g.

DIM array1 [10] AS STRING
DIM array2(10) AS STRING

 //Example :: ArraysEx1.sb (See in Firmware Zip file)

 DIM nCmds AS INTEGER

 DIM stCmds[20] AS STRING //declare an array as a string with 20 elements

 //Not recommended because we are only using 7 elements as you will see below

 //Setting the values for 7 of the elements

 stCmds[0]="\rATS0=1\r"

 stCmds[1]="ATS512=4\r"

 stCmds[2]="ATS501=1\r"

 stCmds[3]="ATS502=1\r"

 stCmds[4]="ATS503=1\r"

LairdRocks!

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

48

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 stCmds[5]="ATS504=1\r"

 stCmds[6]="AT&W\r"

 nCmds=6

 //Print the 7 elements above in order

 DIM i AS INTEGER

 for i=0 to nCmds step 1

 print stCmds[i]

 next

Expected Output:

Variable Names begin with 'A' to 'Z' or '_' and can have any combination of 'A' to 'Z', '0' to '9' ‘$’ and '_'.

Note: Variable names are not case sensitive (for example, test$ and TEST$ are the same variable).

smartBASIC is a strongly typed language and so if the compiler encounters an incorrect variable type then the compilation
fails.

Variables are normally declared individually at the start of an application or within a function or subroutine.

 DIM string$ AS STRING

 DIM str1$ // the $ at the end of the name implies a string

 // so AS STRING not necessary

 DIM temp1 AS INTEGER

 DIM tmpFlt AS FLOAT

 DIM alarmstate // no $ at the of the name implies an INTEGER (never FLOAT)

 // so AS INTEGER not necessary

 DIM array [10] AS STRING

ATS0=1

ATS512=4

ATS501=

ATS502=1

ATS503=1

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

49

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Numeric Constants can be defined in decimal, hexadecimal, octal, or binary using the following nomenclature:

Decimal D’1234 or 1234 (default)

Hex H’1234 or 0x1234

Octal O’1234

Binary B’01010101

Floating
Point

123.45 or 1.2345e2

Note: By default, all numbers are assumed to be in decimal format.

The maximum integer signed constant that can be entered in an application is 2147483647 and the minimum is -
2147483648.

The maximum float constant that can be entered in an application is approximately 3.402823e38 and all integers with 6 or
fewer significant digits can be represented without loss of precision. (source: https://en.wikipedia.org/wiki/Single-
precision_floating-point_format)

A hexadecimal constant consists of a string consisting of characters 0 to 9, and A to F (a to f). It must be prefixed by the two-
character token H' or h' or 0x.

H'1234

h'DEADBEEF

0x1234

An octal constant consists of a string consisting of characters 0 to 7. It must be prefixed by the two-character token O' or o'.

O'1234

o'5643

A binary constant consists of a string consisting of characters 0 and 1. It must be prefixed by the two-character token B' or
b'.

B'11011100

b'11101001

A binary constant can consist of 1 to 32 bits and is left padded with 0s.

A string constant is any sequence of characters starting and ending with the " character. To embed the " character inside a
string constant specify it twice.

"Hello World"

"Laird_""Rocks""" // in this case the string is stored as Laird_”Rocks”

Non-printable characters and print format instructions can be inserted within a constant string by escaping using a starting
‘\’ character and two hexadecimal digits. Some characters are treated specially and only require a single character after the
‘\’ character.

The table below lists the supported characters and the corresponding string.

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

50

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Character Escaped String Character Escaped String

Linefeed \n “ \22 or “”

Carriage return \r A \41

Horizontal Tab \t B \42

\ \5C etc.…

The smartBASIC complier converts applications into an internally compiled program on a line by line basis. It has strict rules
regarding how it interprets commands and variable types. In some cases, it is useful to modify this default behavior,
particularly within user defined functions and subroutines or when developing applications and temporary code needs to
be added to monitor variables using print statements. To allow this, a special directive is provided - #SET.

#SET is a special directive which instructs the complier to modify the way that it interprets commands and variable types. In
normal usage you should never have to modify any of the values.

#SET must be asserted before the source code that it affects, or the compiler behavior will not be altered.

#SET can be used multiple times to change the tokeniser behavior throughout a compilation.

#SET commandID, commandValue

Arguments

cmdID Command ID and valid range is 0..10000

cmdValue Any valid integer value

Currently smartBASIC supports the following cmdIDs:

CmdID MinVal MaxVal Default Comments

1 0 1 0 Default Simple Arguments type for routines. 0 = ByVal, 1=ByRef

2 0 1 1 Default Complex Arguments type for routines. 0 = ByVal, 1=ByRef

3 8 256 32 Stack length for Arithmetic expression operands

4 4 256 8 Stack length for Arithmetic expression constants

5 16 65535 1024 Maximum number of simple global variables per application

6 16 65535 1024 Maximum number of complex global variables per application

7 2
65535 32 Maximum number of simple local variables per routine in an

application

8 2
65535 32 Maximum number of complex local variables per routine in an

application

9 2 32767 256 Max array size for simple variables in DIM

10 2 32767 256 Max array size for complex variables in DIM

11
Smallest
–ve 32bit

value

Largest
+ve

32bit

0

Conditional compilation mask
The CmdId can also be referred to using the string ‘$cmpif’

For example, #SET $cmpif,nnn

The ‘nnn’ value is a mask

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

51

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

CmdID MinVal MaxVal Default Comments

value See Note 2 below for more details of how to use the #cmpif
conditional statement

Note 1: Unlike other commands, #SET may not be combined with any other commands on a line.

Note 2: The syntax of the conditional compile statement is:
#cmpif constant_integer_expression : statement
When ‘nnn’ in the #set command is 0, then any statements starting with #cmpif are NOT converted into any
object code. If ‘nnn’ is non zero, then for all #cmpif constant_integer_expression statements if (nnn &
constant_integer_expression) results in a non-zero value, then the statement(s) following the : separator gets
compiled into object code.
For example
#set $cmpif,0x4
dim a : a=0
#cmpif 0x1 : print “This will not get printed because 4&1 is equal to 0”
#cmpif 0x5 : print “This will get printed because 5&1 no equal to 0”
#cmpif 0x5 : a=42 //a will be set to 42
#cmpif 0x2 : z=100 //a will not be set to 100

Further note:
If (constant_integer_expression & mmm) evaluates to 0 then the rest of the entire line will not get compiled
even if the line contains multiple statements separated by the ‘:’ character.

‘Example

#set 1, 1 ‘change default simple args to byRef
#set 2, 0 ‘change default complex args to byVal

Arithmetic expressions are a sequence of INTEGER and FLOAT constants, variables, and operators. At runtime the
arithmetic expression, which is normally the right hand side of an = sign, is evaluated. Where it is set to a variable, then the
variable takes the value and class of the expression (such as INTEGER or FLOAT).

If the arithmetic expression is invoked in a conditional statement, its default type is an INTEGER.

INTEGER and FLOAT variable types should not be mixed but can be.
A quirk of the compiler is that when parsing an expression it will determine the type (INTEGER or FLOAT) at the beginning
and then for each variable that is encountered that is not of the expected type, it will auto-cast at that point. So for
example, if you have an integer expression where it encounters vFloat1+vFloat2 and the values are 1.5 and 0.6, then result
will be 1+0=1 and not the value 2 given 1.5 and 0.6 is 2.1 hence intuitively you would expect it to be 2.

//Example :: Arithmetic.sb (See in Firmware Zip file)

 DIM sum1,bit1,bit2

 bit1 = 2

 bit2 = 3

 DIM volume,height,area

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

52

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 height = 5

 area = 20

 sum1 = bit1 + bit2

 volume = height * area

 print "\nSum1 = ";sum1

 print "\nVolume = ";volume;"\n"

Expected Output:

Arithmetic operators can be unitary or binary. A unitary operator acts on a variable or constant which follows it, whereas a
binary operator acts on the two entities on either side.

Operators in an expression observe a precedence which is used to evaluate the result using reverse polish notation. An
explicit precedence order can be forced by using (and) in the usual manner.

The following is the order of precedence within operators:

▪ Unitary operators have the highest precedence

! logical NOT

~ bit complement (Not legal with FLOAT types)

- negative (negate the variable or number – multiplies it by -1)

+ positive (make positive – multiplies it by +1)

▪ Precedence then devolves to the binary operators in the following order:

* Multiply

/ Divide

% Modulus (Not legal with FLOAT types)

+ Addition

- Subtraction

<< Arithmetic Shift Left (Not legal with FLOAT types)

>> Arithmetic Shift Right (Not legal with FLOAT types)

< Less Than (results in a 0 or 1 value in the expression)

<= Less Than or Equal (results in a 0 or 1 value in the expression)

> Greater Than (results in a 0 or 1 value in the expression)

>= Greater Than or Equal (results in a 0 or 1 value in the expression)

== Equal to (results in a 0 or 1 value in the expression)

!= Not Equal to (results in a 0 or 1 value in the expression)

& Bitwise AND (Not legal with FLOAT types)

^ Bitwise XOR (exclusive OR) (Not legal with FLOAT types)

Sum1 = 5

Volume = 100

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

53

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

| Bitwise OR (Not legal with FLOAT types)

&& Logical AND (results in a 0 or 1 value in the expression)

^^ Logical XOR (results in a 0 or 1 value in the expression)

|| Logical OR (results in a 0 or 1 value in the expression)

Conditional functions are used to alter the sequence of program flow by providing a range of operations based on checking
conditions.

Note: smartBASIC does not support program flow functionality based on unconditional statements, such as JUMP or
GOTO. In most cases where a GOTO or JUMP might be employed, ONERROR conditions are likely to be more
appropriate.

Conditional blocks can be nested. This applies to combinations of DO, UNTIL, DOWHILE, FOR, IF, WHILE, and SELECT. The
depth of nesting depends on the build of smartBASIC but in general, nesting up to 16 levels is allowed and can be modified
using the AT+CFG command.

Please note SELECT and FOR compound statements will not accept FLOAT type in the condition expression and neither will
CASE X.

This DO/UNTIL construct allows a block of one or more statements to be processed until a condition becomes true.

DO
statement block
UNTIL arithmetic expr

▪ Statement block – A valid set of program statements. Typically, several lines of application.

▪ Arithmetic expression – A valid arithmetic or logical expression. Arithmetic precedence is defined in the section
‘Arithmetic Expressions’.

For DO / UNTIL, if the arithmetic expression evaluates to zero, then the statement block is executed again. Care should be
taken to ensure this does not result in infinite loops.

Interactive Command: NO

//Example :: DoUntil.sb (See in Firmware Zip file)

 DIM a AS INTEGER //don’t really need to supply AS INTEGER

 a=1

 DO

 a = a+1

 PRINT a

 UNTIL a==10 //loop will end when A gets to the value 10

Expected Output:

DO / UNTIL is a core function.

2345678910

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

54

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

This DO / DOWHILE construct allows a block of one or more statements to be processed while the expression in the
DOWHILE statement evaluates to a true condition.

DO
statement block
DOWHILE arithmetic expr

▪ Statement block – A valid set of program statements. Typically, several lines of application

▪ Arithmetic expression – A valid arithmetic or logical expression. Arithmetic precedence is defined in the section
‘Arithmetic Expressions’.

For DO / DOWHILE, if the arithmetic expression evaluates to a non-zero value, then the statement block is executed again.
Care should be taken to ensure this does not result in infinite loops.

Interactive Command: NO

//Example :: DoWhile.sb (See in Firmware Zip file)

 DIM a AS INTEGER //don’t really need to supply AS INTEGER

 a=1

 DO

 a = a+1

 PRINT a

 DOWHILE a<10 //loop will end when A gets to the value 10

Expected Output:

DO / DOWHILE is a core function.

The FOR / NEXT composite statement block allows program execution to be controlled by the evaluation of several
variables. Using the tokens TO or DOWNTO determines the order of execution. An optional STEP condition allows the
conditional function to step at other than unity steps. Given the choice of either TO/DOWNTO and the optional STEP, there
are four variants:

FOR var = arithexpr1 TO arithexpr2

statement block

NEXT

FOR var = arithexpr1 TO arithexpr2 STEP arithexpr3

statement block

NEXT

FOR var = arithexpr1 DOWNTO arithexpr2

statement block

NEXT

FOR var = arithexpr1 DOWNTO arithexpr2 STEP arithexpr3

statement block

NEXT

2345678910

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

55

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

▪ Statement block – A valid set of program statements. Typically, several lines of application which can include nested
conditional statement blocks.

▪ Var – A valid INTEGER variable which can be referenced in the statement block

▪ Arithexpr1 – A valid arithmetic or logical expression. arithexpr1 is enumerated as the starting point for the FOR NEXT
loop.

▪ Arithexpr2 – A valid arithmetic or logical expression. arithexpr2 is enumerated as the finishing point for the FOR NEXT
loop.

▪ Arithexpr3 – A valid arithmetic or logical expression. arithexpr3 is enumerated as the step in variable values in
processing the FOR NEXT loop. If STEP and arithexpr3 are omitted, then a unity step is assumed.

Note: Arithmetic precedence, is as defined in the section ‘Arithmetic Expressions’

The lines of code comprising the statement block are processed with var starting with the value calculated or defined by
arithexpr1. When the NEXT command is reached and processed, the STEP value resulting from arithexpr3 is added to var if
TO is specified, or subtracted from var if DOWNTO is specified.

The function continues to loop until the variable var contains a value less than or equal to arithexpr2 in the case where TO
is specified, or greater than or equal to arithexpr2 in the alternative case where DOWNTO is specified.

Interactive Command: NO

//Example :: ForNext.sb (See in Firmware Zip file)

 DIM a

 FOR a=1 TO 2

 PRINT "Hello"

 NEXT

 print "\n"

 FOR a=2 DOWNTO 1

 PRINT "Hello"

 NEXT

 print "\n"

 FOR a=1 TO 4 STEP 2

 PRINT "Hello"

 NEXT

Expected Output:

FOR / NEXT is a core function.

HelloHello

HelloHello

HelloHello

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

56

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

The IF statement construct allows a block of code to be processed depending on the evaluation of a condition expression. If
the statement is true (equates to non-zero), then the following block of application is processed until an ENDIF, ELSE, or
ELSEIF command is reached.

Each ELSEIF allows an alternate statement block of application to be executed if that conditional expression is true and any
preceding conditional expressions were untrue.

Multiple ELSEIF commands may be added, but only the statement block immediately following the first true conditional
expression encountered is processed within each IF command.

The final block of statements is of the form ELSE and is optional.

IF arithexpr_1 THEN

statement block A

ENDIF

IF arithexpr_1 THEN

statement block A

ELSE

statement block B

ENDIF

IF arithexpr_1 THEN

statement block A

ELSEIF arithexpr_2 THEN

statement block B

ELSE

statement block C

ENDIF

▪ Statement block A|B|C – A valid set of zero or more program statements.

▪ Arithexpr_n – A valid arithmetic or logical expression. A valid arithmetic or logical expression. Arithmetic precedence,
is as defined in the section ‘Arithmetic Expressions’.

All IF constructions must be terminated with an ENDIF statement.

Note: As the arithmetic expression in an IF statement is making a comparison, rather than setting a variable, the
double == operator MUST be used, e.g.

 IF i==3 THEN : SLEEP(200)

 See the Arithmetic Expressions section for more options.

Interactive Command: NO

//Example :: IfThenElse.sb (See in Firmware Zip file)

 DIM n

 n=1

 IF n>0 THEN

 PRINT "Laird Rocks\n"

 ENDIF

 IF n==0 THEN

 PRINT "n is 0"

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

57

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 ELSEIF n==1 THEN

 PRINT "n is 1"

 ELSE

 PRINT "n is not 0 nor 1"

 ENDIF

Expected Output:

IF is a core function.

The WHILE command tests the arithmetic expression that follows it. If it equates to non-zero, then the following block of
statements is executed until an ENDWHILE command is reached. If it is zero, then execution continues after the next
ENDWHILE.

WHILE arithexpr

statement block

ENDWHILE

▪ Statement block – A valid set of zero or more program statements.

▪ Arithexpr – A valid arithmetic or logical expression. Arithmetic precedence, is as defined in the section ‘Arithmetic
Expressions’.

All WHILE commands must be terminated with an ENDWHILE statement.

Interactive Command: NO

//Example :: While.sb (See in Firmware Zip file)

 DIM n

 n=0

 //now print “Hello” ten times

 WHILE n<10

 PRINT " Hello " ;n

 n=n+1

 ENDWHILE

Expected Output:

WHILE is
a core function.

Laird Rocks

N is 1

Hello 0 Hello 1 Hello 2 Hello 3 Hello 4 Hello 5 Hello 6 Hello 7 Hello 8 Hello 9

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

58

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

SELECT is a conditional command that uses the value of an INTEGER arithmetic expression to pass execution to one of
several blocks of statements which are identified by an appropriate CASE nnn statement, where nnn is an INTEGER constant
only (FLOAT is specifically not allowed). After completion of the code, which is marked by a CASE nnn or CASE ELSE
statement, execution of the application moves to the line following the ENDSELECT command. In a sense, it is a more
efficient implementation of an IF block with many ELSEIF statements.

An initial block of code can be included after the SELECT statement. This is always processed. When the first CASE
statement is encountered, execution moves to the CASE statement corresponding to the computed value of the arithmetic
expression in the SELECT command.

After selection of the appropriate CASE, the relevant statement block is executed until a CASE, BREAK or ENDSELECT
command is encountered. If a match is not found, then the CASE ELSE statement block is run.

It is mandatory to include a final CASE ELSE statement as the final CASE in a SELECT operation.

SELECT arithexpr
 unconditional statement block
CASE integerconstA
 statement block A
CASE integerconstB
 statement block B
CASE integerconstc, integerconstd, integerconste, integerconstf, …
 statement block C
CASE ELSE
 statement block
ENDSELECT

▪ Unconditional statement block – An optional set of program statements, which are always executed.

▪ Statement block – A valid set of zero or more program statements.

▪ Arithexpr – A valid INTEGER arithmetic or logical expression. Arithmetic precedence, is as defined in the section
‘Arithmetic Expressions’.

▪ IntegerconstX – One or more comma separated integer constants corresponding to one of the possible values of
arithexpr which identifies the block that is processed.

Interactive Command: NO

//Example :: SelectCase.sb (See in Firmware Zip file)

 DIM a,b,c

 a=3 : b=4 //Use ":" to write multiple commands on one line

 SELECT a*b

 CASE 10

 c=10

 CASE 12 //this block will get processed

 c=12

 CASE 14, 156, 789, 1022

 c=-1

 CASE ELSE

 c=0

 ENDSELECT

 PRINT c

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

59

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Expected Output:

SELECT is a core function.

BREAK is relevant in a WHILE/ENDWHILE, DO/UNTIL, DO/DOWHILE, FOR/NEXT, or SELECT/ENDSELECT compound construct.
It forces the program counter to exit the currently processing block of statements.

For example, in a WHILE/ENDWHILE loop, the statement BREAK stops the loop and forces the command immediately after
the ENDWHILE to be processed. Similarly, in a DO/UNTIL, the statement immediately after the UNTIL is processed.

BREAK

Interactive Command: NO

//Example :: Break.sb (See in Firmware Zip file)

 DIM n

 n=0

 WHILE n<10

 n=n+1

 IF n==5 THEN

 BREAK

 ENDIF

 PRINT "Hello " ;n

 ENDWHILE

 PRINT "\nFinished\n"

Expected Output:

BREAK is a core function.

CONTINUE is used within a WHILE/ENDWHILE, DO/UNTIL, DO/DOWHILE, or FOR/NEXT compound construct, where it forces
the program counter to jump to the beginning of the loop.

CONTINUE

Interactive
Command

Yes

//Example :: Continue.sb (See in Firmware Zip file)

12

Hello 1Hello 2Hello 3Hello 4

Finished

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

60

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 DIM n

 n=0

 WHILE n<10

 n=n+1

 IF n==5 THEN

 CONTINUE

 ENDIF

 PRINT "Hello " ;n

 ENDWHILE

 PRINT "\nFinished\n"

Expected Output:

CONTINUE is a core function.

Error handling functions are provided to allow program control for instances where exceptions are generated for errors.
These allow graceful continuation after an error condition is encountered and are recommended for robust operation in an
unattended embedded use case scenario.

In an embedded environment, it is recommended to include at least one ONERROR and one ONFATALERROR statement
within each application. This ensures that if the module is running unattended, then it can reset and restart itself without
the need for operator intervention.

ONERROR is used to redirect program flow to a handler function that can attempt to modify operation or correct the cause
of the error. Three different options are provided in conjunction with ONERROR: REDO, NEXT, and EXIT.

The GETLASTERROR() command should be used in the handler routine to determine the type of error that was generated.

ONERROR REDO routine On return from the routine, the statement that originally caused the error is
reprocessed.

ONERROR NEXT routine On return from the routine, the statement that originally caused the error is
skipped and the following statement is processed.

ONERROR EXIT If an error is encountered, the application exits and returns operation to
Interactive Mode.

Arguments

Routine The handler SUB that is called when the error is detected. This must be a SUB routine which
takes no parameters. It must not be a function. It must exist within the application PRIOR to this
ONERROR command being compiled.

Interactive
Command

No

Hello 1Hello 2Hello 3Hello 4Hello 6Hello 7Hello 8Hello 9Hello 10

Finished

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

61

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

//Example :: OnError.sb (See in Firmware Zip file)

 DIM a,b,c

 SUB HandlerOnErr() //Do this when an error occurs

 DIM le

 le = GetLastError()

 PRINT "Error code 0x";le;" denotes a Divide by zero error.\n"

 PRINT "Let's make b equal 25 instead of 0\n\n"

 b=25

 ENDSUB

 a=100 : b=0

 ONERROR REDO HandlerOnErr //Calls the "HandlerOnErr" routine.

 //After that, the error causing statement

 //(below) is reprocessed

 c=a/b

 print "c now equals ";c

Expected Output:

ONERROR is a core function.

ONFATALERROR is used to redirect program flow to a subroutine that can attempt to modify operation or correct the cause
of a fatal error. Three different options are provided – REDO, NEXT, and EXIT.

The GETLASTERROR() command should be used in the subroutine to determine the type of error that was generated.

ONFATALERROR REDO routine On return from the routine, the statement that originally caused the error is
reprocessed.

ONFATALERROR NEXT routine On return from the routine, the statement that originally caused the error is
skipped and the following statement is processed.

ONFATALNERROR EXIT If an error is encountered, the application exits and returns the operation to
Interactive Mode.

ONFATALERROR is a core function.

An application written for an embedded platform is left unattended and in most cases, waits for something to happen in
the real world, which it detects via an appropriate interface. When something happens, it needs to react to that event. This
is unlike sequential processing where the program code order is written in the expectation of a series of preordained
events. Real world interaction is not like that and so this implementation of smartBASIC has been optimized to force the
developer of an application to write applications as a group of handlers used to process events in the order as and when
those events occur.

Error code 0x1538 denotes a Divide by zero error.

Let's make b equal 25 instead of 0

c now equals 4

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

62

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

This section describes the statements used to detect and manage those events.

WAITEVENT is used to wait for an event, at which point an event handler is called. The event handler must be a function
that takes no arguments and returns an INTEGER.

If the event handler returns a zero value, then the next statement after WAITEVENT is processed. Otherwise WAITEVENT
continues to wait for another event.

WAITEVENT

Interactive Command Yes

FUNCTION Func0()

 PRINT "\nEV0"

 ENDFUNC 1

 FUNCTION Func1()

 PRINT "\nEV1"

 ENDFUNC 0

 ONEVENT EV0 CALL Func0

 ONEVENT EV1 CALL Func1

 WAITEVENT //wait for an event to occur

 PRINT "\n Got here because EV1 happened"

WAITEVENT is a core function.

ONEVENT is used to redirect program flow to a predefined FUNCTION that can respond to a specific event when that event
occurs. This is commonly an external event, such as an I/O pin change or a received data packet, but can be a software
generated event too.

ONEVENT symbolic_name CALL routine
When a particular event is detected, program execution is
directed to the specified function.

ONEVENT symbolic_name DISABLE

A previously declared ONEVENT for an event is unbound from
the specified subroutine. This allows for complex applications
that need to optimise runtime processing by allowing an
alternative to using a SELECT statement.

Events are detected from within the run-time engine – in most cases via interrupts - and are only processed by an
application when a WAITEVENT statement is processed.

Until the WAITEVENT, all events are held in a queue.

Note: When WAITEVENT services an event handler, if the return value from that routine is non-zero, then it
continues to wait for more events. A zero value forces the next statement after WAITEVENT to be processed.

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

63

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Arguments

Routine The FUNCTION that is called when the event is detected. This must be a function which
returns an INTEGER and takes no parameters. It must not be a SUB routine. It must exist
within the application PRIOR to this ONEVENT command.

Symbolic_Name A symbolic event name which is predefined for a specific smartBASIC module.

Some Symbolic Event Names:

A partial list of symbolic event names are as follows:

EVTMRn Timer n has expired (see Timer Events)
EVUARTRX Data has arrived in UART interface
EVUARTTXEMPTY The UART TX ring buffer is empty

Note: Some symbolic names are specific to a particular hardware implementation.

Interactive
Command

No

Note: This example was written for the BL600 module so the signal numbers used in the GpioBindEvent() statements
may be different depending on your module.

//Example :: OnEvent.sb (See in BL600CodeSnippets)

 DIM rc

 FUNCTION Btn0press()

 PRINT "\nButton 0 has been pressed"

 ENDFUNC 1 //Will continue waiting for an event

 FUNCTION Btn0rel()

 PRINT "\nButton 0 released. Resume waiting for an event\n"

 ENDFUNC 1

 FUNCTION Btn1press()

 PRINT "\nButton 1 has been pressed"

 ENDFUNC 1

 FUNCTION Btn1rel()

 PRINT "\nButton 1 released. No more waiting for events\n"

 ENDFUNC 0

 rc = gpiobindevent(0,16,0) //binds gpio transition high on sio16 (button 0) to event 0

 rc = gpiobindevent(1,16,1) //binds gpio transition low on sio16 (button 0) to event 1

 rc = gpiobindevent(2,17,0) //binds gpio transition high on sio16 (button 1) to event 2

 rc = gpiobindevent(3,17,1) //binds gpio transition low on sio16 (button 2) to event 3

 onevent evgpiochan0 call Btn0rel //detects when button 0 is released and calls the function

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

64

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 onevent evgpiochan1 call Btn0press //detects when button 0 is pressed and calls the function

 onevent evgpiochan2 call Btn1rel //detects when button 1 is released and calls the function

 onevent evgpiochan3 call Btn1press //detects when button 1 is pressed and calls the function

 PRINT "\nWaiting for an event...\n"

 WAITEVENT //wait for an event to occur

 PRINT "\nGot here because evgpiochan2 happened"

Expected Output:

ONEVENT is a core function.

The PRINT statement directs output to an output channel which may be the result of multiple comma or semicolon
separated arithmetic or string expressions. The output channel is a UART interface on most platforms.

PRINT exprlist

Arguments

exprlist An expression list which defines the data to be printed consisting of comma or semicolon
separated arithmetic or string expressions.

Interactive
Command

Yes

Formatting with PRINT – Expression Lists

Expression lists are used for outputting data – principally with the PRINT and the SPRINT command. Two types of Expression
lists are allowed – arithmetic and string. Multiple valid Expression lists may be concatenated with a comma or a semicolon
to form a complex Expression list.

The use of a comma forces a TAB character between the Expression lists it separates and a semicolon generates no output.
The latter results in the output of two expressions being concatenated without any white space.

Numeric Expression Lists

Waiting for an event...

Button 0 has been pressed

Button 0 released. Resume waiting for an event

Button 1 has been pressed

Button 1 released. No more waiting for events

Got here because evgpiochan3 happened

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

65

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Numeric variables are formatted in the following form:

<type.base> arithexpr <separator>

Where,

▪ Type – Must be INTEGER or FLOAT for simple variables

▪ base – Integers can be forced to print in decimal, octal, binary, or hexadecimal by prefixing with D’, O’, B’, or H’
respectively. Floats can be forced to print in NN.DD or NN.DD eEE format using the .F’ and .E’ respectively.
For example, INTEGER.h’ somevar results in the content of somevar being output as a hexadecimal string and
FLOAT.F’ somevar results in output that is format nnnn.dddd

▪ Arithexpr – A valid arithmetic or logical expression.

▪ Separator – One of the characters , or ; which have the following meaning:

, Insert a tab before the next variable.

; Print the next variable without a space.

String Expression Lists

String variables are formatted in the following form:

<type . minchar> strexpr< separator>

▪ Type – Must be STRING for string variables. The type must be followed by a full stop to delineate it from the width
field that follows.

▪ Minchar – An optional parameter which specifies the number of characters to be printed for a string variable or
expression. If necessary, leading spaces are filled with spaces.

▪ strexpr – A valid string or string expression.

▪ Separator – One of the characters , or ; which have the following meaning:

, Insert a tab before the next variable.

; Print the next variable without a space.

//Example :: Print.sb (See in Firmware Zip file)

 PRINT "Hello \n"

 DIM a

DIM f as FLOAT

 a=100 : f=12.34

PRINT "\nF as float "; FLOAT.E' f ;"\n"

 PRINT a

 PRINT "\nIn Hex", "0x"; INTEGER.H' a ;"\n"

 PRINT "In Octal ", INTEGER.O' a ;"\n"

 PRINT "In Binary ", INTEGER.B' a ;"\n"

Expected Output:

Hello

F as float 1.234e+01

100

In Hex 0x00000064

In Octal 00000000144

In Binary 000000000000000000000000001100100

PRINT is a core function.

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

66

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

The SPRINT statement directs output to a string variable, which may be the result of multiple comma or semicolon
separated arithmetic or string expressions.

It is very useful for creating strings with formatted data.

SPRINT #stringvar, exprlist

Arguments

Stringvar A pre-declared string variable.

Exprlist An expression list which defines the data to be printed; consisting of comma or semicolon
separated arithmetic or string expressions.

Interactive
Command

Yes

Formatting with SPRINT – Expression Lists

Expression lists are used for outputting data – principally with the PRINT command and the SPRINT command. Two types of
Expression lists are allowed – arithmetic and string. Multiple valid Expression lists may be concatenated with a comma or a
semicolon to form a complex Expression list.

The use of a comma forces a TAB character between the Expression lists it separates and a semicolon generates no output.
The latter results in the output of two expressions being concatenated without any whitespace.

Numeric Expression Lists

This is exactly as per the PRINT statement described in the previous section.

//Example :: SPrint.sb (See in Firmware Zip file)

 DIM a,s$: a=100

 //Note: SPRINT replaces the content of s$ with exprlist each time it is used

 SPRINT #s$,a //s$ now contains 100

 PRINT "\n";s$;"\n"

 SPRINT #s$,INTEGER.H'a //s$ now contains 64

 PRINT s$;"\n"

 SPRINT #s$,INTEGER.O'a //s$ now contains 144

 PRINT s$;"\n"

 SPRINT #s$,INTEGER.B'a //s$ now contains 1100100

 PRINT s$;"\n"

Expected Output:

SPRINT is a core function.

100

00000064

00000000144

00000000000000000000000001100100

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

67

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

STOP is used within an application to stop it running so that the device falls back into Interactive Command line mode.

STOP

It is normally limited to use in the prototyping and debugging phases.

Once in Interactive Mode, the command RESUME is used to restart the application from the next statement after the STOP
statement.

Interactive Command No

//Example :: Stop.sb (See in Firmware Zip file)

 DIM a, s$

 a=100

 //Note: SPRINT replaces the content of s$ with exprlist each time it is used

 SPRINT #s$,a //s$ now contains 100

 PRINT "\n";s$;"\n"

 SPRINT #s$,INTEGER.H'a //s$ now contains 64

 STOP

 PRINT s$;"\n"

 SPRINT #s$,INTEGER.O'a //s$ now contains 144

 PRINT s$;"\n"

 SPRINT #s$,INTEGER.B'a //s$ now contains 1100100

 PRINT s$;"\n"

Expected Output:

STOP is a core function.

100

01 0702

resume

00000064

00000000144

00000000000000000000000001100100

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

68

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

COMMAND

The BP (Breakpoint) statement is used to place a BREAKPOINT in the body of an application. The integer constant that is
associated with each breakpoint is a developer supplied identifier which gets echoed to the standard output when that
breakpoint is encountered. This allows the application developer to locate which breakpoint resulted in the output.
Execution of the application is then paused and operation passed back to Interactive mode.

BP nnnn

After execution is returned to Interactive mode, either RESUME can be used to continue execution or the Interactive mode
command SO can be used to step through the next statements.

Note: The next state is the BP statement itself, hence multiple SO commands may need to be issued.

Arguments

nnnn A constant integer identifier for each breakpoint in the range 0 to 65535. The integers should
normally be unique to allow the breakpoint to be determined, but this is the responsibility of
the programmer. There is no limit to the number of breakpoints that can be inserted into an
application other than ensuring that the maximum size of the compiled code does not exceed
the 64K word limit.

Interactive
Command

No

Note: It is helpful to make the integer identifiers relevant to the program structure to help the debugging process. A
useful tip is to set them to the program line.

//Example :: BP.sb (See in Firmware Zip file)

 PRINT "hello"

 BP 1234

 PRINT "world"

 PRINT "Laird"

 PRINT "Rocks"

 BP 5678

 PRINT "the"

 PRINT "world"

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

69

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Expected Output (Depending on what order you use the commands SO and RESUME):

BP is a core function.

Core Language built-in routines are present in every implementation of smartBASIC. These routines provide the basic
programming functionality. They are augmented with target specific routines for different platforms which are described in
the extension manual for the target platform.

Some of these built-in routines are subroutines, and some are functions. Functions always return a value, and for some of
these functions the value returned is a result code, indicating success or failure in executing that function. A failure may not
necessarily result in a run-time error (see GetLastError() and ResetLastError()), but may lead to an unexpected output.

Being able to see what causes a failure greatly helps with the debugging process. If you declare an integer variable rc (for
example) and set its value to your function call, after the function is executed, you can print rc and see the result code. For
it to be useful, it must be in Hexadecimal form, so prefix your result code variable with INTEGER.H’ when printing it. You
can also save a bit of memory by printing the return value from the function directly, without the use of a variable.

//Example :: ResultCodes.sb (See in Firmware Zip file)

 DIM cB,nItems,rc,s$

 rc=CircBufItems(cB,nItems)

 PRINT INTEGER.H'rc

 PRINT "\n"; //New line

 //Printing return value directly

 PRINT INTEGER.H'CircBufItems(cB,nItems)

 //To remove the leading zeros

hello

21 BREAKPOINT 1234

resume

worldLairdRocks

21 BREAKPOINT 5678

so

the

21 BREAKPOINT 5678

so

world

21 BREAKPOINT 5678

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

70

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 SPRINT #s$, INTEGER.H'CircBufItems(cB,nItems)

 StrShiftLeft(s$,4) : PRINT s$

Now highlight the last four characters of the result code in UwTerminal and select Lookup Selected ErrorCode.

Expected Output:

FUNCTION

GETLASTERROR is used to find the value of the most recent error and is most useful in an error handler associated with
ONERROR and ONFATALERROR statements which were described in the previous section.

You can get a verbose error description by printing the error value, then highlighting it in UwTerminal, and selecting
‘Lookup Selected ErrorCode’.

GETLASTERROR ()

Returns INTEGER Last error that was generated.

Exceptions ▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments None

Interactive
Command

No

//Example :: GetLastError.sb (See in Firmware Zip file)

 DIM err

 err = GETLASTERROR()

 PRINT "\nerror = 0x" ; INTEGER.H'err

Expected Output (If no errors from last application run):

//smartBASIC Error Code: 073D -> "RUN_INV_CIRCBUF_HANDLE"

error = 0x00000000

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

71

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

GETLASTERROR is a core function.

SUBROUTINE

Resets the last error, so that calling GETLASTERROR() returns a success.

RESETLASTERROR ()

Exceptions
▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments None

Interactive
Command

No

//Example :: ResetLastError.sb (See in Firmware Zip file)

 DIM err : err = GETLASTERROR()

 RESETLASTERROR()

 PRINT "\nerror = 0x" ; INTEGER.H'err

Expected Result:

RESETLASTERROR is a core function.

FUNCTION

Returns an informational integer value depending on the value of varId argument.

SYSINFO(varId)

Returns INTEGER. Value of information corresponding to integer ID requested.

Exceptions ▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments:

varId byVal varId AS INTEGER

An integer ID which is used to determine which information is to be returned as described
below.

0 ID of device, for the BL600 module the value is 0x42460600. Each platform type has
a unique identifier

3 Version number of Module Firmware. For example, W.X.Y.Z is returned as a 32-bit
value made up of the following:
 (W<<26) + (X<<20) + (Y<<6) + (Z)
 where Y is the Build number and Z is the Sub-Build number

33 BASIC core version number

601 Flash File System: Data Segment: Total Space

602 Flash File System: Data Segment: Free Space

error = 0x00000000

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

72

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

603 Flash File System: Data Segment: Deleted Space

611 Flash File System: FAT Segment: Total Space

612 Flash File System: FAT Segment: Free Space

613 Flash File System: FAT Segment: Deleted Space

631 NvRecord Memory Store Segment: Total Space

632 NvRecord Memory Store Segment: Free Space

633 NvRecord Memory Store Segment: Deleted Space

641 Config Keys Store Segment: Total Space

642 Config Keys Store Segment: Free Space

643 Config Keys Store Segment: Deleted Space

1000 BASIC compiler HASH value as a 32-bit decimal value

1001 How RAND() generates values: 0 for PRNG and 1 for hardware assist

1002 Minimum baudrate

1003 Maximum baudrate

1004 Maximum STRING size

1005 1 for run-time only implementation, 3 for compiler included

2000 Reset reason:

8 – Self-reset due to Flash Erase
9 – ATZ
10 – Self-reset due to smartBASIC app invoking function RESET()

2002 Timer resolution in microseconds

2003 Number of timers available in a smartBASIC application

2004 Tick timer resolution in microseconds

Interactive
Command

No

 //Example :: SysInfo.sb (See in Firmware Zip file)

 PRINT "\nSysInfo 1000 = ";SYSINFO(1000) // BASIC compiler HASH value

 PRINT "\nSysInfo 2003 = ";SYSINFO(2003) // Number of timers

 PRINT "\nSysInfo 0x8010 = ";SYSINFO(0x8010) // Code memory page size from FICR

Expected Output (For BL600):

SYSINFO is a core language function.

FUNCTION

Returns an informational string value depending on the value of varId argument.

SysInfo 1000 = 1315489536

SysInfo 2003 = 8

SysInfo 0x8010 = 1024

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

73

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

SYSINFO$(varId)

Returns STRING. Value of information corresponding to integer ID requested.

Exceptions ▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments:

varId byVal varId AS INTEGER

An integer ID which is used to determine which information is to be returned as described below.

4 The Bluetooth address of the module. It is seven bytes long. First byte is 00 for IEEE public
address and 01 for random public address. Next six bytes are the address.

14 A random public address unique to this module. May be the same value as in 4 above unless
AT+MAC was used to set an IEEE mac address. It is seven bytes long. First byte is 00 for IEEE
public address and 01 for random public address. Next six bytes are the address.

Interactive
Command

No

//Example :: SysInfo$.sb (See in Firmware Zip file)

 PRINT "\nSysInfo$(4) = ";SYSINFO$(4) // address of module

 PRINT "\nSysInfo$(14) = ";SYSINFO$(14) // public random address

 PRINT "\nSysInfo$(0) = ";SYSINFO$(0)

Expected Output:

SYSINFO$ is a core language function.

FUNCTION

This function is used to send an EVMSGAPP message to your application so that it can be processed by a handler from the
WAITEVENT framework. It is useful for serialized processing.

For messages to be processed, the following statement must be processed so that a handler is associated with the message.

ONEVENT EVMSGAPP CALL HandlerMsgApp

Where a handler such as the following has been defined prior to the ONEVENT statement as follows:

FUNCTION HandlerMsgApp(BYVAL nMsgId AS INTEGER, BYVAL nMsgCtx AS INTEGER) AS INTEGER

 //do something with nMsgId and nMsgCtx

 ENDFUNC 1

SysInfo$(4) = \01\FA\84\D7H\D9\03

SysInfo$(14) = \01\FA\84\D7H\D9\03

SysInfo$(0) =

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

74

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

SENDMSGAPP(msgId, msgCtx)

Returns INTEGER 0000 if successfully sent.

Exceptions ▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments:

msgId byVal msgId AS INTEGER

Presented to the EVMSGAPP handler in the msgId field

msgCtx byVal msgCtx AS INTEGER

Presented to the EVMSGAPP handler in the msgCtx field.

Interactive
Command

No

//Example :: SendMsgApp.sb (See in Firmware Zip file)

 DIM rc

 FUNCTION HandlerMsgApp(BYVAL nMsgId AS INTEGER, BYVAL nMsgCtx AS INTEGER) AS INTEGER

 PRINT "\nId=";nMsgId;" Ctx=";nMsgCtx

 ENDFUNC 1

 ONEVENT EVMSGAPP CALL HandlerMsgApp

 rc = SendMsgApp(100,200)

 WAITEVENT

Expected Output:

SENDMSGAPP is a core function.

FUNCTION

Returns the absolute value of its INTEGER argument.

ABS (var)

Returns INTEGER Absolute value of var.

Exceptions ▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

▪ If the value of var is 0x80000000 (decimal -2,147,483,648) then an

exception is thrown as the absolute value for that value causes an

overflow as 33 bits are required to convey the value.

Id=100 Ctx=200

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

75

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Arguments:

var byVal var AS INTEGER

The variable whose absolute value is required.

Interactive
Command

No

//Example :: ABS.sb (See in Firmware Zip file)

 DIM s1 as INTEGER,s2 as INTEGER

 s1 = -2 : s2 = 4

 PRINT s1, ABS(s1);"\n";s2, Abs(s2)

Expected Output:

ABS is a core language function.

FUNCTION

Returns the maximum of two integer values.

MAX (var1, var2)

Returns INTEGER The returned variable is the arithmetically larger of var1 and var2.

Exceptions
▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments:

var1
byVal var1 AS INTEGER

The first of two variables to be compared.

var2
byVal var2 AS INTEGER

The second of two variables to be compared.

Interactive
Command

No

//Example :: MAX.sb (See in Firmware Zip file)

 DIM s1,s2

 s1=-2 : s2=4

 PRINT s1,s2

 PRINT "\n The Maximum of these two integers is "; MAX(s1,s2)

Expected Output:

-2 2

4 4

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

76

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

MAX is a core language function.

FUNCTION

Returns the minimum of two integer values.

MIN (var1, var2)

Returns INTEGER The returned variable is the arithmetically smaller of var1 and var2.

Exceptions
▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments:

var1
byVal var1 AS INTEGER

The first of two variables to be compared.

var2
byVal var2 AS INTEGER

The second of two variables to be compared.

Interactive
Command

No

//Example :: MIN.sb (See in Firmware Zip file)

 DIM s1,s2

 s1=-2 : s2=4

 PRINT s1,s2

 PRINT "\nThe Minimum of these two integers is "; MIN(s1,s2)

Expected Output:

MIN is a core language function.

The underlying core functionality is derived from the library exposed by math.h in C and as such the outputs for each of
these functions can be seen by accessing, for example https://www.tutorialspoint.com/c_standard_library/math_h.htm

Note: FLOAT capability is an optional feature. Many Laird platforms may expose version 3 or newer capability, but
may not have FLOAT because the need for extra code memory prevents it from being added to the build.

FUNCTION

Returns the arc cosine of X

-2 4

The Maximum of these two integers is -2

-2 4

The Maximum of these two integers is 4

http://www.i2c-bus.org/i2c-primer/

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

77

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

ACOS(X)

Returns FLOAT

Exceptions ▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments:

X byVal X AS FLOAT

Interactive
Command

No

ACOS is a core language function.

FUNCTION

Returns the inverse hyperbolic cosine of X

ACOSH(X)

Returns FLOAT

Exceptions ▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments:

X byVal X AS FLOAT

Interactive
Command

No

ACOSH is a core language function.

FUNCTION

Returns the arc sine of X

ASIN(X)

Returns FLOAT

Exceptions ▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments:

X byVal X AS FLOAT

Interactive
Command

No

ASIN is a core language function.

FUNCTION

Returns the inverse hyperbolic sine of X

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

78

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

ASINH(X)

Returns FLOAT

Exceptions ▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments:

X byVal X AS FLOAT

Interactive
Command

No

ASINH is a core language function.

FUNCTION

Returns the arc tan of X

ATAN(X)

Returns FLOAT

Exceptions ▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments:

X byVal X AS FLOAT

Interactive
Command

No

ATAN is a core language function.

FUNCTION

Returns the inverse hyperbolic tan of X

ATANH(X)

Returns FLOAT

Exceptions ▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments:

X byVal X AS FLOAT

Interactive
Command

No

ATANH is a core language function.

FUNCTION

Returns the smallest integer value greater than or equal to X

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

79

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

CEIL(X)

Returns FLOAT

Exceptions ▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments:

X byVal X AS FLOAT

Interactive
Command

No

CEIL is a core language function.

FUNCTION

Returns the cosine of X in radians

COS(X)

Returns FLOAT

Exceptions ▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments:

X byVal X AS FLOAT

Interactive
Command

No

COS is a core language function.

FUNCTION

Returns the hyperbolic cosine of X

COSH(X)

Returns FLOAT

Exceptions ▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments:

X byVal X AS FLOAT

Interactive
Command

No

COSH is a core language function.

FUNCTION

Returns the value of ‘e’ (2.71828) raised to the power of X.

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

80

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Note: If you want the value of e in a variable, set it to EXP(1.0)

EXP (X)

Returns FLOAT

Exceptions ▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments:

X byVal X AS FLOAT

Interactive
Command

No

EXP is a core language function.

FUNCTION

Returns the absolute value of its FLOAT argument.

FABS (X)

Returns FLOAT

Exceptions ▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments:

X byVal X AS FLOAT

Interactive
Command

No

FABS is a core language function.

FUNCTION

Returns the largest integer value less than or equal to X

FLOOR(X)

Returns FLOAT

Exceptions ▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments:

X byVal X AS FLOAT

Interactive
Command

No

FLOOR is a core language function.

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

81

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

FUNCTION

Returns the remainder of X divided by Y

FMOD(X,Y)

Returns FLOAT

Exceptions ▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments:

X byVal X AS FLOAT

Y byVal Y AS FLOAT

Interactive
Command

No

FMOD is a core language function.

FUNCTION

Returns !0 if X is a finite number that can be stored in a float type. Note that return value is of INTEGER type.

ISFINITE(X)

Returns INTEGER

Exceptions ▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments:

X byVal X AS FLOAT

Interactive
Command

No

ISFINITE is a core language function.

FUNCTION

Returns !0 if X is an infinite number that can be stored in a float type. Note that return value is of INTEGER type.

ISINF(X)

Returns INTEGER

Exceptions ▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments:

X byVal X AS FLOAT

Interactive
Command

No

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

82

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

ISINF is a core language function.

FUNCTION

Returns !0 if X is NaN (Not a Number). Note that return value is of INTEGER type.

ISNAN(X)

Returns INTEGER

Exceptions ▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments:

X byVal X AS FLOAT

Interactive
Command

No

ISNAN is a core language function.

FUNCTION

Returns the natural logarithm (base-e logarithm) of X

LOG(X)

Returns FLOAT

Exceptions ▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments:

X byVal X AS FLOAT

Interactive
Command

No

LOG is a core language function.

FUNCTION

Returns the logarithm (base-10 logarithm) of X

LOG10(X)

Returns FLOAT

Exceptions ▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments:

X byVal X AS FLOAT

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

83

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Interactive
Command

No

LOG10 is a core language function.

FUNCTION

Returns the value of PI (3.14…..)

PI()

Returns FLOAT

Exceptions ▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments: None

Interactive
Command

No

PI is a core language function.

FUNCTION

Returns X raised to the power of Y

POW(X,Y)

Returns FLOAT

Exceptions ▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments:

X byVal X AS FLOAT

Y byVal Y AS FLOAT

Interactive
Command

No

POW is a core language function.

FUNCTION

Returns the nearest whole number to X. If decimal value is from .0 to .5, it returns integer value less than the
argument.

If decimal value is from >0.5 to <(X+1).0, it returns the integer value greater than the argument.

ROUND(X)

Returns FLOAT

Exceptions ▪ Local Stack Frame Underflow

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

84

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

▪ Local Stack Frame Overflow

Arguments:

X byVal X AS FLOAT

Interactive
Command

No

ROUND is a core language function.

FUNCTION

Returns the sine of X in radians

SIN(X)

Returns FLOAT

Exceptions ▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments:

X byVal X AS FLOAT

Interactive
Command

No

SIN is a core language function.

FUNCTION

Returns the hyperbolic sine of X

SINH(X)

Returns FLOAT

Exceptions ▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments:

X byVal X AS FLOAT

Interactive
Command

No

SINH is a core language function.

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

85

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

FUNCTION

Returns the square root of X

SQRT(X)

Returns FLOAT

Exceptions ▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments:

X byVal X AS FLOAT

Interactive
Command

No

SQRT is a core language function.

FUNCTION

Returns the tan of X in radians

TAN(X)

Returns FLOAT

Exceptions ▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments:

X byVal X AS FLOAT

Interactive
Command

No

TAN is a core language function.

FUNCTION

Returns the hyperbolic tan of X

TANH(X)

Returns FLOAT

Exceptions ▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments:

X byVal X AS FLOAT

Interactive
Command

No

TANH is a core language function.

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

86

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

When data is displayed to a user or a collection of octets need to be managed as a set, it is useful to represent them as
strings. For example, in BLE modules there is a concept of a database of ‘attributes’ which are just a collection of octets of
data up to 512 bytes in length.

To provide the ability to deal with strings, smartBASIC contains several commands that can operate on STRING variables.

Function

Retrieves the leftmost n characters of a string.

LEFT$(string,length)

Returns STRING The leftmost ‘length’ characters of string as a STRING object.

Exceptions

▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

▪ Memory Heap Exhausted

Arguments:

string
byRef string AS STRING

The target string which cannot be a const string.

length
byVal length AS INTEGER

The number of leftmost characters that are returned.

Interactive
Command

No

If ‘length’ is larger than the actual length of string then the entire string is returned

Notes: string cannot be a string constant (e.g. “the cat”); it must be a string variable. If you must use a const string, first
save it to a temp string variable and then pass it to the function.

//Example :: LEFT$.sb (See in Firmware Zip file)

 DIM newstring$

 DIM s$

 s$="Arsenic"

 newstring$ = LEFT$(s$,2)

 print newstring$; "\n"

Expected Output:

LEFT$ is a core language function.

FUNCTION

Ar

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

87

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Retrieves a string of characters from an existing string. The starting position of the extracted characters and the length of
the string are supplied as arguments.

If ‘pos’ is positive, then the extracted string starts from offset ‘pos’. If it is negative, then the extracted string starts from
offset ‘length of string – abs(pos)’

MID$(string, pos, length)

Returns STRING The ‘length’ characters starting at offset ‘pos’ of string.

Exceptions

▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

▪ Memory Heap Exhausted

Arguments:

string byRef string AS STRING

The target string which cannot be a const string.

pos byVal pos AS INTEGER

The position of the first character to be extracted. The leftmost character position is 0 (see
examples).

length byVal length AS INTEGER

The number of characters that are returned

Interactive
Command

NO

If ‘length’ is larger than the actual length of string, then the entire string is returned from the position specified. Hence
pos=0, length=65535 returns a copy of string.

Note: string cannot be a string constant (e.g. “the cat”); it must be a string variable. If you must use a const string, first
save it to a temp string variable and then pass it to the function.

Interactive Command: NO

//Example :: MID.sb (See in Firmware Zip file)

DIM s$: s$="Arsenic"

DIM new$: new$ = MID$(s$,2,4)

PRINT new$; "\n"

Expected Output:

MID$ is a core language function.

FUNCTION

Retrieves the rightmost n characters from a string.

RIGHT$(string, len)

Returns STRING The rightmost segment of length len from string.

seni

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

88

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Exceptions

▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

▪ Memory Heap Exhausted

Arguments:

string
byRef string AS STRING

The target string which cannot be a const string.

length
byVal length AS INTEGER

The rightmost number of characters that are returned.

Interactive
Command

NO

Note: string cannot be a string constant (e.g. “the cat”); it must be a string variable. If you must use a const string,
first save it to a temp string variable and then pass it to the function.

If ‘length’ is larger than the actual length of string, then the entire string is returned.

//Example :: RIGHT$.sb (See in Firmware Zip file)

 DIM s$: s$="Parse"

 DIM new$: new$ = RIGHT$(s$,3)

 PRINT new$; "\n"

Expected Output:

RIGHT$ is a core function.

FUNCTION

STRLEN returns the number of characters within a string.

STRLEN (string)

Returns INTEGER The number of characters within the string.

Exceptions
▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments:

string
byRef string AS STRING

The target string which cannot be a const string.

Interactive
Command

NO

//Example :: StrLen$.sb (See in Firmware Zip file)

 DIM s$: s$="HelloWorld"

rse

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

89

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 PRINT "\n";s$;" is ";StrLen(S$);" bytes long"

Expected Output:

STRLEN is a core function.

FUNCTION

STRPOS is used to determine the position of the first instance of a string within another string. If the string is not found
within the target string a value of -1 is returned.

STRPOS (string1, string2, startpos)

Returns

INTEGER Zero indexed position of string2 within string1.

>=0 If string2 is found within string1 and specifies the location where found
-1 If string2 is not found within string1

Exceptions
▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments:

string1
byRef string AS STRING

The target string in which string2 is to be searched for.

string2
byRef string AS STRING

The string that is being searched for within string1. This may be a single character string.

startpos
byVAL startpos AS INTEGER

Where to start the position search.

Interactive
Command

NO

Note: STRPOS does a case sensitive search.

Note: string1and string2 cannot be a string constant (e.g. “the cat”); it must be a string variable. If you must use a
const string, first save it to a temp string variable and then pass it to the function.

//Example :: StrPos.sb (See in Firmware Zip file)

 DIM s1$,s2$

 s1$="Are you there"

 s2$="there"

 PRINT "\nIn '";S1$;"' the word '";S2$;"' occurs at position ";StrPos(S1$,S2$,0)

Expected Output:

HelloWorld is 10 bytes long

In 'Are you there' the word 'there' occurs at position 8

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

90

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

STRPOS is a core function.

FUNCTION

STRSETCHR allows a single character within a string to be replaced by a specified value. STRSETCHR can also be used to
append characters to an existing string by filling it up to a defined index.

If the nIndex is larger than the existing string, then it is extended.

The use of STRSETCHR and STRGETCHR, in conjunction with a string variable allows an array of bytes to be created and
manipulated.

STRSETCHR (string, nChr, nIndex)

Returns

INTEGER Represents command execution status.

0 If the block is successfully updated

-1 If nChr is greater than 255 or less than 0

-2 If the string length cannot be extended to accommodate nIndex

-3 If the resultant string is longer than allowed.

Exceptions

▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

▪ Memory Heap Exhausted

Arguments:

string
byRef string AS STRING

The target string.

nChr

byVal nCHr AS INTEGER

The character that overwrites the existing characters. nChr must be within the
range 0 and 255.

nindex

byVal nIndex AS INTEGER

The position in the string of the character that is overwritten, referenced to a zero
index.

Interactive
Command

NO

Note: string cannot be a string constant (e.g. “the cat”); it must be a string variable. If you must use a const string, first
save it to a temp string variable and then pass it to the function.

//Example :: StrSetChar.sb (See in Firmware Zip file)

 DIM s$: s$="Hello"

 PRINT StrSetChr(s$,64,0) //64 is the ASCII decimal code for the char '@'

 PRINT StrSetChr(s$,64,8) //s$ will be extended

 PRINT "\n";s$

Expected Output:

000

@ello@@@@

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

91

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

STRSETCHR is a core function.

FUNCTION

STRGETCHR is used to return the single character at position nIndex within an existing string.

STRGETCHR (string, nIndex)

Returns
INTEGER The ASCII value of the character at position nIndex within string, where nIndex is zero
based. If nIndex is greater than the number of characters in the string or <0 then an error value
of -1 is returned.

Exceptions
▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments:

string
byRef string AS STRING

The string from which the character is to be extracted.

nindex
byVal nIndex AS INTEGER

The position of the character within the string (zero based – see example).

Interactive
Command

NO

Note: string cannot be a string constant (e.g. “the cat”); it must be a string variable. If you must use a const string, first
save it to a temp string variable and then pass it to the function.

//Example :: StrGetChar.sb (See in Firmware Zip file)

 DIM s$: s$="Hello"

 PRINT s$;"\n"

 PRINT StrGetChr(s$,0), "-> ASCII value for 'H' \n"

 PRINT StrGetChr(s$,1), "-> ASCII value for'e' \n"

 PRINT StrGetChr(s$,-100), "-> error \n"

 PRINT StrGetChr(s$,6), "-> error \n"

Expected Output:

STRGETCHR is a core function.

FUNCTION

Hello

72 -> ASCII value for 'H'

101 -> ASCII value for'e'

-1 -> error

-1 -> error

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

92

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

STRSETBLOCK allows a specified number of characters within a string to be filled or overwritten with a single character. The
fill character, starting position and the length of the block are specified.

STRSETBLOCK (string, nChr, nIndex, nBlocklen)

Returns

INTEGER Represents command execution status.

0 If the block is successfully updated

-1 If nChr is greater than 255

-2 If the string length cannot be extended to accommodate nBlocklen

-3 If the resultant string is longer than allowed

-4 If nChr is greater than 255 or less than 0

-5 if the nBlockLen value is negative

Exceptions
▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments:

string
byRef string AS STRING

The target string to be modified

nChr

byVal nChr AS INTEGER

The character that overwrites the existing characters.

nChr must be within the range 0 – 255

nindex
byVal nIndex AS INTEGER

The starting point for the filling block, referenced to a zero index.

nBlocklen
byVal nBlocklen AS INTEGER

The number of characters to be overwritten

Interactive
Command

NO

Note: string cannot be a string constant (e.g. “the cat”); it must be a string variable. If you must use a const string, first
save it to a temp string variable and then pass it to the function.

//Example :: StrSetBlock.sb (See in Firmware Zip file)

 DIM s$: s$="HelloWorld"

 PRINT s$;"\n"

 PRINT StrSetBlock(s$,64,4,2) : PRINT "\n";s$;"\n"

 PRINT StrSetBlock(s$,300,4,200) : PRINT "\n";s$

Expected Output:

STRSETBLOCK is a core function.

HelloWorld

0

Hell@@orld

-4

Hell@@orld

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

93

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

FUNCTION

STRFILL is used to erase a string and then fill it with a number of identical characters.

STRFILL (string, nChr, nCount)

Returns

INTEGER Represents command execution status.

 0 If successful
-1 If nChr is greater than 255 or less than 0
-2 If the string length cannot be extended due to lack of memory
-3 If the resultant string is longer than allowed or nCount is <0.

STRING

string contains the modified string

Exceptions

▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

▪ Memory Heap Exhausted

Arguments:

string
byRef string AS STRING

The target string to be filled

nChr

byVal nChr AS INTEGER

ASCII value of the character to be inserted. The value of nChr should be between 0 and 255
inclusive.

nCount
byVal nCount AS INTEGER

The number of occurrences of nChr to be added.

Interactive
Command

NO

The total number of characters in the resulting string must be less than the maximum allowable string length for that
platform.

Note: string cannot be a string constant (e.g. “the cat”); it must be a string variable. If you must use a const string, first
save it to a temp string variable and then pass it to the function.

//Example :: StrFill.sb (See in Firmware Zip file)

 DIM s$: s$="hello"

 PRINT s$;"\n"

 PRINT StrFill(s$,64,7);"\n"

 PRINT s$;"\n"

 PRINT StrFill(s$,-23,7)

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

94

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Expected Output:

STRFILL is a core function.

SUBROUTINE

STRSHIFTLEFT shifts the characters of a string to the left by a specified number of characters and drops the leftmost
characters. It is a useful subroutine to have when managing a stream of incoming data, as for example, a UART, I2C or SPI
and a string variable is used as a cache and the oldest N characters need to be dropped.

STRSHIFTLEFT (string, numChars)

Exceptions
▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments:

string
byRef string AS STRING

The string to be shifted left.

numChrs

byVal numChrs AS INTEGER

The number of characters that the string is shifted to the left.

If numChrs is greater than the length of the string, then the returned string is empty.

Interactive
Command

NO

Note: string cannot be a string constant (e.g. “the cat”); it must be a string variable. If you must use a const string, first
save it to a temp string variable and then pass it to the function.

//Example :: StrShiftLeft.sb (See in Firmware Zip file)

 DIM s$: s$="123456789"

 PRINT s$;"\n"

 StrShiftLeft(s$,4) //drop leftmost 4 characters

 PRINT s$

Expected Output:

STRSHIFTLEFT is a core function.

FUNCTION

Compares two string variables.

hello

7

@@@@@@@

-1

123456789

56789

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

95

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

STRCMP(string1, string2)

Returns

INTEGER A value indicating the comparison result:

0 – if string1 exactly matches string2 (the comparison is case sensitive)

1 – if the ASCII value of string1 is greater than string2

-1 - if the ASCII value of string1 is less than string2

Exceptions
▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments:

string1
byRef string1 AS STRING

The first string to be compared.

string2
byRef string2 AS STRING

The second string to be compared.

Interactive
Command

NO

Note: string1and string2 cannot be a string constant (e.g. “the cat”); they must be a string variable. If you must use a
const string, first save it to a temp string variable and then pass it to the function.

//Example :: StrCmp.sb (See in Firmware Zip file)

 DIM s1$,s2$

 s1$="hello"

 s2$="world"

 PRINT StrCmp(s1$,s2$);"\n"

 PRINT StrCmp(s2$,s1$);"\n"

 PRINT StrCmp(s1$,s1$);"\n"

Expected Output:

STRCMP is a core function.

FUNCTION

This function is used to convert a string variable into a string which contains all the bytes in the input string converted to 2
hex characters. It therefore results in a string which is exactly double the length of the original string.

STRHEXIZE$ (string)

Returns
STRING A printable version of string which contains only hexadecimal characters and exactly
double the length of the input string.

Exceptions
▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

-1

1

0

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

96

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

▪ Memory Heap Exhausted

Arguments:

String
byRef string AS STRING

The string to be converted into hex characters.

Interactive
Command

NO

Note: string cannot be a string constant (e.g. “the cat”); it must be a string variable. If you must use

a const string, first save it to a temp string variable and then pass it to the function.

Associated Commands: STRHEX2BIN

//Example :: StrHexize$.sb (See in Firmware Zip file)

 DIM s$,t$

 s$="Laird"

 PRINT s$;"\n"

 t$=StrHexize$(s$)

 PRINT StrLen(s$);"\n"

 PRINT t$;"\n"

 PRINT StrLen(t$);"\n"

Expected Output:

STRHEXIZE$ is a core function.

FUNCTION

STRDEHEXISE$ is used to convert a string consisting of hex digits to a binary form. The conversion stops at the first non-hex
digit character encountered.

STRDEHEXIZE$ (string)

Returns STRING A de-hexed version of string

Exceptions
▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments:

string
byRef string AS STRING

The string to be converted in-situ.

Interactive
Command

NO

Laird

5

4C61697264

10

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

97

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

If a parsing error occurs, a nonfatal error is generated which must be handled or the application aborts.

Note: string cannot be a string constant (e.g. “the cat”); it must be a string variable. If you must use a const string, first
save it to a temp string variable and then pass it to the function.

//Example :: StrDehexize$.sb (See in Firmware Zip file)

 DIM s$: s$="40414243"

 PRINT "\nHex data: ";s$

 PRINT "\nDehexized: "; StrDehexize$(s$)

 //Will stop at first non hex digit 'h'

 s$="4041hello4243"

 PRINT "\n";s$;" Dehexized: "; StrDehexize$(s$)

Expected Output:

STRDEHEXIZE$ is a core function.

FUNCTION

STRVALDEC converts a string of decimal numbers into the corresponding INTEGER signed value. All leading whitespaces are
ignored and then conversion stops at the first non-digit character.

STRVALDEC (string)

FUNCTION

Returns INTEGER Represents the decimal value that was contained within string.

Exceptions
▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments:

string
byRef string AS STRING

The target string

Interactive
Command

NO

If STRVALDEC encounters a non-numeric character within the string it returns the value of the digits encountered before
the non-decimal character.

Any leading whitespace within the string is ignored.

Hex data: 40414243

Dehexized: @ABC

4041hello4243 Dehexized: @A

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

98

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Note: string cannot be a string constant (e.g. “the cat”); it must be a string variable. If you must use a const string, first
save it to a temp string variable and then pass it to the function.

//Example :: StrValDec.sb (See in Firmware Zip file)

 DIM s$

 s$=" 1234"

 PRINT "\n";StrValDec(s$)

 s$=" -1234"

 PRINT "\n";StrValDec(s$)

 s$=" +1234"

 PRINT "\n";StrValDec(s$)

 s$=" 2345hello"

 PRINT "\n";StrValDec(s$)

 s$=" hello"

 PRINT "\n";StrValDec(s$)

Expected Output:

STRVALDEC is a core function.

FUNCTION

This function is used to convert up to 2 hexadecimal characters at an offset in the input string into an integer value in the
range 0 to 255.

STRHEX2BIN (string,offset)

Returns
INTEGER A value in the range 0 to 255 which corresponds to the (up to) 2 hex characters at
the specified offset in the input string.

Exceptions
▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments:

string
byRef string AS STRING

The string to be converted into hex characters.

offset
byVal offset AS INTEGER
This is the offset from where up to two hex characters are converted into a binary number.

Interactive
Command

NO

1234

-1234

1234

2345

0

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

99

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Note: string cannot be a string constant (e.g. “the cat”); it must be a string variable. If you must use a const string, first
save it to a temp string variable and then pass it to the function.

Associated Commands: STRHEXIZE

 //Example :: StrHex2Bin.sb (See in Firmware Zip file)

 DIM s$

 s$="0102030405"

 PRINT StrHex2Bin(s$,4);"\n"

 s$="4C61697264"

 PRINT StrHex2Bin(s$,2);"\n"

Expected Output:

STRHEX2BIN is a core function.

Three functions above, STRVALDEC, STRHEX2BIN and EXTRACTINTTOKEN, enable conversion of a string into an INTEGER
value. To achieve the reverse, that is, an INTEGER into a string the question arises as to what format the string should be in:
decimal, hexadecimal, octal or binary. There is also the question of whether the string should be decorated. For example,
converting the integer value 1234 into hex gives “4D2” but there may be a need to decorate it so that you have “0x4D2”.

Given there are a lot of options as to how the output should be, which could result in a whole suite of integer to string
functions, the solution provided in smartBASIC is the SPRINT statement which functions like a PRINT statement but instead
of it going to a standard output port like the UART, it gets appended to a string variable.

For example:

To convert an integer value into hex and decorate it with the 0x prefix, use the following statements:

DIM myInt,myStr$

myInt=1234

//convert to hex string “0x4D2”

SPRINT #myStr$, "0x";integer.h' myInt

To convert an integer value into a binary string, use the following statements:

DIM myInt,myStr$

myInt=11

//convert to binary string “1011”

SPRINT #myStr$, integer.b' myInt

FUNCTION

3

97

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

100

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

STRESCAPE$ is used to convert a string variable into a string which contains only printable characters using a 2 or 3-byte
sequence of escape characters using the \NN format.

STRESCAPE$ (string)

Returns

STRING A printable version of string which means at best the returned string is of the same
length and at worst not more than three times the length of the input string.

The following input characters are escaped as follows:

carriage return \r
linefeed \n
horizontal tab \t
\ \\
" \"
chr < ' ' \HH
chr >= 0x7F \HH

Exceptions

▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

▪ Memory Heap Exhausted

Arguments:

string
byRef string AS STRING

The string to be converted.

Interactive
Command

NO

If a parsing error is encountered, a nonfatal error is generated which needs to be handled otherwise the script aborts.

Note: string cannot be a string constant (e.g. “the cat”); it must be a string variable. If you must use

a const string, first save it to a temp string variable and then pass it to the function.

Associated Commands: STRDEESCAPE

//Example :: StrEscape$.sb (See in Firmware Zip file)

 DIM s$,t$

 s$="Hello\00world"

 t$=StrEscape$(s$)

 PRINT StrLen(s$);"\n" : PRINT StrLen(t$);"\n"

Expected Output:

SUBROUTINE

STRDEESCAPE is used to convert an escaped string variable in the same memory space that the string exists in. Given all 3-
byte escape sequences are reduced to a single byte, the result is never longer than the original.

STRDEESCAPE (string)

Returns None

11

13

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

101

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

string now contains de-escaped characters converted as follows:

\r carriage return
\n linefeed
\t horizontal tab
\\ \
“” “
\HH ascii byte HH

Exceptions

▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

▪ String De-Escape Error (E.g. characters after the \ are not recognized)

Arguments:

string
byRef string AS STRING

The string to be converted in-situ.

Interactive
Command

NO

If a parsing error occurs, a nonfatal error is generated which must be handled or the application aborts

Note: string cannot be a string constant (e.g. “the cat”); it must be a string variable. If you must use a const string, first
save it to a temp string variable and then pass it to the function.

//Example :: StrDeescape.sb (See in Firmware Zip file)

 DIM s$,t$

 s$="Hello\5C40world"

 PRINT s$;"\n"; StrLen(s$);"\n"

 StrDeescape(s$)

 PRINT s$;"\n"; StrLen(s$);"\n"

Expected Output:

FUNCTION

STRSPLITLEFT$ returns a string which consists of the leftmost n characters of a string object and then drops those
characters from the input string.

STRSPLITLEFT$ (string, length)

Returns
STRING The leftmost ‘length’ characters are returned, and then those characters are dropped
from the argument list.

Exceptions
▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Hello\40world

13

Hello@world

11

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

102

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

▪ Memory Heap Exhausted

Arguments:

string
byRef string AS STRING

The target string which cannot be a const string.

length

byVal length AS INTEGER

The number of leftmost characters that are returned before being dropped from the target
string.

Interactive
Command

NO

Note: string cannot be a string constant (e.g. “the cat”); it must be a string variable. If you must use a const string, first
save it to a temp string variable and then pass it to the function.

//Example :: StrSplitLeft$.sb (See in Firmware Zip file)

 DIM origStr$

 origStr$ = "12345678"

 PRINT StrSplitLeft$ (origStr$, 3);"\n"

 PRINT origStr$

Expected Output:

STRSPLITLEFT$ is a core function.

FUNCTION

This function identifies the substring starting from a specified offset and specified length and then does

an arithmetic sum of all the unsigned bytes in that substring and then finally adds the signed initial value

supplied.

For example, if the string is “\01\02\03\04\05” and offset is 1 and length is 2 and initial value is 1000, then the output is
1000+2+3=1005.

STRSUM (string, nIndex, nBytes, initVal)

Returns
INTEGER The result of the arithmetic sum operation over the bytes in the substring. If nIndex
or nBytes are negative, then the initVal is returned.

Exceptions
▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments:

string
byRef string AS STRING

String that contains the unsigned bytes which need to be arithmetically added

nIndex byVal nIndex AS INTEGER

123

45678

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

103

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Index of first byte into the string

nBytes
ByVal nBytes AS INTEGER

Number of bytes to process

initVal
ByVal initVal AS INTEGER

Initial value of the sum

Interactive
Command

NO

Note: string cannot be a string constant (e.g. “the cat”); it must be a string variable. If you must use a const string, first
save it to a temp string variable and then pass it to the function.

//Example :: StrSum.sb (See in Firmware Zip file)

 DIM s$

 s$="0aA%<"

 PRINT StrSum(s$,0,5,0);"\n" //48+97+65+37+60+0

 PRINT StrSum(s$,0,5,10);"\n" //48+97+65+37+60+10

 PRINT StrSum(s$,4,1,100);"\n" //60+100

Expected Output:

STRSUM is a core function.

FUNCTION

This function identifies the substring starting from a specified offset and specified length and then does

an arithmetic exclusive-or (XOR) of all the unsigned bytes in that substring and then finally XORs the

signed initial value supplied.

For example, if the string is “\01\02\03\04\05” and offset is 1 and length is 2 and initial value is 1000, then the output is
1000 ^ 2 ^ 3=1001.

STRXOR (string, nIndex, nBytes, initVal)

Returns
INTEGER The result of the XOR operation over the bytes in the substring. If nIndex or nBytes
are negative, then the initVal is returned.

Exceptions
▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments:

string
byRef string AS STRING

String that contains the unsigned bytes which need to be XOR’d

nIndex byVal nIndex AS INTEGER

307

317

160

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

104

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Index of first byte into the string

nBytes
ByVal nBytes AS INTEGER

Number of bytes to process

initVal
ByVal initVal AS INTEGER

Initial value of the XOR

Interactive
Command

NO

Note: string cannot be a string constant (e.g. “the cat”); it must be a string variable. If you must use a const string, first
save it to a temp string variable and then pass it to the function.

//Example :: StrXOR.sb (See in Firmware Zip file)

 DIM number$

 number$="01234"

 PRINT StrXOR(number$,0,5,0) //XOR: 48,49,50,51,52,0

 PRINT StrXOR(number$,0,5,10) //XOR: 48,49,50,51,52,10

 PRINT StrXOR(number$,0,5,1000) //XOR: 48,49,50,51,52,1000

Expected Output:

STRXOR is a core function.

Data for characteristics are stored in value attributes and Adverts are arrays of bytes. Those bytes are manipulated in
smartBASIC applications using STRING variables.

Integer and Floating point data is stored in little endian format in those string variables.

These encoding functions assume that INTEGER and FLOAT values are encoded in little endian format. Little endian means
that a multibyte data entity is stored so that lowest significant byte is positioned at the lowest memory address and
likewise, when transported, the lowest byte is on the wire first.

This section describes all the encoding functions which allow those strings to be written in smaller bytewise subfields in a
more efficient manner compared to the generic StrSetChr() function that is made available in smartBASIC.

FUNCTION

This function overwrites a single byte in a string at a specified offset. If the string is not long enough, then it is extended
with the new extended block uninitialized and then the byte specified is overwritten.

STRENCODE8 (str$, nData, nIndex)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

52

62

988

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

105

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

str$
byRef str$ AS STRING
This argument is the string that is written to an attribute.

nData
byVal nData AS INTEGER
The least significant byte of this integer is saved. The rest is ignored.

nIndex
byVal nIndex AS INTEGER
This is the zero-based index into the string str$ where the new data fragment is written to. If the string
str$ is not long enough to fit the index plus the length of the fragment, it is extended.

FUNCTION

This function overwrites two bytes in a string at a specified offset. If the string is not long enough, then it is extended with
the new extended block uninitialized and then the bytes specified are overwritten.

STRENCODE16 (str$, nData, nIndex)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

str$
byRef str$ AS STRING

This argument is the string that is written to an attribute.

nData
byVal nData AS INTEGER
The two least significant bytes of this integer is saved. The rest is ignored.

nIndex

byVal nIndex AS INTEGER
This is the zero based index into the string str$ where the new fragment of data is written. If
the string str$ is not long enough to accommodate the index plus the length of the fragment, it
is extended.

FUNCTION

This function overwrites three bytes in a string at a specified offset. If the string is not long enough, then it is extended with
the new extended block uninitialized and then the bytes specified are overwritten.

STRENCODE24 (str$, nData, nIndex)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

str$
byRef str$ AS STRING
This argument is the string that is written to an attribute.

nData
byVal nData AS INTEGER
The three least significant bytes of this integer is saved. The rest is ignored.

nIndex
byVal nIndex AS INTEGER
This is the zero based index into the string str$ where the new fragment of data is written. If the string
str$ is not long enough to accommodate the index plus the length of the fragment, it is extended.

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

106

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

FUNCTION

This function overwrites four bytes in a string at a specified offset. If the string is not long enough, then it is extended with
the new extended block uninitialized and then the bytes specified are overwritten.

STRENCODE32(str$,nData, nIndex)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

str$
byRef str$ AS STRING
This argument is the string that is written to an attribute.

nData
byVal nData AS INTEGER
The four bytes of this integer is saved. The rest is ignored.

nIndex

byVal nIndex AS INTEGER
This is the zero based index into the string str$ where the new fragment of data is written. If the
string str$ is not long enough to accommodate the index plus the length of the fragment, it is
extended

FUNCTION

This function overwrites four bytes in a string at a specified offset. If the string is not long enough, it is extended with the
new extended block uninitialized and then the byte specified is overwritten.

STRENCODEFLOAT (str$, nMatissa, nExponent, nIndex)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

str$
byRef str$ AS STRING
This argument is the string that is written to an attribute.

nMatissa

byVal nMantissa AS INTEGER
This value must be in the range -8388600 to +8388600 or the function fails. The data is written in little
endian so that the least significant byte is at the lower memory address.

Note: The range is not +/- 2048 because after encoding the following 2 byte values have special
meaning:

0x007FFFFF NaN (Not a Number)

0x00800000 NRes (Not at this resolution)

0x007FFFFE + INFINITY

0x00800002 - INFINITY

0x00800001 Reserved for future use

nExponent
byVal nExponent AS INTEGER
This value must be in the range -128 to 127 or the function fails.

nIndex
byVal nIndex AS INTEGER
This is the zero based index into the string str$ where the new fragment of data is written. If the string
str$ is not long enough to accommodate the index plus the length of the fragment, it is extended

FUNCTION

This function overwrites two bytes in a string at a specified offset as short 16-bit float value. If the string is not long enough,
it is extended with the extended block uninitialized. Then the bytes are overwritten.

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

107

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

STRENCODESFLOATEX (str$, nData, nIndex)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

str$
byRef str$ AS STRING
This argument is the string that is written to an attribute

nData

byVal nData AS INTEGER
The 32 bit value is converted into a 2-byte IEEE-11073 16-bit SFLOAT consisting of a 12-bit signed
mantissa and a 4-bit signed exponent. This means a signed 32-bit value always fits in such a FLOAT
enitity, but there is a loss in significance to 12 from 32.

nIndex
byVal nIndex AS INTEGER
This is the zero-based index into the string str$ where the new fragment of data is written. If the string
str$ is not long enough to accommodate the index plus the length of the fragment, it is extended..

FUNCTION

This function overwrites two bytes in a string at a specified offset as short 16-bit float value. If the string is not long enough,
it is extended with the new block uninitialized. Then the byte specified is overwritten.

STRENCODESFLOATI (str$, nMatissa, nExponent, nIndex)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

str$
byRef str$ AS STRING
This argument is the string that is written to an attribute.

nMatissa

byVal nMantissa AS INTEGER
This must be in the range -2046 to +2046 or the function fails. The data is written in little endian so the
least significant byte is at the lower memory address.

Note: The range is not +/- 2048 because after encoding, the following 2-byte values have special
meaning:

0x007FF NaN (Not a Number)

0x00800 NRes (Not at this resolution)

0x007FE + INFINITY

0x00802 - INFINITY

0x00801 Reserved for future use

nExponent
byVal nExponent AS INTEGER
This value must be in the range -8 to 7 or the function fails.

nIndex
byVal nIndex AS INTEGER
This is the zero based index into the string str$ where the new fragment of data is written. If the string
str$ is not long enough to accommodate the index plus the length of the fragment, it is extended.

FUNCTION

This function overwrites a 7-byte string into the string at a specified offset. If the string is not long enough, it is extended
with the new extended block uninitialized and then the byte specified is overwritten.

The 7-byte string consists of a byte each for century, year, month, day, hour, minute and second. If (year * month) is zero, it
is taken as “not noted” year and all the other fields are set zero (not noted).

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

108

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

For example, 5 May 2013 10:31:24 is represented as \14\0D\05\05\0A\1F\18.

Note: When the str$ string variable is updated, the two byte year field is converted into a 16-bit integer. Hence \14\0D
gets converted to \DD\07

STRENCODETIMESTAMP (str$, timestamp$, nIndex)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

str$
byRef str$ AS STRING
This argument is the string that is written to an attribute.

timestamp$
byRef timestamp$ AS STRING
This is a 7-byte string as described above. For example 5 May 2013 10:31:24 is entered
\14\0D\05\05\0A\1F\18.

nIndex
byVal nIndex AS INTEGER
This is the zero based index into the string str$ where the new fragment of data is written. If the string
str$ is not long enough to accommodate the index plus the length of the fragment it is extended..

FUNCTION

This function overwrites a substring at a specified offset with data from another substring of a string. If the destination
string is not long enough, it is extended with the new block uninitialized. Then the byte is overwritten.

StrEncodeSTRING (str$, nIndex1 str$, nIndex2, nLen)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

str$
byRef str$ AS STRING
This argument is the string is written to an attribute

nIndex1
byVal nIndex1 AS INTEGER
This is the zero based index into the string str$ where the new fragment of data is written If the string
str$ is not long enough to accommodate the index plus the length of the fragment it is extended

str$
byRef str$ AS STRING
This contains the source data which is qualified by the nIndex2 and nLen arguments that follow.

nIndex2
byVal nIndex2 AS INTEGER
This is the zero based index into the string str$ from which data is copied. No data is copied if this is
negative or greater than the string.

nLen
byVal nLen AS INTEGER
This specifies the number of bytes from offset nIndex2 to be copied into the destination string. It is
clipped to the number of bytes left to copy after the index.

FUNCTION

This function overwrites some bits of a string at a specified bit offset with data from an integer which is treated as a bit
array of length 32. If the destination string is not long enough, it is extended with the new extended block uninitialized.
Then the bits specified are overwritten.

StrEncodeBITS (str$, nDstIdx, srcBitArr , nSrcIdx, nBitLen)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Arguments:

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

109

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

str$
byRef str$ AS STRING
This is the string written to an attribute. It is treated as a bit array.

nDstIdx
byVal nDstIdx AS INTEGER
This is the zero based bit index into the string str$, treated as a bit array, where the new fragment of
data bits is written.

srcBitArr
byVal srcBitArr AS INTEGER
This contains the source data bits which is qualified by the nSrcIdx and nBitLen arguments that follow.

nSrcIdx
byVal nSrcIdx AS INTEGER
This is the zero-based bit index into the bit array contained in srcBitArr from where the data bits is
copied. No data is copied if this index is negative or greater than 32.

nBitLen
byVal nBitLen AS INTEGER
This specifies the number of bits from offset nSrcIdx to be copied into the destination bit array
represented by the string str$. It is clipped to the number of bits left to copy after the index nSrcIdx.

Data for characteristics are stored in value attributes and Adverts are arrays of bytes. Those bytes are manipulated in
smartBASIC applications using STRING variables.

Integer and Floating point data is stored in little endian format in the string.

This section describes decoding functions that allow attribute strings to be read from smaller bytewise subfields more
efficiently than the generic StrGetChr() function that are made available in smart BASIC.

FUNCTION

This function reads a single byte in a string at a specified offset into a 32-bit integer variable with sign extension. If the
offset points beyond the end of the string, then this function fails and returns zero.

STRDECODES8 (str$, nData, nIndex)

Returns
INTEGER, the number of bytes extracted from the attribute string. Can be less than the size expected if
the nIndex parameter is positioned towards the end of the string.

Arguments:

str$
byRef str$ AS STRING
This references the attribute string from which the function reads.

nData
byRef nData AS INTEGER
This references an integer to be updated with the 8-bit data from str$, after sign extension.

nIndex
byVal nIndex AS INTEGER
This is the zero based index into the string str$ from which the data is read. If the string str$ is not long
enough to accommodate the index plus the number of bytes to read, this function fails.

FUNCTION

This function reads a single byte in a string at a specified offset into a 32-bit integer variable without sign extension. If the
offset points beyond the end of the string, this function fails.

STRDECODEU8 (str$, nData, nIndex)

Returns
INTEGER, the number of bytes extracted from the attribute string. Can be less than the size expected if
the nIndex parameter is positioned towards the end of the string.

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

110

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Arguments:

str$
byRef str$ AS STRING
This references the attribute string from which the function reads.

nData
byRef nData AS INTEGER
This references an integer to be updated with the 8-bit data from str$, without sign extension.

nIndex
byVal nIndex AS INTEGER
This is the zero based index into the string str$ from which data is read. If the string str$ is not long
enough to accommodate the index plus the number of bytes to read, this function fails.

FUNCTION

This function reads two bytes in a string at a specified offset into a 32-bit integer variable with sign extension. If the offset
points beyond the end of the string then this function fails.

STRDECODES16 (str$, nData, nIndex)

Returns
INTEGER, the number of bytes extracted from the attribute string. Can be less than the size expected if
the nIndex parameter is positioned towards the end of the string.

Arguments:

str$
byRef str$ AS STRING
This references the attribute string from which the function reads.

nData
byRef nData AS INTEGER
This references an integer to be updated with the 2-byte data from str$, after sign extension.

nIndex
byVal nIndex AS INTEGER
This is the zero based index into the string str$ from which data is read. If the string str$ is not long
enough to accommodate the index plus the number of bytes to read, this function fails.

This function reads two bytes from a string at a specified offset into a 32-bit integer variable without sign extension. If the
offset points beyond the end of the string, then this function fails.

STRDECODEU16 (str$, nData, nIndex)

Returns INTEGER, the number of bytes extracted from the attribute string. Can be less than the size expected if
the nIndex parameter is positioned towards the end of the string.

Arguments:

str$
byRef str$ AS STRING

This references the attribute string from which the function reads.

nData
byRef nData AS INTEGER
This references an integer to be updated with the 2-byte data from str$, without sign extension.

nIndex
byVal nIndex AS INTEGER
This is the zero based index into the string str$ from which data is read. If the string str$ is not long
enough to accommodate the index plus the number of bytes to read, this function fails.

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

111

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

FUNCTION

This function reads three bytes in a string at a specified offset into a 32-bit integer variable with sign extension. If the offset
points beyond the end of the string, this function fails.

STRDECODES24 (str$, nData, nIndex)

Returns INTEGER, the number of bytes extracted from the attribute string. Can be less than the size expected if
the nIndex parameter is positioned towards the end of the string.

Arguments:

str$
byRef str$ AS STRING
This references the attribute string from which the function reads.

nData
byRef nData AS INTEGER
This references an integer to be updated with the 3-byte data from str$, with sign extension.

nIndex
byVal nIndex AS INTEGER
This is the zero based index into the string str$ from which data is read. If the string str$ is not long
enough to accommodate the index plus the number of bytes to read, this function fails.

FUNCTION

This function reads three bytes from a string at a specified offset into a 32-bit integer variable without sign extension. If the
offset points beyond the end of the string, then this function fails.

STRDECODEU24 (str$, nData, nIndex)

Returns INTEGER, the number of bytes extracted from the attribute string. Can be less than the size expected if
the nIndex parameter is positioned towards the end of the string.

Arguments:

str$
byRef str$ AS STRING
This references the attribute string from which the function reads.

nData
byRef nData AS INTEGER
This references an integer to be updated with the 3-byte data from str$, without sign extension.

nIndex
byVal nIndex AS INTEGER
This is the zero based index into the string str$ from which data is read. If the string str$ is not long
enough to accommodate the index plus the number of bytes to read, this function fails.

FUNCTION

This function reads four bytes in a string at a specified offset into a 32-bit integer variable. If the offset points beyond the
end of the string, this function fails.

STRDECODE32 (str$, nData, nIndex)

Returns INTEGER, the number of bytes extracted from the attribute string. Can be less than the size expected if
the nIndex parameter is positioned towards the end of the string.

Arguments:

str$
byRef str$ AS STRING
This references the attribute string from which the function reads.

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

112

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

nData
byRef nData AS INTEGER
This references an integer to be updated with the 3-byte data from str$, after sign extension.

nIndex
byVal nIndex AS INTEGER
This is the zero based index into the string str$ from which data is read. If the string str$ is not long
enough to accommodate the index plus the number of bytes to read, this function fails.

FUNCTION

This function reads four bytes in a string at a specified offset into a couple of 32-bit integer variables. The decoding results
in two variables, the 24-bit signed mantissa and the 8-bit signed exponent. If the offset points beyond the end of the string,
this function fails.

STRDECODEFLOATEX (str$, nMatissa, nExponent, nIndex)

Returns INTEGER, the number of bytes extracted from the attribute string. Can be less than the size expected if
the nIndex parameter is positioned towards the end of the string.

Arguments:

str$
byRef str$ AS STRING
This references the attribute string from which the function reads.

nMantissa

byRef nMantissa AS INTEGER
This is updated with the 24 bit mantissa from the 4-byte object.

If nExponent is 0, you must check for the following special values:

0x007FFFFF NaN (Not a Number)

0x00800000 NRes (Not at this resolution)

0x007FFFFE + INFINITY

0x00800002 - INFINITY

0x00800001 Reserved for future use

nExponent
byRef nExponent AS INTEGER
This is updated with the 8-bit mantissa. If it is zero, check nMantissa for special cases as stated above.

nIndex
byVal nIndex AS INTEGER
This is the zero based index into the string str$ from which data is read. If the string str$ is not long
enough to accommodate the index plus the number of bytes to read, this function fails.

FUNCTION

This function reads two bytes in a string at a specified offset into a couple of 32-bit integer variables. The decoding results in
two variables, the 12-bit signed mantissa and the 4-bit signed exponent. If the offset points beyond the end of the string
then this function fails.

STRDECODESFLOATEX (str$, nMantissa, nExponent, nIndex)

Returns INTEGER, the number of bytes extracted from the attribute string. Can be less than the size expected if
the nIndex parameter is positioned towards the end of the string.

Arguments:

str$
byRef str$ AS STRING
This references the attribute string from which the function reads.

nMantissa
byRef nMantissa AS INTEGER
This is updated with the 12-bit mantissa from the two byte object.

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

113

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

If the nExponent is 0, you must check for the following special values:
0x007FFFFF NaN (Not a Number)

0x00800000 NRes (Not at this resolution)

0x007FFFFE + INFINITY

0x00800002 - INFINITY

0x00800001 Reserved for future use

nExponent
byRef nExponent AS INTEGER
This is updated with the 4-bit mantissa. If it is zero, check the nMantissa for special cases as stated
above.

nIndex
byVal nIndex AS INTEGER
This is the zero based index into the string str$ from which data is read. If the string str$ is not long
enough to accommodate the index plus the number of bytes to read, this function fails.

FUNCTION

This function reads seven bytes from string an offset into an attribute string. If the offset plus seven bytes points beyond
the end of the string then this function fails.

The seven byte string consists of a byte each for century, year, month, day, hour, minute and second. If (year * month) is
zero, it is taken as “not noted” year and all the other fields are set zero (not noted).

For example: 5 May 2013 10:31:24 is represented in the source as \DD\07\05\05\0A\1F\18 and the year is be translated
into a century and year so that the destination string is \14\0D\05\05\0A\1F\18.

STRDECODETIMESTAMP (str$, timestamp$, nIndex)

Returns INTEGER, the number of bytes extracted from the attribute string. Can be less than the size expected
if the nIndex parameter is positioned towards the end of the string.

Arguments:

str$
byRef str$ AS STRING
This references the attribute string from which the function reads.

timestamp$
byRef timestamp$ AS STRING
On exit this is an exact 7-byte string as described above.
For example: 5 May 2013 10:31:24 is stored as \14\0D\05\05\0A\1F\18

nIndex
byVal nIndex AS INTEGER
This is the zero based index into the string str$ from which data is read. If the string str$ is not long
enough to accommodate the index plus the number of bytes to read, this function fails.

FUNCTION

This function reads a maximum number of bytes from an attribute string at a specified offset into a destination string.
Because the output string can handle truncated bit blocks, this function does not fail.

STRDECODESTRING (str$, nIndex, dst$, nMaxBytes)

Returns INTEGER, the number of bytes extracted from the attribute string. Can be less than the size expected if
the nIndex parameter is positioned towards the end of the string.

Arguments:

str$
byRef str$ AS STRING
This references the attribute string from which the function reads.

nIndex
byVal nIndex AS INTEGER
This is the zero based index into string str$ from which data is read.

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

114

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

dst$
byRef dst$ AS STRING
This argument is a reference to a string that is updated with up to nMaxBytes of data from the index
specified. A shorter string is returned if there are not enough bytes beyond the index.

nMaxBytes
byVal nMaxBytes AS INTEGER
This specifies the maximum number of bytes to read from str$.

FUNCTION

This function reads bits from an attribute string at a specified offset (treated as a bit array) into a destination integer object
(treated as a bit array of fixed size of 32). This implies a maximum of 32 bits can be read. Because the output bit array can
handle truncated bit blocks, this function does not fail.

STRDECODEBITS (str$, nSrcIdx, dstBitArr, nDstIdx, nMaxBits)

Returns INTEGER, the number of bits extracted from the attribute string. Can be less than the size expected if the
nSrcIdx parameter is positioned towards the end of the source string or if nDstIdx will not allow more to
be copied.

Arguments:

str$
byRef str$ AS STRING
This references the attribute string from which to read, treated as a bit array. Hence a string of 10 bytes
is an array of 80 bits.

nSrcIdx
byVal nSrcIdx AS INTEGER
This is the zero based bit index into the string str$ from which data is read. For example, the third bit in
the second byte is index number 10.

dstBitArr
byRef dstBitArr AS INTEGER
This argument references an integer treated as an array of 32 bits into which data is copied. Only the
written bits are modified.

nDstldx
byVal nDstIdx AS INTEGER
This is the zero based bit index into the bit array dstBitArr to where the data is written.

nMaxBits
byVal nMaxBits AS INTEGER
This argument specifies the maximum number of bits to read from str$. Due to the destination being an
integer variable, it cannot be greater than 32. Negative values are treated as zero.

FUNCTION

This function takes a sentence in the first parameter and extracts the leftmost string token from it and passes it back in the
second parameter. The token is removed from the sentence and is not post processed in any way. The function returns the
length of the string in the token. This means if 0 is returned then there are no more tokens in the sentence.

It makes it easy to create custom protocol for commands send by a host over the UART for your application.

For example, if the sentence is My name is BL600, from Laird and val is -1234 then the first call of this function returns My
and the sentence is adjusted to name is BL600, from Laird. Note that BL600, results in BL600 and then ,. Also, be aware that
the -1234 is returned as two tokens: - and 1234.

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

115

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

The parser logic is the same as when in the command mode. If you are not sure which alphabet character is a token in its
own right, simply try it.

Note: Any text after either ‘ or // is taken as a comment just like the behavior in the command mode.

EXTRACTSTRTOKEN (sentence$,token$)

Returns
INTEGER
The length of the extracted token. Is zero if there are no more tokens to extract.

Exceptions
▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments:

sentence$
byRef sentence$ AS STRING

String that contains the sentence containing the tokens to be extracted

token$
byRef token$ AS STRING

The leftmost token from the sentence and will have been removed from the sentence.

Interactive
Command

NO

Note: string cannot be a string constant (e.g. “the cat”); it must be a string variable. If you must use a const string, first
save it to a temp string variable and then pass it to the function.

//Example :: ExtractStrToken.sb (See in Firmware Zip file)

 DIM sentence$, token$, tknlen

 sentence$="My name is BL600, from Laird"

 PRINT "\nSentence is :";sentence$

 DO

 tknlen = ExtractStrToken(sentence$,token$)

 PRINT "\nToken (len ";tknlen;") = :";token$

 UNTIL tknlen==0

Expected Output:

ExtractStrToken is a core function.

FUNCTION

Sentence is :My name is BL600, from Laird

Token (len 2) = :My

Token (len 4) = :name

Token (len 2) = :is

Token (len 5) = :BL600

Token (len 1) = :,

Token (len 4) = :from

Token (len 5) = :Laird

Token (len 0) = :

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

116

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

This function takes a sentence in the first parameter and extracts the leftmost set of tokens that make an integer number
(hex or binary or octal or decimal) from it and passes it back in the second parameter. The tokens are removed from the
sentence. The function returns the number of characters extracted from the left side of the sentence. This means if 0 is
returned then there are no more tokens in the sentence.

For example, if the sentence is 0x100 is a hex,value then the first call of this function returns 256 in the second parameter
and the sentence is adjusted to is a hex value. Note that hex,value, results in hex then , and then value.

The parser logic is the same as when in the command mode. If you are not sure which alphabet character is a token in its
own right, simply try it.

Note: Any text after either ‘ or // is taken as a comment just like the behavior in the command mode.

EXTRACTINTTOKEN (sentence$,intValue)

Returns
INTEGER
The length of the extracted token. Is zero if there are no more tokens to extract.

Exceptions
▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments:

sentence$
byRef sentence$ AS STRING

String that contains the sentence containing the tokens to be extracted

intValue

byRef intValue AS INTEGER

The leftmost set of tokens constituting a legal integer value is extracted from the sentence and
is removed from the sentence.

Interactive
Command

NO

Note: string cannot be a string constant (e.g. “the cat”); it must be a string variable. If you must use a const string, first
save it to a temp string variable and then pass it to the function.

//Example :: ExtractIntToken.sb (See in Firmware Zip file)

 DIM sentence$

 DIM intValue, bytes

 DIM token$, tknlen

 sentence$="0x100 is a hex,value"

 PRINT "\nSentence is :";sentence$

 bytes = ExtractIntToken(sentence$,intValue)

 PRINT "\nintValue (bytes ";bytes;") = :";intValue

 DO

 tknlen = ExtractStrToken(sentence$,token$)

 PRINT "\nToken (len ";tknlen;") = :";token$

 UNTIL tknlen==0

Expected Output:

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

117

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

EXTRACTINTTOKEN is a core function.

FUNCTION

This function takes a sentence in the first parameter and extracts the leftmost set of tokens that make a float number (in
NN.DDD or NN.DDDeEE format) from it and passes it back in the second parameter. The tokens are removed from the
sentence. The function returns the number of characters extracted from the left side of the sentence. This means if 0 is
returned then there are no more tokens in the sentence.

For example, if the sentence is “1.2345 is a float value” then the first call of this function returns 1.2345 in the second
parameter and the sentence will be adjusted to “is a float value”.

The parser logic is the same as when in the command mode. If you are not sure which alphabet character is a token in its
own right, simply try it.

Note: Any text after either ‘ or // is taken as a comment just like the behavior in the command mode.

EXTRACTFLOATTOKEN (sentence$,floatValue)

Returns
INTEGER
The length of the extracted token. Is zero if there are no more tokens to extract.

Exceptions
▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments:

sentence$
byRef sentence$ AS STRING

String that contains the sentence containing the tokens to be extracted

floatValue

byRef floatValue AS FLOAT

The leftmost set of tokens constituting a legal floating point value is extracted from the
sentence and is removed from the sentence.

Interactive
Command

NO

Note: string cannot be a string constant (e.g. “my number is 1.2345”); it must be a string variable. If you must use a
const string, first save it to a temp string variable and then pass it to the function.

//Example :: ExtractIntToken.sb (See in Firmware Zip file)

Sentence is :0x100 is a hex,value

intValue (bytes 5) = :256

Token (len 2) = :is

Token (len 1) = :a

Token (len 3) = :hex

Token (len 1) = :,

Token (len 5) = :value

Token (len 0) = :

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

118

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 DIM sentence$

 DIM fltValue as FLOAT , bytes

 DIM token$, tknlen

 sentence$="1.234 is a float,value"

 PRINT "\nSentence is :"; sentence$

 bytes = ExtractFloatToken(sentence$,fltValue)

 PRINT "\nfltValue (bytes ";bytes;") = :"; FLOAT.E’ fltValue

 DO

 tknlen = ExtractStrToken(sentence$,token$)

 PRINT "\nToken (len ";tknlen;") = :";token$

 UNTIL tknlen==0

Expected Output:

EXTRACTFLOATTOKEN is a core function.

Tables provide associative array (or in other words lookup type) functionality within smartBASIC programs. They are
typically used to allow lookup features to be implemented efficiently so that, for example, parsers can be implemented.

Tables are one dimensional string variables, which are configured by using the TABLEINIT command.

Tables should not be confused with Arrays. Tables provide the ability to perform pattern matching in a highly optimized
manner. As a rule, use tables where you want to perform efficient pattern matching and arrays where you want to
automate setup strings or send data using looping variables.

FUNCTION

TABLEINIT initialises a string variable so that it can be used for storage of multiple TLV tokens, allowing a

lookup table to be created.

TLV = Tag, Length, Value

TABLEINIT (string)

Returns
INTEGER Indicates success of command:

0 Successful initialisation

Sentence is 1.234 is a float,value

intValue (bytes 5) = :1.234e+01

Token (len 2) = :is

Token (len 1) = :a

Token (len 3) = :float

Token (len 1) = :,

Token (len 5) = :value

Token (len 0) = :

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

119

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

<>0 Failure

Exceptions
▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments:

string

byRef string AS STRING

String variable to be used for the Table. Since it is byRef, the compiler does not allow a constant
string to be passed as an argument. On entry the string can be non-empty, on exit the string is
empty.

Interactive
Command

NO

Note: string cannot be a string constant (e.g. “the cat”); it must be a string variable. If you must use a const string, first
save it to a temp string variable and then pass it to the function.

Associated Commands: TABLEADD, TABLELOOKUP

//Example :: TableInit.sb (See in Firmware Zip file)

 DIM t$:t$="Hello"

 PRINT "\n";"[";t$;"]"

 PRINT "\n";TableInit(t$)

 PRINT "\n";"[";t$;"]" //String now blank after being initialised as a table

Expected Output:

TABLEINIT is a core function.

FUNCTION

TABLEADD adds the token specified to the lookup table in the string variable and associates the index specified with it.
There is no validation to check if nIndex has been duplicated as it is entirely valid that more than one token generates the
same ID value.

TABLEADD (string, strtok, nID)

Returns

INTEGER Indicates success of command:

0 Signifies that the token was successfully added

1 Indicates an error if nID > 255 or < 0

2 Indicates no memory is available to store token

3 Indicates that the token is too large

4 Indicates the token is empty

Exceptions
▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

[Hello]

0

[]

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

120

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Arguments:

string
byRef string AS STRING

A string variable that has been initialised as a table using TABLEINIT.

strtok
byVal strtok AS STRING

The string token to be added to the table.

nID
byVal nID AS INTEGER

The identifier number that is associated with the token and should be in the range 0 to 255.

Interactive
Command

NO

Note: string cannot be a string constant (e.g. “the cat”); it must be a string variable. If you must use a const string, first
save it to a temp string variable and then pass it to the function.

Associated Commands: TABLEINIT, TABLELOOKUP

 //Example :: TableAdd.sb (See in Firmware Zip file)

 DIM t$: PRINT TableInit(t$);"\n"

 PRINT TableAdd(t$,"Hello",1);"\n"

 PRINT TableAdd(t$,"everyone",2);"\n"

 PRINT TableAdd(t$,"to",300);"\n"

 PRINT TableAdd(t$,"",3);"\n"

 PRINT t$

 //Tokens are stored in TLV format: \Tag\LengthValue

Expected Output:

TABLEADD is a core function.

FUNCTION

TABLELOOKUP searches for the specified token within an existing lookup table which was created using TABLEINIT and
multiple TABLEADDs and returns the ID value associated with it.

It is especially useful for creating a parser, for example, to create an AT style protocol over a UART interface.

TABLELOOKUP (string, strtok)

Returns
INTEGER Indicates success of command:

>=0 signifies that the token was successfully found and the value is the ID

0

0

0

1

4

\01\05Hello\02\08everyone

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

121

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

-1 if the token is not found within the table

-2 if the specified table is invalid

-3 if the token is empty or > 255 characters

Exceptions
▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments:

string
byRef string AS STRING

The lookup table that is being searched

strtok
byRef strtok AS STRING

The token whose position is being found

Interactive
Command

NO

Note: string cannot be a string constant (e.g. “the cat”); it must be a string variable. If you must use a const string, first
save it to a temp string variable and then pass it to the function.

Associated Commands: TABLEINIT, TABLEADD

//Example :: TableLookup.sb (See in Firmware Zip file)

 DIM t$

 PRINT TableInit(t$);"\n\n"

 PRINT TableAdd(t$,"Hello",1);"\n"

 PRINT TableAdd(t$,"world",2);"\n"

 PRINT TableAdd(t$,"to",3);"\n"

 PRINT TableAdd(t$,"you",4);"\n\n"

 PRINT TableLookup(t$,"to");"\n"

 PRINT TableLookup(t$,"Hello");"\n"

 PRINT TableLookup(t$,"you");"\n"

Expected Output:

0

0

0

0

0

3

1

4

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

122

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

TABLELOOKUP is a core function.

This section describes all miscellaneous functions and subroutines

SUBROUTINE

This routine is used to force a reset of the module.

RESET (nType)

Exceptions
▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments:

nType
byVal nType AS INTEGER.

This is for future use. Set to 0.

Interactive
Command

NO

//Example :: RESET.sb (See in Firmware Zip file)

 RESET(0) //force a reset of the module

Expected Output:

Like when you reset the module using the interactive command ‘ATZ’, the CTS
indicator momentarily changes from green to red, then back to green.

RESET is a core subroutine.

Random numbers are either generated using pseudo random number generator algorithms or using thermal noise or
equivalent in hardware. The routines listed in this section provide the developer with the capability of generating random
numbers.

The Interactive Mode command AT I 1001 or at runtime SYSINFO(1001) returns the following:

▪ 1 – If the system generates random numbers using hardware noise

▪ 0 – If generated by a pseudo random number generator

FUNCTION

The RAND function returns a random 32-bit integer. Use the command AT I 1001 or from within an application the function
SYSINFO(1001), to determine whether the random number is pseudo random or generated in hardware via a thermal noise
generator. If 1001 returns:

▪ 0 – It is generated by a pseudo random number generator

▪ 1 – It is generated using hardware

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

123

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

RAND ()

Returns INTEGER A 32-bit integer.

Exceptions
▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments: None

Interactive
Command

NO

Associated
Commands

RANDSEED

Depending on the platform, the RAND function can be seeded using the RANDSEED function to seed the pseudo random
number generator. If used, RANDSEED must be called before using RAND. If the platform has a hardware Random Number
Generator, then RANDSEED has no effect.

//Example :: RAND.sb (See in Firmware Zip file)

 PRINT "\nRandom number is ";RAND()

Expected Output:

RAND is a core language function.

FUNCTION

The RANDEX function returns a random 32-bit positive integer in the range 0 to X where X is the input argument. Use the
command AT I 1001 or from within an application the function SYSINFO(1001) to determine whether the random number is
pseudo random or generated in hardware via a thermal noise generator.

If 1001 returns:

▪ 0 – It is generated by a pseudo random number generator

▪ 1 – It is generated using hardware

RANDEX (maxval)

Returns INTEGER A 32-bit integer.

Exceptions
▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments:

maxval
byVal maxval AS INTEGER

The return value does not exceed the absolute value of this variable

Interactive
Command

NO

Associated
Commands

RANDSEED

Random number is -2088208507

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

124

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Depending on the platform, the RANDEX function can be seeded using the RANDSEED function to seed the pseudo random
number generator. If used, RANDSEED must be called before using RANDEX. If the platform has a hardware Random
Number Generator, then RANDSEED has no effect.

//Example :: RANDEX.sb (See in Firmware Zip file)

 DIM x : x=500

 PRINT "\nRandom number between 0 and ";x;" is ";RANDEX(x)

Expected Output:

RAND is a core language function.

SUBROUTINE

On platforms without a hardware random number generator, the RANDSEED function sets the starting point for generating
a series of pseudo random integers. To reinitialize the generator, use 1 as the seed argument. Any other value for seed sets
the generator to a random starting point. RAND retrieves the pseudo random numbers that are generated.

It has no effect on platforms with a hardware random number generator.

RANDSEED (seed)

Exceptions
▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments:

Seed
byVal seed AS INTEGER

The starting seed value for the random number generator function RAND.

Interactive
Command

NO

Associated
Commands

RAND

RandSeed(1234)

Note: This subroutine has no effect on modules that have a hardware random number generator.

RANDSEED is a core language subroutine.

Random number between 0 and 500 is 193

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

125

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

In keeping with the event driven paradigm of smartBASIC, the timer subsystem enables smartBASIC applications to be
written which allow future events to be generated based on timeouts. To make use of this feature up to N timers, where N
is platform dependent, are made available and that many event handlers can be written and then enabled using the
ONEVENT statement so that those handlers are automatically invoked. The ONEVENT statement is described in detail
elsewhere in this manual.

Briefly the usage is, select a timer, register a handler for it using ONEVENT, and start it with a timeout value and a flag to
specify whether it is recurring or single shot. Then when the timeout occurs AND when the application is processing a
WAITEVENT statement, the handler is automatically called.

It is important to understand the significance of the WAITEVENT statement. In a nutshell, a timer handler callback does not
happen if the runtime engine does not encounter a WAITEVENT statement. Events are synchronous not asynchronous like
say interrupts.

All this is illustrated in the sample code fragment below where timer 0 is started so that it recurs automatically every 500
milliseconds and timer 1 is a single shot 1000 milliseconds later.

Note, as explained in the WAITEVENT section of this manual, if a handler function returns a non-zero value then the
WAITEVENT statement is reprocessed, otherwise the smartBASIC runtime engine proceeds to process the next statement
after the WAITEVENT statement – not after the handlers ENDFUNC or EXITFUNC statement. This means that if the
WAITEVENT is the very last statement in an application and a timer handler returns a 0 value, then the application exits the
module from Run Mode into Interactive Mode which is disastrous for unattended operation.

EVTMRn Where n=0 to N, where N is platform dependent, it is generated when timer n expires. The number of
timers (N+1) is returned by the command AT I 2003 or at runtime by SYSINFO(2003)
Timer 0 has higher priority than Timer 1 which it turn has higher priority that timer 2 and so on. This means
that if Timer 0 is a recurring timer, say every 100 milliseconds and you have Timer 1 has a single shot, it is
possible that the lower priority handler never gets called. Always try to use lower priority timers as
recurring timers.

//Example :: EVTMRn.sb (See in Firmware Zip file)

 FUNCTION HandlerTimer0()

 PRINT "\nTimer 0 has expired"

 ENDFUNC 1 //remain blocked in WAITEVENT

 FUNCTION HandlerTimer1()

 PRINT "\nTimer 1 has expired"

 ENDFUNC 0 //exit from WAITEVENT

 ONEVENT EVTMR0 CALL HandlerTimer0

 ONEVENT EVTMR1 CALL HandlerTimer1

 TimerStart(0,500,1) //start a 500 millisecond recurring timer

 PRINT "\nWaiting for Timer 0"

 TimerStart(1,1000,0) //start a 1000 millisecond timer

 PRINT "\nWaiting for Timer 1"

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

126

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 WAITEVENT

 PRINT "\nGot here because TIMER 1 expired and handler returned 0"

Expected Output:

SUBROUTINE

This subroutine starts one of the built-in timers.

The command AT I 2003 returns the number of timers and AT I 2002 returns the resolution of the timer in microseconds.

When the timer expires, an appropriate event is generated, which can be acted upon by a handler registered using the
ONEVENT command.

TIMERSTART (number,interval_ms,recurring)

Arguments:

number

byVal number AS INTEGER

The number of the timer. 0 to N where N can be determined by submitting the command AT
I 2003 or at runtime returned via SYSINFO(2003).

If the value is not valid, then a runtime error is thrown with code INVALID_TIMER.

interval_ms

byVal interval AS INTEGER
A valid time in milliseconds, between 1 and 1,000,000,000 (11.6 days). Note although the
time is specified in milliseconds, the resolution of the hardware timer may have more
granularity than that. Submit the command AT I 2002 or at runtime SYSINFO(2002) to
determine the actual granularity in microseconds.

If longer timeouts are required, start one of the timers with 1000 and make it repeating.
Then implement the longer timeout using smartBASIC code.

If the interval is negative or > 1,000,000,000 then a runtime error is thrown with code
INVALID_INTERVAL. An error is thrown for lesser values dependent on the platform and the
hardware constraints. For example, the BL600 module has a maximum time of 8192000 (2
hrs 16 min).

If the recurring argument is set to non-zero, then the minimum value of the interval is 10
milliseconds

recurring
byVal recurring AS INTEGER
Set to 0 for a once-only timer, or non-0 for a recurring timer.

Interactive
Command

NO

Associated
Commands

ONEVENT, TIMERCANCEL

Waiting for Timer 0

Waiting for Timer 1

Timer 0 has expired

Timer 0 has expired

Timer 1 has expired

Got here because TIMER 1 expired and handler returned 0

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

127

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

When the timer expires, it sets the corresponding EVTMRn event. That is, timer number 0 sets EVTMR0, timer number 3
sets EVTMR3. The ONEVENT statement should be used to register handlers that capture and process these events.

If the timer is already running, calling TIMERSTART resets it to count down from the new value, which may be greater or
smaller than the remaining time.

If either number or interval is invalid an Error is thrown.

//Example :: EVTMRn.sb (See in Firmware Zip file)

 SUB HandlerOnErr()

 PRINT "Timer Error: ";GetLastError()

 ENDSUB

 FUNCTION HandlerTimer1()

 PRINT "\nTimer 1 has expired"

 ENDFUNC 1 //remain blocked in WAITEVENT

 FUNCTION HandlerTimer2()

 PRINT "\nTimer 2 has expired"

 ENDFUNC 0 //exit from WAITEVENT

 ONERROR NEXT HandlerOnErr

 ONEVENT EVTMR1 CALL HandlerTimer1

 ONEVENT EVTMR2 CALL HandlerTimer2

 TimerStart(0,-500,1) //start a -500 millisecond recurring timer

 PRINT "\nStarted Timer 0 with invalid inerval"

 TimerStart(1,500,1) //start a 500 millisecond recurring timer

 PRINT "\nWaiting for Timer 1"

 TimerStart(2,1000,0) //start a 1000 millisecond timer

 PRINT "\nWaiting for Timer 2"

 WAITEVENT

 PRINT "\nGot here because TIMER 2 expired and Handler returned 0"

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

128

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Expected Output:

TIMERSTART is a core subroutine.

FUNCTION

This function determines if a timer identified by an index number is still running. The command AT I 2003 f return the valid
range of Timer index numbers. It returns 0 to signify that the timer is not running and a non-zero value to signify it is still
running and the value is the number of milliseconds left for it to expire.

TIMERRUNNING (number)

Returns 0 if the timer has expired, otherwise the time in milliseconds left to expire.

Arguments:

maxval

byVal number AS INTEGER
The number of the timer. 0 to N where N can be determined by submitting the command AT I
2003 or at runtime returned via SYSINFO(2003).

If the value is not valid, then a runtime error is thrown with code INVALID_TIMER.

Interactive
Command

NO

Associated
Commands

ONEVENT, TIMERCANCEL

//Example :: TimerRunning.sb (See in Firmware Zip file)

 SUB HandlerOnErr()

 PRINT "Timer Error ";GetLastError()

 ENDSUB

 FUNCTION HandlerTimer0()

 PRINT "\nTimer 0 has expired"

 PRINT "\nTimer 1 has ";TimerRunning(1);" milliseconds to go"

 ENDFUNC 1 //remain blocked in WAITEVENT

 FUNCTION HandlerTimer1()

Timer Error: 1770

Started Timer 0 with invalid inerval

Waiting for Timer 1

Waiting for Timer 2

Timer 1 has expired

Timer 1 has expired

Timer 2 has expired

Got here because TIMER 2 expired and Handler returned 0

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

129

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 PRINT "\nTimer 1 has expired"

 ENDFUNC 0 //exit from WAITEVENT

 ONERROR NEXT HandlerOnErr

 ONEVENT EVTMR0 CALL HandlerTimer0

 ONEVENT EVTMR1 CALL HandlerTimer1

 TIMERSTART(0,500,1) //start a 500 millisecond recurring timer

 PRINT "\nWaiting for Timer 0"

 TIMERSTART(1,2000,0) //start a 1000 millisecond timer

 PRINT "\nWaiting for Timer 1"

 WAITEVENT

Expected Output:

TIMERRUNNING is a core function.

SUBROUTINE

This subroutine stops one of the built-in timers so that it does not generate a timeout event.

TIMERCANCEL (number)

Arguments:

number

byVal number AS INTEGER
The number of the timer. 0 to N where N can be determined by submitting the command AT I
2003 or at runtime returned via SYSINFO(2003).

If the value is not valid, then a runtime error is thrown with code INVALID_TIMER.

Waiting for Timer 0

Waiting for Timer 1

Timer 0 has expired

Timer 1 has 1500 milliseconds to go

Timer 0 has expired

Timer 1 has 1000 milliseconds to go

Timer 0 has expired

Timer 1 has 500 milliseconds to go

Timer 0 has expired

Timer 1 has 0 milliseconds to go

Timer 1 has expired

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

130

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Interactive
Command

NO

Associated
Commands

ONEVENT, TIMERCANCEL,TIMERRUNNING

//Example :: TimerCancel.sb (See in Firmware Zip file)

 DIM i,x

 i=0 : x=1 //'x' is HandlerTimer0's return value

 //Will switch to 0 when timer0 has expired so that the application can stop

 FUNCTION HandlerTimer0()

 PRINT "\nTimer 0 has expired, starting again"

 IF i==4 THEN

 PRINT "\nCancelling Timer 0"

 TimerCancel(0)

 PRINT "\nTimer 0 ran ";i+1;" times"

 x=0

 ENDIF

 i=i+1

 ENDFUNC x

 ONEVENT EVTMR0 CALL HandlerTimer0

 TimerStart(0,800,1)

 PRINT "\nWaiting for Timer 0. Should run 5 times"

 WAITEVENT

Expected Output:

TIMERCANCEL is a core subroutine.

FUNCTION

There is a 31-bit free running counter that increments every millisecond. The resolution of this counter in microseconds can
be determined by submitting the command AT I 2004 or at runtime SYSINFO(2004). This function returns that free running
counter. It wraps to 0 when the counter reaches 0x7FFFFFFF.

GETTICKCOUNT ()

Returns INTEGER A value in the range 0 to 0x7FFFFFFF (2,147,483,647) in units of milliseconds.

Arguments: None

Waiting for Timer 0. Should run 5 times

Timer 0 has expired, starting again

Timer 0 has expired, starting again

Timer 0 has expired, starting again

Timer 0 has expired, starting again

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

131

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Interactive
Command

No

Associated
Commands

GETTICKSINCE

//Example :: GetTickCount.sb (See in Firmware Zip file)

 FUNCTION HandlerTimer0()

 PRINT "\n\nTimer 0 has expired"

 ENDFUNC 0

 PRINT "\nThe value on the counter is ";GetTickCount()

 ONEVENT EVTMR0 CALL HandlerTimer0

 TimerStart(0,1000,0)

 PRINT "\nWaiting for Timer 0"

 WAITEVENT

 PRINT "\nThe value on the counter is now ";GetTickCount();

Expected Output:

GETTICKCOUNT is a core subroutine.

FUNCTION

This function returns the time elapsed since the startTick variable was updated with the return value of GETTICKCOUNT(). It
signifies the time in milliseconds. If startTick is less than 0, which is a value that GETTICKCOUNT() never returns, then a 0 is
returned.

GETTICKSINCE (startTick)

Returns

INTEGER A value in the range 0 to 0x7FFFFFFF (2,147,483,647) in units of milliseconds.

startTickr byVal startTick AS INTEGER
This is a variable that was updated using the return value from GETTICKCOUNT() and it is used
to calculate the time elapsed since that update.

Arguments: None

Interactive No

The value on the counter is 159297

Waiting for Timer 0

Timer 0 has expired

The value on the counter is now 160299

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

132

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Command

Associated
Commands

GETTICKCOUNT

//Example :: GetTickSince.sb (See in Firmware Zip file)

 DIM startTick, elapseMs, x

 x=1

 startTick = GetTickCount()

 DO

 PRINT x;" x 2 = "

 x=x*2

 PRINT x;"\n"

 UNTIL x==32768

 elapseMs = GetTickSince(startTick)

 PRINT "\n\nThe Do Until loop took ";elapseMS; " msec to process"

Expected Output:

GETTICKCOUNT is a core subroutine.

It is a common requirement in applications that deal with communications to require circular buffers that can act as first-in,
first-out queues or to create a stack that can store data in a push/pop manner.

This section describes functions that allow these to be created so that they can be expedited as fast as possible without the
speed penalty inherited in any interpreted language. The basic entity that is managed is the INTEGER variable in
smartBASIC. Hence be aware that for a buffer size of N, four times N is the memory that is taken from the internal heap.

These buffers are referenced using handles provided at creation time.

1 x 2 = 2

2 x 2 = 4

4 x 2 = 8

8 x 2 = 16

16 x 2 = 32

32 x 2 = 64

64 x 2 = 128

128 x 2 = 256

256 x 2 = 512

512 x 2 = 1024

1024 x 2 = 2048

2048 x 2 = 4096

4096 x 2 = 8192

8192 x 2 = 16384

16384 x 2 = 32768

The Do Until loop took 21 msec to process

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

133

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

FUNCTION

This function is used to create a circular buffer with a maximum capacity set by the caller. Most often it is used as a first-in,
first-out queue.

CIRCBUFCREATE (nItems, circHandle)

Returns

INTEGER

An integer result code. The most typical value is 0x0000, which indicates a successful
operation.

Arguments:

nItems

byVal nItems AS INTEGER
This specifies the maximum number of INTEGER values that can be stored in the buffer. If
there isn’t enough free memory in the heap, then this function fails and returns an
appropriate result code.

circHandle
byRef circHandle AS INTEGER
If the circular buffer is successfully created, then this variable returns a handle that should be
used to interact with it.

Interactive
Command

No

//Example :: CircBufCreate.sb (See in Firmware Zip file)

 DIM circHandle, circHandle2, rc

 rc = CircBufCreate(16,circHandle)

 PRINT "\n";rc

 IF rc!=0 THEN

 PRINT "\nThe circular buffer ";circHandle; "was not created"

 ENDIF

 rc = CircBufCreate(32000,circHandle2)

 PRINT "\n\n";rc

 IF rc!=0 THEN

 PRINT "\n---> The circular buffer 'circHandle2' was not created"

 ENDIF

Expected Output:

CIRCBUFCREATE is an extension function.

0

20736

---> The circular buffer 'circHandle2' was not created

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

134

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

SUBROUTINE

This function is used to destroy a circular buffer previously created using CircBufCreate.

CIRCBUFDESTROY (circHandle)

Arguments:

circHandle
byRef circHandle AS INTEGER
A handle referencing the circular buffer that needs to be deleted. On exit an invalid handle value
is returned.

Interactive
Command

No

//Example :: CircBufDestroy.sb (See in Firmware Zip file)

 DIM circHandle, circHandle2, rc

 rc = CircBufCreate(16,circHandle)

 PRINT "\n";rc

 IF rc!=0 THEN

 PRINT "\nThe circular buffer ";circHandle; " was not created"

 ENDIF

 CircBufDestroy(circHandle)

 PRINT "\nThe handle value is now ";circHandle; " so it has been destroyed"

Expected Output:

CIRCBUFDESTROY is an extension function.

FUNCTION

This function is used to write an integer at the head end of the circular buffer and if there is no space available to write,
then it returns with a failure resultcode and NOT write the value.

CIRCBUFWRITE (circHandle, nData)

Returns:

INTEGER

An integer result code. The most typical value is 0x0000, which indicates a successful
operation.

Arguments:

circHandle
byRef circHandle AS INTEGER
This identifies the circular buffer to write into.

nData
byVal nData AS INTEGER
This is the integer value to write into the circular buffer

0

The handle value is now -1 so it has been destroyed

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

135

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Interactive
Command

No

// Example :: CircBufWrite.sb (See in Firmware Zip file)

 DIM rc

 DIM circHandle

 DIM i

 rc = CircBufCreate(16,circHandle)

 IF rc != 0 then

 PRINT "\nThe circular buffer was not created\n"

 ELSE

 PRINT "\nThe circular buffer was created successfully\n"

 ENDIF

 //write 3 values into the circular buffer

 FOR i = 1 TO 3

 rc = CircBufWrite(circHandle,i)

 IF rc != 0 then

 PRINT "\nFailed to write into the circular buffer\n"

 ELSE

 PRINT i;" was successfully written to the circular buffer\r"

 ENDIF

 NEXT

Expected output:

CIRCBUFWRITE is an extension function.

FUNCTION

This function is used to write an integer at the head end of the circular buffer and if there is no space available to write,
then it returns with a failure resultcode but still writes into the circular buffer by first discarding the oldest item.

CIRCBUFOVERWRITE (circHandle, nData)

Returns:

INTEGER

An integer result code. The most typical value is 0x0000, which indicates a successful operation

Note: If the buffer was full and the oldest value was overwritten then a non-zero value of
0x5103 is still returned.

The circular buffer was created successfully

1 was successfuly written to the circular buffer

2 was successfuly written to the circular buffer

3 was successfuly written to the circular buffer

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

136

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Arguments:

circHandle
byRef circHandle AS INTEGER
This identifies the circular buffer to write into.

nData
byVal nData AS INTEGER
This is the integer value to write into the circular buffer. It is always written into the buffer.
Oldest is discarded to make space for this.

Interactive
Command

No

// Example :: CircBufOverwrite.sb (See in Firmware Zip file)

 DIM rc,circHandle,i

 rc = CircBufCreate(4,circHandle)

 IF rc != 0 THEN

 PRINT "\nThe circular buffer was not created\n"

 ELSE

 PRINT "\nThe circular buffer was created successfully\n"

 ENDIF

 FOR i = 1 TO 5

 rc = CircBufOverwrite(circHandle,i)

 IF rc == 0x5103 THEN

 PRINT "\nOldest value was discarded to write ";i

 ELSEIF rc !=0 THEN

 PRINT "\nFailed to write into the circular buffer"

 ELSE

 PRINT "\n";i

 ENDIF

 NEXT

Expected Output:

CIRCBUFOVERWRITE is an extension function.

FUNCTION
This function is used to read an integer from the tail end of the circular buffer. A nonzero resultcode is returned if the buffer
is empty or if the handle is invalid.

The circular buffer was created successfully

1

2

3

4

Oldest value was discarded to write 5

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

137

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

CIRCBUFREAD(circHandle, nData)

Returns:

INTEGER

An integer result code. The most typical value is 0x0000, which indicates a successful operation.
If 0x5102 is returned it implies the buffer was empty so nothing was read.

Arguments:

circHandle
byRef circHandle AS INTEGER
This identifies the circular buffer to read from.

nData
byRef nData AS INTEGER
This is the integer value to read from the circular buffer

Interactive
Command

No

// Example :: CircBufRead.sb (See in Firmware Zip file)

 DIM rc,circHandle,i,nData

 rc = CircBufCreate(4,circHandle)

 IF rc != 0 THEN

 PRINT "\nThe circular buffer was not created"

 ELSE

 PRINT "\nThe circular buffer was created successfully\n"

 PRINT "Writing..."

 ENDIF

 FOR i = 1 TO 5

 rc = CircBufOverwrite(circHandle,i)

 IF rc == 0x5103 THEN

 PRINT "\nOldest value was discarded to write ";i;"\n"

 ELSEIF rc !=0 THEN

 PRINT "\nFailed TO write inTO the circular buffer"

 ELSE

 PRINT "\n";i

 ENDIF

 NEXT

 //read 4 values from the circular buffer

 PRINT "\nReading...\n"

 FOR i = 1 to 4

 rc = CircBufRead(circHandle,nData)

 IF rc == 0x5102 THEN

 PRINT "The buffer was empty"

 ELSEIF rc != 0 THEN

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

138

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 PRINT "Failed to read from the circular buffer"

 ELSE

 PRINT nData;"\n"

 ENDIF

 NEXT

Expected Output:

CIRCBUFREAD is an extension function.

FUNCTION

This function is used to determine the number of integer items held in the circular buffer.

CIRCBUFITEMS(circHandle, nItems)

Returns:

INTEGER, a result code.

The typical value is 0x0000, indicating a successful operation. If 0x5102 is returned it implies the
buffer was empty so nothing was read.

Arguments:

circHandle
byRef circHandle AS INTEGER
This identifies the circular buffer which needs to be queried.

nData
byRef nItems AS INTEGER
This returns the total items waiting to be read in the circular buffer.

Interactive
Command

No

// Example :: CircBufItems.sb (See in Firmware Zip file)

The circular buffer was created successfully

Writing...

1

2

3

4

Oldest value was discarded to write 5

Reading...

2

3

4

5

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

139

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 DIM rc,circHandle,i,nItems

 rc = CircBufCreate(4,circHandle)

 IF rc != 0 THEN

 PRINT "\nThe circular buffer was not created\n"

 ELSE

 PRINT "\nThe circular buffer was created successfully\n"

 ENDIF

 FOR i = 1 TO 5

 rc = CircBufOverwrite(circHandle,i)

 IF rc == 0x5103 THEN

 PRINT "\nOldest value was discarded to write ";i

 ELSEIF rc !=0 THEN

 PRINT "\nFailed TO write inTO the circular buffer"

 ENDIF

 rc = CircBufItems(circHandle,nItems)

 IF rc == 0 THEN

 PRINT "\n";nItems;" items in the circular buffer"

 ENDIF

 NEXT

Expected Output:

CIRCBUFITEMS is an extension function.

In keeping with the event driven architecture of smartBASIC, the serial communications subsystem enables smartBASIC
applications to be written which allow communication events to trigger the processing of user smartBASIC code.

Note that if a handler function returns a non-zero value then the WAITEVENT statement is reprocessed, otherwise the
smartBASIC runtime engine proceeds to process the next statement after the WAITEVENT statement – not after the

The circular buffer was created successfully

1 items in the circular buffer

2 items in the circular buffer

3 items in the circular buffer

4 items in the circular buffer

Oldest value was discarded to write 5

4 items in the circular buffer

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

140

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

handlers ENDFUNC or EXITFUNC statement. Please refer to the detailed description of the WAITEVENT statement for
further information.

This section describes all the events and routines used to interact with the UART peripheral available on the platform.
Depending on the platform, at a minimum, the UART consists of a transmit, a receive, a CTS (Clear To Send) and RTS (Ready
to Send) line. The CTS and RTS lines are used for hardware handshaking to ensure that buffers do not overrun.

If there is a need for the following low bandwidth status and control lines found on many peripherals, then the user is able
to create those using the GPIO lines of the module and interface with those control/status lines using smartBASIC code.

Output DTR Data Terminal Ready

Input DSR Data Set Ready

Output/Input DCD Data Carrier Detect

Output/Input RI Ring Indicate

The lines DCD and RI are marked as Output or Input because it is possible, unlike a device like a PC where they are always
inputs and modems where they are always outputs, to configure the pins to be either so that the device can adopt a DTE
(Data Terminal Equipment) or DCE (Data Communications Equipment) role.

Note: DCD and RI have to be BOTH outputs or BOTH inputs; one cannot be an output and the other an input.

In addition to the routines for manipulating the UART interface, when data arrives via the receive line it is stored locally in
an underlying ring buffer and then an event is generated.

Similarly, when the transmit buffer is emptied, events are thrown from the underlying drivers so that user smartBASIC code
in handlers can perform user defined actions.

The following is a detailed list of all events generated by the UART subsystem which can be handled by user code.

EVUARTRX
This event is generated when one or more new characters have arrived and have been
stored in the local ring buffer.

EVUARTTXEMPTY
This event is generated when the last character is transferred from the local transmit
ring buffer to the hardware shift register.

EVUARTCTS

This event , when enabled, reports CTS changes. Use UartInfo(7) to determine the
current state of the CTS input line. See UartInfo() for more details
Note: This functionality will not exist on certain platforms and if not then a compile
error will result when used in an ONEVENT statement.

// Example :: EVUARTRX.sb (See in Firmware Zip file)

 DIM rc

 FUNCTION HndlrUartRx()

 PRINT "\nData has arrived\r"

 ENDFUNC 1 //remain blocked in WAITEVENT

 FUNCTION Btn0Pressed()

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

141

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 ENDFUNC 0

 rc = GPIOBindEvent(0,16,1)

 PRINT "\nPress Button 0 to exit this application \n"

 ONEVENT EVUARTRX CALL HndlrUartRx

 ONEVENT EVGPIOCHAN0 CALL Btn0Pressed

 WAITEVENT //wait for rx, tx and modem status events

 PRINT "Exiting..."

Expected Output:

Note: If you type unknown commands, an E007 error displays in UwTerminal.

// Example :: EVUARTTXEMPTY.sb (See in Firmware Zip file)

 FUNCTION HndlrUartTxEty()

 PRINT "\nTx buffer is empty"

 ENDFUNC 0

 ONEVENT EVUARTTXEMPTY CALL HndlrUartTxEty

 PRINT "\nSend this via uart"

 WAITEVENT

Expected Output:

Press Button 0 to exit this application

e

Data has arrived

Data has arrived

Data has arrived

Exiting...

Send this via uart

Tx buffer is empty

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

142

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Note: If communicating with a Mac OS X device, the baud rate cannot be set above 230400 due to Mac having no
support for these baud rates.

FUNCTION

This function is used to open the main default UART peripheral using the parameters specified.

If the UART is already open, then this function fails. To prevent this, call UartClose() or UartCloseEx() before calling this
function.

If this function is used to alter the communications parameters, like say the baudrate and the application exits to interactive
mode, then those settings are inherited by the interactive mode parser. Hence this is the only way to alter the
communications parameters for Interactive mode.

While the UART is open, if a BREAK is sent to the module, then it forces the module into deep sleep mode as long as BREAK
is asserted. As soon as BREAK is deasserted, the module wakes up through a reset as if it had been power cycled.

UARTOPEN (baudrate,txbuflen,rxbuflen,stOptions)

Returns:

INTEGER Indicates success of command:

0 Opened successfully

0x5208 Invalid baudrate

0x5209 Invalid parity

0x520A Invalid databits

0x520B Invalid stopbits

0x520C Cannot be DTE (because DCD and RI cannot be inputs)

0x520D Cannot be DCE (because DCD and RI cannot be outputs)

0x520E Invalid flow control request

0x520F Invalid DTE/DCE role request

0x5210 Invalid length of stOptions parameter (must be five characters)

0x5211 Invalid Tx buffer length

0x5212 Invalid Rx buffer length

Exceptions
▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments:

baudrate

byVal baudrate AS INTEGER
The baudrate for the UART. Note that, the higher the baudrate, the more power is drawn from
the supply pins.
AT I 1002 or SYSINFO(1002) returns the minimum valid baudrate
AT I 1003 or SYSINFO(1003) returns the maximum valid baudrate

txbuflen
byVal txbuflen AS INTEGER
Set the transmit ring buffer size to this value. If set to 0 then a default value is used by the
underlying driver

Rxbuflen
byVal rxbuflen AS INTEGER
Set the receive ring buffer size to this value. If set to 0 then a default value is used by the
underlying driver

stOptions
byVal stOptions AS STRING
This string (can be a constant) MUST be exactly 5 characters long where each character is used

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

143

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

to specify further comms parameters as follows.

Character Offset:

0

DTE/DCE role request:

▪ T – DTE

▪ C – DCE

1

Parity:

▪ N – None

▪ O – Odd

▪ E – Even

2 Databits: 5, 6, 7, 8, or 9

3 Stopbits: 1 or 2

4

Flow Control:

▪ N – None

▪ H – CTS/RTS hardware

▪ X – Xon/Xof (may not be available, see extension manual)

Related
Commands

UARTINFO, UARTCLOSE, UARTWRITE, UARTREAD, UARTREADMATCH
UARTGETDSR, UARTGETCTS, UARTGETDCD, UARTGETRI, UARTSETDTR,
UARTSETRTS, UARTSETDCD, UARTSETRI, UARTBREAK, UARTFLUSH

Interactive
Command

NO

Note: There are further restrictions on the options based on the hardware as for example a PC implementation cannot
be configured as a DCE role. Likewise, many microcontroller UART peripherals are not capable of 5 bits per
character – but a PC is.

Note: In DTE equipment DCD and RI are inputs, while in DCE they are outputs.

// Example :: UartOpen.sb (See in Firmware Zip file)

 DIM rc

 FUNCTION HndlrUartRx()

 PRINT "\nData has arrived\r"

 ENDFUNC 1 //remain blocked in WAITEVENT

 FUNCTION Btn0Pressed()

 UartClose()

 ENDFUNC 0

 rc = GPIOBindEvent(0,16,1) //For button0

 ONEVENT EVUARTRX CALL HndlrUartRx

 ONEVENT EVGPIOCHAN0 CALL Btn0Pressed

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

144

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 UartClose() //Since Uart port is already open we must

 //close it before opening it again with

 //different settings.

 //--- Open comport so that DCD and RI are inputs

 rc = UartOpen(9600,0,0,"CN81H") //Open as DCE, no parity, 8 databits,

 //1 stopbits, cts/rts flow control

 IF rc!= 0 THEN

 PRINT "\nFailed to open UART interface with error code ";INTEGER.H' rc

 ELSE

 PRINT "\nUART open success"

 ENDIF

 PRINT "\nPress button0 to exit this application\n"

 WAITEVENT //wait for rx, events

 PRINT "\nExiting..."

Expected Output:

UARTOPEN is a core function.

FUNCTION

This subroutine is used to close a UART port which had been opened with UARTOPEN.

If after the UART is closed a print statement is encountered, the UART automatically re-opens at the default rate (see
hardware specific user manual for actual default value) so that the data generated by the PRINT statement is sent.

This routine throws an exception if the UART is already closed, so if you are not sure then it is best to call it if UARTINFO(1)
returns a non-zero value.

When this subroutine is invoked, the receive and transmit buffers are both flushed. If there is any data in either of these
buffers when the UART is closed, it will be lost. This is because the execution of UARTCLOSE takes a very short amount of
time, while the transfer of data from the buffers takes much longer.

UART open successful

Press button0 to exit this application

laird

Data has arrived

Data has arrived

Data has arrived

Data has arrived

Data has arrived

Data has arrived

Exiting...

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

145

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

In addition, please note that when a smartBASIC application completes execution with the UART closed, it automatically
reopens in order to allow continued communication with the module in Interactive Mode using the default communications
settings.

UARTCLOSE()

Exceptions
▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments None

Interactive
Command

NO

Related
Commands

UARTOPEN,UARTINFO, UARTWRITE, UARTREAD, UARTREADMATCH, UARTGETCTS,
UARTGETDCD, UARTGETRI, UARTSETDTR, UARTSETRTS, UARTSETDCD, UARTSETRI, UARTBREAK,
UARTFLUSH

//Example :: UartClose.sb (See in Firmware Zip file)

 UartClose()

 IF UartInfo(0)==0 THEN

 PRINT "\nThe Uart port was closed"

 ELSE

 PRINT "\nThe Uart port was not closed"

 ENDIF

 IF UartInfo(0)!=0 THEN

 PRINT "\nand now it is open"

 ENDI

Expected Output:

UARTCLOSE is a core subroutine.

FUNCTION

This function is used to close a UART port which had been opened with UARTOPEN depending on the flag mask in the input
parameter.

Please see UartClose() for more details.

UARTCLOSEEX(nFlags)

Returns

INTEGER

An integer result code. The most typical value is 0x0000, which indicates a successful operation.
If 0x5231 is returned it implies one of the buffers was not empty so not closed.

The UART port was closed

and now it is open

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

146

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Exceptions
▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments

nFlags

byVal nFlags AS INTEGER
If Bit 0 is set, then only close if both rx and tx buffers are empty. Setting this bit to 0 has the
same effect as UartClose() routine.
Bits 1 to 31 are for future use and must be set to 0.

Interactive
Command

NO

Related
Commands

UARTOPEN,UARTINFO, UARTWRITE, UARTREAD, UARTREADMATCH, UARTGETCTS,
UARTGETDCD, UARTGETRI, UARTSETDTR, UARTSETRTS, UARTSETDCD, UARTSETRI, UARTBREAK,
UARTFLUSH

//Example :: UartCloseEx.sb (See in Firmware Zip file)

 DIM rc1

 DIM rc2

 UartClose()

 rc1 = UartOpen(9600,0,0,"CN81H") //open as DTE at 300 baudrate, odd parity

 //8 databits, 1 stopbits, cts/rts flow control

 PRINT "Laird"

 IF UartCloseEx(1)!=0 THEN

 PRINT "\nData in at least one buffer. Uart Port not closed"

 ELSE

 rc1 = UartOpen(9600,0,0,"CN81H") //open as DTE at 300 baudrate, odd parity

 PRINT "\nUart Port was closed"

 ENDIF

Expected Output:

UARTCLOSEEX is a core function.

FUNCTION

This function is used to query information about the default UART, such as buffer lengths, whether the port is already open
or how many bytes are waiting in the receive buffer to be read.

UARTINFO (infoId)

Returns INTEGER The value associated with the type of uart information requested

Exceptions
▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Laird

Data in at least one buffer. Uart Port not closed

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

147

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Arguments

infold

byVal infoId AS INTEGER
This specifies the type of UART information requested as follows if the UART is open:

0
1 – The port is open

0 – The port is closed

The following specify the type of uart information when the port is open:

1 Receive ring buffer capacity

2 Transmit ring buffer capacity

3 Number of bytes waiting to be read from receive ring buffer

4 Free space available in transmit ring buffer

5 Number of bytes still waiting to be sent in transmit buffer

6 Total number of bytes waiting in rx and tx buffer

If the UART is closed, 0 is always returned regardless of the value of infold.

Note: UARTINFO(0) always returns the open/close state of the UART.

Interactive
Command

NO

Related
Commands

UARTOPEN, UARTCLOSE, UARTWRITE, UARTREAD, UARTREADMATCH
UARTGETDSR, UARTGETCTS, UARTGETDCD, UARTGETRI, UARTSETDTR,
UARTSETRTS, UARTSETDCD, UARTSETRI, UARTBREAK, UARTFLUSH

//Example :: UartInfo.sb (See in Firmware Zip file)

 DIM rc,start

 UartClose()

 IF UartInfo(0)==0 THEN

 PRINT "\nThe Uart port was closed\n"

 ELSE

 PRINT "\nThe Uart port was not closed\n"

 ENDIF

 PRINT "\nReceive ring buffer capacity: ";UartInfo(1)

 PRINT "\nTransmit ring buffer capacity: ";UartInfo(2)

 PRINT "\nNo. bytes waiting in transmit buffer: ";UartInfo(5)

 start = GetTickCount()

 DO

 UNTIL UartInfo(5)==0

 PRINT "\n\nTook ";GetTickSince(start);" milliseconds for transmit buffer to be emptied"

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

148

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Expected Output:

UARTINFO is a core subroutine.

FUNCTION

This function is used to transmit a string of characters.

UARTWRITE (strMsg)

Returns
INTEGER

0 to N : Actual number of bytes successfully written to the local transmit ring buffer

Exceptions

▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

▪ UART has not been opened using UARTOPEN (or auto-opened with PRINT statement)

Arguments

strMsg

byRef strMsg AS STRING
The array of bytes to be sent. STRLEN(strMsg) bytes are written to the local transmit ring buffer.
If STRLEN(strMsg) and the return value are not the same, this implies the transmit buffer did
not have enough space to accommodate the data. If the return value does not match the length
of the original string, then use STRSHIFTLEFT function to drop the data from the string, so that
subsequent calls to this function only retries with data which was not placed in the output ring
buffer.

Interactive
Command

NO

Related
Commands

UARTOPEN,UARTINFO, UARTCLOSE, UARTREAD, UARTREADMATCH
UARTGETDSR, UARTGETCTS, UARTGETDCD, UARTGETRI, UARTSETDTR,
UARTSETRTS, UARTSETDCD, UARTSETRI, UARTBREAK, UARTFLUSH

Note: strMsg cannot be a string constant (e.g. “the cat”); it must be a string variable. If you must use a const string,
first save it to a temp string variable and then pass it to the function.

//Example :: UartWrite.sb (See in Firmware Zip file)

 DIM rc,str$,i,done,d

 //str$ contains a lot of space so that we can satisfy the condition in the IF statement

The Uart port was closed

Receive ring buffer capacity: 256

Transmit ring buffer capacity: 256

No. bytes waiting in transmit buffer: 134

Took 142 milliseconds for transmit buffer to be emptied

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

149

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 str$="

Hello World"

 FUNCTION HndlrUartTxEty()

 PRINT "\nTx buffer is now empty"

 ENDFUNC 0 //exit from WAITEVENT

 rc=UartWrite(str$)

 //Shift 'str$' if there isn't enough space in the buffer until 'str$' can be written

 WHILE done == 0

 IF rc < StrLen(str$) THEN

 PRINT rc;" bytes written"

 PRINT "\nStill have ";StrLen(str$)-rc;" bytes to write\n"

 PRINT "\nShifting 'str$' by ";rc

 StrShiftLeft(str$,rc)

 done = 0

 ELSE

 PRINT "\nString 'str$' written successfully"

 done=1

 ENDIF

 ENDWHILE

 ONEVENT EVUARTTXEMPTY CALL HndlrUartTxEty

 WAITEVENT

Expected Output:

UARTWRITE is a core subroutine.

FUNCTION

This function is used to read the content of the receive buffer and append it to the string variable supplied.

256 bytes written

Still have 18 bytes to write

Shifting 'str$' by 256

String 'str$' written successfully

Tx buffer is now empty

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

150

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

UARTREAD(strMsg)

Returns
INTEGER 0 to N : The total length of the string variable – not just what got appended. This
means the caller does not need to call strlen() function to determine how many bytes in the
string that need to be processed.

Exceptions

▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

▪ Uart has not been opened using UARTOPENxxx

Arguments

strMsg
byRef strMsg AS STRING
The content of the receive buffer is appended to this string.

Interactive
Command

NO

Related
Commands

UARTOPEN,UARTINFO, UARTCLOSE, UARTWRITE, UARTREADMATCH, UARTGETDSR,
UARTGETCTS, UARTGETDCD, UARTGETRI, UARTSETDTR, UARTSETRTS, UARTSETDCD,
UARTSETRI, UARTBREAK, UARTFLUSH

Note: strMsg cannot be a string constant (e.g. “the cat”); they must be a string variable. If you must use a const string,
first save it to a temp string variable and then pass it to the function.

//Example :: UartRead.sb (See in Firmware Zip file)

 DIM rc,strLength,str$

 str$="Your name is "

 FUNCTION HndlrUartRx()

 TimerStart(0,100,0) //Allow enough time for data to reach rx buffer

 ENDFUNC 1

 FUNCTION HndlrTmr0()

 strLength=UartRead(str$)

 PRINT "\n";str$

 ENDFUNC 0

 ONEVENT EVTMR0 CALL HndlrTmr0

 ONEVENT EVUARTRX CALL HndlrUartRx

 PRINT "\nWhat is your name?\n"

 WAITEVENT

Expected Output:

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

151

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

UARTREAD is a core subroutine.

FUNCTION

This function is used to read the content of the receive buffer and append it to the string variable supplied but it ensures
that the string is not longer than nMaxLen.

UARTREADN(strMsg, nMaxLen)

Returns
INTEGER 0 to N : The total length of the string variable – not just what got appended. This
means the caller does not need to call strlen() function to determine how many bytes in the
string that need to be processed.

Exceptions

▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

▪ Uart has not been opened using UARTOPENxxx

Arguments

strMsg
byRef strMsg AS STRING
The content of the receive buffer is appended to this string.

nMaxLen
byval nMaxLen AS INTEGER
The output string strMsg is never longer than this value. If a value less than 1 is specified, it is
clipped to 1 and if > that 0xFFFF it is clipped to 0xFFFF.

Interactive
Command

NO

Related
Commands

UARTOPEN,UARTINFO, UARTCLOSE, UARTWRITE, UARTREADMATCH, UARTGETDSR,
UARTGETCTS, UARTGETDCD, UARTGETRI, UARTSETDTR, UARTSETRTS, UARTSETDCD,
UARTSETRI, UARTBREAK, UARTFLUSH

Note: strMsg cannot be a string constant (e.g. “the cat”); they must be a string variable. If you must use a const string,
first save it to a temp string variable and then pass it to the function.

//Example

 DIM rc,strLength,str$

 str$="Your name is "

 FUNCTION HndlrUartRx()

 TimerStart(0,100,0) //Allow enough time for data to reach rx buffer

 ENDFUNC 1

 FUNCTION HndlrTmr0()

What is your name?

David

Your name is David

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

152

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 strLength=UartReadn(str$,11)

 PRINT "\n";str$

 ENDFUNC 0

 ONEVENT EVTMR0 CALL HndlrTmr0

 ONEVENT EVUARTRX CALL HndlrUartRx

 PRINT "\nWhat is your name?\n"

 WAITEVENT

Expected Output:

UARTREADN is a core subroutine.

FUNCTION

This function is used to read the content of the underlying receive ring buffer and append it to the string variable supplied,
up to and including the first instance of the specified matching character OR the end of the ring buffer.

This function is very useful when interfacing with a peer which sends messages terminated by a constant character such as
a carriage return (0x0D). In that case, in the handler, if the return value is greater than 0, it implies a terminated message
arrived and so can be processed further.

UARTREADMATCH(strMsg , chr)

Returns

INTEGER Indicates the presence of the match character in strMsg as follows:

0 – Data may have been appended to the string, but no matching character.
1 to N – The total length of the string variable up to and including the match chr.

Note: When 0 is returned you can use STRLEN(strMsg) to determine the length of data stored
in the string. On some platforms with low amount of RAM resources, the underlying
code may decide to leave the data in the receive buffer rather than transfer it to the
string.

Exceptions

▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

▪ Uart has not been opened using UARTOPEN

Arguments

strMsg
byRef strMsg AS STRING
The content of the receive buffer gets appended to this string up to and including the match
character.

Chr byVal chr AS INTEGER

What is your name?

David

Your name i

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

153

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

The character to match in the receive buffer; for example, the carriage returns character 0x0D

Interactive
Command

NO

Related
Commands

UARTOPEN, UARTINFO, UARTCLOSE, UARTWRITE, UARTREAD, UARTGETDSR, UARTGETCTS,
UARTGETDCD, UARTGETRI, UARTSETDTR, UARTSETRTS, UARTSETDCD, UARTSETRI, UARTBREAK,
UARTFLUSH

Note: strMsg cannot be a string constant (e.g. “the cat”); they must be a string variable. If you must use a const string,
first save it to a temp string variable and then pass it to the function.

//Example :: UartReadMatch.sb (See in Firmware Zip file)

 DIM rc,str$,ret,char,str2$

 ret=1 //Function return value

 char=13 //ASCII decimal value for 'carriage return'

 str$="Your name is "

 str2$="\n\nMatch character ' ' not found \nExiting.."

 FUNCTION HndlrUartRx()

 TimerStart(0,10,0) //Allow time for data to reach rx buffer

 ENDFUNC 1

 FUNCTION HndlrTmr0()

 rc = UartReadMatch(str$,char)

 PRINT "\n";str$

 IF rc==0 THEN

 rc=StrSetChr(str2$,char,19) //Insert 'char', the match character

 PRINT str2$

 str2$="\n\nMatch character not found \nExiting.." //reset str2$

 ret=0

 ELSE

 PRINT "\n\n\nNow type something without the letter 'a'\n"

 str$="You sent " //reset str$

 char=97 //ASCII decimal value for 'a'

 ret=1

 ENDIF

 ENDFUNC ret

 ONEVENT EVTMR0 CALL HndlrTmr0

 ONEVENT EVUARTRX CALL HndlrUartRx

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

154

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 PRINT "\nWhat is your name?\n"

 WAITEVENT

Expected Output:

UARTREADMATCH is a core subroutine.

SUBROUTINE

This subroutine is used to flush either or both receive and transmit ring buffers.

This is useful when, for example, you have a character terminated messaging system and the peer sends a very long
message and the input buffer fills up. In that case, there is no more space for an incoming termination character and the
RTS handshaking line would have been asserted so the message system stalls. A flush of the receive buffer is the best
approach to recover from that situation.

Note: Execution of UARTFLUSH is much quicker than the time taken to transmit data to/from the
buffers

UARTFLUSH(bitMask)

Exceptions

▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

▪ Uart has not been opened using UARTOPEN

Arguments

bitMask

byVal bitMask AS INTEGER

This bit mask is used to choose which ring buffer to flush.

Bit Description

0 Set to flush the Rx buffer

1 Set to flush the Tx buffer

Interactive
Command

NO

Related
Commands

UARTOPEN, UARTINFO, UARTCLOSE, UARTWRITE, UARTREAD, UARTREADMATCH,
UARTGETCTS, UARTGETDCD, UARTGETRI, UARTGETDSR, UARTSETRTS, UARTSETDCD,
UARTBREAK, UARTFLUSH

What is your name?

Your name is David

Now type something without the letter 'a'

You sent hello

Match character 'a' not found

Exiting..

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

155

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

//Example :: UartFlushRx.sb (See in Firmware Zip file)

 FUNCTION HndlrUartRx()

 TimerStart(0,2,0) //Allow time for data to reach rx buffer

 ENDFUNC 1

 FUNCTION HndlrTmr0()

 PRINT UartInfo(3);" bytes in the rx buffer,\n"

 UartFlush(01) //clear rx buffer

 PRINT UartInfo(3);" bytes in the rx buffer after flushing"

 ENDFUNC 0

 ONEVENT EVUARTRX CALL HndlrUartRx

 ONEVENT EVTMR0 CALL HndlrTmr0

 PRINT "\nSend me some text\n"

 WAITEVENT

Expected Output:

//Example :: UartFlushTx.sb (See in Firmware Zip file)

 DIM s$: s$ = "Hello World"

 DIM rc : rc = UartWrite(s$)

 UartFlush(10) //Will flush before all chars have been transmitted

 PRINT UartInfo(5); " bytes in the tx buffer after flushing"

Expected Output:

UARTFLUSH is a core subroutine.

FUNCTION

Send me some data

Laird

6 bytes in the rx buffer,

0 bytes in the rx buffer after flushing

H0 bytes in the tx buffer after flushing

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

156

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

This function is used to read the current state of the CTS modem status input line.

If the device does not expose a CTS input line, then this function returns a value that signifies an asserted line.

UARTGETCTS()

Returns

INTEGER Indicates the status of the CTS line:

0 : CTS line is NOT asserted
1 : CTS line is asserted

Exceptions

▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

▪ Uart has not been opened using UARTOPEN

Arguments None

Interactive
Command

NO

Related
Commands

UARTOPEN, UARTINFO, UARTCLOSE, UARTWRITE, UARTREAD, UARTREADMATCH,
UARTGETDSR, UARTGETDCD, UARTGETRI, UARTSETDTR, UARTSETRTS, UARTSETDCD,
UARTSETRI, UARTBREAK, UARTFLUSH

//Example :: UartGetCTS.sb (See in Firmware Zip file)

 IF UartGetCTS()==0 THEN

 PRINT "\nCTS line is not asserted"

 ELSEIF UartGetCTS()==1 THEN

 PRINT "\nCTS line is asserted"

 ENDIF

Expected Output:

UARTGETCTS is a core subroutine.

SUBROUTINE

This function is used to set the state of the RTS modem control line. When the UART port is closed, the RTS line can be
configured as an input or an output and can be available for use as a general purpose input/output line.

When the UART port is opened, the RTS output is automatically defaulted to the asserted state. If flow control was enabled
when the port was opened, then the RTS output cannot be manipulated as it is owned by the underlying driver.

UARTSETRTS(newState)

Exceptions

▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

▪ Uart has not been opened using UARTOPEN

Arguments

newState
byVal newState AS INTEGER

0 to deassert and non-zero to assert

CTS line is not asserted

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

157

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Interactive
Command

NO

Related
Commands

UARTOPEN, UARTINFO, UARTCLOSE, UARTWRITE, UARTREAD, UARTREADMATCH, UARTGETCTS,
UARTGETDCD, UARTGETRI, UARTGETDSR, UARTSETDTR, UARTSETDCD, UARTSETRI, UARTBREAK,
UARTFLUSH

Note: This subroutine is not implemented in some modules. Refer to module specific user manual if this is available.

UARTSETRTS is a core subroutine.

SUBROUTINE

This subroutine is used to assert/deassert a BREAK on the transmit output line. A BREAK is a condition where the line is in
non-idle state (that is 0v) for more than 10 to 13 bit times, depending on whether parity has been enabled and the number
of stopbits.

On certain platforms the hardware may not allow this functionality, contact Laird to determine if your device has the
capability. On platforms that do not have this capability, this routine has no effect.

UARTBREAK(state)

Exceptions

▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

▪ Uart has not been opened using UARTOPEN

Arguments

newState
byVal newState AS INTEGER

0 to deassert and non-zero to assert

Interactive
Command

NO

Related
Commands

UARTOPEN, UARTINFO, UARTCLOSE, UARTWRITE, UARTREAD, UARTREADMATCH,
UARTGETCTS, UARTGETDCD, UARTGETRI, UARTGETDSR, UARTSETRTS, UARTSETDCD,
UARTFLUSH

UARTBREAK is a core subroutine.

Note: The routines in this section only work if I2C is supported on the platform.

This section describes all the events and routines used to interact with the I2C peripheral if it is available on the platform.
An I2C interface is also known as a Two Wire Interface (TWI) and has a master/slave topology.

An I2C interface allows multiple masters and slaves to communicate over a shared wired-OR type bus consisting of two lines
which normally sit at 5 or 3.3v.

Some modules can only be configured as an I2C master with the additional constraint that it be the only master on the bus
and only 7-bit slave addressing is supported. Please refer to the specific user manual for clarification.

The two signal lines are called SCL and SDA. The former is the clock line which is always sourced by the master and the
latter is a bi-directional data line which can be driven by any device on the bus.

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

158

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

It is essential to remember that pull up resistors on both SCL and SDA lines are not provided in the module and MUST be
provided external to the module.

A very good introduction to I2C can be found at http://www.i2c-bus.org/i2c-primer/ and the reader is encouraged to refer
to it before using the API described in this section.

The API provided in the module is synchronous and so there is no requirement for events.

FUNCTION

This function is used to open the main I2C peripheral using the parameters specified.

See the module reference manual for details of which pins expose the SCL and SDA functions.

I2COPEN (nClockHz, nCfgFlags, nHande)

Returns

INTEGER Indicates success of command:

0 Opened successfully

0x5200 Driver not found

0x5207 Driver already open

0x5225 Invalid clock frequency requested

0x521D Driver resource unavailable

0x5226 No free PPI channel

0x5202 Invalid signal pins

0x5219 I2C not allowed on specified pins

Exceptions
▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments

nClockHz
byVal nClockHz AS INTEGER
This is the clock frequency to use, See module specific documentation for valid frequencies.

nCfgFlags

byVal nCfgFlags AS INTEGER
This is a bit mask used to configure the I2C interface. All unused bits are allocated as for
future use and MUST be set to 0. Used bits are as follows:

Bit Description

0 If set, then a 500 microsecond low pulse is NOT sent on open. This low
pulse is used to create a start and stop condition on the bus so that any
signal transitions on these lines prior to this open which may have
confused a slave can initialise that slave to a known state. The STOP
condition should be detected by the slave.

1-31 Unused and MUST be set to 0

nHandle
byRef nHandle AS INTEGER
The handle for this interface is returned in this variable if it was successfully opened. This
handle is subsequently used to read/write and close the interface.

Related
Commands

I2CCLOSE, I2CWRITEREAD$, I2CWRITEREG8, I2CWRITEREG16, I2CWRITEREG32,
I2CREADREG8, I2CREADREG16, I2CREADREG32

//Example :: I2cOpen.sb (See in Firmware Zip file)

https://www.tutorialspoint.com/c_standard_library/math_h.htm

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

159

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 DIM handle

 DIM rc : rc=I2cOpen(100000,0,handle)

 IF rc!= 0 THEN

 PRINT "\nFailed to open I2C interface with error code "; INTEGER.h' rc

 ELSE

 PRINT "\nI2C open success \nHandle is ";handle

 ENDIF

Expected Output:

I2COPEN is a core function.

FUNCTION

This function is used to open the an I2C peripheral using the parameters specified.

With this function the gpio pins that expose the SCL and SDA functions can be specified.

It is only available on platforms that allow the I2C functionality to be routed to any pins.

I2COPEN (nSCLsignum, nSDAsignum, nClockHz, nCfgFlags, nHande)

Returns

INTEGER Indicates success of command:

0 Opened successfully

0x5200 Driver not found

0x5207 Driver already open

0x5225 Invalid clock frequency requested

0x521D Driver resource unavailable

0x5226 No free PPI channel

0x5202 Invalid signal pins

0x5219 I2C not allowed on specified pins

Exceptions
▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments

nSCLsignum
byVal nSCLsignum AS INTEGER

The sio pin to use as SCL line

nSDAsignum
byVal nSDAsignum AS INTEGER

The sio pin to use as SDA line

nClockHz
byVal nClockHz AS INTEGER
This is the clock frequency to use, See module specific documentation for valid frequencies.

nCfgFlags
byVal nCfgFlags AS INTEGER
This is a bit mask used to configure the I2C interface. All unused bits are allocated as for

I2C open success

Handle is 0

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

160

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

future use and MUST be set to 0. Used bits are as follows:

Bit Description

0 If set, then a 500 microsecond low pulse is NOT sent on open. This low
pulse is used to create a start and stop condition on the bus so that any
signal transitions on these lines prior to this open which may have
confused a slave can initialise that slave to a known state. The STOP
condition should be detected by the slave.

1-31 Unused and MUST be set to 0

nHandle
byRef nHandle AS INTEGER
The handle for this interface is returned in this variable if it was successfully opened. This
handle is subsequently used to read/write and close the interface.

Related
Commands

I2CCLOSE, I2CWRITEREAD$, I2CWRITEREG8, I2CWRITEREG16, I2CWRITEREG32,
I2CREADREG8, I2CREADREG16, I2CREADREG32

//Example :: I2cOpen.sb (See in Firmware Zip file)

 DIM handle

 DIM rc : rc=I2cOpenEx(20,21,100000,0,handle)

 IF rc!= 0 THEN

 PRINT "\nFailed to open I2C interface with error code "; INTEGER.h' rc

 ELSE

 PRINT "\nI2C open success \nHandle is ";handle

 ENDIF

Expected Output:

I2COPENEX is a core function.

SUBROUTINE

This subroutine is used to close a I2C port which had been opened with I2COPEN.

This routine is safe to call if it is already closed.

I2CCLOSE(handle)

Exceptions
▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments

handle
byVal handle AS INTEGER
This is the handle value that was returned when I2COPEN was called which identifies the I2C
interface to close.

Interactive
Command

NO

I2C open success

Handle is 0

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

161

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Related
Commands

I2COPEN, I2CWRITEREAD$, I2CWRITEREG8, I2CWRITEREG16, I2CWRITEREG32, I2CREADREG8,
I2CREADREG16, I2CREADREG32

 //Example :: I2cClose.sb (See in Firmware Zip file)

 DIM handle

 DIM rc : rc=I2cOpen(100000,0,handle)

 IF rc!= 0 THEN

 PRINT "\nFailed to open I2C interface with error code "; INTEGER.h' rc

 ELSE

 PRINT "\nI2C open success \nHandle is ";handle

 ENDIF

 I2cClose(handle) //close the port

 I2cClose(handle) //no harm done doing it again

I2CCLOSE is a core subroutine.

SUBROUTINE

This function is used to write an 8-bit value to a register inside a slave which is identified by an 8-bit register address.

Note: A handle parameter is NOT required as this function is used to interact with the main interface. In the future, a
new version of this function is made available if more than one I2C interface is made available, most likely made
available by bit-bashing gpio.

I2CWRITEREG8(nSlaveAddr, nRegAddr, nRegValue)

Exceptions
▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments

nSlaveAddr
byVal nSlaveAddr AS INTEGER
This is the address of the slave in range 0 to 127.

nRegAddr
byVal nRegAddr AS INTEGER
This is the 8-bit register address in the addressed slave in range 0 to 255.

nRegValue
byVal nRegValue AS INTEGER
This is the 8-bit value to written to the register in the addressed slave.
Note: Only the lowest eight bits of this variable are written.

Interactive
Command

NO

Related
Commands

I2COPEN, I2CCLOSE, I2CWRITEREAD$, I2CWRITEREG8, I2CWRITEREG16, I2CWRITEREG32,
I2CREADREG8, I2CREADREG16, I2CREADREG32

//Example :: I2cWriteReg8.sb (See in Firmware Zip file)

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

162

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 //**Please ensure that nSlaveAddr is the slave address of your I2C peripheral**

 DIM rc, handle, nSlaveAddr, nRegAddr, nRegVal

 //--- Open I2C Peripheral

 rc=I2cOpen(100000,0,handle)

 IF rc!= 0 THEN

 PRINT "\nFailed to open I2C interface with error code "; INTEGER.H' rc

 ELSE

 PRINT "\nI2C open success"

 ENDIF

 //--- Write 'nRegVal' to register 'nRegAddr'

 nSlaveAddr=0x6f : nRegAddr = 23 : nRegVal = 0x63

 rc = I2cWriteReg8(nSlaveAddr, nRegAddr, nRegVal)

 IF rc!= 0 THEN

 PRINT "\nFailed to Write to slave/register "; INTEGER.H'rc

 ELSE

 PRINT "\n";nRegVal; " written successfully to register ";nRegAddr

 ENDIF

 I2cClose(handle) //close the port

Expected Output:

I2CWRITEREG8 is a core function.

SUBROUTINE

This function is used to read an 8-bit value from a register inside a slave which is identified by an 8-bit register address.

Note a ‘handle’ parameter is NOT required as this function is used to interact with the main interface. In the future, a new
version of this function is made available if more than one I2C interface is made available, most likely made available by bit-
bashing GPIO.

I2CREADREG8(nSlaveAddr, nRegAddr, nRegValue)

Exceptions
▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments

nSlaveAddr
byVal nSlaveAddr AS INTEGER
This is the address of the slave in range 0 to 127.

I2C open success

99 written successfully to register 23

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

163

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

nRegAddr
byVal nRegAddr AS INTEGER
This is the 8-bit register address in the addressed slave in range 0 to 255.

nRegValue
byRef nRegValue AS INTEGER
The 8-bit value from the register in the addressed slave is returned in this variable.

Interactive
Command

NO

Related
Commands

I2COPEN, I2CCLOSE, I2CWRITEREAD$, I2CWRITEREG8, I2CWRITEREG16, I2CWRITEREG32,
I2CREADREG8, I2CREADREG16, I2CREADREG32

//Example :: I2cReadReg8.sb (See in Firmware Zip file)

 //**Please ensure that nSlaveAddr is the slave address of your I2C peripheral**

 DIM rc, handle, nSlaveAddr, nRegAddr, nRegVal

 //--- Open I2C Peripheral

 rc=I2cOpen(100000,0,handle)

 IF rc!= 0 THEN

 PRINT "\nFailed to open I2C interface with error code "; INTEGER.H' rc

 ELSE

 PRINT "\nI2C open success"

 ENDIF

 //---Read value from address 0x34

 nSlaveAddr=0x6f : nRegAddr = 23

 rc = I2cReadReg8(nSlaveAddr, nRegAddr, nRegVal)

 IF rc!= 0 THEN

 PRINT "\nFailed to Read from slave/register "; INTEGER.H'rc

 ELSE

 PRINT "\nValue read from register is ";nRegVal

 ENDIF

 I2cClose(handle) //close the port

Expected Output:

I2CREADREG8 is a core function.

I2C open success

Value read from register is 99

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

164

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

SUBROUTINE

This function is used to write a 16-bit value to two registers inside a slave and the first register is identified by an 8-bit
register address supplied.

Note a ‘handle’ parameter is NOT required as this function is used to interact with the main interface. In the future, a new
version of this function will be made available if more than one I2C interface is made available, most likely made available
by bit-bashing GPIO.

I2CWRITEREG16(nSlaveAddr, nRegAddr, nRegValue)

Exceptions
▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments

nSlaveAddr
byVal nSlaveAddr AS INTEGER
This is the address of the slave in range 0 to 127.

nRegAddr
byVal nRegAddr AS INTEGER
This is the 8-bit start register address in the addressed slave in range 0 to 255.

nRegValue
byVal nRegValue AS INTEGER
This is the 16-bit value to be written to the register in the addressed slave.
Please note only the lowest 16 bits of this variable are written.

Interactive
Command

NO

Related
Commands

I2COPEN, I2CCLOSE, I2CWRITEREAD$, I2CWRITEREG8, I2CWRITEREG16, I2CWRITEREG32,
I2CREADREG8, I2CREADREG16, I2CREADREG32

//Example :: I2cWriteReg16.sb (See in Firmware Zip file)

 //**Please ensure that nSlaveAddr is the slave address of your I2C peripheral**

 DIM rc, handle, nSlaveAddr, nRegAddr, nRegVal

 //--- Open I2C Peripheral

 rc=I2cOpen(100000,0,handle)

 IF rc!= 0 THEN

 PRINT "\nFailed to open I2C interface with error code "; INTEGER.H' rc

 ELSE

 PRINT "\nI2C open success"

 ENDIF

 //--- Write 'nRegVal' to register 'nRegAddr'

 nSlaveAddr=0x6f : nRegAddr = 0x34 : nRegVal = 0x4210

 rc = I2cWriteReg16(nSlaveAddr, nRegAddr, nRegVal)

 IF rc!= 0 THEN

 PRINT "\nFailed to Write to slave/register "; INTEGER.H'rc

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

165

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 ELSE

 PRINT "\n";nRegVal; " written successfully to register ";nRegAddr

 ENDIF

 I2cClose(handle) //close the port

Expected Output:

I2CWRITEREG16 is a core function.

SUBROUTINE

This function is used to read a 16-bit value from two registers inside a slave which is identified by an 8-bit register address.

Note: A handle parameter is NOT required as this function is used to interact with the main interface. In the future, a
new version of this function will be made available if more than one I2C interface is made available, most likely
made available by bit-bashing GPIO.

I2CREADREG16(nSlaveAddr, nRegAddr, nRegValue)

Exceptions
▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments
byVal nSlaveAddr AS INTEGER
This is the address of the slave in range 0 to 127.

nSlaveAddr
byVal nRegAddr AS INTEGER
This is the 8-bit start register address in the addressed slave in range 0 to 255.

nRegAddr
byRef nRegValue AS INTEGER
The 16-bit value from two registers in the addressed slave is returned in this variable.

Interactive
Command

NO

Related
Commands

I2COPEN, I2CCLOSE, I2CWRITEREAD$, I2CWRITEREG8, I2CWRITEREG16, I2CWRITEREG32,
I2CREADREG8, I2CREADREG16, I2CREADREG32

//Example :: I2cReadReg16.sb (See in Firmware Zip file)

 //**Please ensure that nSlaveAddr is the slave address of your I2C peripheral**

 DIM rc, handle, nSlaveAddr, nRegAddr, nRegVal

 //--- Open I2C Peripheral

 rc=I2cOpen(100000,0,handle)

 IF rc!= 0 THEN

I2C open success

16912 written successfully to register 52

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

166

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 PRINT "\nFailed to open I2C interface with error code "; INTEGER.H' rc

 ELSE

 PRINT "\nI2C open success"

 ENDIF

 //---Read value from address 0x34

 nSlaveAddr=0x6f : nRegAddr = 0x34

 rc = I2cReadReg16(nSlaveAddr, nRegAddr, nRegVal)

 IF rc!= 0 THEN

 PRINT "\nFailed to Read from slave/register "; INTEGER.H'rc

 ELSE

 PRINT "\nValue read from register is ";nRegVal

 ENDIF

 I2cClose(handle) //close the port

Expected Output:

I2CREADREG16 is a core function.

SUBROUTINE

This function is used to write a 32-bit value to four registers inside a slave and the first register is identified by an 8-bit
register address supplied.

Note: A handle parameter is NOT required as this function is used to interact with the main interface. In the future, a
new version of this function will be made available if more than one I2C interface is made available, most likely
made available by bit-bashing GPIO.

I2CWRITEREG32(nSlaveAddr, nRegAddr, nRegValue)

Exceptions
▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments

nSlaveAddr
byVal nSlaveAddr AS INTEGER
This is the address of the slave in range 0 to 127.

nRegAddr
byVal nRegAddr AS INTEGER
This is the 8-bit start register address in the addressed slave in range 0 to 255.

nRegValue
byVal nRegValue AS INTEGER
This is the 32-bit value to be written to the register in the addressed slave.

Interactive NO

I2C open success

Value read from register is 16912

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

167

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Command

Related
Commands

I2COPEN, I2CCLOSE, I2CWRITEREAD$, I2CWRITEREG8, I2CWRITEREG16, I2CWRITEREG32,
I2CREADREG8, I2CREADREG16, I2CREADREG32

//Example :: I2cWriteReg32.sb (See in Firmware Zip file)

 //**Please ensure that nSlaveAddr is the slave address of your I2C peripheral**

 DIM handle

 DIM nSlaveAddr, nRegAddr,nRegVal

 DIM rc : rc=I2cOpen(100000,0,handle)

 IF rc!= 0 THEN

 PRINT "\nFailed to open I2C interface with error code ";INTEGER.h' rc

 ELSE

 PRINT "\nI2C open success"

 ENDIF

 nSlaveAddr = 0x6f : nRegAddr = 0x56 : nRegVal = 0x4210FEDC

 rc = I2cWriteReg32(nSlaveAddr, nRegAddr, nRegVal)

 IF rc!= 0 THEN

 PRINT "\nFailed to Write to slave/register "; INTEGER.H'rc

 ELSE

 PRINT "\n";nRegVal; " written successfully to register ";nRegAddr

 ENDIF

 I2cClose(handle) //close the port

Expected Output:

I2CWRITEREG32 is a core function.

FUNCTION

This function is used to read a 32-bit value from four registers inside a slave which is identified by a starting 8-bit register
address.

Note: A handle parameter is NOT required as this function is used to interact with the main interface. In the future, a
new version of this function will be made available if more than one I2C interface is made available, most likely
made available by bit-bashing GPIO.

I2C open success

1108410076 written successfully to register 86

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

168

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

I2CREADREG32(nSlaveAddr, nRegAddr, nRegValue)

Exceptions
▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments

nSlaveAddr
byVal nSlaveAddr AS INTEGER
This is the address of the slave in range 0 to 127.

nRegAddr
byVal nRegAddr AS INTEGER
This is the 8-bit start register address in the addressed slave in range 0 to 255.

nRegValue
byRef nRegValue AS INTEGER
The 32-bit value from four registers in the addressed slave is returned in this variable.

Interactive
Command

NO

Related
Commands

I2COPEN, I2CCLOSE, I2CWRITEREAD$, I2CWRITEREG8, I2CWRITEREG16, I2CWRITEREG32,
I2CREADREG8, I2CREADREG16, I2CREADREG32

//Example :: I2cReadREG32.sb (See in Firmware Zip file)

 //**Please ensure that nSlaveAddr is the slave address of your I2C peripheral**

 DIM handle

 DIM nSlaveAddr, nRegAddr,nRegVal

 DIM rc : rc=I2cOpen(100000,0,handle)

 IF rc!= 0 THEN

 PRINT "\nFailed to open I2C interface with error code ";INTEGER.h' rc

 ELSE

 PRINT "\nI2C open success"

 ENDIF

 //---Read value from address 0x56

 nSlaveAddr = 0x6f : nRegAddr = 0x56

 rc = I2cReadReg32(nSlaveAddr, nRegAddr, nRegVal)

 IF rc!= 0 THEN

 PRINT "\nFailed to read from slave/register"

 ELSE

 PRINT "\nValue read from register is "; nRegVal

 ENDIF

 I2cClose(handle) //close the port

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

169

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Expected Output:

I2CREADREG16 is a core function.

SUBROUTINE

This function is used to write from 0 to 255 bytes and then immediately after that read 0 to 255 bytes in a single transaction
from the addressed slave. It is a ‘free-form’ function that allows communication with a slave which has a 10-bit address.

Note: A handle parameter is NOT required as this function is used to interact with the main interface. In the future, a
new version of this function will be made available if more than one I2C interface is made available, most likely
made available by bit-bashing GPIO.

I2CWRITEREAD(nSlaveAddr, stWrite$, stRead$, nReadLen)

Exceptions
▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments

nSlaveAddr
byVal nSlaveAddr AS INTEGER
This is the address of the slave in range 0 to 127.

stWrite$
byRef stWrite$ AS STRING
This string contains the data that must be written first. If the length of this string is 0 then the
write phase is bypassed.

stRead$
byRef stRead$ AS STRING
This string is written to with data read from the slave if and only if nReadLen is not 0.

nReadLen
byRef nReadLen AS INTEGER
On entry, this variable contains the number of bytes to be read from the slave and on exit contains
the actual number that were actually read. If the entry value is 0, then the read phase is skipped.

Interactive
Command

NO

Related
Commands

I2COPEN, I2CCLOSE, I2CWRITEREAD$, I2CWRITEREG8, I2CWRITEREG16, I2CWRITEREG32,
I2CREADREG8, I2CREADREG16, I2CREADREG32

//Example :: I2cWriteRead.sb (See in Firmware Zip file)

 //**Please ensure that nSlaveAddr is the slave address of your I2C peripheral**

 DIM rc

 DIM handle

 DIM nSlaveAddr

 DIM stWrite$, stRead$, nReadLen

 rc=I2cOpen(100000,0,handle)

I2C open success

Value read from register is 1108410076

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

170

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 IF rc!= 0 THEN

 PRINT "\nFailed to open I2C interface with error code ";integer.h' rc

 ELSE

 PRINT "\nI2C open success"

 ENDIF

 //Write 2 bytes and read 0

 nSlaveAddr=0x6f : stWrite$ = "\34\35" : stRead$="" : nReadLen = 0

 rc = I2cWriteRead(nSlaveAddr, stWrite$, stRead$, nReadLen)

 IF rc!= 0 THEN

 PRINT "\nFailed to WriteRead "; integer.h'rc

 ELSE

 PRINT "\nWrite = ";StrHexize$(stWrite$);" Read = ";StrHexize$(stRead$)

 ENDIF

 //Write 3 bytes and read 4

 nSlaveAddr=0x6f : stWrite$ = "\34\35\43" : stRead$="" : nReadLen = 4

 rc = I2cWriteRead(nSlaveAddr, stWrite$, stRead$, nReadLen)

 IF rc!= 0 THEN

 PRINT "\nFailed to WriteRead "; integer.h'rc

 ELSE

 PRINT "\nWrite = ";StrHexize$(stWrite$);" Read = ";StrHexize$(stRead$)

 ENDIF

 //Write 0 bytes and read 8

 nSlaveAddr=0x6f : stWrite$ = "" : stRead$="" : nReadLen = 8

 rc = I2cWriteRead(nSlaveAddr, stWrite$, stRead$, nReadLen)

 IF rc!= 0 THEN

 PRINT "\nFailed to WriteRead "; integer.h'rc

 ELSE

 PRINT "\nWrite = ";StrHexize$(stWrite$);" Read = ";StrHexize$(stRead$)

 ENDIF

 I2cClose(handle) //close the port

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

171

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Expected Output:

I2CWRITEREAD is a core function.

Note: The routines in this section only work if SPI is supported on the hardware for which you are developing.

This section describes all the events and routines used to interact with the SPI peripheral if it is available on the platform.

The three signal lines are called SCK, MOSI and MISO, where the first two are outputs and the last is an input.

A very good introduction to SPI can be found at http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
and the reader is encouraged to refer to it before using the API described in this section.

It is possible to configure the interface to operate in any one of the 4 modes defined for the SPI bus which relate to the
phase and polarity of the SCK clock line in relation to the data lines MISO and MOSI. In addition, the clock frequency can be
configured from 125,000 to 8000000 and it can be configured so that it shifts data in/out most significant bit first or last.

Note: A dedicated SPI Chip Select (CS) line is not provided and it is up to the developer to dedicate any spare GPIO line
for that function if more than one SPI slave is connected to the bus. The SPI interface in this module assumes
that prior to calling SPIREADWRITE, SPIREAD or SPIWRITE functions the slave device has been selected via the
appropriate GPIO line.

The API provided in the module is synchronous and so there is no requirement for events.

FUNCTION

This function is used to open the main SPI peripheral using the parameters specified.

SPIOPEN (nMode, nClockHz, nCfgFlags, nHande)

Returns

INTEGER Indicates success of command:

0 Opened successfully

0x5200 Driver not found

0x5207 Driver already open

0x5225 Invalid clock frequency requested

0x521D Driver resource unavailable

0x522B Invalid

Exceptions
▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

I2C open success

Write = 3435 Read =

Write = 343543 Read = 1042D509

Write = Read = 2B322380ED236921

http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

172

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Arguments

nMode

byVal nMode AS INTEGER
This is the mode, as in phase and polarity of the clock line, that the interface shall operate at.
Valid values are 0 to 3 inclusive:

Mode CPOL CPHA

0 0 0

1 0 1

2 1 0

3 1 1

nClockHz
byVal nClockHz AS INTEGER
This is the clock frequency to use, and can be one of 125000, 250000, 500000, 1000000,
2000000, 4000000 or 8000000.

nCfgFlags

byVal nCfgFlags AS INTEGER
This is a bit mask used to configure the SPI interface. All unused bits are allocated as for future
use and MUST be set to 0. Used bits are as follows:

Bit Description

0 If set, then the least significant bit is clocked in/out first.

1-31 Unused and must be set to 0.

nHandle
byRef nHandle AS INTEGER
The handle for this interface is returned in this variable if it is successfully opened. This handle
is subsequently used to read/write and close the interface.

Related
Commands

SPICLOSE, SPIREADWRITE, SPIWRITE, SPIREAD

SPIOPEN is a core function.

The following is an example which demonstrates usage of all the SPI related functions available in smartBASIC.

//Example :: SpiExample.sb (See in Firmware Zip file)

 //The SPI slave used here is the Microchip 25A512

 //See http://ww1.microchip.com/downloads/en/DeviceDoc/22237C.pdf

 DIM rc

 DIM h //handle

 DIM rl //readlen

 DIM rd$,wr$,p$

 DIM wren

 //---

 //Get eeprom Status Register

 //---

 FUNCTION EepromStatus()

 GpioWrite(13,0)

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

173

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 wr$="\05\00" : rd$="" : rc=SpiReadWrite(wr$,rd$)

 GpioWrite(13,1)

 ENDFUNC StrGetChr(rd$,1)

 //---

 //Wait for WR bit in status flag to reset

 //---

 SUB WaitWrite()

 DO

 GpioWrite(13,0)

 wr$="\05\00" : rd$="" : rc=SpiReadWrite(wr$,rd$)

 GpioWrite(13,1)

 UNTIL ((StrGetChr(rd$,1)&1)==0)

 ENDSUB

 //---

 //Enable writes in eeprom

 //---

 SUB EnableWrite()

 GpioWrite(13,0)

 wr$="\06" : rd$="" : rc=SpiWrite(wr$)

 GpioWrite(13,1)

 ENDSUB

 //---

 // Configure the Chip Select line using SIO13 as an output

 //---

 rc= GpioSetFunc(13,2,1)

 // ensure CS is not enabled

 GpioWrite(13,1)

 //---

 //open the SPI

 //---

 rc=SpiOpen(0,125000,0,h)

 //...

 //Write DEADBEEFBAADC0DE 8 bytes to memory at location 0x0180

 //...

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

174

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 EnableWrite()

 wr$="\02\01\80\DE\AD\BE\EF\BA\AD\C0\DE"

 PRINT "\nWriting to location 0x180 ";StrHexize$(wr$)

 GpioWrite(13,0)

 rc=SpiWrite(wr$)

 GpioWrite(13,1)

 WaitWrite()

 //...

 //Read from written location

 //...

 wr$="\03\01\80\00\00\00\00\00\00\00\00"

 rd$=""

 GpioWrite(13,0)

 rc=SpiReadWrite(wr$,rd$)

 GpioWrite(13,1)

 PRINT "\nData at location 0x0180 is ";StrHexize$(rd$)

 //...

 //Prepare for reads from location 0x180 and then read 4 and then 8 bytes

 //...

 wr$="\03\01\80"

 GpioWrite(13,0)

 rc=SpiWrite(wr$)

 rd$=""

 rc=SpiRead(rd$,4)

 PRINT "\nData at location 0x0180 is ";StrHexize$(rd$)

 rd$=""

 rc=SpiRead(rd$,8)

 GpioWrite(13,1)

 PRINT "\nData at location 0x0184 is ";StrHexize$(rd$)

 //---

 //close the SPI

 //---

 SpiClose(h)

Expected Output:

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

175

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

SPIOPEN is a core subroutine.

SUBROUTINE

This subroutine is used to close a SPI port which had been opened with SPIOPEN.

This routine is safe to call if it is already closed.

SPICLOSE(handle)

Exceptions
▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments

handle
byVal handle AS INTEGER
This is the handle value that was returned when SPIOPEN was called which identifies the SPI
interface to close.

Interactive
Command

NO

Related
Commands

SPICLOSE, SPIREADWRITE, SPIWRITE, SPIREAD

//Example :: See SpiExample.sb

SPICLOSE is a core subroutine.

FUNCTION

This function is used to write data to a SPI slave and at the same time read the same number of bytes back. Every 8 clock
pulses result in one byte being written and one being read.

Note: A handle parameter is NOT required as this function is used to interact with the main interface. In the future, a
new version of this function will be made available if more than one SPI interface is made available.

SPIREADWRITE(stWrite$, stRead$)

Returns INTEGER, a result code. The typical value is 0x0000, indicating a successful operation.

Exceptions
▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments

stWrite$
byRef stWrite$ AS STRING
This string contains the data that must be written.

Writing to location 0x180 020180DEADBEEFBAADC0DE

Data at location 0x0180 is 000000DEADBEEFBAADC0DE

Data at location 0x0180 is DEADBEEF

Data at location 0x0184 is BAADC0DEFFFFFFFF

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

176

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

stRead$

byRef stRead$ AS STRING
While the data in stWrite$ is being written, the slave sends data back and that data is stored in
this variable.
Note: On exit, this variable contains the same number of bytes as stWrite$.

Interactive
Command

NO

Related
Commands

SPICLOSE, SPIREADWRITE, SPIWRITE, SPIREAD

//Example :: See SpiExample.sb

SPIWRITEREAD is a core function.

FUNCTION

This function is used to write data to a SPI slave and any incoming data is ignored.

Note: A handle parameter is NOT required as this function is used to interact with the main interface. In the future, a
new version of this function will be made available if more than one SPI interface is made available.

SPIWRITE(stWrite$)

Returns INTEGER, a result code. The typical value is 0x0000, indicating a successful operation.

Exceptions
▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments

stWrite$
byRef stWrite$ AS STRING
This string contains the data that must be written.

Interactive
Command

NO

Related
Commands

SPICLOSE, SPIREADWRITE, SPIWRITE, SPIREAD

//Example :: See SpiExample.sb

SPIWRITE is a core function.

FUNCTION

This function is used to read data from a SPI slave.

Note: A handle parameter is NOT required as this function is used to interact with the main interface. In the future, a
new version of this function will be made available if more than one SPI interface is made available.

Returns INTEGER, a result code. The typical value is 0x0000, indicating a successful operation.

Exceptions ▪ Local Stack Frame Underflow

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

177

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

▪ Local Stack Frame Overflow

Arguments

stRead$
byRef stRead$ AS STRING
This string contains the data that is read from the slave.

nReadLen
byVal nReadLen AS INTEGER
This specifies the number of bytes to be read from the slave.

Interactive
Command

NO

Related
Commands

SPICLOSE, SPIREADWRITE, SPIWRITE, SPIREAD

//Example :: See SpiExample.sb

SPIREAD is a core function.

This section describes cryptographic functions that can be used to encrypt and decrypt data, over and

above and in addition to any crypting applied at the transport layer.

In cryptography there are many algorithms which could be symmetric or asymmetric. Each function

described in this section details the type and modes catered for.

FUNCTION

This function is used to initialize a context for AES encryption and decryption using the mode, key and initialization vector
supplied. The modes that are catered for is EBC and CBC with a block size of 128 bits.

AESSETKEYIV (mode, blockSize,key$, initVector$)

Returns

INTEGER

Is 0x0000 if the context is created successfully. Otherwise, an appropriate resultcode is
returned which conveys the reason it failed.

Arguments

mode

BYVAL mode AS INTEGER
This shall be as follows:
0x100 for EBC mode
0x101 for EBC mode but data is XORed with same initVector$ everytime
0x200 for CBC_128 mode

0x201 for CBC_256 mode

blockSize
BYVAL blockSize AS INTEGER
Must always be set to 16, which is the size in bytes.

key$
BYREF key$ AS STRING
This is of length governed by the algoType. For example, for AES EBC and CBC 128 it shall be 16
bytes long exactly, for CBC 256 it will be 32.

initVector$

BYREF initVector$ AS STRING
If mode is 0x101 or 0x200, then this string MUST be supplied and it should be 16 bytes long. It
is left to the caller to ensure a sensible value is supplied. For example, providing a string where
all bytes are 0 is going to be of no value.

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

178

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Interactive
Command

NO

//Example :: AesSetKeyIv.sb (See in Firmware Zip file)

 DIM key$, initVector$

 DIM rc

 //Create context for EBC mode, 128 bit

 key$="\00\01\02\03\04\05\06\07\08\09\0A\0B\0C\0D\0E\0F"

 initVector$="" //EBC does not require initialisation vector

 rc=AesSetKeyIv(0x100,16,key$,initVector$)

 IF rc==0 THEN

 PRINT "\nEBC context created successfully"

 ELSE

 PRINT "\nFailed to create EBC context"

 ENDIF

 //Create context for EBC mode with XOR, 128 bit

 key$="\00\01\02\03\04\05\06\07\08\09\0A\0B\0C\0D\0E\0F"

 initVector$="\FF\01\FF\03\FF\05\FF\07\FF\09\FF\0B\FF\0D\FF\0F"

 rc=AesSetKeyIv(0x101,16,key$,initVector$)

 IF rc==0 THEN

 PRINT "\nEBC-XOR context created successfully"

 ELSE

 PRINT "\nFailed to create EBC-XOR context"

 ENDIF

 //Create context for CBC mode, 128 bit

 key$="\00\01\02\03\04\05\06\07\08\09\0A\0B\0C\0D\0E\0F"

 initVector$="\FF\01\FF\03\FF\05\FF\07\FF\09\FF\0B\FF\0D\FF\0F"

 rc=AesSetKeyIv(0x200,16,key$,initVector$)

 IF rc==0 THEN

 PRINT "\nCBC context created successfully"

 ELSE

 PRINT "\nFailed to create CBC context"

 ENDIF

Expected Output:

AESSETKEYIV is a core language function.

EBC context created successfully

EBC-XOR context created successfully

CBC context created successfully

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

179

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

FUNCTION

This function is used to encrypt a string up to 32 bytes long using the context that was pre-created using the most recent
call of the function AesSetKeyIv.

For all modes, AesSetKeyIV is called only once which means in CBC mode the cyclic data is kept in the context object that
was created by AesSetKeyIV.

For example, on the BL600, which has AES 128 encryption hardware assist, the function has been timed to take roughly 125
microseconds, otherwise it can take about 500 microseconds on a 16Mhz ARM Cortex M0 processor.

AESENCRYPT (inData$,outData$)

Returns

INTEGER

Is 0x0000 if the data is encrypted successfully. Otherwise, an appropriate resultcode is
returned which conveys the reason it failed. ALWAYS check this.

Arguments

inData$
BYREF inData$ AS STRING
This is of length governed by the algoType. For example, for AES EBC and CBC 128 it shall be 16
bytes long exactly, for CBC 256 it will be 32.

outData$
BYREF outData$ AS STRING
On exit, if the function was successful, then this string contains the encrypted cypher data. If
unsuccessful, then string is 0 bytes long.

Interactive
Command

NO

//Example :: AesEncrypt.sb (See in Firmware Zip file)

 DIM key$, initVector$

 DIM inData$, outData$

 DIM rc

 //Create context for EBC mode, 128 bit

 key$="\00\01\02\03\04\05\06\07\08\09\0A\0B\0C\0D\0E\0F"

 initVector$="" //EBC does not require initialisation vector

 rc=AesSetKeyIv(0x100,16,key$,initVector$)

 IF rc==0 THEN

 PRINT "\nEBC context created successfully"

 ELSE

 PRINT "\nFailed to create EBC context"

 ENDIF

 inData$="303132333435363738393A3B3C3D3E3F"

 inData$=StrDehexize$(inData$)

 rc=AesEncrypt(inData$,outData$)

 IF rc==0 THEN

 PRINT "\nEncrypt OK"

 ELSE

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

180

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 PRINT "\nFailed to encrypt"

 ENDIF

 PRINT "\ninData = "; strhexize$(inData$)

 PRINT "\noutData = "; strhexize$(outData$)

Expected Output:

AESENCRYPT is a core language function.

FUNCTION

This function is used to decrypt a string of exactly 32 bytes using the context that was pre-created using the most recent call
of the function AesSetKeyIv.

For all modes, AesSetKeyIV is called only once which means in CBC mode the cyclic data is kept in the context object that
was created by AesSetKeyIV.

In terms of speed of execution, for example on the BL600, which does not have AES 128 decryption hardware assist, the
function has been timed to take roughly 570 microseconds.

AESDECRYPT (inData$,outData$)

Returns

INTEGER

Results in 0x0000 if the data is decrypted successfully. Otherwise an appropriate resultcode is
returned which conveys the reason it failed. ALWAYS check this.

Arguments

inData$
BYREF inData$ AS STRING
This is of length governed by the algoType. For example, for AES EBC and CBC 128 it shall be 16
bytes long exactly, for CBC 256 it will be 32.

outData$
BYREF outData$ AS STRING
On exit, if the function was successful, then this string contains the decrypted plaintext data. If
unsuccessful, then string is 0 bytes long.

Interactive
Command

NO

//Example :: AesDecrypt.sb (See in Firmware Zip file)

DIM key$, initVector$

DIM inData$, outData$, c$[3]

DIM rc

//Create context for CBC mode, 128 bit

key$="\00\01\02\03\04\05\06\07\08\09\0A\0B\0C\0D\0E\0F"

EBC context created successfully

Encrypt OK

inData = 303132333435363738393A3B3C3D3E3F

outData = 03F2C3BDCA826BF082D7CFB035CDB8C1

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

181

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

initVector$="\FF\01\FF\03\FF\05\FF\07\FF\09\FF\0B\FF\0D\FF\0F"

rc=AesSetKeyIv(0x200,16,key$,initVector$)

IF rc==0 THEN

 PRINT "\nCBC context created successfully"

ELSE

 PRINT "\nFailed to create EBC context"

ENDIF

//encrypt some data

inData$="303132333435363738393A3B3C3D3E3F"

inData$=StrDehexize$(inData$)

rc=AesEncrypt(inData$,c$[0])

IF rc==0 THEN

 PRINT "\nEncrypt OK"

ELSE

 PRINT "\nFailed to encrypt"

ENDIF

PRINT "\ninData = "; strhexize$(inData$)

PRINT "\noutData = "; strhexize$(c$[0])

//encrypt same data again

rc=AesEncrypt(inData$,c$[1])

IF rc==0 THEN

 PRINT "\nEncrypt OK"

ELSE

 PRINT "\nFailed to encrypt"

ENDIF

PRINT "\ninData = "; strhexize$(inData$)

PRINT "\noutData = "; strhexize$(c$[1])

//ecrypt same data again

rc=AesEncrypt(inData$,c$[2])

IF rc==0 THEN

 PRINT "\nEncrypt OK"

ELSE

 PRINT "\nFailed to encrypt"

ENDIF

PRINT "\ninData = "; strhexize$(inData$)

PRINT "\noutData = "; strhexize$(c$[2])

//Rereate context for CBC mode, 128 bit

key$="\00\01\02\03\04\05\06\07\08\09\0A\0B\0C\0D\0E\0F"

initVector$="\FF\01\FF\03\FF\05\FF\07\FF\09\FF\0B\FF\0D\FF\0F"

rc=AesSetKeyIv(0x200,16,key$,initVector$)

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

182

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

IF rc==0 THEN

 PRINT "\nCBC context created successfully"

ELSE

 PRINT "\nFailed to create EBC context"

ENDIF

//now decrypt the data

rc=AesDecrypt(c$[0],outData$)

IF rc==0 THEN

 PRINT "\n**Decrypt OK**"

ELSE

 PRINT "\nFailed to decrypt"

ENDIF

PRINT "\ninData = "; strhexize$(c$[0])

PRINT "\noutData = "; strhexize$(outData$)

//now decrypt the data

rc=AesDecrypt(c$[1],outData$)

IF rc==0 THEN

 PRINT "\n**Decrypt OK**"

ELSE

 PRINT "\nFailed to decrypt"

ENDIF

PRINT "\ninData = "; strhexize$(c$[1])

PRINT "\noutData = "; strhexize$(outData$)

//now decrypt the data

rc=AesDecrypt(c$[2],outData$)

IF rc==0 THEN

 PRINT "\n**Decrypt OK**"

ELSE

 PRINT "\nFailed to decrypt"

ENDIF

PRINT "\ninData = "; strhexize$(c$[2])

PRINT "\noutData = "; strhexize$(outData$)

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

183

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Expected Output:

AESDECRYPT is a core language function.

A portion of module’s flash memory is dedicated to a file system which is used to store smartBASIC applications and user
data files.

Due to the internal requirement, set by the smartBASIC runtime engine (because applications are interpreted in-situ),
compiled application files must be stored in one contiguous memory block. This means the file system is currently restricted
so that it is NOT possible for an application to open a file and then write to it. To store application data so that they are
non-volatile, use the functions described in the section Non-Volatile Memory Management Routines.

All user data files must be preloaded using the following commands which are described in the section Interactive Mode
Commands:
 AT+FOW
 AT+FWR or AT+FWRH
 AT+FCL

The utility UwTerminal helps with downloading such files, but is not required.

With the use of READ, FTELL, and FSEEK, downloading configuration files (such as digital certificates) can be a useful and
convenient way of making an app behave in a custom manner from data derived from these data files as demonstrated by
the example application listed in the description of FOPEN.

FUNCTION

This function is used to open a file in mode specified by the ‘mode$’ string parameter. When the file is opened the file
pointer is set to zero which effectively means that a read operation occurs from the beginning of the file and then, after the
read, the file pointer is adjusted to offset equal to the size of the read.

Function FSEEK is provided to move that file pointer to an offset relative to the beginning, or current position or from the
end of the file and function FTELL is provided to obtain the current position as an offset from the beginning of the file.

CBC context created successfully

Encrypt OK

inData = 303132333435363738393A3B3C3D3E3F

outData = 55EAFC8281CC28054C4AA268763AFA3B

Encrypt OK

inData = 303132333435363738393A3B3C3D3E3F

outData = 2A8640BD480E092B432139CF28BA2C80

Encrypt OK

inData = 303132333435363738393A3B3C3D3E3F

outData = A418B500A3E0AC30F18DE6AE2E923314

CBC context created successfully

Decrypt OK

inData = 55EAFC8281CC28054C4AA268763AFA3B

outData = 303132333435363738393A3B3C3D3E3F

Decrypt OK

inData = 2A8640BD480E092B432139CF28BA2C80

outData = 303132333435363738393A3B3C3D3E3F

Decrypt OK

inData = A418B500A3E0AC30F18DE6AE2E923314

outData = 303132333435363738393A3B3C3D3E3F

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

184

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

FOPEN (filename$, mode$)

Returns

INTEGER

A non-zero integer representing an opaque handle to the file that was opened. If the file failed
to open (for example because the mode specified writing to the file which is not allowed on
certain platforms) then the returned value is 0.

Arguments

filename$
BYREF filename$ AS STRING
This string specifies the name of the file to open.

mode$

BYVAL mode$ AS STRING
Must always be set to r
This string specifies the mode in which the file should be opened and for this module, as only
reading is allowed, must always be specified as r.

Interactive
Command

NO

//Example :: FileIo.sb (See in Firmware Zip file)

 //

 // First download a file into the module by submitting the following

 // commands manually (wait for a 00 response after each command) :-

 //

 // at+fow "myfile.dat"

 // at+fwr "Hello"

 // at+fwr " World. "

 // at+fwr " This is something"

 // at+fwr " in a file which we can read"

 // at+fcl

 //

 // You can check you have the file in the file system by submitting

 // the command AT+DIR and you should see myfile.dat listed

 //

 DIM handle,fname$,flen,frlen,data$,fpos,rc

 fname$="myfile.dat" : handle = fopen(fname$,"r")

 IF handle != 0 THEN

 //determine the size of the file

 flen = filelen(handle)

 print "\nThe file is ";flen;" bytes long"

 //get the current position in the file (should be 0)

 rc = ftell(handle,fpos)

 print "\nCurrent position is ";fpos

 //read the first 11 bytes from the file

 frlen = fread(handle,data$,11)

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

185

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 print "\nData from file is : ";data$

 //get the current position in the file (should be 11)

 rc = ftell(handle,fpos)

 print "\nCurrent position is ";fpos

 //reposition the file pointer to 6 so that we can read 5 bytes again

 rc = fseek(handle,6,0)

 //get the current position in the file

 rc = ftell(handle,fpos)

 //read 5 bytes

 frlen = fread(handle,data$,5)

 print "\nData from file is : ";data$

 //reposition to the start of 'is'

 rc = fseek(handle,19,0)

 //read until a 'w' is encountered : w = ascii 0x77

 frlen = freaduntil(handle,data$,0x77,32)

 print "\nData from file is : ";data$

 //finally close the file, which on exit sets the handle to 0

 fclose(handle)

 ELSE

 print "\nFailed to open file ";fname$

 ENDIF

Expected Output:

FOPEN is a core language function.

FUNCTION

This function is used to close a file previously opened with FOPEN. It takes a handle parameter as a reference and, on exit,
sets that handle to 0 which signifies an invalid file handle.

FCLOSE (fileHandle)

Returns N/A (it is a subroutine)

Arguments

fileHandle
BYREF fileHandle AS INTEGER
The handle of the file to be closed. On exit, it is set to 0.

Interactive NO

The file is 59 bytes long

Current position is 0

Data from file is : Hello World

Current position is 11

Data from file is : World

Data from file is : is something in a file w

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

186

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Command

//See the full and detailed example in the FOPEN section

FCLOSE is a core language function.

FUNCTION

This function is used to read X bytes of data from a file previously opened with FOPEN and returns the actual number of
bytes read.

FREAD (fileHandle, data$, maxReadLen)

Returns
INTEGER

The actual number of bytes read from the file. Is 0 if read from end of file is attempted.

Arguments

fileHandle
BYVAL fileHandle AS INTEGER
The handle of the file to be read from

data$
BYREF data$ AS STRING
The data read from file is returned in this string

maxReadLen
BYVAL maxReadLen AS INTEGER
The max number of bytes to read from the file

Interactive
Command

NO

//See the full and detailed example in the FOPEN section

FREAD is a core language function.

FUNCTION

This function is used to read X bytes or until (and including) a match byte is encountered, whichever comes earlier, from a
file previously opened with FOPEN and returns the actual number of bytes read (includes the match byte if encountered).

FREADUNTIL (fileHandle, data$, matchByte, maxReadLen)

Returns
INTEGER

The actual number of bytes read from the file. Is 0 if read from end of file is attempted.

Arguments

fileHandle
BYVAL fileHandle AS INTEGER
The handle of the file to be read from

data$
BYREF data$ AS STRING
The data read from file is returned in this string

matchByte
BYVAL matchByte AS INTEGER
Read until this matching byte is encountered or the max number of bytes are read.
Whichever condition is asserted first.

maxReadLen
BYVAL maxReadLen AS INTEGER
The max number of bytes to read from the file

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

187

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Interactive
Command

NO

//See the full and detailed example in the FOPEN section

FREADUNTIL is a core language function.

FUNCTION

This function is used determine the total size of the file in bytes.

FILELEN (fileHandle)

Returns

INTEGER

The total number of bytes read from the file specified by the handle. Is 0 if an invalid handle is
supplied.

Arguments

fileHandle
BYVAL fileHandle AS INTEGER
The handle of a file for which the total size is to be returned.

Interactive
Command

NO

//See the full and detailed example in the FOPEN section

FILELEN is a core language function.

FUNCTION

This function is used determine the current file position in the open file specified by the handle. It is a value from 0 to N
where N is the size of the file.

FTELL (fileHandle, curPosition)

Returns

INTEGER

The total number of bytes read from the file specified by the handle. Is 0 if an invalid handle is
supplied.

Arguments

fileHandle
BYVAL fileHandle AS INTEGER
The handle of a file for which the total size is to be returned.

curPosition
BYREF curPosition AS INTEGER
This is updated with the current file position for the file specified by the fileHandle.

Interactive
Command

NO

//See the full and detailed example in the FOPEN section

FTELL is a core language function.

FUNCTION

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

188

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

This function is used to move the file pointer of the open file specified by the handle supplied. The offset is relative to the
beginning of the file or the current position or the end of the file which is specified by the ‘whence’ parameter.

FSEEK (fileHandle, offset, whence)

Returns
INTEGER

Is 0 if successful

Arguments

fileHandle
BYVAL fileHandle AS INTEGER
The handle of a file for which the file pointer is to be moved

offset
BYVAL offset AS INTEGER
This is the offset relative to the position defined by the ‘whence’ parameter.

whence

BYVAL whence AS INTEGER
This parameter specifies from which position the offset is to be calculated. It shall be 1 to
specify from the current position, 2 from the end of the while and then for all other values
from the beginning of the file.
When the start position is ‘end of file’ then a positive ‘offset’ value is used to calculate
backwards from the end of file. Hence supplying a negative value has no meaning.

Interactive
Command

NO

//See the full and detailed example in the FOPEN section

FSEEK is a core language function.

These commands provide access to the non-volatile memory of the module and provide the ability to use non-volatile
storage for individual records.

FUNCTION

NVRECORDGET reads the value of a user record as a string from non-volatile memory.

NVRECORDGET (recnum, strvar$)

Returns

INTEGER, the number of bytes that were read into strvar$. A negative value is returned if an
error was encountered:

Error Description

-1 Recnum is not in valid range or is unrecognised.

-2 Failed to determine the size of the record.

-3 The raw record is less than 2 bytes long (possible flash corruption).

-4 Insufficient RAM.

-5 Failed to read the data record.

Exceptions
▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments

recnum
byVal recnum AS INTEGER
The record number to be read, in the range 1 to n, where n is the maximum number of records
allowed by the specific module.

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

189

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

strvar$
byRef strvar$ AS STRING
The string variable that contains the data read from the record.

Interactive
Command

NO

//Example :: NvRecordGet.sb (See in Firmware Zip file)

 DIM r$

 PRINT NvRecordGet(100,r$);" bytes read"

 PRINT "\n";r$

Expected Output (When no data present in record):

NVRECORDGET is a module function.

FUNCTION

NVRECORDGETX reads the value of a user record as a string from non-volatile memory and if it does not exist or an error
occurred, then the specified default string is returned.

NVRECORDGETEX (recnum, strvar$, strdef)

Returns INTEGER, the number of bytes that are read into strvar$.

Exceptions

▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

▪ Out of Memory

Arguments

recnum
byVal recnum AS INTEGER
The record number that is to be read, in the range 1 to n, where n is the maximum number of
records allowed by the specific module.

strvar$
byRef strvar$ AS STRING
The string variable that contains the data read from the record.

strdef$
byVal strdef$ AS STRING
The string variable that supplies the default data if the record does not exist.

Interactive
Command

NO

//Example :: NvRecordGetEx.sb (See in Firmware Zip file)

 DIM r$

 PRINT NvRecordGetEx(100,r$,"default");" bytes read"

 PRINT "\n";r$

Expected Output:

0 bytes read

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

190

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

NVRECORDGETEX is a module function.

FUNCTION

NVRECORDSET writes a value to a user record in non-volatile memory. For each record saved, an extra 28 bytes is used as
an overhead, so it is recommended to minimize the writing of small records.

NVRECORDSET (recnum, strvar$)

Returns

INTEGER Returns the number of bytes written.

If an invalid record number is specified, then -1 is returned. There are a limited number of
user records which can be written to, depending on the specific module.

Exceptions
▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments

recnum
byVal recnum AS INTEGER
The record number that is to be read, in the range 1 to n, where n depends on the specific
module.

strvar$
byRef strvar$ AS STRING
The string variable that contains the data to be written to the record.

Interactive
Command

WARNING: You should minimise the number of writes. Each time a record is changed, empty flash is used up. The flash
filing system does not overwrite previously used locations. Eventually there will be no more free memory
and an automatic defragmentation will occur. This operation takes much longer than normal as a lot of
data may need to be re-written to a new flash segment. This sector erase operation could affect the
operation of the radio and result in a connection loss.

//Example :: NvRecordSet.sb (See in Firmware Zip file)

 DIM w$, r$, rc : w$ = "HelloWorld"

 PRINT NvRecordSet(500,w$);" bytes written\n"

 PRINT NvRecordGetEx(500,r$,"default");" bytes read\n"

 PRINT "\n";r$

Expected Output:

7 bytes read

default

10 bytes written

10 bytes read

HelloWorld

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

191

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

NVRECORDSET is a module function.

FUNCTION

NVCFGKEYGET reads the value of a built-in configuration key. See AT+CFG for a list of configuration keys.

NVCFGKEYGET (keyId, value)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Exceptions
▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments

keyId
byVal keyId AS INTEGER
The configuration key that is to be read, in the range 1 to n, where n depends on the specific
module and the full list is described for the AT+CFG command.

value
byRef value AS INTEGER
The integer variable that is updated with the value of the configuration key if it exists.

Interactive
Command

See AT+CFG

 //Example :: NvCfgKeyGet.sb (See in Firmware Zip file)

 DIM v : v = 0 //initial the value just in case the key does not

exist

 PRINT NvCfgKeyGet(100,v)

 PRINT "\n";v

Expected Output:

NVCFGKEYGET is a module function.

0

33031

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

192

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

FUNCTION

NVCFGKEYSET writes a value to a pre-existing configuration key. See AT+CFG for a complete list of configuration keys. If a
key does not exist, calling this function does not create a new one. The set of configuration keys are created at firmware
build time. If you wish to create a database of non-volatile configuration keys for your own application use the
NvRecordSet/Get() commands.

NVCFGKEYSET (keyId, value)

Returns

INTEGER

An integer result code. The most typical value is 0x0000, which indicates a successful
operation.

Exceptions
▪ Local Stack Frame Underflow

▪ Local Stack Frame Overflow

Arguments

keyId
byVal keyId AS INTEGER
The configuration key that is to be read, in the range 1 to n, where n depends on the specific
module and the full list is described for the AT+CFG command.

value
byVal value AS INTEGER
If the configuration key ‘keyId’ exists then it is updated with the new value.

Interactive
Command

NO

WARNING: You should minimise the number of writes, as each time a record is changed, empty flash is used up. The
flash filing system does not overwrite previously used locations. At some point there will be no more free
memory and an automatic defragmentation will occur. This operation takes much longer than normal as a
lot of data may need to be re-written to a new flash segment. This sector erase operation could affect the
operation of the radio and result in a connection loss.

 //Example :: NvCfgKeyGet.sb (See in Firmware Zip file)

 DIM rc, r, w : w=0x8107

 PRINT "\n";NvCfgKeySet(100,w)

 PRINT "\n";NvCfgKeyGet(100,r)

 PRINT "\nValue for 100 is ";r

Expected Output:

NVCFGKEYSET is a module function.

0

0

Value for 100 is 33031

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

193

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

I/O and interface commands allow access to the physical interface pins and ports of the smartBASIC modules. Most of these
commands are applicable to the range of modules. However, some are dependent on the actual I/O availability of each
module.

FUNCTION

This routine sets the function of the GPIO pin identified by the nSigNum argument.

The module datasheet contains a pinout table which denotes SIO (Special I/O) pins. The number designated for that special
I/O pin corresponds to the nSigNum argument.

GPIOSETFUNC (nSigNum, nFunction, nSubFunc)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Note: See module specific user manual for details.

FUNCTION

This routine configures the PWM (Pulse Width Modulation) of all output pins when they are set as a PWM output using
GpioSetFunc() function described above.

Note: This is a ‘sticky’ configuration; calling it affects all PWM outputs already configured. It is advised that this be
called once at the beginning of your application and not changed again within the application, unless all PWM
outputs are deconfigured and then re-enabled after this function is called.

The PWM output is generated using 32-bit hardware timers. The timers are clocked by a 1MHz clock source.

A PWM signal has a frequency and a duty cycle property, the frequency is set using this function and is defined by the
nMaxPeriodus parameter. For a given nMaxPeriodus value, given that the timer is clocked using a 1MHz source, the
frequency of the generated signal is 1000000 divided by nMaxPeriodus. Hence if nMinFreqHz is more than that
1000000/nMaxPeriodus, this function fails with a non-zero value.

The nMaxPeriodus can also be viewed as defining the resolution of the PWN output in the sense that the duty cycle can be
varied from 0 to nMaxPeriodus. The duty cycle of the PWM signal is modified using the GpioWrite() command

For example, a period of 1000 generates an output frequency of 1KHz, a period of 500, a frequency of 2Khz etc.

On exit, the function returns with the actual frequency in the nMinFreqHz parameter.

GPIOCONFIGPWM (nMinFreqHz, nMaxPeriodus)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Note: See module specific user manual for details.

FUNCTION

This routine reads the value from a SIO (special purpose I/O) pin.

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

194

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

The module datasheet contains a pinout table which mentions SIO (Special I/O) pins and the number designated for that
special I/O pin corresponds to the nSigNum argument.

GPIOREAD (nSigNum)

Returns
INTEGER, the value from the signal. If the signal number is invalid, then it returns value 0. For
digital pins, the value is 0 or 1. For ADC pins it is a value in the range 0 to M where M is the max
value based on the bit resolution of the analogue to digital converter.

Note: See module specific user manual for details.

SUBROUTINE

This routine writes a new value to the GPIO pin. If the pin number is invalid, nothing happens.

If the GPIO pin has been configured as a PWM output then the nNewValue specifies a value in the range 0 to N where N is
the max PWM value that generates a 100% duty cycle output (that is, a constant high signal) and N is a value that is
configured using the function GpioConfigPWM().

If the GPIO pin has been configured as a FREQUENCY output then the nNewValue specifies the desired frequency in Hertz in
the range 0 to 4000000. Setting a value of 0 makes the output a constant low value. Setting a value greater than 4000000
clips the output to a 4 MHz signal.

GPIOWRITE (nSigNum, nNewValue)

Note: See module-specific user manual for details.

EVGPIOCHANn

Here, n is from 0 to N where N is platform dependent and an event is generated when a
preconfigured digital input transition occurs. The number of digital inputs that can auto-
generate is hardware dependent. For example in the BL600 module, N can be 0,1,2 or 3.
Use GpioBindEvent() to generate these events.

EVDETECTCHANn

Here, n is from 0 to N where N is platform dependent and an event is generated when a
preconfigured digital input transition occurs. The number of digital inputs that can auto-
generate is hardware dependent. For example, in the BL600 module, N can only be 0. Use
GpioAssignEvent() to generate these events.

FUNCTION

These routine binds an event to a level transition on a specified special i/o line configured as a digital input so that changes
in the input line can invoke a handler in smartBASIC user code.

GPIOBINDEVENT (nEventNum, nSigNum, nPolarity)
GPIOASSIGNEVENT (nEventNum, nSigNum, nPolarity)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Note: See module specific user manual for details.

Generally, BindEvent consumes more power than the AssignEvent function and the choice as to which is used is based on
the specific use case with regards to how much power can be used.

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

195

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

FUNCTION

This routine unbinds the runtime engine event from a level transition bound using GpioBindEvent() or GpioAssignEvent()
respectively.

GPIOUNBINDEVENT (nEventNum)
GPIOUNASSIGNEVENT (nEventNum)

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.

Note: See module specific user manual for details.

As well as providing a comprehensive range of built-in functions and subroutines, smartBASIC provides the ability for users
to write their own, which are referred to as ‘user’ routines as opposed to ‘built-in’ routines.

These are often used to perform frequently repeated tasks in an application and to write event and message handler
functions. An application with user routines is highly modular, allowing reusable functionality.

A subroutine is a block of statements which constitute a user routine which does not return a value but takes arguments.

SUB routinename (arglist)
EXITSUB
ENDSUB

A SUB routine MUST be defined before the first instance of it being called. It is good practice to define SUB routines and
functions at the beginning of an application, immediately after global variable declarations.

The following is a typical example of a subroutine block:

SUB somename(arg1 AS INTEGER arg2 AS STRING)

 DIM S AS INTEGER

 S = arg1

 IF arg1 == 0 THEN

 EXITSUB

 ENDIF

ENDSUB

The function name can be any valid name that is not already in use as a routine or global variable.

The arguments of the subroutine may be any valid variable types, i.e. INTEGER or STRING.

Each argument can be individually specified to be passed either as byVal or byRef. By default, simple variables (INTEGER)
are passed by value (byVal) and complex variables (STRING) are passed by reference (byRef).

However, this default behavior can be varied by using the #SET directive during compilation of an application.

#SET 1,0 ‘Default Simple arguments are BYVAL

#SET 1,1 ‘Default Simple arguments are BYREF

#SET 2,0 ‘Default Complex arguments are BYVAL

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

196

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

#SET 2,1 ‘Default Complex arguments are BYREF

When a value is passed by value to a routine, any modifications to that variable does not reflect back to the calling routine.
However, if a variable is passed by reference then any changes in the variable is reflected back to the caller on exit.

The SUB statement marks the beginning of a block of statements which consists of the body of a user routine. The end of
the routine is marked by the ENDSUB statement.

This statement ends a block of statements belonging to a subroutine. It MUST be included as the last statement of a SUB
routine, as it instructs the compiler that there is no more code for the SUB routine. Note that any variables declared within
the subroutine lose their scope once ENDSUB is processed.

This statement provides an early run-time exit from the subroutine.

A statement beginning with this token marks the beginning of a block of statements which consist of the body of a user
routine. The end of the routine is marked by the ENDFUNC statement.

A function is a block of statements which constitute a user routine that returns a value. A function takes arguments, and
can return a value of type simple or complex.

FUNCTION routinename (arglist) AS vartype
EXITFUNC arithemetic_expression_or_string_expression
ENDFUNC arithemetic_expression_or_string_expression

A function MUST be defined before the first instance of its being called. It is good practice to define subroutines and
functions at the beginning of an application, immediately after variable declarations. A typical example of a function block
would be:

FUNCTION somename(arg1 AS INTEGER arg2 AS STRING) AS INTEGER

 DIM S AS INTEGER

 S = arg1

 IF arg1 == 0 THEN

 EXITFUNC arg1*2

 ENDIF

ENDFUNC arg1 * 4

The function name can be any valid name that is not already in use. The return variable is always passed as byVal and shall
be of type varType.

Return values are defined within zero or more optional EXITFUNC statements and ENDFUNC is used to mark the end of the
block of statements belonging to the function.

The variable type AS varType for the function may be explicitly stated as one of INTEGER or STRING prior to the routine
name. If it is omitted, then the type is derived in the same manner as in the DIM statement for declaring variables. Hence, if
function name ends with the $ character, then the type is a STRING. Otherwise, it is an INTEGER.

Since functions return a value, when used, they must appear on the right hand side of an expression statement or within a [
] index for a variable. This is because the value has to be 'used up' so that the underlying expression evaluation stack does
not have 'orphaned' values left on it.

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

197

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

The arguments of the function may be any valid variable type, i.e. INTEGER or STRING.

Each argument can be individually specified to be passed either as byVal or byRef. By default, simple variables (INTEGER)
are passed byVal and complex variables (STRING) are passed byRef. However, this default behaviour can be varied by using
the #SET directive.

#SET 1,0 ‘Default Simple arguments are BYVAL

#SET 1,1 ‘Default Simple arguments are BYREF

#SET 2,0 ‘Default Complex arguments are BYVAL

#SET 2,1 ‘Default Complex arguments are BYREF

Interactive Command: NO

This statement marks the end of a function declaration. Every function must include an ENDFUNC statement, as it instructs
the compiler that here is no more code for the routine.

ENDFUNC arithemetic_expression_or_string_expression

This statement marks the end of a block of statements belonging to a function. It also marks the end of scope on any
variables declared within that block.

ENDFUNC must be used to provide a return value, through the use of a simple or complex expression.

FUNCTION doThis$(byRef s$ as string) AS STRING

 S$=S$+” World”

ENDFUNC S$ + “world”

FUNCTION doThis(byRef v as integer) AS INTEGER

 v=v+100

ENDFUNC v * 3

This statement provides a run-time exit point for a function before reaching the ENDFUNC statement.

EXITFUNC arithemetic_expression or string expression

EXITFUNC can be used to provide a return value, through the use of a simple or complex expression. It is usually invoked in
a conditional statement to facilitate an early exit from the function.

FUNCTION doThis$(byRef s$ as string) AS STRING

 S$=S$+” World”

 IF a==0 THEN

 EXITFUNC S$ + “earth”

 ENDIF

ENDFUNC S$ + “world”

smartBASIC is designed to be event driven, which makes it suitable for embedded platforms where it is normal to wait for
something to happen and then respond.

To ensure that access to variables and resources ends up in race conditions, the event handling is done synchronously,
meaning the smartBASIC runtime engine has to process a WAITEVENT statement for any events or messages to be
processed. This guarantees that smartBASIC never needs the complexity of locking variables and objects.

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

198

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

There are many subsystems which generate events and messages as follows:

▪ Timer events, which generate timer expiry events and are described here.

▪ Messages thrown from within the user’s BASIC application as described here.

▪ Events related to the UART interface as described here.

There are many features of the module that cannot be modified programmatically which relate to interactive mode
operation or alter the behaviour of the smartBASIC runtime engine. These configuration objects are stored in non-volatile
flash and are retained until the flash file system is erased via AT&F* or AT&F 1.

To write to these objects, which are identified by a positive integer number, the module must be in interactive mode and
the command AT+CFG must be used which is described in detail here.

To read current values of these objects use the command AT+CFG, described here.

Predefined configuration objects are as listed under details of the AT+CFG command.

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

199

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

The following are required acknowledgements to address our use of open source code in smartBASIC to implement AES
encryption.

Laird’s implementation includes the following files: aes.c and aes.h.

Copyright (c) 1998-2008, Brian Gladman, Worcester, UK. All rights reserved.

The redistribution and use of this software (with or without changes) is allowed without the payment of fees or
royalties providing the following:

▪ Source code distributions include the above copyright notice, this list of conditions and the following disclaimer;

▪ Binary distributions include the above copyright notice, this list of conditions and the following disclaimer in
their documentation;

▪ The name of the copyright holder is not used to endorse products built using this software without specific
written permission.

This software is provided 'as is' with no explicit or implied warranties in respect of its properties, including, but not
limited to, correctness and/or fitness for purpose.

Issue 09/09/2006

This is an AES implementation that uses only 8-bit byte operations on the cipher state (there are options to use 32-bit
types if available).

The combination of mix columns and byte substitution used here is based on that developed by Karl Malbrain. His
contribution is acknowledged.

© Copyright 2018 Laird. All Rights Reserved. Patent pending. Any information furnished by Laird and its agents is believed to be accurate and reliable. All

specifications are subject to change without notice. Responsibility for the use and application of Laird materials or products rests with the end user since

Laird and its agents cannot be aware of all potential uses. Laird makes no warranties as to non-infringement nor as to the fitness, merchantability, or

sustainability of any Laird materials or products for any specific or general uses. Laird, Laird Technologies, Inc., or any of its affiliates or agents shall not be

liable for incidental or consequential damages of any kind. All Laird products are sold pursuant to the Laird Terms and Conditions of Sale in effect from

time to time, a copy of which will be furnished upon request. When used as a tradename herein, Laird means Laird PLC or one or more subsidiaries of Laird

PLC. Laird™, Laird Technologies™, corresponding logos, and other marks are trademarks or registered trademarks of Laird. Other marks may be the

property of third parties. Nothing herein provides a license under any Laird or any third party intellectual property right.

https://connectivity.lairdtech.com/wireless-

modules/bluetooth-modules

200

© Copyright 2020 Laird. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

#SET .. 51
? (Read Variable)... 39
= (Set Variable) ... 40
ABORT ... 41
ABS 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87
Arrays .. 48
AT I .. 28
AT Z ... 43
AT&F ... 42
AT+FCL .. 38
AT+GET ... 35, 36
AT+REN ... 42
AT+RUN .. 33, 34, 35, 36, 37, 38
AT+SET .. 34
ATZ .. 43
BP 69
BREAK ... 60
BYREF .. 171
BYVAL ... 171
CIRCBUFCREATE 126, 171, 173, 174, 177, 179, 180, 181, 182
CIRCBUFITEMS .. 132
CIRCBUFOVERWRITE ... 129
CIRCBUFREAD ... 130
CIRCBUFWRITE ... 128
CONTINUE ... 61
Declaring Variables ... 49
DIM ... 46
DO / DOWHILE .. 55
DO / UNTIL .. 54
ENDFUNC .. 191
ENDSUB .. 190
Exceptions ... 45
EXITFUNC .. 192
EXITSUB .. 190
FOR / NEXT.. 55
FUNCTION ... 190
GETTICKCOUNT ... 124
GETTICKSINCE ... 125
GPIOUNBINDEVENT .. 189
GPIOWRITE ... 188
I2C Events ... 152
I2CCLOSE ... 154
IF THEN / ELSEIF / ELSE / ENDIF .. 57
LEFT$... 88
MAX .. 77
MIN ... 77
Numeric Constants ... 50
ONERROR .. 62
ONEVENT .. 64
ONFATALERROR .. 63
PRINT .. 66
RAND .. 116
RANDEX .. 116
RANDSEED .. 117

RESET .. 115
RESETLASTERROR ... 72
RESUME .. 41
RIGHT$... 90
SELECT / CASE / CASE ELSE / ENDSELECT 59
SO ... 40
SPI Events ... 165
SPICLOSE .. 169
SPIOPEN ... 165
SPIREAD .. 170
SPIREADWRITE ... 169
SPIWRITE .. 170
SPRINT .. 67
STOP ... 68
STRCMP .. 97
STRDEESCAPE ... 103
STRESCAPE$... 102
STRGETCHR .. 93
STRHEX2BIN ... 101
STRHEXIZE .. 98
String Constants ... 50
STRLEN ... 90
STRPOS ... 91
STRSETBLOCK ... 94
STRSETCHR ... 92
STRSHIFTLEFT ... 96
STRSPLITLEFT$.. 104
STRSUM .. 105
Structuring an Application .. 24
STRXOR ... 106, 107, 108, 110
SUB ... 189
Syntax ... 44
SYSINFO .. 73
SYSINFO$.. 74
TABLEADD .. 112
TABLEINIT ... 111
TABLELOOKUP .. 113
Timer Events ... 118
TIMERCANCEL .. 122
TIMERRUNNING ... 121
TIMERSTART ... 119
UART Events ... 134
UARTBREAK .. 152
UARTCLOSE .. 139
UARTCLOSEEX .. 140
UARTFLUSH .. 149
UARTGETCTS .. 150
UARTINFO ... 141
UARTREAD .. 144, 145
UARTREADMATCH .. 147
UARTSETRTS ... 151
UARTWRITE .. 142
Variables ... 46
WHILE / ENDWHILE .. 58

	1 smartBASIC Documentation
	2 Introduction to smartBASIC
	2.1 Why Do We Need smartBASIC?
	2.2 Why Write Applications?
	2.3 What Does a Wireless Module Contain?
	2.4 smartBASIC Essentials
	2.5 Developing with smartBASIC
	2.6 smartBASIC Operating Modes
	2.7 Types of Applications
	2.8 Non-Volatile Memory
	2.9 Using the Module’s Flash File System

	3 Getting Started
	3.1 Requirements
	3.2 Connecting Things Up
	3.3 UWTerminal
	3.3.1 Navigating UWTerminal
	3.3.2 Useful Shortcuts
	3.3.3 Using UWTerminal

	3.4 Your First smartBASIC Application
	3.4.1 Create ‘Hello World’ App
	3.4.2 Download ‘Hello World’ App
	3.4.3 smartBASIC Statement Format
	3.4.4 Autorun
	3.4.5 Debugging Applications
	3.4.6 Structuring an Application

	4 Interactive Mode Commands
	4.1 AT
	4.1.1 AT I or ATI ATI
	4.1.2 AT+DIR
	4.1.3 AT+DEL
	4.1.4 AT+RUN
	4.1.5 AT+DBG
	4.1.6 AT+SET
	4.1.7 AT+GET
	4.1.8 AT+CFG
	4.1.9 AT+CFGEX
	4.1.10 AT+FOW
	4.1.11 AT+FWR
	4.1.12 AT+FWRH
	4.1.13 AT+FCL
	4.1.14 ? (Read Variable)
	4.1.15 = (Set Variable)
	4.1.16 SO
	4.1.17 RESUME
	4.1.18 ABORT
	4.1.19 AT+REN
	4.1.20 AT&F
	4.1.21 AT Z or ATZ

	5 smartBASIC Commands
	5.1 Syntax
	5.2 Functions
	5.3 Subroutines
	5.4 Statements
	5.5 Exceptions
	5.6 Language Definitions
	5.6.1 Command

	5.7 Variables
	5.7.1.1 DIM
	5.7.2 Variable Scope
	5.7.3 Variable Class
	5.7.3.1 Arrays
	5.7.3.2 General Comments on Variables
	5.7.3.3 Declaring Variables

	5.8 Constants
	5.8.1 Numeric Constants
	5.8.2 String Constants

	5.9 Compiler Related Commands and Directives
	5.9.1 #SET

	5.10 Arithmetic Expressions
	5.11 Conditionals
	5.11.1 DO / UNTIL
	5.11.2 DO / DOWHILE
	5.11.3 FOR / NEXT
	5.11.4 IF THEN / ELSEIF / ELSE / ENDIF
	5.11.5 WHILE / ENDWHILE
	5.11.6 SELECT / CASE / CASE ELSE / ENDSELECT
	5.11.7 BREAK
	5.11.8 CONTINUE

	5.12 Error Handling
	5.12.1 ONERROR
	5.12.2 ONFATALERROR

	5.13 Event Handling
	5.13.1 WAITEVENT
	5.13.2 ONEVENT

	5.14 Miscellaneous Commands
	5.14.1 PRINT
	5.14.2 SPRINT
	5.14.3 STOP
	5.14.4 BP

	6 Core Language Built-in Routines
	6.1 Result Codes
	6.2 Information Routines
	6.2.1 GETLASTERROR
	6.2.2 RESETLASTERROR
	6.2.3 SYSINFO
	6.2.4 SYSINFO$

	6.3 Event & Messaging Routines
	6.3.1 SENDMSGAPP

	6.4 Arithmetic Routines (Integer)
	6.4.1 ABS
	6.4.2 MAX
	6.4.3 MIN

	6.5 Arithmetic Routines (Floating Point)
	6.5.1 ACOS
	6.5.2 ACOSH
	6.5.3 ASIN
	6.5.4 ASINH
	6.5.5 ATAN
	6.5.6 ATANH
	6.5.7 CEIL
	6.5.8 COS
	6.5.9 COSH
	6.5.10 EXP
	6.5.11 FABS
	6.5.12 FLOOR
	6.5.13 FMOD
	6.5.14 ISFINITE
	6.5.15 ISINF
	6.5.16 ISNAN
	6.5.17 LOG
	6.5.18 LOG10
	6.5.19 PI
	6.5.20 POW
	6.5.21 ROUND
	6.5.22 SIN
	6.5.23 SINH
	6.5.24 SQRT
	6.5.25 TAN
	6.5.26 TANH

	6.6 String Routines
	6.6.1 LEFT$
	6.6.2 MID$
	6.6.3 RIGHT$
	6.6.4 STRLEN
	6.6.5 STRPOS
	6.6.6 STRSETCHR
	6.6.7 STRGETCHR
	6.6.8 STRSETBLOCK
	6.6.9 STRFILL
	6.6.10 STRSHIFTLEFT
	6.6.11 STRCMP
	6.6.12 STRHEXIZE$
	6.6.13 STRDEHEXIZE$
	6.6.14 STRVALDEC
	6.6.15 STRHEX2BIN
	6.6.15.1 STRING from INTEGER

	6.6.16 STRESCAPE$
	6.6.17 STRDEESCAPE
	6.6.18 STRSPLITLEFT$
	6.6.19 STRSUM
	6.6.20 STRXOR
	6.6.21 String Encoding Functions
	6.6.21.1 StrEncode8
	6.6.21.2 StrEncode16
	6.6.21.3 StrEncode24
	6.6.21.4 StrEncode32
	6.6.21.5 StrEncodeFLOAT
	6.6.21.6 StrEncodeSFLOATEX
	6.6.21.7 StrEncodeSFLOATI
	6.6.21.8 StrEncodeTIMESTAMP
	6.6.21.9 StrEncodeSTRING
	6.6.21.10 StrEncodeBITS

	6.6.22 String Decoding Functions
	6.6.22.1 StrDecodeS8
	6.6.22.2 StrDecodeU8
	6.6.22.3 StrDecodeS16
	6.6.22.4 StrDecodeU16
	6.6.22.5 StrDecodeS24
	6.6.22.6 StrDecodeU24
	6.6.22.7 StrDecode32
	6.6.22.8 StrDecodeFLOATEX
	6.6.22.9 StrDecodeSFLOATEX
	6.6.22.10 StrDecodeTIMESTAMP
	6.6.22.11 StrDecodeSTRING
	6.6.22.12 StrDecodeBITS

	6.6.23 EXTRACTSTRTOKEN
	6.6.24 EXTRACTINTTOKEN
	6.6.25 EXTRACTFLOATTOKEN

	6.7 Table Routines
	6.7.1 TABLEINIT
	6.7.2 TABLEADD
	6.7.3 TABLELOOKUP

	6.8 Miscellaneous Routines
	6.8.1 RESET

	6.9 Random Number Generation Routines
	6.9.1 RAND
	6.9.2 RANDEX
	6.9.3 RANDSEED

	6.10 Timer Routines
	6.10.1 Timer Events
	6.10.2 TimerStart
	6.10.3 TimerRunning
	6.10.4 TimerCancel
	6.10.5 GetTickCount
	6.10.6 GetTickSince

	6.11 Circular Buffer Management Functions
	6.11.1 CircBufCreate
	6.11.2 CircBufDestroy
	6.11.3 CircBufWrite
	6.11.4 CircBufOverWrite
	6.11.5 CircBufRead
	6.11.6 CircBufItems

	6.12 Serial Communications Routines
	6.13 UART (Universal Asynchronous Receive Transmit)
	6.13.1 UART Events
	6.13.2 UartOpen
	6.13.3 UARTClose
	6.13.4 UARTCloseEx
	6.13.5 UARTInfo
	6.13.6 UartWrite
	6.13.7 UartRead
	6.13.8 UartReadN
	6.13.9 UartReadMatch
	6.13.10 UartFlush
	6.13.11 UartGetCTS
	6.13.12 UartSetRTS
	6.13.13 UartBREAK

	6.14 I2C (Two Wire Interface or TWI)
	6.14.1 I2C Events
	6.14.2 I2cOpen
	6.14.3 I2cOpenEx
	6.14.4 I2cClose
	6.14.5 I2cWriteREG8
	6.14.6 I2cReadREG8
	6.14.7 I2cWriteREG16
	6.14.8 I2cReadREG16
	6.14.9 I2cWriteREG32
	6.14.10 I2cReadREG32
	6.14.11 I2cWriteRead

	6.15 SPI Interface
	6.15.1 SPI Events
	6.15.2 SpiOpen
	6.15.3 SpiClose
	6.15.4 SpiReadWrite
	6.15.5 SpiWrite
	6.15.6 SpiRead

	6.16 Cryptographic Functions
	6.16.1 AesSetKeyIV
	6.16.2 AesEncrypt
	6.16.3 AesDecrypt

	6.17 File I/O Functions
	6.17.1 FOPEN
	6.17.2 FCLOSE
	6.17.3 FREAD
	6.17.4 FREADUNTIL
	6.17.5 FILELEN
	6.17.6 FTELL
	6.17.7 FSEEK

	6.18 Non-Volatile Memory Management Routines
	6.18.1 NvRecordGet
	6.18.2 NvRecordGetEx
	6.18.3 NvRecordSet
	6.18.4 NvCfgKeyGet
	6.18.5 NvCfgKeySet

	6.19 Input/Output Interface Routines
	6.19.1 GpioSetFunc
	6.19.2 GpioConfigPwm
	6.19.3 GpioRead
	6.19.4 GpioWrite
	6.19.5 GPIO Events
	6.19.6 GpioBindEvent/GpioAssignEvent
	6.19.7 GpioUnbindEvent/ GpioAssignEvent

	6.20 User Routines
	6.20.1 SUB
	6.20.1.1 Defining the Routine Name
	6.20.1.2 Defining the Arglist

	6.20.2 ENDSUB
	6.20.3 EXITSUB
	6.20.4 FUNCTION
	6.20.4.1 Defining the Routine Name
	6.20.4.2 Defining the Return Value
	6.20.4.3 Defining the Arglist

	6.20.5 ENDFUNC
	6.20.6 EXITFUNC

	7 Events and Messages
	8 Module Configuration
	9 Acknowledgements
	9.1 License Terms
	9.2 Disclaimer

