

https://www.lairdconnect.com/ 1

© Copyright 2021 Laird Connectivity. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Application Note v1.2

This application note describes the steps involved in developing Nordic SDK based applications for the BL654PA module. It
focuses on regulatory requirements and how these are met by the user application. These must be followed to ensure
compliance with regulatory requirements.

▪ Source code snippets are displayed using the Courier New font.

▪ References to Nordic SDK API content in code snippets and main body text are displayed using bold, italicized text.

▪ References to user code in the main body text are displayed using bold text.

▪ Datatypes used throughout are defined by the Nordic SDK.

Laird BL654PA modules incorporate a Skyworks SKY66112-11 front-end module. This integrates a Power Amplifier (PA) for
transmitted data and a Low Noise Amplifier (LNA) for received data. The addition of this part facilitates greater operating range
for the BL654PA when compared to the standard BL654 module.

When operating at the greater transmission power levels offered by the power amplifier, it is possible to exceed duty-cycle
related stipulations specified by regulatory authorities. The smartBASIC core application made available to end-users
implements the measures necessary to ensure all regulatory requirements are complied with. Should the end-user wish to
develop a Nordic SDK-based application however, implementation of these measures will be necessary.

This application note describes how interfacing with and control of the Skyworks front-end module is achieved and the
measures necessary within the Nordic SDK based application to comply with regulatory requirements.

This document assumes that the end-user application is developed with the Nordic SDK in conjunction with a Nordic
Softdevice-based protocol stack.

Code snippets presented herein are based upon SDK version 16.0 for the SD140 SoftDevice, v7.0.1 API.

End-user applications are assumed for Bluetooth Low Energy; Bluetooth Classic is not considered in this application note.

https://www.lairdconnect.com/ 2

© Copyright 2021 Laird Connectivity. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

The control interface to the Skyworks front-end module from the host Nordic NRF52840 is shown in Figure 1.

Figure 1: SKY66112 control interface

Two NRF52840 GPIO lines, P1.02 and P1.04, are used to control the front-end module. The GPIO are lines are driven to a
high logic level to activate a front-end module mode. Table 1 describes the pins with which the front-end module interfaces.

Table 1: Skyworks SKY66112 control interface

Pin Description

CRX Enables the front-end module low noise amplifier for reception

CSD Places the front-end module in sleep mode, disabling both the power amplifier and low noise amplifier, when at

a low logic level

CTX Enables the front-end module power amplifier for transmission

The CSD pin is connected via an OR gate to both P1.02 and P1.04 to ensure sleep mode is disabled when transmission or
reception is taking place. Table 2 summarizes the logic associated with the control interface.

Table 2: Skyworks SKY66112 control interface truth table

Mode
NRF52840 SKY66112

P1.02 P1.04 CTX CSD CRX

Receive LNA Mode 0 1 0 1 1

Sleep Mode 0 0 0 0 0

Transmit High Power Mode 1 0 1 1 0

Manual control of the NRF52840 GPIO lines that form the control interface to the SKY66112 is not necessary. Rather, during
initialization of the user application, details of these are passed to the Softdevice. Control of the GPIO lines is then performed
by the Softdevice during transmit and receive operations.

Note: The NRF52840 GPIO lines that form the control interface must be initialised by the end-user application.

https://www.lairdconnect.com/ 3

© Copyright 2021 Laird Connectivity. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

The Nordic SDK incorporates support for front-end modules via predefined types and API calls.

To allow event-driven control of the pins associated with the front-end module, the NRF52840 GPIOTE (General Purpose
Input/Output Tasks and Events) and PPI (Programmable Peripheral Interconnect) modules are used by the Softdevice.

At the Softdevice level, events of type EVENTS_READY for TX result in the pin used to control the PA being set to its active
level. Events of type EVENTS_READY for RX result in the pin used to control the LNA being set to its active level.

In both cases, events of type EVENTS_DISABLED for the radio result in both pins being driven to the defined inactive level.

Timers associated with the EVENTS_READY_FOR_TX and EVENTS_READY_FOR_RX events are used to delay
commencement of the radio transmit or receive operation following assertion of the associated front-end module control pin.
These delays are necessary to allow the appropriate front-end module section to stabilize.

No delay is necessary following completion of the radio transmit or receive operation.

The timings and associated events are shown in Figure 2.

Figure 2: SKY66112 control interface timing and associated events

https://www.lairdconnect.com/ 4

© Copyright 2021 Laird Connectivity. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

The following unions and structures were transcribed from Nordic SDK revision 16.0.

Front-end module support is implemented in the Nordic SDK via the ble_opt_t union. This is defined as follows:

typedef union

{

 ble_common_opt_t common_opt ;

 ble_gap_opt_t gap_opt ;

} ble_opt_t ;

PA/LNA related parameters reside within the common_opt instance of the union type ble_common_opt_t.
Ble_common_opt_t is defined as shown below.

typedef union

{

 ble_common_opt_conn_bw_t conn_bw ;

 ble_common_opt_pa_lna_t pa_lna ;

 ble_common_opt_conn_evt_ext_t conn_evt_ext ;

} ble_common_opt_t ;

Front-end module related items reside within the pa_lna instance of ble_common_opt_pa_lna_t.

The ble_common_opt_pa_lna_t structure is defined as shown below.

typedef struct

{

 ble_pa_lna_cfg_t pa_cfg ;

 ble_pa_lna_cfg_t lna_cfg ;

 uint8_t ppi_ch_id_set ;

 uint8_t ppi_ch_id_clr ;

 uint8_t gpiote_ch_id ;

} ble_common_opt_pa_lna_t ;

Its members can be described as follows:

▪ pa_cfg – This is an instance of the ble_pa_lna_cfg_t type used to describe the pin that controls the PA of the front-end
module.

▪ lna_cfg – This is an instance of the ble_pa_lna_cfg_t type used to describe the pin that controls the LNA of the front-
end module.

▪ ppi_ch_id_set – An 8-bit value defining the PPI channel triggered when radio operations start.

▪ ppi_ch_id_clr – An 8-bit value defining the PPI channel triggered when radio operations end.

▪ gpiote_ch_id – An 8-bit value defining the GPIOTE channel used to toggle the GPIOs associated with radio
transmission start and end events.

The ble_pa_lna_cfg_t struct is defined as follows:

typedef struct

{

 uint8_t enable :1 ;

 uint8_t active_high :1 ;

 uint8_t gpio_pin :6 ;

} ble_pa_lna_cfg_t ;

The members of the ble_pa_lna_cfg_t struct can be described as follows:

▪ enable – Enables control of the associated GPIO pin

▪ active_high – Set if the associated output pin is active high

▪ gpio_pin – The Nordic SDK formatted identifier of the GPIO used to control the front-end module

https://www.lairdconnect.com/ 5

© Copyright 2021 Laird Connectivity. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

During initialization, an instance of ble_opt_t is populated by the user application, then passed to the SDK API function
sd_ble_opt_set to achieve the desired configuration.

For readability, macros should be defined for the pins used to control the front-end module. This is achieved as follows:

#define DRIVER_PALNA_RX_PIN NRF_GPIO_PIN_MAP(1,4)

#define DRIVER_PALNA_TX_PIN NRF_GPIO_PIN_MAP(1,2)

The Nordic SDK API macro NRF_GPIO_PIN_MAP is used to translate port and pin information into a format intelligible by
successive GPIO manipulation API calls.

These definitions should be used hereon when referring to the pins.

As described in section 5, pin DRIVER_PALNA_RX_PIN is set to a high logic level when receiving data, and low otherwise,
and pin DRIVER_PALNA_TX_PIN is set to a high logic level when transmitting data and low otherwise.

Note: Precautions must be taken to ensure the PA and LNA are not enabled at the same time. Doing so and transmitting

data may cause irreparable damage to the front-end module.

The following variables are required for storing details of PPI and GPIOTE channel allocations.

// This is the channel triggered during radio enable events
nrf_ppi_channel_t ppi_set_ch ;

// This is the channel triggered during radio disable events

nrf_ppi_channel_t ppi_clr_ch ;

// This the GPIOTE channel associated with the above

int16_t nGpioTeChannelNum ;

The pins used to control the SKY66112 must be set to a low logic level and configured as outputs during the initialization
phase of the user application. Note this should be performed as quickly as possible following reset of the user application to
minimize current consumption.

This is achieved with the Nordic SDK API calls nrf_gpio_pin_write and nrf_gpio_cfg_output, as follows.

nrf_gpio_pin_write(DRIVER_PALNA_TX_PIN, 0) ;

nrf_gpio_pin_write(DRIVER_PALNA_RX_PIN, 0) ;

nrf_gpio_cfg_output(DRIVER_PALNA_TX_PIN) ;

nrf_gpio_cfg_output(DRIVER_PALNA_RX_PIN) ;

Upon configuration of the pins as outputs, code of the following form needs to be executed to configure the PPI and GPIOTE
modules, and to associate the allocated channels and pins with predefined radio events.

uint32_t nrfErr ;

ble_opt_t opt = {0} ;

// Initialize PPI module – note this is only necessary if not performed prior to this step.

// An error code will be returned if this is the case

nrfErr = nrf_drv_ppi_init() ;

assert(nrfErr == NRF_SUCCESS) ;

// Allocate the next free PPI channel available

nrfErr = nrf_drv_ppi_channel_alloc(&ppi_set_ch) ;

assert(nrfErr == NRF_SUCCESS) ;

https://www.lairdconnect.com/ 6

© Copyright 2021 Laird Connectivity. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

// Allocate the next free PPI channel available

nrfErr = nrf_drv_ppi_channel_alloc(&ppi_clr_ch) ;

assert(nrfErr == NRF_SUCCESS) ;

// GPIOTE channel used for radio pin toggling

opt.common_opt.pa_lna.gpiote_ch_id = nGpioTeChannelNum ;

// PPI channel used for radio disable events

opt.common_opt.pa_lna.ppi_ch_id_clr = ppi_clr_ch ;

// PPI channel used for radio enable events

opt.common_opt.pa_lna.ppi_ch_id_set = ppi_set_ch ;

// Set the pin to be active high

opt.common_opt.pa_lna.lna_cfg.active_high = 1 ;

// Enable toggling for this amplifier

opt.common_opt.pa_lna.lna_cfg.enable = 1 ;

// The GPIO pin to toggle for this amplifier

opt.common_opt.pa_lna.lna_cfg.gpio_pin = DRIVER_PALNA_RX_PIN ;

// Set the pin to be active high

opt.common_opt.pa_lna.pa_cfg.active_high = 1 ;

// Enable toggling for this amplifier

opt.common_opt.pa_lna.pa_cfg.enable = 1 ;

// The GPIO pin to toggle for this amplifier

opt.common_opt.pa_lna.pa_cfg.gpio_pin = DRIVER_PALNA_TX_PIN ;

// This stack function commits the allocations to memory

// accessible by the SoftDevice

nrfErr = sd_ble_opt_set(BLE_COMMON_OPT_PA_LNA, &opt) ;

assert(nrfErr == NRF_SUCCESS) ;

https://www.lairdconnect.com/ 7

© Copyright 2021 Laird Connectivity. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

The transmit power configured by the end-user application must consider both the characteristics of the SKY66112 power
amplifier and the regulatory requirements associated with the physical layer selected. These are summarized in Table 3.

Customer has control of nRF52840 TX RF power setting only as per Table 3 and the resulting SKY66112 TX power
is decided, i.e. the SKY66112 can be thought of as a RF gain block.

Table 3: Transmit power limitations for baudrate, physical layer and SKY66112 power amplifier characteristics

NRF52840 TX

Power (dBm)

SKY66112 TX
Power (dBm)

PHY

1 Mbps 2 Mbps Coded PHY 125 kbps

8 30 Exceeds SKY66112 output power limit

7 29 Exceeds SKY66112 output power limit

6 28 Exceeds SKY66112 output power limit

5 27 Exceeds SKY66112 output power limit

4 26 Exceeds SKY66112 output power limit

3 25 Exceeds SKY66112 output power limit

2 24 Exceeds SKY66112 output power limit

0 22 Exceeds SKY66112 output power limit

-4 18 Allowed Allowed Not Allowed

-8 14 Allowed Allowed Allowed

-12 6 Allowed Allowed Allowed

-16 0 Allowed Allowed Allowed

-20 -6 Allowed Allowed Allowed

-40 -26 Allowed Allowed Allowed

Notes: For 1 Mbps and 2 Mbps BLE, the BL654PA is certified for RF TX output power of 18 dBm maximum.

 For Coded PHY 125 kbps BLE, the BL654PA is certified for reduced RF TX output power of 14 dBm maximum.

This ensures compliance with FCC, IC, AUS, and NZ power spectral density requirements.

The Nordic SDK API call sd_ble_gap_tx_power_set is used to configure the radio transmit power. Power levels can be
individually set for advertising, scanning/initiating, and each active connection. The end-user application must ensure
appropriate power levels are set in each case.

The Nordic SDK does not take into account the presence of front-end module amplification when setting transmit power levels.
The end-user application must instead perform validation checks to ensure a valid transmit power configuration is set.

Before setting transmit power levels via SDK API calls, code of the following form should be used to check the intended
transmit power level. The former validates transmit power levels for 1 Mbps and 2 Mbps PHYs, and the latter for Coded PHY
at 125 Kbps.

#define TX_POWER_DEFAULT ((int8_t) RADIO_TXPOWER_TXPOWER_Neg40dBm)

uint32_t CheckTransmitPower1Mbps2Mbps(int8_t transmitPower, int8_t *pActualTransmitPower)

{

 uint32_t nrfErr ;

 switch(transmitPower)

 {

 case((int8_t) RADIO_TXPOWER_TXPOWER_Neg4dBm):

https://www.lairdconnect.com/ 8

© Copyright 2021 Laird Connectivity. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 case((int8_t) RADIO_TXPOWER_TXPOWER_Neg8dBm):

 case((int8_t) RADIO_TXPOWER_TXPOWER_Neg12dBm):

 case((int8_t) RADIO_TXPOWER_TXPOWER_Neg16dBm):

 case((int8_t) RADIO_TXPOWER_TXPOWER_Neg20dBm):

 case((int8_t) RADIO_TXPOWER_TXPOWER_Neg40dBm):

 *pActualTransmitPower = transmitPower ;

 nrfErr = NRF_SUCCESS ;

 break ;

 default:

 *pActualTransmitPower = TX_POWER_DEFAULT ;

 nrfErr = NRF_ERROR_FORBIDDEN ;

 }

 return(nrfErr) ;

}

uint32_t CheckTransmitPowerCodedPHY125kbps(int8_t transmitPower, int8_t

*pActualTransmitPower)

{

 uint32_t nrfErr ;

 switch(transmitPower)

 {

 case((int8_t) RADIO_TXPOWER_TXPOWER_Neg8dBm):

 case((int8_t) RADIO_TXPOWER_TXPOWER_Neg12dBm):

 case((int8_t) RADIO_TXPOWER_TXPOWER_Neg16dBm):

 case((int8_t) RADIO_TXPOWER_TXPOWER_Neg20dBm):

 case((int8_t) RADIO_TXPOWER_TXPOWER_Neg40dBm):

 *pActualTransmitPower = transmitPower ;

 nrfErr = NRF_SUCCESS ;

 break ;

 default:

 *pActualTransmitPower = TX_POWER_DEFAULT ;

 nrfErr = NRF_ERROR_FORBIDDEN ;

 }

 return(nrfErr) ;

}

The following are suggested as a means of deriving a valid transmit power level from any input value.

int8_t GetEquivalentSdTxPower1Mbps2Mbps (int8_t transmitPower)
{

 int8_t actualTransmitPower ;

 switch(transmitPower)

 {

 case(transmitPower >= (int8_t) RADIO_TXPOWER_TXPOWER_Neg4dBm):

 {

 actualTransmitPower = (int8_t) RADIO_TXPOWER_TXPOWER_Neg4dBm ;

 }

 break ;

 case(transmitPower >= (int8_t) RADIO_TXPOWER_TXPOWER_Neg8Bm):

 {

 actualTransmitPower = (int8_t) RADIO_TXPOWER_TXPOWER_Neg8dBm ;

 }

 break ;

 case(transmitPower >= (int8_t) RADIO_TXPOWER_TXPOWER_Neg12dBm):

 {

 actualTransmitPower = (int8_t) RADIO_TXPOWER_TXPOWER_Neg12dBm ;

 }

 break ;

 case(transmitPower >= (int8_t) RADIO_TXPOWER_TXPOWER_Neg16dBm):

 {

https://www.lairdconnect.com/ 9

© Copyright 2021 Laird Connectivity. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 actualTransmitPower = (int8_t) RADIO_TXPOWER_TXPOWER_Neg16dBm ;

 }

 break ;

 case(transmitPower >= (int8_t) RADIO_TXPOWER_TXPOWER_Neg20dBm):

 {

 actualTransmitPower = (int8_t) RADIO_TXPOWER_TXPOWER_Neg20dBm ;

 }

 break ;

 default:

 actualTransmitPower = (int8_t) RADIO_TXPOWER_TXPOWER_Neg40dBm ;

 break ;

 }

 return(actualTransmitPower) ;

}

int8_t GetEquivalentSdTxPowerCodedPHY125kbps (int8_t transmitPower)
{

 int8_t actualTransmitPower ;

 switch(transmitPower)

 {

 case(transmitPower >= (int8_t) RADIO_TXPOWER_TXPOWER_Neg8Bm):

 {

 actualTransmitPower = (int8_t) RADIO_TXPOWER_TXPOWER_Neg8dBm ;

 }

 break ;

 case(transmitPower >= (int8_t) RADIO_TXPOWER_TXPOWER_Neg12dBm):

 {

 actualTransmitPower = (int8_t) RADIO_TXPOWER_TXPOWER_Neg12dBm ;

 }

 break ;

 case(transmitPower >= (int8_t) RADIO_TXPOWER_TXPOWER_Neg16dBm):

 {

 actualTransmitPower = (int8_t) RADIO_TXPOWER_TXPOWER_Neg16dBm ;

 }

 break ;

 case(transmitPower >= (int8_t) RADIO_TXPOWER_TXPOWER_Neg20dBm):

 {

 actualTransmitPower = (int8_t) RADIO_TXPOWER_TXPOWER_Neg20dBm ;

 }

 break ;

 default:

 actualTransmitPower = (int8_t) RADIO_TXPOWER_TXPOWER_Neg40dBm ;

 break ;

 }

 return(actualTransmitPower) ;

}

https://www.lairdconnect.com/ 10

© Copyright 2021 Laird Connectivity. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Following initialization, transmit power level is set to 0 dBm by the Softdevice. The end-user application must ensure this is set
to an allowed value at start-up. Code of the following form can be used to achieve this.

// Set the tx power for the advertiser role - connection handle discarded

nrfErr = sd_ble_gap_tx_power_set(BLE_GAP_TX_POWER_ROLE_ADV, 0, transmitPower) ;

if (NRF_SUCCESS == nrfErr)

{

 // Set the tx power for the scanner/initiator - connection handle discarded

 nrfErr = sd_ble_gap_tx_power_set(BLE_GAP_TX_POWER_ROLE_SCAN_INIT, 0, transmitPower) ;

}

Note: No connections are active following initialization therefore no transmit power must be configured.

Changes to transmit power during end-user application runtime must be validated via checks described in 7.2 prior to calls to
the sd_ble_gap_tx_power_set API function.

Depending upon the physical layer in use, the PDU length must be restricted, and, for the 1 Mbps and 2 Mbps PHYs, the duty
cycle must be restricted. These constraints are described as follows.

For the LE 1M PHY and 2M LE PHY, the time spent by the end-user application transmitting data must be limited to comply
with regulatory requirements. Over a 100ms observation period, no more than 24 milliseconds can be spent transmitting data
on a single data channel. This is further dependent upon the transmit power of the radio and the widths of data packets sent.

The constraints necessary for implementation are shown in Table 4.

Table 4: Duty cycle limitation for 1 Mbps and 2 Mbps

NRF52840

TX Power

(dBm)

SKY66112
TX Power

(dBm)

PHY
Declared Maximum BLE

Protocol
TX RF Duty Cycle in 100

ms sweep

1 Mbps 2 Mbps
Maximum

Event Length
(ms)

Maximum PDU Length (bytes)

8 30 Not Allowed Not Allowed Not Allowed N/A

7 29 Not Allowed Not Allowed Not Allowed N/A

6 28 Not Allowed Not Allowed Not Allowed N/A

5 27 Not Allowed Not Allowed Not Allowed N/A

4 26 Not Allowed Not Allowed Not Allowed N/A

3 25 Not Allowed Not Allowed Not Allowed N/A

2 24 Not Allowed Not Allowed Not Allowed N/A

0 22 Not Allowed Not Allowed Not Allowed N/A

-4 18 200 200 24% (24 ms) plus margin 11.25

-8 14 251 251 24% (24 ms) plus margin 1000

-12 6 251 251 24% (24 ms) plus margin 1000

-16 0 251 251 24% (24 ms) plus margin 1000

-20 -6 251 251 24% (24 ms) plus margin 1000

-40 -26 251 251 24% (24 ms) plus margin 1000

https://www.lairdconnect.com/ 11

© Copyright 2021 Laird Connectivity. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

No duty cycle restriction is necessary when the 125 kbps Coded PHY is in use. However, the PDU length must not be allowed
to exceed 251 bytes in length.

Note: 125 kbps Coded PHY transmit power is limited to 14 dBm to pass FCC TX Power spectral Density. This passes FCC

Band Edge emissions, so duty cycle demonstration or declaration is not required.

For worst-case conditions, each Connection Event will be fully consumed by communications traffic (with associated inter-
frame spaces). To ensure duty-cycle restrictions are complied with, the Connection Interval and the Event Length are
adjusted, depending upon the number of connections required by the end-user application, to enforce the 24 milliseconds per
100 milliseconds per channel restriction.

Event Length is set using the Nordic SDK API call sd_ble_cfg_set, with this being passed an instance of a ble_cgf_t
structure that contains the necessary configuration parameters.

This is defined as follows.

typedef union

{

ble_conn_cfg_t conn_cfg ;

ble_common_cfg_t common_cfg ;

ble_gap_cfg_t gap_cfg ;

ble_gatts_cfg_t gatts_cfg ;

}ble_cfg_t ;

Parameters related to the connection interval reside in the conn_cfg instance of the ble_conn_cfg_t structure. This is defined
as follows.

typedef struct

{

uint8_t conn_cfg_tag ;

union

{

 ble_gap_conn_cfg_t gap_conn_cfg ;

 ble_gattc_conn_cfg_t gattc_conn_cfg ;

 ble_gatts_conn_cfg_t gatts_conn_cfg ;

 ble_gatt_conn_cfg_t gatt_conn_cfg ;

 ble_l2cap_conn_cfg_t l2cap_conn_cfg ;

}params ;

}ble_conn_cfg_t ;

The gap_conn_cfg instance of the ble_gap_conn_cfg_t structure is then used to configure the connection parameters. This
is defined as follows.

typedef struct

{

uint8_t conn_count ;

uint16_t event_length ;

} ble_gap_conn_cfg_t ;

The conn_count member determines how many connections the end-user application can support.

The event_length member determines how much time is allocated to each Connection during each Connection Interval. This
is specified in multiples of 1.25 milliseconds.

https://www.lairdconnect.com/ 12

© Copyright 2021 Laird Connectivity. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Note: A value of 4 written to the event_length parameter configures an Event Length of 4 * 1.25 ms = 5 ms. This dedicates

5 milliseconds of each connection interval to each connection.

The connection interval is defined initially at compile time as shown below.

#define MIN_CONN_INTERVAL MSEC_TO_UNITS(2000, UNIT_1_25_MS)

#define MAX_CONN_INTERVAL MSEC_TO_UNITS(3000, UNIT_1_25_MS)

These values are passed to a call to the Nordic SDK API function gap_params_init during initialisation of the end-user
application. The Connection Interval can be adjusted at run-time with successive calls to the SDK function
sd_ble_gap_ppcp_set, - this is called from within the gap_params_init function during start-up.

For a given Connection Interval, Event Length, and number of Connections, the maximum time available for each connection
can be calculated with the following.

Maximum Event Length = Connection Interval / Connection Count

Connection Events of up to this length then occur after each Connection Interval.

A Connection Interval of 100ms for five Connections with an Event Length of 20ms is shown in Figure 3.

Figure 3: Relationship of connection interval, event length, and number of connections

Each connection event utilizes a different randomly selected data channel.

The maximum event length usable by the end-user application must be limited to 11.25ms when at the 18dBm power level.
Even with a connection interval of 11.25ms and a single connection, a different data channel is selected such that the
minimum time the same channel is used is (11.25ms * 37) 416.25ms.

https://www.lairdconnect.com/ 13

© Copyright 2021 Laird Connectivity. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

All 37 data channels must be enabled at all times to comply with regulatory requirements. Upon start-up, applications have
their channel map set to enable all 37 channels by default. This must not be changed.

The channel map can be read and written using the ble_opt_get and ble_opt_set API calls.

Channel map parameters are read and written via an instance of the ble_gap_opt_ch_map_t structure, the elements of which
can be defined as follows.

typedef struct

{

 // Connection handle – only applicable when reading the channel map

 uint16_t conn_handle;

 // The 37-bit channel map

 uint8_t ch_map[5];

} ble_gap_opt_ch_map_t;

An instance of ble_gap_opt_ch_map_t is housed within the ble_opt_t union, as described in section 6.1.

The channel map is read and written as follows.

https://www.lairdconnect.com/ 14

© Copyright 2021 Laird Connectivity. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

#define CHANNEL_MAP_BYTE_CNT 5

uint32_t nrfErr ;

ble_opt_t opt = {0} ;

uint8_t channelMapDefault[CHANNEL_MAP_BYTE_CNT] = {0xFF,0xFF,0xFF,0xFF,0x1F} ;

// Connection handles are issued during connect events

opt.gap_opt.ch_map.conn_handle = conn_handle ;

// Read back the channel map

nrfErr = Ble_opt_get(BLE_GAP_OPT_CH_MAP, &opt) ;

assert(nrfErr==NRF_SUCCESS) ;

// Ensure all channels are enabled

if (memcmp(opt.gap_opt.ch_map.ch_map, channelMapDefault, CHANNEL_MAP_BYTE_CNT))

{

 // And enable all if not

 memcpy(opt.gap_opt.ch_map.ch_map,

 channelMapDefault,

 CHANNEL_MAP_BYTE_CNT) ;

 nrfErr = Ble_opt_set(BLE_GAP_OPT_CH_MAP, &opt) ;

assert(nrfErr==NRF_SUCCESS) ;

}

Note: Only central devices can request changes of the channel map. Peripheral devices must accept changes to the

channel map. In this case, should less than 37 channels be enabled, the power level must be reduced to 14dBm

maximum.

The SoftDevice Connection Event Length Extension feature, when enabled, may violate regulatory timing requirements. It
should be disabled when the BL654PA module is used in conjunction with Nordic SDK based applications.

https://www.lairdconnect.com/ 15

© Copyright 2021 Laird Connectivity. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Note: The end-user must validate their application to ensure the constraints described throughout are adhered to. A single

data channel cannot be used to transmit data for more than 24 milliseconds over a 100 milliseconds observation time.

As described in the Limitations of Duty-Cycle and PDU Length section, there is no limitation of PDU size for the 125 kbps
Coded PHY, other than that from the specification. All transmitted messages must be limited to a transmit power of 14 dBm, or
lower.

Duty-cycle, transmit power, and PDU length must be restricted for the 1 Mbps and 2 Mbps LE physical layers.

A spectrum analyzer (in zero span mode) should be used to verify that in all cases, with a 100-millisecond sweep time, the
total duration of all packets sent does not exceed 24 milliseconds.

Note: The 24-milliseond restriction applies to each data channel. It is advised that more than one channel is observed

during development to ensure the restriction is complied with across all data channels.

The worst-case duty-cycle conditions can be simulated with the following configuration.

▪ The longest packet length for the data rate being verified as defined in Table 4.

▪ The worst-case connection interval that produces the maximum number of packets per connection interval

For transmit power, all roles (advertising, scanning/initiating, etc.) should be verified to ensure the limits defined in Table 3 are
never exceeded.

Term Definition

API Application Programming Interface

AUS Australia

BLE Bluetooth Low Energy

FCC Federal Communications Commission

GPIO General Purpose Input/Output

IC Industry Canada

LNA Low Noise Amplifier

NZ New Zealand

PA Power Amplifier

PDU Protocol Data Unit

PHY Physical Layer

RF Radio Frequency

SDK Software Development Kit

Softdevice Bluetooth protocol stack supplied in precompiled binary format by Nordic

TX Transmit

https://www.lairdconnect.com/ 16

© Copyright 2021 Laird Connectivity. All Rights Reserved

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Version Date Notes Contributor(s) Approver

1.0 02 December 2019 Initial Release Greg Leach Jonathan Kaye

1.1 09 April 2020

Added details of restrictions to

Channel Map.

Added further details to Limitation of

Transmit Power section.

Expanded transmit power example

functions section.

Greg Leach Jonathan Kaye

1.2 08 February 2021

Added SoftDevice Connection Event

Length Extension section prohibiting

the use of this feature in conjunction

with applications developed with the

Nordic SDK and the BL654PA module.

Added further detail to Limitations of

Duty-Cycle and PDU Length section.

Greg Leach Jonathan Kaye

