
 

Release 29.4.6.6 

 
 

This guide pertains to BL654 and BL654PA specific smartBASIC functions and 
routines.  For information on functions and routines that apply to all smartBASIC 
modules, see the smartBASIC Core Manual.    

http://b7c114b8ac32968eb0a5-0034a95ea8a03cf459b9e4f7b28746f2.r86.cf3.rackcdn.com/home/brandworld/files/User%20Guide%20-%20smartBASIC%20Core%20Functionality.pdf


https://www.lairdconnect.com/ 2 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

Version Date Notes Contributor(s) Approver 

29.0.0.0 01 Feb 2018 Initial Release Youssif Saeed Jonathan Kaye 

29.0.0.5 12 Apr 2018 Updated with few additions Youssif Saeed Jonathan Kaye 

29.1.1.0 01 Jun 2018 First Production Release Youssif Saeed Jonathan Kaye 

29.2.2.0 20 Aug 2018 Second Production Release Youssif Saeed Jonathan Kaye 

29.3.3.0 28 Dec 2018 Third Production Release Youssif Saeed Jonathan Kaye 

29.3.4.0 11 Jul 2019 Release of BL654PA variant Mahendra Tailor Jonathan Kaye 

29.3.5.0 30 Jul 2019 Updated Release of BL654PA variant Mahendra Tailor Jonathan Kaye 

29.3.5.0 14 Aug 2019 

Updated information for the event 

EVBLE_PHY_REQUEST and 

BlePhySet 

Mahendra Tailor Jonathan Kaye 

29.3.5.0-

r2 
15 Oct 2019 

Changed MUST be exactly 5 characters 

long to MUST be a minimum of five 

characters long 

Mahendra Tailor Jonathan Kaye 

29.4.5.1 15 Nov 2019 Added new ‘Extended Adverts’ Section Mahendra Tailor Jonathan Kaye 

29.4.6.0 05 Dec 2019 Updated features for new firmware. Mahendra Tailor Jonathan Kaye 

29.4.6.0-

r2 
31 Jan 2020 

Clarified description for functions: 

BleSecMngrLescOwnOobDataGet() 

BleSecMngrLescPeerOobDataSet() 

Mahendra Tailor Jonathan Kaye 

29.4.6.0-

r3 
01 Apr 2020 Added Error Code section Jamie Mccrae Jonathan Kaye 

29.4.6.6 16 Jun 2020 

Added HashGenerate(), SetREGOUT0() 

and GetREGOUT0() and note about use 

of BleChannelMap() in BL654PA 

Kieran Mackey Jonathan Kaye 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright 2020 Laird Connectivity. All Rights Reserved. Any information furnished by Laird Connectivity and its agents is believed to be 
accurate and reliable. All specifications are subject to change without notice. Responsibility for the use and application of Laird Connectivity 
materials or products rests with the end user since Laird and its agents cannot be aware of all potential uses. Laird Connectivity makes no 
warranties as to non-infringement nor as to the fitness, merchantability, or sustainability of any Laird Connectivity materials or products for any 
specific or general uses. Laird Connectivity or any of its affiliates or agents shall not be liable for incidental or consequential damages of any 
kind. All Laird Connectivity products are sold pursuant to the Laird Connectivity Terms and Conditions of Sale in effect from time to time, a copy 



https://www.lairdconnect.com/ 3 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

of which will be furnished upon request. When used as a tradename herein, Laird means Laird PLC or one or more subsidiaries of Laird PLC 
(Laird Technologies, Inc; Laird Technologies; Laird Connectivity, corresponding logos, and other marks are trademarks or registered trademarks 
of Laird Connectivity. Other marks may be the property of third parties. Nothing herein provides a license under any Laird or any third party 
intellectual property right.  



https://www.lairdconnect.com/ 4 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

CONTENTS 
1 Introduction ........................................................................................................................................................................ 11 

1.1 Differences Between BL654 and BL654PA .............................................................................................................. 11 
1.2 What Does a BLE Module Contain? ......................................................................................................................... 12 

2 Module Configuration ........................................................................................................................................................ 12 
3 Error Codes ....................................................................................................................................................................... 12 

3.1 Error Code Lookup ................................................................................................................................................... 12 
3.2 Error Code Viewer .................................................................................................................................................... 14 
3.3 Error Code Updates ................................................................................................................................................. 16 

4 Interactive Mode Commands ............................................................................................................................................. 17 

4.1.1 AT I or ATI or ATIX ............................................................................................................................................. 17 

4.1.2 AT+CFG ............................................................................................................................................................. 18 
4.1.3 AT+CFGEX ........................................................................................................................................................ 22 
4.1.4 AT+BTD * ........................................................................................................................................................... 22 
4.1.5 AT + MAC  “12 hex digit mac address” ............................................................................................................... 23 
4.1.6 AT+BLX .............................................................................................................................................................. 23 
4.1.7 AT&F .................................................................................................................................................................. 24 
4.1.8 AT+PROTECT .................................................................................................................................................... 24 
4.1.9 AT+REGOUT0 ................................................................................................................................................... 25 

5 Core Language Built-in Routines ....................................................................................................................................... 25 
5.1 Information Routines ................................................................................................................................................ 25 

5.1.1 SYSINFO ............................................................................................................................................................ 25 
5.1.2 SYSINFO$ .......................................................................................................................................................... 28 

5.2 UART Interface ........................................................................................................................................................ 30 
5.2.1 UartOpen ............................................................................................................................................................ 30 
5.2.2 UartSetRTS ........................................................................................................................................................ 30 
5.2.3 UartBREAK ........................................................................................................................................................ 30 

5.3 Auxiliary UART (Universal Asynchronous Receive Transmit) .................................................................................. 30 
5.3.1 Auxilliary UART Events ...................................................................................................................................... 31 
5.3.2 AUXOpen ........................................................................................................................................................... 32 
5.3.3 AUXClose ........................................................................................................................................................... 34 
5.3.4 AUXCloseEx ....................................................................................................................................................... 34 
5.3.5 AUXInfo .............................................................................................................................................................. 35 
5.3.6 AUXWrite ............................................................................................................................................................ 35 
5.3.7 AUXRead ........................................................................................................................................................... 36 
5.3.8 AUXReadN ......................................................................................................................................................... 36 
5.3.9 AUXReadMatch .................................................................................................................................................. 37 
5.3.10 AUXFlush ........................................................................................................................................................... 37 
5.3.11 AUXGetCTS ....................................................................................................................................................... 38 
5.3.12 AUXSetRTS ....................................................................................................................................................... 38 
5.3.13 AUXBreak ........................................................................................................................................................... 38 

5.4 I2C – Two Wire Interface (TWI) ................................................................................................................................ 39 
5.5 SPI Interface ............................................................................................................................................................ 39 
5.6 SPI Slave Interface................................................................................................................................................... 39 

5.6.1 Events and Messages ........................................................................................................................................ 39 
5.6.2 SpiSlaveConfig ................................................................................................................................................... 40 
5.6.3 SpiSlaveOpen .................................................................................................................................................... 41 
5.6.4 SpiSlaveClose .................................................................................................................................................... 41 
5.6.5 SpiSlaveTxBufferWrite ....................................................................................................................................... 42 
5.6.6 SpiSlaveRxBufferRead ....................................................................................................................................... 43 



https://www.lairdconnect.com/ 5 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

5.7 QSPI ......................................................................................................................................................................... 44 
5.7.1 Events and Messages ........................................................................................................................................ 44 
5.7.2 QSPIOpen .......................................................................................................................................................... 44 
5.7.3 QSPIClose .......................................................................................................................................................... 48 
5.7.4 QSPIConfigSet ................................................................................................................................................... 48 
5.7.5 QSPIConfigGet ................................................................................................................................................... 50 
5.7.6 QSPIActiveConfigGet ......................................................................................................................................... 51 
5.7.7 QSPIWrite .......................................................................................................................................................... 52 
5.7.8 QSPIRead .......................................................................................................................................................... 53 
5.7.9 QSPIErase ......................................................................................................................................................... 53 
5.7.10 QSPICustomCommand ...................................................................................................................................... 54 
5.7.11 QSPISetPowerMode .......................................................................................................................................... 56 
5.7.12 QSPIInfo ............................................................................................................................................................. 56 
5.7.13 QSPIMemorySize ............................................................................................................................................... 56 
5.7.14 QSPIIsBusy ........................................................................................................................................................ 57 
5.7.15 QSPIDPMSet ..................................................................................................................................................... 57 
5.7.16 QSPIIsDPM ........................................................................................................................................................ 58 
5.7.17 QSPIReset ......................................................................................................................................................... 58 

5.8 Input/Output Interface Routines ............................................................................................................................... 59 
5.8.1 Events and Messages ........................................................................................................................................ 61 
5.8.2 GpioSetFunc ...................................................................................................................................................... 61 
5.8.3 GpioSetFuncEx .................................................................................................................................................. 63 
5.8.4 GpioConfigPwm ................................................................................................................................................. 65 
5.8.5 GpioRead ........................................................................................................................................................... 68 
5.8.6 GpioWrite ........................................................................................................................................................... 69 
5.8.7 GpioBindEvent/GpioAssignEvent ....................................................................................................................... 70 
5.8.8 GpioUnbindEvent/GpioUnAssignEvent .............................................................................................................. 73 

5.9 Miscellaneous Routines ........................................................................................................................................... 73 
5.9.1 ASSERTBL654 ................................................................................................................................................... 73 
5.9.2 ERASEFILESYSTEM ......................................................................................................................................... 73 

6 BLE Extensions Built-in Routines ...................................................................................................................................... 74 
6.1 LE Privacy ................................................................................................................................................................ 74 

6.1.1 BleSetAddressTypeEx ........................................................................................................................................ 75 
6.2 Events and Messages .............................................................................................................................................. 77 

6.2.1 EVBLE_ADV_TIMEOUT .................................................................................................................................... 77 
6.2.2 EVBLE_CONN_TIMEOUT ................................................................................................................................. 78 
6.2.3 EVBLE_ADV_REPORT ...................................................................................................................................... 78 
6.2.4 EVBLE_FAST_PAGED ...................................................................................................................................... 78 
6.2.5 EVBLE_SCAN_TIMEOUT .................................................................................................................................. 78 
6.2.6 EVBLEMSG ........................................................................................................................................................ 78 
6.2.7 EVDISCON ......................................................................................................................................................... 81 
6.2.8 EVCHARVAL ...................................................................................................................................................... 82 
6.2.9 EVCHARVALUE ................................................................................................................................................. 82 
6.2.10 EVCHARHVC ..................................................................................................................................................... 84 
6.2.11 EVCHARCCCD .................................................................................................................................................. 84 
6.2.12 EVCHARSCCD .................................................................................................................................................. 87 
6.2.13 EVCHARDESC .................................................................................................................................................. 92 
6.2.14 EVAUTHVAL ...................................................................................................................................................... 94 
6.2.15 EVAUTHVALEX ................................................................................................................................................. 95 
6.2.16 EVAUTHCCCD .................................................................................................................................................. 97 
6.2.17 EVAUTHSCCD ................................................................................................................................................... 99 
6.2.18 EVAUTHDESC ................................................................................................................................................. 101 



https://www.lairdconnect.com/ 6 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

6.2.19 EVVSPRX ........................................................................................................................................................ 103 
6.2.20 EVVSPTXEMPTY............................................................................................................................................. 103 
6.2.21 EVCONNRSSI .................................................................................................................................................. 103 
6.2.22 EVNOTIFYBUF ................................................................................................................................................ 103 
6.2.23 EVCONNPARAMREQ ...................................................................................................................................... 107 
6.2.24 EVBLE_EXTADVDROPPED ............................................................................................................................ 108 
6.2.25 EVBLE_EXTADVNOMEM ................................................................................................................................ 108 
6.2.26 EVBLE_SCAN_ABORTED ............................................................................................................................... 108 
6.2.27 EVBLE_EXTADV_END .................................................................................................................................... 109 
6.2.28 EVBLE_EXTADV_RPT .................................................................................................................................... 109 
6.2.29 EVBLE_EXTSCN_RPT .................................................................................................................................... 109 
6.2.30 EVBLE_EXTADV_RPT_INCOMPLETE ........................................................................................................... 109 

6.3 Miscellaneous Functions ........................................................................................................................................ 109 
6.3.1 BleTxPowerSet ................................................................................................................................................. 109 
6.3.2 BleTxPwrWhilePairing ...................................................................................................................................... 110 
6.3.3 BleConfigHfClock ............................................................................................................................................. 112 
6.3.4 BleConfigDcDc ................................................................................................................................................. 113 
6.3.5 BleChannelMap ................................................................................................................................................ 113 

6.4 Advertising Functions ............................................................................................................................................. 113 
6.4.1 BleAdvertStart .................................................................................................................................................. 114 
6.4.2 BleAdvertStop .................................................................................................................................................. 117 
6.4.3 BleAdvertConfig ............................................................................................................................................... 118 
6.4.4 BleAdvRptInit .................................................................................................................................................... 118 
6.4.5 BleScanRptInit .................................................................................................................................................. 119 
6.4.6 BleAdvRptGetSpace......................................................................................................................................... 120 
6.4.7 BleExtAdvRptGetSpace ................................................................................................................................... 120 
6.4.8 BleAdvRptAddUuid16 ....................................................................................................................................... 120 
6.4.9 BleAdvRptAddUuid128 ..................................................................................................................................... 122 
6.4.10 BleAdvRptAppendAD ....................................................................................................................................... 123 
6.4.11 BleExtAdvRptAppendAD .................................................................................................................................. 123 
6.4.12 BleAdvRptsCommit .......................................................................................................................................... 123 

6.5 Extended Adverts Functions .................................................................................................................................. 124 
6.5.1 BleAdvSetCreate .............................................................................................................................................. 126 
6.5.2 BleAdvSetNewData .......................................................................................................................................... 127 
6.5.3 BleAdvSetStart ................................................................................................................................................. 128 
6.5.4 BleAdvSetStop ................................................................................................................................................. 128 
6.5.5 BleScanStartEx ................................................................................................................................................ 129 
6.5.6 BleExtRptMetadata........................................................................................................................................... 130 
6.5.7 BleConnectExtended ........................................................................................................................................ 131 
6.5.8 BleExtAdvRptAppendAD .................................................................................................................................. 131 
6.5.9 BleExtAdvRptAddUuid16 .................................................................................................................................. 132 
6.5.10 BleExtAdvRptAddUuid128 ................................................................................................................................ 132 
6.5.11 BleExtAdvRptGetSpace ................................................................................................................................... 133 

6.6 Scanning Functions ................................................................................................................................................ 133 
6.6.1 BleScanStart .................................................................................................................................................... 134 
6.6.2 BleScanStartEx ................................................................................................................................................ 135 
6.6.3 BleScanAbort ................................................................................................................................................... 135 
6.6.4 BleScanStop ..................................................................................................................................................... 136 
6.6.5 BleScanFlush ................................................................................................................................................... 138 
6.6.6 BleScanConfig .................................................................................................................................................. 139 
6.6.7 BleScanGetAdvReport ..................................................................................................................................... 141 
6.6.8 BleScanGetAdvReportEx ................................................................................................................................. 143 



https://www.lairdconnect.com/ 7 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

6.6.9 BleGetADbyIndex ............................................................................................................................................. 144 
6.6.10 BleGetADbyTag ............................................................................................................................................... 146 
6.6.11 BleScanGetPagerAddr ..................................................................................................................................... 148 

6.7 Connection Functions ............................................................................................................................................. 149 
6.7.1 Events and Messages ...................................................................................................................................... 149 
6.7.2 BleConnect ....................................................................................................................................................... 149 
6.7.3 BleConnectExtended ........................................................................................................................................ 152 
6.7.4 BleConnectCancel ............................................................................................................................................ 152 
6.7.5 BleConnectConfig ............................................................................................................................................ 154 
6.7.6 BleDisconnect .................................................................................................................................................. 156 
6.7.7 BleSetCurConnParms ...................................................................................................................................... 157 
6.7.8 BleGetCurConnParms ...................................................................................................................................... 159 
6.7.9 BleConnMngrUpdCfg ....................................................................................................................................... 160 
6.7.10 BleGetConnHandleFromAddr ........................................................................................................................... 160 
6.7.11 BleGetAddrFromConnHandle ........................................................................................................................... 162 
6.7.12 BleConnRssiStart ............................................................................................................................................. 164 
6.7.13 BleConnRssiStop ............................................................................................................................................. 166 

6.8 Whitelist Management Functions ........................................................................................................................... 166 
6.8.1 BleWhitelistCreate ............................................................................................................................................ 166 
6.8.2 BleWhitelistDestroy .......................................................................................................................................... 171 
6.8.3 BleWhitelistClear .............................................................................................................................................. 172 
6.8.4 BleWhitelistSetFilter ......................................................................................................................................... 172 
6.8.5 BleWhitelistAddAddr ......................................................................................................................................... 172 
6.8.6 BleWhitelistAddIndex........................................................................................................................................ 173 
6.8.7 BleWhitelistInfo ................................................................................................................................................. 173 

6.9 GATT Server Functions .......................................................................................................................................... 174 
6.9.1 Events and Messages ...................................................................................................................................... 180 
6.9.2 BleGapSvcInit ................................................................................................................................................... 180 
6.9.3 BleGetDeviceName$ ........................................................................................................................................ 181 
6.9.4 BleSvcRegDevInfo ........................................................................................................................................... 182 
6.9.5 BleHandleUuid16 ............................................................................................................................................. 184 
6.9.6 BleHandleUuid128 ........................................................................................................................................... 185 
6.9.7 BleHandleUuidSibling ....................................................................................................................................... 186 
6.9.8 BleServiceNew ................................................................................................................................................. 187 
6.9.9 BleServiceCommit ............................................................................................................................................ 189 
6.9.10 BleSvcAddIncludeSvc ...................................................................................................................................... 189 
6.9.11 BleAttrMetadataEx............................................................................................................................................ 191 
6.9.12 BleCharNew ..................................................................................................................................................... 194 
6.9.13 BleCharDescUserDesc ..................................................................................................................................... 195 
6.9.14 BleCharDescPrstnFrmt ..................................................................................................................................... 196 
6.9.15 BleCharDescAdd .............................................................................................................................................. 199 
6.9.16 BleCharCommit ................................................................................................................................................ 200 
6.9.17 BleCharValueRead ........................................................................................................................................... 202 
6.9.18 BleCharValueWrite ........................................................................................................................................... 205 
6.9.19 BleCharValueWriteEx ....................................................................................................................................... 206 
6.9.20 BleCharValueNotify .......................................................................................................................................... 206 
6.9.21 BleCharValueIndicate ....................................................................................................................................... 208 
6.9.22 BleCharDescRead ............................................................................................................................................ 210 
6.9.23 BleAuthorizeChar ............................................................................................................................................. 213 
6.9.24 BleAuthorizeDesc ............................................................................................................................................. 213 
6.9.25 BleServiceChangedNtfy ................................................................................................................................... 214 

6.10 GATT Client Functions ........................................................................................................................................... 214 



https://www.lairdconnect.com/ 8 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

6.10.1 Events and Messages ...................................................................................................................................... 216 
6.10.2 BleGattcOpen ................................................................................................................................................... 221 
6.10.3 BleGattcClose .................................................................................................................................................. 222 
6.10.4 BleDiscServiceFirst / BleDiscServiceNext ........................................................................................................ 222 
6.10.5 BleDiscCharFirst / BleDiscCharNext ................................................................................................................ 226 
6.10.6 BleDiscDescFirst /BleDiscDescNext................................................................................................................. 230 
6.10.7 BleGattcFindChar ............................................................................................................................................. 235 
6.10.8 BleGattcFindDesc............................................................................................................................................. 239 
6.10.9 BleGattcRead/BleGattcReadData .................................................................................................................... 243 
6.10.10 BleGattcWrite ............................................................................................................................................... 247 
6.10.11 BleGattcWriteCmd ........................................................................................................................................ 250 
6.10.12 BleGattcWritePrepare ................................................................................................................................... 254 
6.10.13 BleGattcWriteExec ....................................................................................................................................... 254 
6.10.14 BleGattcNotifyRead ...................................................................................................................................... 254 

6.11 Attribute Encoding Functions ................................................................................................................................. 258 
6.11.1 BleEncode8 ...................................................................................................................................................... 258 
6.11.2 BleEncode16 .................................................................................................................................................... 259 
6.11.3 BleEncode24 .................................................................................................................................................... 260 
6.11.4 BleEncode32 .................................................................................................................................................... 261 
6.11.5 BleEncodeFLOAT ............................................................................................................................................ 262 
6.11.6 BleEncodeSFLOATEX ..................................................................................................................................... 263 
6.11.7 BleEncodeSFLOAT .......................................................................................................................................... 264 
6.11.8 BleEncodeTIMESTAMP ................................................................................................................................... 265 
6.11.9 BleEncodeSTRING........................................................................................................................................... 266 
6.11.10 BleEncodeBITS ............................................................................................................................................ 267 

6.12 Attribute Decoding Functions ................................................................................................................................. 267 
6.12.1 BleDecodeS8 ................................................................................................................................................... 268 
6.12.2 BleDecodeU8 ................................................................................................................................................... 269 
6.12.3 BleDecodeS16 ................................................................................................................................................. 270 
6.12.4 BleDecodeU16 ................................................................................................................................................. 271 
6.12.5 BleDecodeS24 ................................................................................................................................................. 272 
6.12.6 BleDecodeU24 ................................................................................................................................................. 274 
6.12.7 BleDecode32 .................................................................................................................................................... 275 
6.12.8 BleDecodeFLOAT ............................................................................................................................................ 277 
6.12.9 BleDecodeSFLOAT .......................................................................................................................................... 278 
6.12.10 BleDecodeTIMESTAMP ............................................................................................................................... 279 
6.12.11 BleDecodeSTRING ...................................................................................................................................... 280 
6.12.12 BleDecodeBITS ............................................................................................................................................ 282 

6.13 Bonding and Bonding Database Functions ............................................................................................................ 283 
6.13.1 Bonding Functions ............................................................................................................................................ 283 
6.13.2 Bonding Table Types: Rolling & Persist ........................................................................................................... 283 
6.13.3 Whisper Mode Pairing ...................................................................................................................................... 284 
6.13.4 BleBondingStats ............................................................................................................................................... 284 
6.13.5 BleBondingPersistKey ...................................................................................................................................... 285 
6.13.6 BleBondingIsTrusted ........................................................................................................................................ 286 
6.13.7 BleBondingEraseKey........................................................................................................................................ 287 
6.13.8 BleBondingEraseAll .......................................................................................................................................... 288 
6.13.9 BleBondMngrGetInfo ........................................................................................................................................ 288 

6.14 Security Manager Functions ................................................................................................................................... 289 
6.14.1 Events and Messages ...................................................................................................................................... 290 
6.14.2 BleSecMngrLescPairingPref ............................................................................................................................. 292 
6.14.3 BlePair .............................................................................................................................................................. 292 



https://www.lairdconnect.com/ 9 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

6.14.4 BleSecMngrIoCap ............................................................................................................................................ 296 
6.14.5 BleAcceptPairing .............................................................................................................................................. 296 
6.14.6 BlePairingStaticPasskey ................................................................................................................................... 297 
6.14.7 BleSecMngrPasskey ........................................................................................................................................ 297 
6.14.8 BleSecMngrLescKeypressEnable .................................................................................................................... 299 
6.14.9 BleSecMngrLescKeypressNotify ...................................................................................................................... 300 
6.14.10 BleSecMngrOOBPref ................................................................................................................................... 301 
6.14.11 BleSecMngrOOBKey (Legacy Pairing) ......................................................................................................... 302 
6.14.12 BleSecMngrLescOwnOobDataGet ............................................................................................................... 303 
6.14.13 BleSecMngrLescPeerOobDataSet ............................................................................................................... 304 
6.14.14 BleSecMngrKeySizes ................................................................................................................................... 306 
6.14.15 BleSecMngrBondReq ................................................................................................................................... 307 
6.14.16 BleEncryptConnection .................................................................................................................................. 307 

6.15 Virtual Serial Port Service – Managed .................................................................................................................... 309 
6.15.1 VSP Configuration ............................................................................................................................................ 311 
6.15.2 Command and Bridge Mode Operation ............................................................................................................ 317 
6.15.3 VSP (Virtual Serial Port) Events ....................................................................................................................... 318 
6.15.4 BleVSpOpen ..................................................................................................................................................... 319 
6.15.5 BleVSpOpenEx ................................................................................................................................................ 321 
6.15.6 BleVSpClose .................................................................................................................................................... 322 
6.15.7 BleVSpInfo ....................................................................................................................................................... 324 
6.15.8 BleVSpWrite ..................................................................................................................................................... 325 
6.15.9 BleVSpRead ..................................................................................................................................................... 326 
6.15.10 BleVSpUartBridge ........................................................................................................................................ 329 
6.15.11 BleVSpFlush ................................................................................................................................................. 331 

6.16 Data Packet Length Extension ............................................................................................................................... 333 
6.16.1 Overview .......................................................................................................................................................... 333 
6.16.2 CFG Keys Configuration ................................................................................................................................... 334 
6.16.3 Events and Messages ...................................................................................................................................... 335 
6.16.4 BleGattcAttributeMtuRequest ........................................................................................................................... 335 
6.16.5 BleMaxPacketLengthSet .................................................................................................................................. 337 
6.16.6 BleMaxPacketLengthGet .................................................................................................................................. 337 

6.17 LE Ping ................................................................................................................................................................... 338 
6.17.1 Overview .......................................................................................................................................................... 338 
6.17.2 Events and Messages ...................................................................................................................................... 338 
6.17.3 BlePingAuthTimeout ......................................................................................................................................... 338 

6.18 LE 2M PHY and CODED PHY ............................................................................................................................... 340 
6.18.1 Events and Messages ...................................................................................................................................... 340 
6.18.2 BlePhySet ......................................................................................................................................................... 340 

7 Other Extension Built-in Routines .................................................................................................................................... 343 
7.1 Near Field Communications (NFC) ........................................................................................................................ 343 

7.1.1 Overview .......................................................................................................................................................... 343 
7.1.2 NDEF Messages .............................................................................................................................................. 344 
7.1.3 Arduino Based NFC Reader ............................................................................................................................. 344 
7.1.4 Sample Application 1 ........................................................................................................................................ 345 
7.1.5 Sample Application 2 ........................................................................................................................................ 348 
7.1.6 Wake-On-NFC .................................................................................................................................................. 351 
7.1.7 Events and Messages ...................................................................................................................................... 352 
7.1.8 NfcHardwareState ............................................................................................................................................ 352 
7.1.9 NfcOpen ........................................................................................................................................................... 353 
7.1.10 NfcClose ........................................................................................................................................................... 353 
7.1.11 NfcFieldSense .................................................................................................................................................. 354 



https://www.lairdconnect.com/ 10 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

7.1.12 NfcNdefMsgNew .............................................................................................................................................. 354 
7.1.13 NfcNdefMsgDelete ........................................................................................................................................... 355 
7.1.14 NfcNdefMsgGetInfo .......................................................................................................................................... 355 
7.1.15 NfcNdefMsgReset ............................................................................................................................................ 356 
7.1.16 NfcNdefRecAddLeOob ..................................................................................................................................... 357 
7.1.17 NfcNdefRecAddGeneric ................................................................................................................................... 358 
7.1.18 NfcNdefMsgCommit ......................................................................................................................................... 359 

7.2 System Configuration Routines .............................................................................................................................. 360 
7.2.1 SystemStateSet ................................................................................................................................................ 360 

7.3 Flash Routines ....................................................................................................................................................... 360 
7.3.1 Overview .......................................................................................................................................................... 360 
7.3.2 FlashOpen ........................................................................................................................................................ 361 
7.3.3 FlashRead ........................................................................................................................................................ 361 
7.3.4 FlashWrite ........................................................................................................................................................ 362 
7.3.5 FlashErase ....................................................................................................................................................... 363 
7.3.6 FlashClose ....................................................................................................................................................... 363 

7.4 Cryptographic Routines .......................................................................................................................................... 364 
7.4.1 EccGeneratePubPrvKeys ................................................................................................................................. 364 
7.4.2 EccCalcSharedSecret ...................................................................................................................................... 364 
7.4.3 EccHmacSha256 .............................................................................................................................................. 365 

7.5 Watchdog Timer ..................................................................................................................................................... 366 
7.5.1 WdtStart ........................................................................................................................................................... 367 
7.5.2 WdtReset .......................................................................................................................................................... 367 
7.5.3 WdtIsRunning ................................................................................................................................................... 368 

Miscellaneous Routines ....................................................................................................................................................... 369 
7.5.4 ReadPwrSupplyMv ........................................................................................................................................... 369 
7.5.5 SetPwrSupplyThreshMv ................................................................................................................................... 369 
7.5.6 CRC16Generate ............................................................................................................................................... 371 
7.5.7 CRC32Generate ............................................................................................................................................... 371 

8 Events and Messages ..................................................................................................................................................... 372 
9 Miscellaneous .................................................................................................................................................................. 374 

9.1 Bluetooth Result Codes .......................................................................................................................................... 374 
10 Acknowledgements ......................................................................................................................................................... 376 

10.1 AES Encryption ...................................................................................................................................................... 376 
10.1.1 License Terms .................................................................................................................................................. 376 
10.1.2 Disclaimer ......................................................................................................................................................... 376 

10.2 Micro-ECC .............................................................................................................................................................. 376 
10.2.1 License Terms .................................................................................................................................................. 376 
10.2.2 Disclaimer ......................................................................................................................................................... 376 

11 INDEX ............................................................................................................................................................................. 377 
 

 
 
 



https://www.lairdconnect.com/ 11 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 
This user guide provides detailed information on BL654- and BL654PA-specific smartBASIC extensions which provide a high-
level managed interface to the underlying Bluetooth stack in order to manage the following: 

▪ Perform GAP functionality such as scanning, advertising, and connections 

▪ Perform GATT server functionality 

▪ Perform GATT client functionality 

▪ Perform pairing, bonding, and security manager functions 

▪ Manage Tx power functionality 

▪ Attribute encoding and decoding 

▪ Perform NFC related functionality 

▪ Events related to the above 

 

The BL654PA is a physically longer variant of the BL654 to accommodate an external PA (power amplifier) and LNA (low 
noise amplifier) to increase the transmit power and link budget. The PA and LNA are controlled using two GPIO pins (SIO_34 
and SIO_36) which means those two pins are no longer available for use via smartBASIC. Any attempt to use them in a 
smartBASIC app results in failure. 

From a firmware perspective, the two variants are loaded with exactly the same firmware image at production. On the 
BL654PA hardware, a non-volatile memory location is updated with a signature which is used to alter the behavior. 

If the MCU is chip-erased and the firmware is reloaded, then the power amplifier will not be driven by the GPIO resulting in 
very low transmit power. 

To enable PA functionality in a BL654PA module, the command AT+PALNA must be entered so that the appropriate run-time 
signature exists for the firmware to operate correctly. 

The command AT I 2 returns BL654 or BL654PA so it is always possible to determine the variant type. Be aware that AT I 0 
always returns BL654. 

The BL654PA FW implements the following logic to pass FCC, IC, and other regulatory testing. 

PHY TX power 
High Bandwidth Setting 

(AT+CFG 214) 

Maximum Allowed Packet 

Length 

(AT+CFG 216) 

1 Mbps 18 dBm only 0 200 bytes 

2 Mbps 18 dBm only 0 200 bytes 

1 Mbps 18 dBm only 1 27 bytes 

2 Mbps 18 dBm only 1 27 bytes 

1 Mbps 14 dBm, 6 dBm, 0 dBm, -6 dBm, -26 dBm 1 251 bytes 

2 Mbps 14 dBm, 6 dBm, 0 dBm, -6 dBm, -26 dBm 1 251 bytes 

Whilst the coded PHY 125 kbps is set to maximum 14 dBm to pass FCC, IC TX Power Spectral Density.  

Coded PHY TX power 
High Bandwidth Setting 

(AT+CFG 214) 

Maximum Allowed Packet 

Length 

(AT+CFG 216) 

125 kbps 
14 dBm, 6 dBm, 0 dBm, -6 dBm, -26 

dBm 
1 251 bytes 



https://www.lairdconnect.com/ 12 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

In addition, the BleChannelMap is set for all 37 channels (cannot be reduced from this default). 

While operating a BL654PA as a peripheral device, the central device is able to change the channel map. As the BL654PA 
can not deny a channel map change, power will be limited to +14dBm to keep within regulatory requirements. 

 

Our smart BASIC-based BLE modules are designed to provide a complete wireless processing solution. Each contains the 
following: 

▪ A highly-integrated radio with an integrated antenna (external antenna options are also available) 

▪ BLE Physical and Link layer 

▪ Higher level stack 

▪ Multiple SIO and ADC 

▪ Wired communication interfaces such as UART, I2C, and SPI 

▪ A smart BASIC run-time engine 

▪ Program accessible flash memory – Contains a robust flash file system exposing a conventional file system and a 
database for storing user configuration data 

For simple end devices, these modules can replace an embedded processing system. 

The following block diagram (Figure 1) illustrates the structure of the BLE smartBASIC module from a hardware perspective on 
the left and a firmware/software perspective on the right. 

 

Figure 1: Bluetooth smartBASIC module block diagram 

 
There are many features of the module that cannot be modified programmatically which relate to interactive mode operation or 
alter the behaviour of the smartBASIC runtime engine. These configuration objects are stored in non-volatile flash and are 
retained until the flash file system is erased via AT&F* or AT&F 1. 

To write to these objects, which are identified by a positive integer number, the module must be in interactive mode and you 
must use the AT+CFG command. To read current values of these objects, use the AT+CFG command, described here. 

Predefined configuration objects are as listed under details of the AT+CFG command. 

 
This section provides instructions on how to get error code information using UwTerminalX. UwTerminalX is always 
maintained with the latest values.  

 

To look up specific error codes using the UwTerminalX Terminal tab, follow these steps: 



https://www.lairdconnect.com/ 13 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

1. From the Terminal tab of UwTerminalX, highlight the applicable error code. 

Note:  If the applicable error code is not displayed on the screen, manually type it out and then select it. 

2. Right-click and select Lookup Selected Error-Code. Note both the hex and decimal options (Figure 2). 

 
Figure 2: Lookup Selected Error-Code 

The resulting error code definition displays as shown in Figure 3. 

 

Figure 3: Error code definition 



https://www.lairdconnect.com/ 14 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

UwTerminalX provides an error coder viewer which enables you to search for and view specific error codes. 

To use this feature, follow these steps: 

1. From the Config tab, click Error Code Viewer (Figure 4). 

 

Figure 4: Error Code Viewer 

2. From the Error Code Lookup window, you can do one of the following three options: 

▪ Code Lookup Tab – Enter the hex-version of the error code (Figure 5). 

 

Figure 5: Code Lookup tab 



https://www.lairdconnect.com/ 15 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

▪ Full List – Select the applicable error code from  the full list of errors(). 

 

Figure 6: Full list of error codes 

▪ Search – Use the Search feature to locate the applicable error code (). 

 
Figure 7: Error code search 



https://www.lairdconnect.com/ 16 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

From the Update tab, you can check for error code updates as well as update to the latest error code database version  
(Figure 8). 

 
Figure 8: Error code updates 

 



https://www.lairdconnect.com/ 17 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 
Below are some BL654-specific AT commands. 

4.1.1  

COMMAND  

Provides compatibility with the AT command set of Laird’s standard Bluetooth modules. 

Note:  ATIX results in any integer values being displayed in hexadecimal. 

AT I num 

Returns \n10\tMM\tInformation\r 

\n00\r  

Where 

\n = linefeed character 0x0A  

\t = horizontal tab character 0x09  

MM = a number (see below)  

Information = string consisting of information requested associated with MM  

\r = carriage return character 0x0D 

Arguments 

num Integer Constant 

A number in the range of 0 to 65,535. Currently defined numbers are: 

0 Device Name 

1 BLE Stack Build Number 

2 Device Variant. For example, BL654 or BL654PA 

3 Version number of module firmware 

4 Bluetooth Address 

5 Chipset ID 

6 File System Flash Segment Statistics 

14 Static Random BLE address 

16 NvRecords Flash Segment Statistics 

24 If AT+MAC used to set IEEE address, then that mac address 

26 BLE Bonding database segment 

33 smartBASIC core version number 

36 Config Keys Flash Serment Statistics 

44 Current random BLE address 

2080 Module startup time 

2081 Get time in milliseconds since reset (overflows as 32-bit counter) 

2083 

Get High Voltage mode as follows: 

0: Normal mode 

1: High Voltage Mode 

7001 Toolchain used to build firmware 

0x8000+n Read the content of the FICR register whose address is 0x10000000+n 

0x9000+n Read the content of the UICR register whose address is 0x10001000+n 

0xC0FE Displays the licence 



https://www.lairdconnect.com/ 18 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

0xC12C CRC of most recent file downloaded since reset - volatile 
 

Interactive 

Command 
Yes 

 

This is an Interactive mode command and must be terminated by a carriage return for it to be processed. 

‘Example:  

 

AT i 3 

10  3  28.6.1.2 

00 

AT I 4 

10  4  01 D31A920731B0 

 

COMMAND 

AT+CFG is used to set a non-volatile configuration key. Configuration keys are comparable to S registers in modems. Their 
values are kept over a power cycle but are deleted if the AT&F* command is used to clear the file system. 

Unless otherwise stated, if a config key value is changed then a reset is required for it to take effect. 

The “num value” syntax is used to set a new value and the “num ?” syntax is used to query the current value. When the value 
is read the syntax of the response is: 

27   0xhhhhhhhh (dddd) 

…where 0xhhhhhhhh is an eight hexdigit number which is 0 padded at the left and dddd is the decimal signed value. 

AT+CFG num  value or AT+CFG num ? 

Returns If the config key is successfully updated or read, the response is \n00\r. 

Arguments: 

num 
Integer Constant 

The ID of the required configuration key. All of the configuration keys are stored as an array of 16-bit words.  

value 

Integer_constant 

This is the new value for the configuration key and the syntax allows decimal, octal, hexadecimal, or binary 

values. 

This is an Interactive mode command and must be terminated by a carriage return for it to be processed.  

The following Configuration Key IDs are defined. 

ID Definition 

40 Maximum size of local simple variables 

41 Maximum size of local complex variables 

42 Maximum depth of nested user-defined functions and subroutines 

43 The size of stack for storing user functions’ simple variables 

44 The size of stack for storing user functions’ complex variables 

45 The size of the message argument queue length 

100 Enable/Disable Virtual Serial Port Service when in interactive mode. Valid values are: 

0x0000 Disable 

0x0001 Enable 

0x81nn Enable ONLY if Signal Pin nn on module is HIGH 

0xC1nn Enable ONLY if Signal Pin nn on module is LOW 



https://www.lairdconnect.com/ 19 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

ID Definition 

ELSE Disable 
 

101 In Virtual Serial Port Service, select either to use INDICATE or NOTIFY to send data to client. 

0 Prefer Notify 

ELSE Prefer Indicate 

This is a preference and the actual value is forced by the property of the TX characteristic of the service. 

102 Advert interval in milliseconds when advertising for connections in interactive mode and AT Parse mode.  

Valid values: 20 to 10240 milliseconds 

103 Advert timeout in milliseconds when advertising for connections in interactive mode and AT Parse mode.  

Valid values: 0 to 16383 seconds, where 0 means forever. 

104 Data transfer is managed in the Virtual Serial Port service manager.  

When sending data using NOTIFIES, the underlying stack uses transmission buffers of which there is a finite 

number. This specifies the number of transmissons to leave unused when sending a lot of data and allows other 

services to send notifies without having to wait for them. 

The total number of transmission buffers can be determined by calling SYSINFO(2014) or in interactive mode 

submitting the command ATi 2014 

105 When in interactive mode and connected for virtual serial port services, this is the minimum connection interval in 

milliseconds to be negotiated with the master.  

Valid values: 0 to 4000 ms.  

If a value of less than 8 is specified, then the minimum value of 7.5 is selected. 

106 When in interactive mode and connected for virtual serial port services, this is the maximum connection interval 

in milliseconds to be negotiated with the master.  

Valid values: 0 to 4000 ms. 

Note:  If a value of less the minimum specified in 105, then it is forced to the value in  

105 plus 2 milliseconds. 

107 When in interactive mode and connected for virtual serial port services, this is the connection supervision timeout 

in milliseconds to be negotiated with the master.  

Valid range: 0 to 32000.  

Note: If the value is less than the value in 106, then a value double the one in 106 is used. 

108 When in interactive mode and connected for virtual serial port services, this is the slave latency to be negotiated 

with the master. An adjusted value is used if this value times the value in 106 is greater than the supervision 

timeout in 107 

109 When in interactive mode and connected for virtual serial port services, this is the Tx power used for adverts and 

connections. The main reason for setting a low value is to ensure that in production, if smart BASIC applications 

are downloaded over the air, limited range allows many stations to be used to program devices. 

110 If Virtual Serial Port Service is enabled in interactive mode (see 100), this specifies the size of the transmit ring 

buffer in the managed layer sitting above the service characteristic FIFO register.  

Valid range: 32 to 256 

111 If Virtual Serial Port Service is enabled in interactive mode (see 100), this specifies the size of the receive ring 

buffer in the managed layer sitting above the service characteristic fifo register.  

Valid range: 32 to 256 

112 If set to 1, then the service UUID for the virtual serial port is as per Nordic’s implementation and any other value 

is per Laird’s modified service. 

See more details of the service definition here. 

VSP can also be configured using a $autorun$ application which does not have a waitevent statement so will exit 

as soon as the VSP is configured. 



https://www.lairdconnect.com/ 20 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

ID Definition 

113 This is the advert interval in milliseconds when advertising for connections in interactive mode and UART bridge 

mode.  

VSP can also be configured using a $autorun$ application which does not have a waitevent statement so will exit 

as soon as the VSP is configured. 

Valid values: 0 to 16383 seconds, where 0 means forever. 

114 This is the advert timeout in milliseconds when advertising for connections in interactive mode and UART bridge 

mode.  

VSP can also be configured using a $autorun$ application which does not have a waitevent statement so will exit 

as soon as the VSP is configured. 

Valid values: 0 to 16383 seconds. 0 disables the timer (makes it continuous) 

115 This is used to specify the UART baudrate when Virtual Serial Mode Service is active and UART bridge mode is 

enabled.  

VSP can also be configured using a $autorun$ application which does not have a waitevent statement so will exit 

as soon as the VSP is configured. 

Valid values: 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 76800, 115200, 230400, 

250000, 460800, 921600, 1000000. 

Note: If an invalid value is entered, then the default value of 9600 is used. 

116 In VSP/UART bridge mode, this value specifies the latency in milliseconds for data arriving via the UART and 

transfering to VSP and then onward on-air. This mechanism ensures that the underlying bridging algorithm waits 

for up to this amount of time before deciding that no more data is going to arrive to fill a BLE packet and so 

flushes the data onwards. 

Note: Given that the largest packet size takes 20 bytes, if more than 20 bytes arrive then the latency timer is 

overridden and the data is immediately sent. 

120 Check if implemented on this platform and if implemented:- 

This contains a bitmask. Bits 0 to 7 specify a gpio number in the range 0 to 255 and Bit 8 signifies the assert 

level for Autorun app to be launched on startup. 

For example, if you want sio pin number 40, when high, to allow $autorun$ app to be launched on startup, then 

set the value of this config key to 0x128. 

200 Maximum number of 128-bit, Vendor Specific UUID bases to allocate 

204 Gatt Table : Attribute table size in bytes. The size must be a multiple of 4 

205 Max number of connections acting as a peripheral (Can be up to 1) 

206 Max number of connections acting as a central (Can be up to 16) 

Note:  In order to configure the device to be able to have eight connections as central, CFG 205 should be set 

to 0, otherwise the device auto-adjusts to have seven connections as central and one as peripheral. 

207 Max number of SMP instances for all connections acting as a central. We recommend that this is left to 1 as the 

stack reserves memory for its use which is only used occasionally 

208 Include the Service Changed characteristic in the Attribute Table (default is included) 

209 Security manager is placed in debug mode to use the SIG defined debug key for LE Secure Connections pairing 

210 Low Frequency Clock Configuration 

The BL654 module does not have an onboard 32.768Khz low frequency crystal and that clock is derived from an 

RC oscillator which is calibrated against the high frequency 32MHz crystal on a periodic basis. However, the user 

has access to the relevant pins (SIO0 and SIO1) to fit the 32K crystal externally. 

This register is used to configure the LF clock source to be either one or the other or even for autodetection. 



https://www.lairdconnect.com/ 21 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

ID Definition 

Note:  Autodetection means there is a startup delay from reset of up to half a second as opposed to about 1 to 

2 milliseconds. This should be factored into any battery life calculations. 

This configuration register is a bitmask consisting of : 

~~~ ~~~  ~~~  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Bits    Len  Description 

~~~ ~~~  ~~~  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

0..7     (8)    Calibration Time Interval in 1/4 second units 

8..15    (8)    How often (in number of calibration intervals) the RC oscillator shall be calibrated 

                   if the temperature hasn't changed. 

16..26  (10)   Crystal accuracy in ppm (0..1024ppm) 

27..29  (3)    Reserved for future use (set to 0) 

30..31  (2)    LF Clock Source : 00 - Autodetect 

                                   01 - RC Oscillator with Calibration against HF Clock 

                                   10 - Crystal  

                                   11 - Synthesized from HF Clock (Very power inefficient) 

Note: If bits 30-31 is 10 then bits 0-15 are ignored; likewise, if 30-31 is 01 then bits 16..26 are ignored. 

The command AT I 2082 or from an application SYSINFO(2082) returns the actual parameters installed at the 

instance. For example, if autodection is specified (bits 31..31 == 00) then the value returned is either 01, 10, or 

11. And similarly for the other parameters, if invalid values where entered. 

211 Maximum ATT_MTU size. Possible values are 23 – 247 Bytes. 

212 Maximum Attribute data length. Possible values are 20 – 244 Bytes. 

213 Use EVCHARVALUE and EVATTRNOTIFYEX instead of the default EVCHARVAL and EVATTRNOTIFY 

respectively. These former events include all parameters in the event, including the string data, and therefore 

provide improved throughputs. For more information, see EVCHARVALUE and EVATTRNOTIFYEX. 

214 0 – Medium bandwidth (three packets per connection interval) is used on all connections. 

1 – High bandwidth (six packets per connection interval) is used on the FIRST connection. Other connections 

have medium bandwidth. 

Note:  When high bandwidth is used, the maximum number of connections that a device can have are reduced 

from eight to six. 

216 Maximum packet length a module can use (this is not the same as the current packet length). Possible values 

are 27-251. By default this is set to 251. 

518 The default UART TX ring buffer length. 

519 The default UART RX ring buffer length. 

520 The baudrate to use for command mode on power up. This setting is inherited by the $autorun$ application if a 

print happens before an explicit uartopen inside that application. 

Note:   These values revert to factory default values if the flash file system is deleted using the  

AT & F * interactive command. 



https://www.lairdconnect.com/ 22 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

COMMAND 

AT+CFGEX is used to set a non-volatile string configuration key. Configuration keys are comparable to S registers in modems. 
Their values are kept over a power cycle but are deleted if the AT&F* command is used to clear the file system. 

Unless otherwise stated, if a config key value is changed, a reset is required for it to take effect. 

The num value syntax is used to set a new value and the num ? syntax is used to query the current value. When the value is 
read, the syntax of the response is: 

27   string 

…where string is the current value of the configuration key. 

AT+CFGEX num  value or AT+CFGEX num ? 

Returns If the config key is successfully updated or read, the response is \n00\r. 

Arguments: 

num 
Integer Constant 

The ID of the required configuration key. All of the configuration keys are stored as an array of 16-bit words.  

value 
String_constant 

This is the new string value for the configuration key. 

This is an Interactive mode command and must be terminated by a carriage return for it to be processed.  

The following Configuration Key IDs are defined. 

ID Definition 

117 VSP advertisement name, the name of the device which will be seen by scanning devices when the module is in 

VSP mode (can be between 1-31 bytes in length). 

Default value is: LAIRD BL654 

Note:   These values revert to factory default values if the flash file system is deleted using the AT & F * interactive 

command. 

 

COMMAND 

Deletes the bonded device database from the flash. 

AT+BTD* 

Returns \n00\r  

Arguments  None 

This is an Interactive Mode command and must be terminated by a carriage return for it to be processed.  

Note:  The module self-reboots so that the bonding manager context is also reset. 

Example: 

AT+BTD* 



https://www.lairdconnect.com/ 23 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

COMMAND 

This is a command that is successful one time as it writes an IEEE MAC address to non-volatile memory. This 

address is then used instead of the random static MAC address that comes preprogrammed in the module.  

Notes:   If the module has an invalid licence, then this address is not visible. 

If the address 000000000000 is written then it is treated as invalid and prevents a new 

address from being entered.  

 

AT  + MAC “12 hex digits” 

Returns \n00\r   

or 

\n01 192A\r 

Where the error code 192A is NVO_NVWORM_EXISTS. This means that an IEEE MAC 

address already exists; this can be read using the command AT I 24 

Arguments A string delimited by “” which shall be a valid 12 hex digit MAC address that is 

written to non-volatile memory. 
 

This is an interactive mode command and MUST be terminated by a carriage return for it to be processed.  

Note: The module self-reboots if the write is successful. Subsequent invocations of this command 

generate an error. 

Interactive Command:  YES 

 

‘Examples:   

 

AT+MAC “008098010203” 

 

 

COMMAND 

This command is used to stop all radio activity (adverts or connections) when in interactive mode. It is particularly useful when 
the virtual serial port is enabled while in interactive mode. 

AT+BLX 

Returns \n00\r  

Arguments: None 

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be processed. 

Example 

AT+BLX 



https://www.lairdconnect.com/ 24 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

COMMAND 

AT&F provides facilities for erasing various portions of the module’s non-volatile memory.  

AT&F integermask  

Returns OK if flash is successfully erased 

Arguments 

Integermask Integer corresponding to a bit mask or the * character 

The mask is an additive integer mask with the following acceptable values: 

0x0000xxxx Also see core user guide 

1 Erases flash file system 

0x100 Erase the system config keys’ flash segment (AT+CFG) 

0x10000 Erase the BLE bonding manager 

0x10 or 0x40000 Erase the NvRecords flash segment 

* Erases all data segments 

Else Not applicable to current modules 

If an asterisk is used in place of a number, then the module is configured back to the factory default state by erasing all flash 
file segments. 

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be processed.  

AT&F 1 ‘delete the file system 

AT&F 16 ‘delete the user config keys 

AT&F * ‘delete all data segments 

 

COMMAND 

This command is used to enable readback protection of the flash. For this command to be issued correctly, the readback 
protection flag should first be enabled using AT+PROTECT “E” followed by setting the protection using AT+PROTECT “S”. 

WARNING:  Enabling readback protection is a one time only command. Exiting this mode completely erases the firmware 

and requires the use of an nrfjprog command to be issued through the JTAG interface. Once erased, a new 

license for the module is needed. While this mode is enabled, firmware upgrade can only be carried out over 

UART. Do not enable readback protection unless absolutely necessary. 

Note:  To make note of the license, keep a copy of the response to the command AT I 14 and  AT I 0xC0FE. 



https://www.lairdconnect.com/ 25 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

AT+PROTECT “Char” 

Returns 00 for successful execution. 

Arguments: 

“Char” 

A character which could be one of the following values: 

E – Enable the readback protection flag. 

D – Disable the readback protection flag. 

S – Set readback protection on the module. This is an irreversible command.  

This is an Interactive mode command and must be terminated by a carriage return for it to be processed.  

 

COMMAND 

This command is used to enable external circuitry to be supplied from the VDD pin and set the external output/supply voltage 
value. This command can only be performed once and the module must be reset (using SIO_18, ATZ, reset(0), or UART 
BREAK) for the new value to take effect. If the value must be overwritten then a full flash erase and firmware reprogram is 
required. This can be done by following the Upgrading BL654 Firmware via JTAG or Upgrading BL654 Firmware via UART 
application notes. 

AT+REGOUT0 nValue 

Returns 00 for successful execution. 

Arguments: 

nValue 

0: 1.8v 

1: 2.1v 

2: 2.4v 

3: 2.7v 

4: 3.0v 

5: 3.3v 

This is an Interactive mode command and must be terminated by a carriage return for it to be processed.  

 
Core language built-in routines are present in every implementation of smartBASIC. These routines provide the basic 
programming functionality. They are augmented with target-specific routines for different platforms which are described in the 
extension manual for each target platform. 

All the core functionality is described in the Laird smartBASIC Core Functionality Guide. This document is available from the 

BL654 product page on the Laird website. Additional information is also available from our Laird Embedded Wireless Solutions 
Support Center at http://ews-support.lairdtech.com. 

Some functions have small behavioral differences from the core functionality. These are listed in the sections below. 

 

 

FUNCTION 

Returns an informational integer value depending on the value of varId argument. 

SYSINFO (varId) 

Returns INTEGER. Value of information corresponding to integer ID requested. 

http://www.lairdtech.com/products/bl654-ble-thread-nfc-modules
http://ews-support.lairdtech.com/


https://www.lairdconnect.com/ 26 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

Exceptions 
▪ Local Stack Frame Underflow 

▪ Local Stack Frame Overflow 

Arguments:  

varId 

byVal varId AS INTEGER  

An integer ID which is used to determine which information is to be returned as described below. 

0 Device ID. Each platform type has a unique identifier. 

3 

Module firmware version number 

Example: 

W.X.Y.Z is returned as a 32-bit value made up as follows: 

(W<<24) + (X<<18) + (Y<<6) + (Z)  

where W is the platform and will always be 29 for the BL654 and X is changed whenever 3rd 

party libraries are changed. In this case the Nordic Softdevice and Y is the build number and Z 

is the sub-build number. 

Note you can check the Softdevice build number in command mode by submitting the 

command AT I 1  

33 

BASIC core version number 

Example: 

A.B is returned as a 32 bit value made up as follows: 

(A<<8) + (B) 

and note the string “A.B” is returned via command mode command AT I 33 

601 Flash File System: Data Segment: Total Space 

602 Flash File System: Data Segment: Free Space 

603 Flash File System: Data Segment: Deleted Space 

611 Flash File System: FAT Segment: Total Space 

612 Flash File System: FAT Segment: Free Space 

613 Flash File System: FAT Segment: Deleted Space 

631 NvRecord Memory Store Segment: Total Space 

632 NvRecord Memory Store Segment: Free Space 

633 NvRecord Memory Store Segment: Deleted Space 

1000 BASIC compiler HASH value as a 32 bit decimal value 

1001 How RAND() generates values: 0 for PRNG and 1 for hardware assist 

1002 Minimum baudrate 

1003 Maximum baudrate 

1004 Maximum STRING size 

1005 Is 1 for run-time only implementation, 3 for compiler included 

1010 Module Type 

2000 

Reset Reason 

▪ 8  : Self-Reset due to Flash Erase 
▪ 9 : ATZ 
▪ 10 : Self-Reset due to smart BASIC app invoking function RESET() 

2001 

Cause of last reset.  This is a bit mask where the bits are defined as follows: 

Bit 0: Reset from pin-reset 

Bit 1: Reset from watchdog 

Bit 2: Reset from soft reset 

Bit 3: Reset from CPU lockup 

Bit 16: Reset due to wake up from System OFF mode when wakeup is triggered from GPIO 

Bit 19: Reset due to wake up from System OFF mode by NFC field detect 

2002 Timer resolution in microseconds 

2003 Number of timers available in a smart BASIC Application 

2004 Tick timer resolution in microseconds 

2005 LMP Version number for BT 4.0 spec 

2006 LMP Sub Version number 



https://www.lairdconnect.com/ 27 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

2007 Chipset Company ID allocated by BT SIG 

2008 Returns the current TX power setting (see also 2018) 

2009 Number of devices in trusted device database 

2010 Number of devices in trusted device database with IRK 

2011 Number of devices in trusted device database with CSRK 

2012 Max number of devices that can be stored in trusted device database 

2013 Maximum length of a GATT Table attribute in this implementation 

2016 

Radio activity of the baseband and the BT allocation is as follows:- 

▪ 0 – advertising 
▪ 1 – connected as slave 
▪ 2 – Initiating a connection 
▪ 3 – scanning for adverts 
▪ 4 – connected as master 

2018 Returns the TX power while pairing in progress (see also 2008) 

2021 Stack tide mark in percent. Values near 100 are not good. 

2022 Stack size 

2023 Initial Heap size 

2024 The chipset temperature in tenth of a centigrade. For example,  23.4 is returned as 234 

2025 

Current used heap memory.  

Note:  This is the total of all used blocks. It is entirely possible to get a MALLOC_FAIL even 

though this indicates there is enough memory for your need because there may not 

be a block large enough to accommodate the request. 

Although smartBASIC does not directly expose malloc/free, they are used extensively in 

STRING variable operations. 

2026 Supply voltage in millivolts 

2040 Max number of devices that can be stored in trusted device database 

2041 Number of devices in trusted device database 

2042 Number of devices in the rolling device database 

2043 
Maximum number of devices that can be stored in the rolling device 

Database 

2044 Returns a 16 bit hash of the current state of the Gatt Table Schema 

2050 Will be 0 if NFC pins are disabled and 1 if enabled 

2051 Maximum number of NDEF messages that can be created simultaneously 

2052 Maximum size of an NDEF message in bytes 

2060 

Bootloader variant  

0: Legacy  

1: Secure Bootloader  

2080 The startup time from reset to just before the autorun application is launched in milliseconds 

2081 The current tick count in milliseconds 

2082 

This is a bitmask value 

The actual Low Frequency Clock configuration submitted to the softdevice. See AT+CFG 210 

description for details about the 4 bit fields in the 32 bits 

2083 

Get High Voltage Mode as follows:- 
0: Normal mode 

1: High Voltage Mode 

2100 Connect Scan Interval used when connecting, in milliseconds 

2101 Connect Scan Window used when connecting, in milliseconds 

2102 Connect Slave Latency default value in connection requests 

2105 Connect Multi-Link Connection Interval periodicity in milliseconds 

2150 Scan Interval used when scanning in milliseconds 

2151 Scan Window used when scanning in milliseconds 



https://www.lairdconnect.com/ 28 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

Example: 

// Example :: SysInfo.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 PRINT "\nSysInfo 601   = ";SYSINFO(601)    // Flash File System: Total Space (Data Segment) 

 PRINT "\nSysInfo 2102   = ";SYSINFO(2102)  // Default connect slave latency 

 PRINT "\nSysInfo 1002 = ";SYSINFO(1002)    // Minimum UART baud rate 

Expected Output: 

SysInfo 601   = 49152 

SysInfo 2102   = 0 

SysInfo 1002 = 1200 

 

FUNCTION 

Returns an informational string value depending on the value of varId argument. 

SYSINFO$ (varId) 

Returns STRING. Value of information corresponding to integer ID requested. 

Exceptions ▪ Local Stack Frame Underflow 

▪ Local Stack Frame Overflow 

Arguments:  

varId byVal varId AS INTEGER  

An integer ID which is used to determine which information is to be returned as described below. 

4 

The Bluetooth address of the module.  

It is seven bytes long. First byte is 00 for IEEE public address and 01 for random public address. 

Next six bytes are the address. 

14 

A random public address unique to this module. May be the same value as in 4 above unless an 

IEEE Bluetooth address is set.  

It is seven bytes long. First byte is 00 for IEEE public address and 01 for random public address. 

Next six bytes are the address. 
 

2152 Scan Type Active or Passive (0=Passive, 1=Active) 

2203 Advert Channel Mask  

0x8000 

– 

0x87FF 

Content of FICR register in the Nordic nrf52840 chipset. In the nrf52840 datasheet, in the 

FICR section, all the FICR registers are listed in a table with each register identified by an 

offset, so for example, to read the Code memory page size which is at offset 0x010, call 

SYSINFO(0x8010) or in interactive mode use AT I 0x8010. 

0x9000 

- 

0x9800 

Content of UICR register in the Nordic nrf52 chipset. In the nrf52840 datasheet, in the UICR 

section, all the UICR registers are listed in a table with each register identified by an offset, so 

for example, to read the NFC pins functionality which is at offset 0x20C, call 

SYSINFO(0x920C) or in interactive mode use AT I 0x920C. 
 



https://www.lairdconnect.com/ 29 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

Example: 

// Example :: SysInfo$.sb  

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 DIM s$ 

 s$= SYSINFO$(4) 

 PRINT "\nSysInfo$(4)   = ";STRHEXIZE$(s$)  // address of module 

 s$= SYSINFO$(14) 

 PRINT "\nSysInfo$(14)  = ";SYSINFO$(s$)  // public random address 

 s$= SYSINFO$(0) 

 PRINT "\nSysInfo$(0)   = ";SYSINFO$(s$)    

Expected Output: 

SysInfo$(4)   = 000016A4B75403 

SysInfo$(14)  = 01E2B56986B2E6 

SysInfo$(0)   =  



https://www.lairdconnect.com/ 30 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

 

FUNCTION 

This function is used to open the main default UART peripheral using the parameters specified.  

See core manual for further details. 

UARTOPEN (baudrate, txbuflen, rxbuflen, stOptions) 

stOption

s 

byVal stOptions AS STRING  

This string (can be a constant) MUST be a minimum five characters long where each character is used to 

specify further comms parameters as follows. 

Character Offset: 

0 
DTE/DCE role request: 

▪ T – DTE 
▪ C – DCE 

1 

Parity: 

▪ N – None 
▪ O – Odd  (Not Available) 
▪ E –  Even (Not Available) 

2 Databits: 8 

3 Stopbits: 1 

4 

Flow Control: 

▪ N – None 
▪ H – CTS/RTS hardware 
▪ X –  Xon/Xof (Not Available) 

5 SIO pin for RTS (\FF for default pin) 

6 SIO pin for TX (\FF for default pin) 

7 SIO pin for CTS (\FF for default pin) 

8 SIO pin for RX (\FF for default pin) 

9 

Behaviour when detected a UART_BREAK 

0=Enter Deep Sleep 

1=No Action 

2= Send EVUARTBREAK event to smartBASIC application 

10 
0 = The event EVUARTCTS is not sent to the smartBASIC application 

!0 = The event  EVUARTCTS is sent to the smartBASIC application 
 

 

The following baud rates are supported: 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 76800, 115200, 230400, 
250000, 460800, 921600 and 1000000 baud.  

 

The BL654 module does not offer the capability to control the RTS pin as the underlying hardware does not allow it. 

 

The BL654 module does not offer the capability to send a BREAK signal. 

 

This section describes all the events and routines used to interact with the Auxilliary UART peripheral available on the module. 
Depending on the platform, at a minimum, the UART consists of a transmit, a receive, a CTS (Clear To Send) and RTS (Ready 
to Send) line. The CTS and RTS lines are used for hardware handshaking to ensure that buffers do not overrun.  

If there is a need for the following low bandwidth status and control lines found on many peripherals, then the user is able to 
create those using the GPIO lines of the module and interface with those control/status lines using smartBASIC code. 



https://www.lairdconnect.com/ 31 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

Output DTR Data Terminal Ready 

Input DSR Data Set Ready 

Output/Input DCD Data Carrier Detect 

Output/Input RI Ring Indicate   

The lines DCD and RI are marked as Output or Input because it is possible, unlike a device like a PC where they are always 
inputs and modems where they are always outputs, to configure the pins to be either so that the device can adopt a DTE (Data 
Terminal Equipment) or DCE (Data Communications Equipment) role. 

Note: DCD and RI have to be BOTH outputs or BOTH inputs; one cannot be an output and the other an input. 

 

In addition to the routines for manipulating the Auxilliary UART interface, when data arrives via the receive line it is stored locally 
in an underlying ring buffer and then an event is generated.  

Similarly, when the transmit buffer is emptied, events are thrown from the underlying drivers so that user smartBASIC code in 
handlers can perform user defined actions.  

The following is a detailed list of all events generated by the UART subsystem which can be handled by user code. 

EVAUXRX 
This event is generated when one or more new characters have arrived and have been 

stored in the local ring buffer. 

EVAUXTXEMPTY 
This event is generated when the last character is transferred from the local transmit ring 

buffer to the hardware shift register. 

EVAUXCTS 
This event , when enabled, reports CTS changes. Use AuxInfo(7) to determine the 

current state of the CTS input line. See AuxInfo() for more details 

 

// Example :: EVAUXRX.sb 

 DIM rc 

 FUNCTION HndlrAuxRx() 

   PRINT "\nData has arrived\r" 

 ENDFUNC 1       //remain blocked in WAITEVENT 

 

 FUNCTION Btn0Pressed() 

 ENDFUNC 0 

     

 rc = GPIOBindEvent(0,16,1)   

 PRINT "\nPress Button 0 to exit this application \n" 

 

 ONEVENT EVAUXRX   CALL HndlrAuxRx                                                  

 ONEVENT EVGPIOCHAN0 CALL Btn0Pressed      

 

 WAITEVENT       //wait for rx, tx and modem status events 

 PRINT "Exiting..." 



https://www.lairdconnect.com/ 32 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

Expected Output:  

 

Note: If you type unknown commands, an E007 error displays in UwTerminal.  

// Example :: EVAUXTXEMPTY.sb  

 FUNCTION HndlrUartTxEty() 

   PRINT "\nTx buffer is empty" 

 ENDFUNC 0                                    

 

 ONEVENT EVAUXTXEMPTY CALL HndlrAuxTxEty 

 

 PRINT "\nSend this via uart" 

 

 WAITEVENT 

Expected Output: 

 

 

Note:  If communicating with a Mac OS X device, the baud rate cannot be set above 230400 due to Mac having no 

support for these baud rates. 

FUNCTION 

This function is used to open the Auxilliary UART peripheral using the parameters specified.  

If the UART is already open, then this function fails. To prevent this, call AuxClose() or AuxCloseEx() before calling this function. 

If this function is used to alter the communications parameters, like say the baudrate and the application exits to interactive 
mode, then those settings are inherited by the interactive mode parser. Hence this is the only way to alter the communications 
parameters for Interactive mode. 

While the Auxilliary UART is open, if a BREAK is sent to the module, then by default it forces the module into deep sleep mode 
as long as BREAK is asserted. As soon as BREAK is deasserted, the module wakes up through a reset as if it had been power 
cycled. See byte 9 of the stOptions parameter to change the behaviour. 

AUXOPEN (baudrate,txbuflen,rxbuflen,stOptions) 

 

Send this via uart 

Tx buffer is empty 



https://www.lairdconnect.com/ 33 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

Returns: 

INTEGER  Indicates success of command: 

0 Opened successfully 

0x5208 Invalid baudrate 

0x5209 Invalid parity 

0x520A Invalid databits 

0x520B Invalid stopbits 

0x520C Cannot be DTE (because DCD and RI cannot be inputs) 

0x520D Cannot be DCE (because DCD and RI cannot be outputs) 

0x520E Invalid flow control request 

0x520F Invalid DTE/DCE role request 

0x5210 Invalid length of stOptions parameter (must be five characters) 

0x5211 Invalid Tx buffer length 

0x5212 Invalid Rx buffer length 
 

Exceptions 
▪ Local Stack Frame Underflow 
▪ Local Stack Frame Overflow 

Arguments:  

baudrate 

byVal baudrate  AS INTEGER 

The baudrate for the UART. Note that, the higher the baudrate, the more power is drawn from the 

supply pins. 

AT I 1002 or SYSINFO(1002) returns the minimum valid baudrate 

AT I 1003 or SYSINFO(1003) returns the maximum valid baudrate 

txbuflen 

byVal  txbuflen AS INTEGER  

Set the transmit ring buffer size to this value. If set to 0 then a default value is used by the 

underlying driver 

Rxbuflen 

byVal  rxbuflen AS INTEGER  

Set the receive ring buffer size to this value. If set to 0 then a default value is used by the 

underlying driver 

stOptions 

byVal stOptions AS STRING  

This string (can be a constant) MUST be a minimum of five characters long where each character 

is used to specify further comms parameters as follows. 

Character Offset: 

0 
DTE/DCE role request: 

▪ T – DTE 
▪ C – DCE 

1 

Parity: 

▪ N – None 
▪ O – Odd 
▪ E –  Even 

2 Databits: 5, 6, 7, 8, or 9 

3 Stopbits: 1 or 2 

4 

Flow Control: 

▪ N – None 
▪ H – CTS/RTS hardware 
▪ X –  Xon/Xof (may not be available, see extension manual) 

5 SIO pin to use for RTS 

6 SIO pin to use for TX 



https://www.lairdconnect.com/ 34 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

7 SIO pin to use for CTS 

8 SIO pin to use for RX 

9 

Behaviour when detected a AUX_BREAK 

0=Enter Deep Sleep 

1=No Action 

2= Send EVAUXTBREAK event to smartBASIC application 

10 
0 = The event EVAUXCTS is not sent to the smartBASIC application 

!0 = The event  EVAUXCTS is sent to the smartBASIC application 
 

Interactive 

Command 
NO 

 

Note:  There are further restrictions on the options based on the hardware as for example a PC implementation cannot be 

configured as a DCE role. Likewise, many microcontroller UART peripherals are not capable of 5 bits per character 

– but a PC is. 

Note:  In DTE equipment DCD and RI are inputs, while in DCE they are outputs. 

 

FUNCTION 

This subroutine is used to close the auxilliary UART port which had been opened with AUXOPEN.  

When this subroutine is invoked, the receive and transmit buffers are both flushed.  If there is any data in either of these 
buffers when the UART is closed, it will be lost. This is because the execution of AUXCLOSE takes a very short amount of 
time, while the transfer of data from the buffers takes much longer. 

AUXCLOSE() 

Exceptions 
▪ Local Stack Frame Underflow 
▪ Local Stack Frame Overflow 

Arguments None 

 

FUNCTION  

This function is used to close the Auxilluary UART port which had been opened with AUXOPEN depending on the flag mask in 
the input parameter.  

Please see UartClose() for more details. 

AUXCLOSEEX(nFlags) 

Returns 

INTEGER   

An integer result code. The most typical value is 0x0000, which indicates a successful operation. 

If 0x5231 is returned it implies one of the buffers was not empty so not closed. 

Exceptions 
▪ Local Stack Frame Underflow 

▪ Local Stack Frame Overflow 

Arguments  

nFlags 

byVal nFlags  AS INTEGER 

If Bit 0 is set, then only close if both rx and tx buffers are empty. Setting this bit to 0 has the same 

effect as UartClose() routine. 

Bits 1 to 31 are for future use and must be set to 0. 



https://www.lairdconnect.com/ 35 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

FUNCTION 

This function is used to query information about the Auxilliary UART, such as buffer lengths, whether the port is already open 
or how many bytes are waiting in the receive buffer to be read. 

AUXINFO (infoId) 

Returns INTEGER  The value associated with the type of uart information requested 

Exceptions 
▪ Local Stack Frame Underflow 
▪ Local Stack Frame Overflow 

Arguments  

infold 

byVal infoId  AS INTEGER 

This specifies the type of UART information requested as follows if the UART is open: 

0 
1 – The port is open 

0 – The port is closed 

The following specify the type of uart information when the port is open: 

1 Receive ring buffer capacity 

2 Transmit ring buffer capacity 

3 Number of bytes waiting to be read from receive ring buffer 

4 Free space available in transmit ring buffer 

5 Number of bytes still waiting to be sent in transmit buffer 

6 Total number of bytes waiting in rx and tx buffer 

7 Get status of CTS input 

8 
Count of how many times CTS has changed. Value from 0 to 0xFFFF and the 

count wraps to 0 after 0xFFFF 
 

 
If the AUX interface is closed, 0 is always returned regardless of the value of infold. 

Note:  AUXINFO(0) always returns the open/close state of the AUX interface. 

 

 

FUNCTION 

This function is used to transmit a string of characters from the auxilliary uart interface 

AUXWRITE (strMsg) 

Returns 
INTEGER   

0 to N : Actual number of bytes successfully written to the local transmit ring buffer 

Exceptions 

▪ Local Stack Frame Underflow 
▪ Local Stack Frame Overflow 
▪ UART has not been opened using UARTOPEN (or auto-opened with PRINT statement) 

Arguments  

strMsg 

byRef strMsg  AS STRING 

The array of bytes to be sent. STRLEN(strMsg) bytes are written to the local transmit ring buffer. If 

STRLEN(strMsg) and the return value are not the same, this implies the transmit buffer did not 

have enough space to accommodate the data. If the return value does not match the length of the 

original string, then use STRSHIFTLEFT function to drop the data from the string, so that 

subsequent calls to this function only retries with data which was not placed in the output ring 

buffer. 



https://www.lairdconnect.com/ 36 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

Interactive 

Command 
NO 

Note:      strMsg cannot be a string constant (e.g. “the cat”); it must be a string variable. If you must use a const string, first 

save it to a temp string variable and then pass it to the function. 

 

FUNCTION 

This function is used to read the content of the receive buffer of the Auxilliary uart port and append it to the string variable 
supplied. 

AUXREAD(strMsg) 

Returns 

INTEGER  0 to N : The total length of the string variable – not just what got appended. This 

means the caller does not need to call strlen() function to determine how many bytes in the string 

that need to be processed. 

Exceptions 

▪ Local Stack Frame Underflow 

▪ Local Stack Frame Overflow 

▪ Uart has not been opened using UARTOPENxxx 

Arguments  

strMsg 
byRef strMsg  AS STRING 

The content of the receive buffer is appended to this string. 

Interactive 

Command 
NO 

Note:      strMsg cannot be a string constant (e.g. “the cat”); they must be a string variable. If you must use a const string, 

first save it to a temp string variable and then pass it to the function. 

 

FUNCTION 

This function is used to read the content of the receive buffer of the Auxilliary uart port and append it to the string variable 
supplied but it ensures that the string is not longer than nMaxLen. 

AUXREADN(strMsg, nMaxLen) 

Returns 

INTEGER  0 to N : The total length of the string variable – not just what got appended. This 

means the caller does not need to call strlen() function to determine how many bytes in the string 

that need to be processed. 

Exceptions 

▪ Local Stack Frame Underflow 

▪ Local Stack Frame Overflow 

▪ Uart has not been opened using UARTOPENxxx 

Arguments  

strMsg 
byRef strMsg  AS STRING 

The content of the receive buffer is appended to this string. 

nMaxLen 

byval nMaxLen  AS INTEGER 

The output string strMsg is never longer than this value unless on entry the string was already 

longer. If a value less than 1 is specified, it is  clipped to 1 and if > that 0xFFFF it is clipped to 

0xFFFF. 

Interactive 

Command 
NO 



https://www.lairdconnect.com/ 37 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

Note:      strMsg cannot be a string constant (e.g. “the cat”); they must be a string variable. If you must use a const string, 

first save it to a temp string variable and then pass it to the function. 

 

FUNCTION 

This function is used to read the content of the underlying receive ring buffer of the Auxilliary uart port and append it to the 
string variable supplied, up to and including the first instance of the specified matching characters (up to a sequence of 3 
characters) OR the end of the ring buffer. 

This function is very useful when interfacing with a peer which sends messages terminated by a constant character such as a 
carriage return (0x0D) or the dual character sequence (0x0D 0x0A). In that case, in the handler, if the return value is greater 
than 0, it implies a terminated message arrived and so can be processed further. 

AUXREADMATCH(strMsg , chr) 

Returns 

INTEGER  Indicates the presence of the match character in strMsg as follows: 

0 – Data may have been appended to the string, but no matching character. 

1 to N – The total length of the string variable  up to and including the match chr. 

Note:  When 0 is returned you can use STRLEN(strMsg) to determine the length of data stored 

in the string. On some platforms with low amount of RAM resources, the underlying code 

may decide to leave the data in the receive buffer rather than transfer it to the string. 

Exceptions 

▪ Local Stack Frame Underflow 
▪ Local Stack Frame Overflow 
▪ Uart has not been opened using UARTOPEN 

Arguments  

strMsg 

byRef strMsg  AS STRING 

The content of the receive buffer gets appended to this string up to and including the match 

character. 

Chrs 

byVal chrs  AS INTEGER 

The characters to match in the receive buffer; for example, the carriage returns character 0x0D, or 

0x0A0D. 

For 0x0A0D, it will mean the string <CR><LF> because an integer constant is specified in little 

endien format. 

The most significant byte MUST be 0x00 as it is taken as the NULL terminator for the string that is 

cast from this 4 byte integer value. 

Interactive 

Command 
NO 

Note:      strMsg cannot be a string constant (e.g. “the cat”); they must be a string variable. If you must use a const string, 

first save it to a temp string variable and then pass it to the function. 

 

SUBROUTINE 

This subroutine is used to flush either or both receive and transmit ring buffers of the Auxilliary uart port. 

This is useful when, for example, you have a character terminated messaging system and the peer sends a very long 
message and the input buffer fills up. In that case, there is no more space for an incoming termination character and the RTS 



https://www.lairdconnect.com/ 38 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

handshaking line would have been asserted so the message system stalls.  A flush of the receive buffer is the best approach 
to recover from that situation. 

Note:  Execution of AUXFLUSH is much quicker than the time taken to transmit data to/from the                                             

buffers 

AUXFLUSH(bitMask) 

Exceptions 

▪ Local Stack Frame Underflow 
▪ Local Stack Frame Overflow 
▪ Uart has not been opened using UARTOPEN 

Arguments  

bitMask 

byVal bitMask  AS INTEGER 

This bit mask is used to choose which ring buffer to flush. 

Bit Description 

0 Set to flush the Rx buffer 

1 Set to flush the Tx buffer 

  
 

Interactive 

Command 
NO 

 

FUNCTION 

This function is used to read the current state of the CTS status input line of the Auxilliary Uart port 

If the device does not expose a CTS input line, then this function returns a value that signifies an asserted line. 

AUXGETCTS() 

Returns 

INTEGER  Indicates the status of the CTS line: 

0  :  CTS line is NOT asserted 

1  :  CTS line is asserted 

Exceptions 

▪ Local Stack Frame Underflow 
▪ Local Stack Frame Overflow 
▪ Uart has not been opened using UARTOPEN 

Arguments None 

Interactive 

Command 
NO 

 

The BL654 module does not offer the capability to control the RTS pin as the underlying hardware does not allow it. 

 

The BL654 module does not offer the capability to send a BREAK signal from the Auxilliary uart port 



https://www.lairdconnect.com/ 39 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

The  BL654 can be only be configured as an I2C master if it is the only master on the bus and only 7-bit slave addressing is 
supported. Refer to the core user guide for API details. 

When the I2C interface is opened using I2cOpen() or I2cOpenEx(), it takes a frequency parameter for the clock 
line. Valid values are 100KHz, 250KHz and 400KHz. 

Note I2COpenEx() allows for SCL and SDA to be routed to other gpio pins. 

 

The BL654 module can be configured as both SPI master and SPI slave. The section below describes the SPI slave API. See 
core user guide for SPI master API. 

 

This section describes all the events and routines used to interact with the SPI Slave peripheral that is available on the module. 
For successful SPI operations, the remote SPI master’s CS, MISO, MOSI, and SCK should be connected directly to the module’s 
CS, MISO, MOSI and SCK pins (respectively). The module’s 4 SPI Slave pins can be configured using the SpiSlaveConfig() 
function, which by default are 11 (CS), 17 (MISO), 18 (MOSI), and 19 (SCK). Special purpose pins such as nAutorun (13) and 
nReset (22) cannot be configured for SPI Slave operations. 

On the BL654, the SPI Slave peripheral supports the following frequencies:- 125KHz, 250KHz, 500KHz, 1MHz, 2MHz, 4MHz, 
and 8MHz.  These frequencies are set by the SPI master and cannot be configured by the SPI Slave. 

 

 

This event is thrown when an SPI slave transaction has been completed and the SPI slave Tx/Rx buffers have been updated. 
The event comes with the following parameters: 

nTxAmount – The amount of data that was read (clocked out) by the remote SPI master. 

nRxAmount – The amount of data that was written by the remote SPI master into the SPI slave Rx buffer. 

 

This event is thrown when the SPI slave Rx buffer is full and as a result some data written by the remote SPI master might’ve 
been dropped. The event contains the following parameters:- 

nRxAmountDropped – The amount of data that was written from the remote SPI master but dropeed due to the buffer being 
full. 

 

This event is thrown when the SPI slave Tx buffer has been emptied due to an SPI master reading out the Tx data from the 
SPI slave Tx buffer. The handler for this event contains no parameters. 



https://www.lairdconnect.com/ 40 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

FUNCTION 

This function is used to update the configuration options of the SPI slave peripheral. If the SPI slave peripheral is already 
open, then these values will not take effect until the peripheral is closed and then opened again. 

SPISLAVECONFIG(nConfigId, nValue) 

Returns INTEGER, a result code.  

Typical value:  

0x0000 - The Tx buffer has been updated successfully 

0x5260 - Invalid configuration index 

Arguments:  

nConfigId byVal nConfigId AS INTEGER. 
The configuration ID, possible values are:- 

0 SPI Slave Chip Select (CS) pin – default 28 

1 SPI Slave Master In Slave Out (MISO) pin – default 29 

2 SPI Slave Master Out Slave In (MOSI) pin – default 30 

3 SPI Slave Clock (SCK) pin – default 31 

4 SPI Slave Tx buffer size in bytes – (Possible values: 16-255, default 255) 

5 SPI Slave Rx buffer size in bytes – (Possible values: 16-255, default 255) 

6 SPI Slave Mode:-  
Mode CPOL CPHA 

0 0 0 

1 0 1 

2 1 0 

3 1 1 

   
  

nValue byVal nValue AS INTEGER 
The value to be assigned to the configuration ID. 

Example: 

// Example :: SpiSlaveConfig.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

dim rc, nHandle 

 

// Configure SPI Slave peripheral Tx buffer before opening 

rc = SpiSlaveConfig(4, 100) 

if rc == 0 then 

    print "\nSPI slave tx buffer size configured" 

else 

    print "\nFailed to configure SPI slave tx buffer with error code ";integer.h' rc 

endif 

 

// Open SPI Slave Periperhal 

rc = SpiSlaveOpen(nHandle) 

if rc == 0 then 

    print "\nOpened SPI Slave peripheral with handle = ";integer.h' nHandle 

else 

    print "\nFailed to open SPI Slave peripheral" 

endif 

 

WaitEvent 

Expected Output: 

SPI slave tx buffer size configured 

Opened SPI Slave peripheral with handle = 9ABCDEF0 



https://www.lairdconnect.com/ 41 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

FUNCTION 

This function is used to open a slave SPI peripheral in half duplex mode using the preconfigured SPI Slave values. The 
parameters (GPIO pins, buffer sizes, mode, etc) are inherited from the SpiSlaveConfig() function. The default parameters on the 
BL654 are: 

SPI Slave CS Pin 28 

SPI Slave MOSI Pin 29 

SPI Slave MISO Pin 30 

SPI Slave SCK Pin 31 

SPI Slave Tx Buffer Size (in bytes) 255 

SPI Slave Rx Buffer Size (in bytes) 255 

SPI Slave Mode 0 (CPOL = 0, CPHL = 0) 

In order to change these parameters, the SPI slave peripheral should be closed before SpiSlaveConfig() is used. After all the 
parameters have been successfully configured, SpiSlaveOpen can be called again at which point the new values will take 
effect. 

SPISLAVEOPEN(nHandle) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments:  

nHandle byRef nHandle AS INTEGER. 

When calling this function, a variable should be given which on return will contain the handle of the opened 

SPI Slave peripheral if the function is successful. 

Example: 

// Example :: SpiSlaveOpen.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

dim rc, nHandle 

 

// Open SPI Slave Periperhal 

rc = SpiSlaveOpen(nHandle) 

if rc == 0 then 

    print "\nOpened SPI Slave peripheral with handle = ";integer.h' nHandle 

else 

    print "\nFailed to open SPI Slave peripheral" 

endif 

 

WaitEvent 

Expected Output: 

Opened SPI Slave peripheral with handle = 9ABCDEF0 

 

FUNCTION 

This function is used to close the spi slave peripheral with the given handle. 

SPISLAVECLOSE(nHandle) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments:  

nHandle byRef nHandle AS INTEGER. 
Handle of the SPI slave interface to close. On return, this will contain an invalid handle indicating that the 
SPI Slave peripheral has been successfully closed. 

Example: 



https://www.lairdconnect.com/ 42 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

// Example :: SpiSlaveClose.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

dim rc, nHandle 

 

// Open SPI Slave Periperhal 

rc = SpiSlaveOpen(nHandle) 

if rc == 0 then 

    print "\nOpened SPI Slave peripheral with handle = ";integer.h' nHandle 

     

    rc = SpiSlaveClose(nHandle) 

    if rc == 0 then 

        print "\nSPI Slave successfully closed" 

    endif 

endif 

 

WaitEvent 

Expected Output: 

Opened SPI Slave peripheral with handle = 9ABCDEF0 

SPI Slave successfully closed 

 

FUNCTION 

This function is used to write the content of a string to the SPI slave Tx buffer. This written data is only stored in the buffer 
and not sent to the SPI master until the SPI master selects the SPI slave chip and clock out the data from the buffer. 
When the SPI master selects the chip and clocks out the data, the buffer becomes unaccessible by the app until the SPI 
master operation is complete. 

SPISLAVETXBUFFERWRITE(nHandle, strWr$) 

Returns INTEGER, a result code.  

Typical value:  

0x0000 The Tx buffer has been updated successfully 

0x5206 Tx Buffer full 

0x521D Resource busy (e.g. the buffer is being accessed by the remote SPI master) 

0x5220 Invalid handle 

0x5222 Invalid wite length (e.g. the given string is larger than the Tx buffer size) 

Arguments:  

nHandle byVal nHandle AS INTEGER. 
Handle of the SPI slave interface to write to.  

strWr$ byRef strWr$ AS STRING 
Reference to a string variable to write to the SPI slave Tx buffer. 

Example: 

// Example :: SpiSlaveTxBufferWrite.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

dim rc, nHandle 

dim st$ : st$ = "SPI Slave Data" 

 

// Open SPI Slave Periperhal 

rc = SpiSlaveOpen(nHandle) 

if rc == 0 then 

    // Try writing data to the buffer 

    rc = SpiSlaveTxBufferWrite(nHandle, st$) 

    if rc == 0 then 

        print "\nSPI Slave buffer updated with written data" 

    else 



https://www.lairdconnect.com/ 43 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

        print "\nFailed to write SPI Slave data with error code ";integer.h' rc 

    endif 

endif 

 

WaitEvent 
  

Expected Output: 

SPI Slave buffer updated with written data 

 

FUNCTION 

This function is used to read the contents of the SPI slave Rx buffer. The data in the Rx buffer would have been placed by the 
remote SPI master in an earlier transaction. This Rx buffer can only be accessed if the SPI slave is not selected by the 
remote SPI master and there is no ongoing SPI operation. The data that is read is then removed from the buffer in order to 
make room for more SPI master write operations. 

If data is received from the remote SPI master and the Rx buffer is full, the event EVSPISLAVERXBUFFERFULL is thrown 
with the amount of data that was dropped. 

SPISLAVERXBUFFERREAD(nHandle, nLength, strRd$) 

Returns INTEGER, a result code.  

Typical value:  

0x0000 The Rx buffer has been read successfully 

0x5220 Invalid handle 

0x5223 Invalid read length (e.g. the given length is larger than the Rx buffer) 

Arguments:  

nHandle byRef nHandle AS INTEGER. 
Handle of the SPI slave interface to close. On return, this will contain an invalid handle indicating that the 
SPI Slave peripheral has been successfully closed. 

nLength byRef nLength AS INTEGER 
Number of bytes to read from the Rx buffer. On return, this value will contain the number of data bytes 
that was read. 

strRd$ ByRef strRd$ AS STRING 
On return, this variable will contain the string data that was read from the SPI slave Rx buffer. 



https://www.lairdconnect.com/ 44 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

Example: 

// Example :: SpiSlaveRxBufferRead.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

dim rc, nHandle, st$ 

dim nLen : nLen = 30 // Try to read 30 bytes of data 

 

// Open SPI Slave Peripheral 

rc = SpiSlaveOpen(nHandle) 

if rc == 0 then 

    // Try reading data from SPI slave buffer 

    rc = SpiSlaveRxBufferRead(nHandle, nLen, st$) 

    if rc == 0 then 

        if nLen > 0 then 

            print "\nSPI slave Data read: "; st$ 

        else 

            print "\nNo SPI slave data read" 

        endif 

    else 

        print "\nFailed to read SPI Slave data with error code ";integer.h' rc 

    endif 

endif 

 

WaitEvent 

 

Expected Output: 

No SPI slave data read 

 

The BL654 can interact with a QSPI memory to read/write data for data logging or other purposes. For successful QSPI 
operations, the remote QSPI memory’s CS, DIO0, DIO1, DIO2, DIO3 and SCK should be connected directly to the module’s 
CS, DIO0, DIO1, DIO2, DIO3 and SCK pins (respectively). The QSPI memory can operate in various modes including fast read, 
dual-read output, dual-read input/output, quad-read output, quad-read input/output, page program, dual page program output, 
quad page program output and quad page input/output and has has support for deep power-down mode and 24/32-bit 
addressing modes. 

 

 

This event is thrown when a QSPI full-chip erase operation has completed either successfully or unsuccessfully, note that this 
will only be called when a full-chip erase is used, a sector/page erase will not use this event. The event comes with the 
following parameters:- 

nHandle – The handle of the QSPI interface on which the erase was performed.  

nStatus – The status of the full-chip erase procedure in hex which can be: 

Status Functionality 

0x0000 Full-chip erase process completed successfully 

0x5270 Full-chip erase process failed. 

0x5271 Full-chip erased aborted by forced reset 

 

FUNCTION 



https://www.lairdconnect.com/ 45 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

This function is used to open the QSPI interface with the settings configured through the QSPIConfigSet function. 

QSPIOPEN(nHandle) 

Returns INTEGER, a result code.  

Typical value:  

0x0000 The QSPI interface has been successfully opened 

0x0211 Invalid configuration parameter 

0x5207 QSPI device already open 

0x521D Resource not available 

0x5225 Invalid frequency 

0x5266 QSPI device not detected 

0x5274 Invalid pin configuration 

Arguments:  

nHandle byRef nHandle AS INTEGER 
On return, this will contain a handle to the QSPI interface, if opened successfully. 

Example: 

// Example :: QSPI.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

dim rc 

dim qspihandle 

dim tmpval 

dim Manufacturer, MemoryType, MemoryDensity 

dim data$ 

 

sub AssertRC(rc, tag) 

  if rc!=0 then 

        print "Failed with ";integer.h' rc;" at tag ";tag;"\n" 

  endif 

endsub 

 

function QSPITest() 

    rc = QSPIConfigGet(6, tmpval) 

    AssertRC(rc, 0) 

    if (rc != 0) then 

        exitfunc 0 

    endif 

    print "Default drive strength is: ";tmpval;"\r\n" 

 

    rc = QSPIConfigSet(6, 1) 

    AssertRC(rc, 1) 

    if (rc != 0) then 

        exitfunc 0 

    endif 

    print "Changed drive strength to: 1\r\n" 

 

    rc = QSPIConfigGet(6, tmpval) 

    AssertRC(rc, 2) 

    if (rc != 0) then 

        exitfunc 0 

    endif 

    print "Drive strength is now: ";tmpval;"\r\n" 

 

    rc = QSPIOpen(qspihandle) 

    AssertRC(rc, 3) 

    if (rc != 0) then 

        exitfunc 0 



https://www.lairdconnect.com/ 46 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

    endif 

    print "Opened QSPI interface, handle: ";qspihandle;"\r\n" 

 

    rc = QSPIConfigSet(6, 0) 

    AssertRC(rc, 4) 

    if (rc != 0) then 

        exitfunc 0 

    endif 

    print "Changed volatile drive strength configuration to: 0\r\n" 

 

    rc = QSPIActiveConfigGet(qspihandle, 6, tmpval) 

    AssertRC(rc, 5) 

    if (rc != 0) then 

        exitfunc 0 

    endif 

    print "Drive strength on handle ";qspihandle;" is: ";tmpval;"\r\n" 

 

    rc = QSPISetPowerMode(qspihandle, 1) 

    AssertRC(rc, 6) 

    if (rc != 0) then 

        exitfunc 0 

    endif 

    print "Entered high performance mode\r\n" 

 

    rc = QSPIErase(qspihandle, 0, 0) 

    AssertRC(rc, 7) 

    if (rc != 0) then 

        exitfunc 0 

    endif 

    print "Erased 4KB sector at 0x0\r\n" 

 

    data$ = "test data ab" 

    rc = QSPIWrite(qspihandle, data$, 0x4) 

    AssertRC(rc, 8) 

    if (rc != 0) then 

        exitfunc 0 

    endif 

    print "Wrote '";data$;"' to 0x4\r\n" 

 

    data$ = "" 

    rc = QSPIRead(qspihandle, data$, 0x4, 12) 

    AssertRC(rc, 9) 

    if (rc != 0) then 

        exitfunc 0 

    endif 

    print "Read '";data$;"' from 0x4\r\n" 

 

    rc = QSPIInfo(qspihandle, Manufacturer, MemoryType, MemoryDensity) 

    AssertRC(rc, 7) 

    if (rc != 0) then 

        exitfunc 0 

    endif 

    print "QSPI memory manufacturer ID: ";Manufacturer;", memory type: ";MemoryType;", 

density: ";MemoryDensity;"\r\n" 

 

    rc = QSPIMemorySize(qspihandle, 6, tmpval) 

    AssertRC(rc, 7) 

    if (rc != 0) then 

        exitfunc 0 

    endif 

    print "QSPI memory size: ";tmpval;"KB\r\n" 

 



https://www.lairdconnect.com/ 47 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

    rc = QSPIDPMSet(qspihandle, 1) 

    AssertRC(rc, 7) 

    if (rc != 0) then 

        exitfunc 0 

    endif 

    print "Entered DPM\r\n" 

 

    tmpval = QSPIIsDPM(qspihandle) 

    print "DPM mode: ";tmpval;"\r\n" 

 

    tmpval = QSPIIsBusy(qspihandle) 

    print "Busy (with erase): ";tmpval;"\r\n" 

 

    rc = QSPIDPMSet(qspihandle, 0) 

    AssertRC(rc, 7) 

    if (rc != 0) then 

        exitfunc 0 

    endif 

    print "Exited DPM\r\n" 

 

    tmpval = QSPIIsDPM(qspihandle) 

    print "DPM mode: ";tmpval;"\r\n" 

 

    rc = QSPIReset(qspihandle, 0, 1) 

    AssertRC(rc, 7) 

    if (rc != 0) then 

        exitfunc 0 

    endif 

    print "Reset QSPI chip keeping configuration\r\n" 

 

    rc = QSPIClose(qspihandle) 

    AssertRC(rc, 3) 

    if (rc != 0) then 

        exitfunc 0 

    endif 

    print "QSPI handle ";qspihandle;" closed.\r\n" 

endfunc 1 

 

print "QSPI example, ensure SB4, SB5, SB6, SB7, SB10 and SB11 are soldered before 

running.\r\n\r\n" 

rc = QSPITest() 

 

Expected Output: 

QSPI example, ensure SB4, SB5, SB6, SB7, SB10 and SB11 are soldered before running. 

 

Default drive strength is: 0 

Changed drive strength to: 1 

Drive strength is now: 1 

Opened QSPI interface, handle: -1698897952 

Changed volatile drive strength configuration to: 0 

Drive strength on handle -1698897952 is: 1 

Entered high performance mode 

Erased 4KB sector at 0x0 

Wrote 'test data ab' to 0x4 

Read 'test data ab' from 0x4 

QSPI memory manufacturer ID: 194, memory type: 40, density: 19 

QSPI memory size: 512KB 

Entered DPM 

DPM mode: 1 

Busy (with erase): 0 

Exited DPM 



https://www.lairdconnect.com/ 48 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

DPM mode: 0 

Reset QSPI chip keeping configuration 

QSPI handle -1698897952 closed. 

 

FUNCTION 

This function is used to close a previously opened QSPI interface and free the pins for other functionality. Note that if the QSPI 
memory is busy with a full-chip erase then closing the interface will fail, use the QSPIReset function to reset the memory whilst 
a full-chip erase is active to allow closing it. 

QSPICLOSE(nHandle) 

Returns INTEGER, a result code.  

Typical value:  

0x0000 The QSPI interface has been successfully closed 

0x5201 QSPI not open 

0x5220 Invalid handle 

0x526C QSPI busy with full-chip erase 

Arguments:  

nHandle byVal nHandle AS INTEGER 
Handle of the QSPI interface to close. On return, this will contain an invalid handle indicating that the 
QSPI peripheral has been successfully closed. 

 

FUNCTION 

This function is used to set the configuration options before opening the QSPI interface. Note that changing these configuration 
options after opening the QSPI interface will have no effect. 

QSPICONFIGSET(nIndex, nValue) 

Returns INTEGER, a result code.  

Typical value:  

0x0000 The volatile configuration option has been updated successfully 

0x0209 Invalid configuration index 

0x0211 Invalid configuration parameter 

0x5227 Pin configuration cannot be changed 

Arguments:  

nIndex byVal nIndex AS INTEGER 
Index of the configuration which is as follows: 

6 Drive strength (0 = standard, 1 = high) 

7 Frequency in Hz (2M, 3.2M, 4M, 6.4M, 8M, 16M or 32M) 

8 QSPI clock mode (0 = clock starts with level 0, 3 = clock starts with level 1) 

9 

QSPI read mode (0 = Single data line (FAST_READ, op-code 0x0b), 1 = Dual data line 

(READ2O, op-code 0x3B), 2 = Dual data line (READ2IO, op-code 0xBB), 3 = Quad data line 

(READ4O, op-code 0x6B), 4 = Quad data line (READ4IO, op-code 0xEB)) 

10 
QSPI write mode (1 = Dual data line (PP2O, op-code 0xA2), 2 = Quad data line (PP4O, op-

code 0x32), 3 = Quad data line (PP4IO, op-code 0x38)) 

11 RX delay (in 15.625ns periods) 

12 Clock delay (in 62.5ns periods) 



https://www.lairdconnect.com/ 49 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

13 
Force-enable QSPI mode on open (0 = do not change QSPI mode, 1 = enable QSPI enable bit 

when interface is opened) 

14 
Power mode on open (0 = do not change power mode, 1 = set to ultra-low power mode when 

interface is opened, 2 = set to high performance mode when interface is opened) 

15 
Dummy cycles on open (0 = do not change dummy cycles, 1 = set to 0 when interface is 

opened, 2 = set to 1 when interface is opened) 

16 Page size (256 bytes or 512 bytes) 

17 Enable DPM (0 = DPM functionality disabled, 1 = DPM functionality enabled) 

18 DPM enter duration (in 16us periods) 

19 DPM exit duration (in 16us periods) 

20 Address type (24-bit or 32-bit) 

21 32-bit address op-code 

22 32-bit address byte 0 

23 32-bit address byte 1 

24 
Extended address mode (0 = do not send any instruction, 1 = send op-code, 2 = send op-code 

and byte 0, 3 = send op-code and byte 0 and byte 1) 

25 Extended address WIP wait (0 = do not wait for write, 1 = wait for write complete) 

26 Extended address write enable (0 = do not enable writing, 1 = enable writing) 

27 XIP offset 
 

nValue byVal nValue AS INTEGER 
Value to set. 

See example for QSPIOpen. 



https://www.lairdconnect.com/ 50 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

FUNCTION 

This function is used to query the volatile configuration options of the QSPI interface, note that this will not get the configuration 
options of an opened interface, to query that use the QSPIActiveConfigGet function. 

QSPICONFIGGET(nIndex, nValue) 

Returns INTEGER, a result code.  

Typical value:  

0x0000 Configuration returned successfully 

0x0213 Invalid index 

Arguments:  

nIndex byVal nIndex AS INTEGER 
Index of the configuration which is as follows: 

6 Drive strength (0 = standard, 1 = high) 

7 Frequency in Hz (2M, 3.2M, 4M, 6.4M, 8M, 16M or 32M) 

8 QSPI clock mode (0 = clock starts with level 0, 3 = clock starts with level 1) 

9 

QSPI read mode (0 = Single data line (FAST_READ, op-code 0x0b), 1 = Dual data line 

(READ2O, op-code 0x3B), 2 = Dual data line (READ2IO, op-code 0xBB), 3 = Quad data line 

(READ4O, op-code 0x6B), 4 = Quad data line (READ4IO, op-code 0xEB)) 

10 
QSPI write mode (1 = Dual data line (PP2O, op-code 0xA2), 2 = Quad data line (PP4O, op-

code 0x32), 3 = Quad data line (PP4IO, op-code 0x38)) 

11 RX delay (in 15.625ns periods) 

12 Clock delay (in 62.5ns periods) 

13 
Force-enable QSPI mode on open (0 = do not change QSPI mode, 1 = enable QSPI enable bit 

when interface is opened) 

14 
Power mode on open (0 = do not change power mode, 1 = set to ultra-low power mode when 

interface is opened, 2 = set to high performance mode when interface is opened) 

15 
Dummy cycles on open (0 = do not change dummy cycles, 1 = set to 0 when interface is 

opened, 2 = set to 1 when interface is opened) 

16 Page size (256 bytes or 512 bytes) 

17 Enable DPM (0 = DPM functionality disabled, 1 = DPM functionality enabled) 

18 DPM enter duration (in 16us periods) 

19 DPM exit duration (in 16us periods) 

20 Address type (24-bit or 32-bit) 

21 32-bit address op-code 

22 32-bit address byte 0 

23 32-bit address byte 1 

24 
Extended address mode (0 = do not send any instruction, 1 = send op-code, 2 = send op-code 

and byte 0, 3 = send op-code and byte 0 and byte 1) 

25 Extended address WIP wait (0 = do not wait for write, 1 = wait for write complete) 

26 Extended address write enable (0 = do not enable writing, 1 = enable writing) 

27 XIP offset 
 

nValue byRef nValue AS INTEGER 

On return, this variable will contain the volatile configuration value. 

See example for QSPIOpen. 



https://www.lairdconnect.com/ 51 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

FUNCTION 

This function is used to query a configuration option of an open QSPI interface. 

QSPIACTIVECONFIGGET(nHandle, nIndex, nValue) 

Returns INTEGER, a result code.  

Typical value:  

0x0000 Configuration returned successfully 

0x0213 Invalid index 

0x5220 Invalid handle 

Arguments:  

nHandle byVal nHandle AS INTEGER 
Handle of the QSPI interface to use. 

nIndex byVal nIndex AS INTEGER 
Number of bytes to read from the Rx buffer. On return, this value will contain the number of data bytes 
that was read. 

0 Clock SIO 

1 Chip select SIO 

2 IO0 SIO 

3 IO1 SIO 

4 IO2 SIO 

5 IO3 SIO 

6 Drive strength (0 = standard, 1 = high) 

7 Frequency in Hz 

8 QSPI clock mode (0 = clock starts with level 0, 3 = clock starts with level 1) 

9 

QSPI read mode (0 = Single data line (FAST_READ, op-code 0x0b), 1 = Dual data line 

(READ2O, op-code 0x3B), 2 = Dual data line (READ2IO, op-code 0xBB), 3 = Quad data line 

(READ4O, op-code 0x6B), 4 = Quad data line (READ4IO, op-code 0xEB)) 

10 
QSPI write mode (1 = Dual data line (PP2O, op-code 0xA2), 2 = Quad data line (PP4O, op-

code 0x32), 3 = Quad data line (PP4IO, op-code 0x38)) 

11 RX delay (in 15.625ns periods) 

12 Clock delay (in 62.5ns periods) 

16 Page size 

17 Enable DPM (0 = DPM functionality disabled, 1 = DPM functionality enabled) 

18 DPM enter duration (in 16us periods) 

19 DPM exit duration (in 16us periods) 

20 Address type 

21 32-bit address op-code 

22 32-bit address byte 0 

23 32-bit address byte 1 

24 
Extended address mode (0 = do not send any instruction, 1 = send op-code, 2 = send op-code 

and byte 0, 3 = send op-code and byte 0 and byte 1) 



https://www.lairdconnect.com/ 52 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

25 Extended address WIP wait 

26 Extended address write enable 

27 XIP offset 

28 Current mode (0 = ultra-low power mode, 1 = high performance mode) 
 

nValue ByRef nValue AS INTEGER 
On return, this variable will contain the configuration value from the QSPI interface. 

See example for QSPIOpen. 

 

FUNCTION 

This function is used to write data to the QSPI memory at a particular offset. Note that both the offset and data length must be 
a multiple of 4, and the page being written to must be erased prior to writing to it using the QSPIErase function. 

QSPIWRITE(nHandle, strWr$, nOffset) 

Returns INTEGER, a result code.  

Typical value:  

0x0000 Data written successfully 

0x5201 QSPI interface not open 

0x5267 QSPI device timeout  

0x5268 String size limit reached 

0x526a Supplied offset is not valid 

0x526b Supplied length is not valid 

0x526c QSPI device busy with full-chip erase 

0x5275 DPM mode is currently active 

Arguments:  

nHandle byVal nHandle AS INTEGER 
Handle of the QSPI interface to use. 

strWr$ byRef strWr$ AS STRING 
Data to write to the QSPI memory. Must be a multiple of 4 bytes in length. 

nOffset ByVal nOffset AS INTEGER 
Offset of the QSPI memory in which to write the data to. Must be a multiple of 4. 

See example for QSPIOpen. 



https://www.lairdconnect.com/ 53 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

FUNCTION 

This function is used to read data from the QSPI memory. Note that both the offset and data length must be a multiple of 4. 

QSPIREAD(nHandle, strRd$, nOffset, nLength) 

Returns INTEGER, a result code.  

Typical value:  

0x0000 Data read successfully 

0x5201 QSPI interface not open 

0x5267 QSPI device timeout  

0x5268 String size limit reached 

0x526a Supplied offset is not valid 

0x526b Supplied length is not valid 

0x526c QSPI device busy with full-chip erase 

0x5275 DPM mode is currently active 

Arguments:  

nHandle byVal nHandle AS INTEGER 
Handle of the QSPI interface to use. 

strRd$ byRef strRd$ AS INTEGER 
On success, this variable will contain the data read from the QSPI memory. 

nOffset ByVal nOffset AS INTEGER 
Offset of the QSPI memory in which to write the data to. Must be a multiple of 4. 

nLength ByVal nLength AS INTEGER 
Number of bytes to read from the QSPI memory. Must be a multiple of 4. 

See example for QSPIOpen. 

 

FUNCTION 

This function is used to erase data from the QSPI memory. After starting a full-chip erase, the EVQSPIERASED event must be 
waited for before performing any other actions. 

QSPIERASE(nHandle, nType, nOffset) 

Returns INTEGER, a result code.  

Typical value:  

0x0000 Erase completed successfully 

0x5201 QSPI interface not open 

0x5267 QSPI device timeout 

0x526a Supplied offset is not valid 

0x526c QSPI device busy with full-chip erase 

0x526d Specified erase type is not valid 

0x526e Full-chip erase has started (wait for EVQSPIERASED event) 

0x526f Timeout occured whilst starting erase process 

0x5275 DPM mode is currently active 

Arguments:  

nHandle byVal nHandle AS INTEGER 
Handle of the QSPI interface to use. 



https://www.lairdconnect.com/ 54 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

nType byVal nType AS INTEGER 
The type of erase to perform which must be one of: 

0 4KB sector erase 

1 64KB sector erase 

2 Full-chip erase 
 

nOffset ByVal nOffset AS INTEGER 
The offset of the QSPI memory to start the erase process at, must be at a 4KB boundary for a 4KB sector 
erase, must be at a 64KB boundary for a 64KB sector erase, must be 0 for a full-chip erase. 

See example for QSPIOpen. 

 

FUNCTION 

This function is used to send a custom command to the QSPI memory and read the response. 

QSPICUSTOMCOMMAND(nHandle, strWr$, strRd$, nIO2Level, nIO3Level, nEnableWrite, nWaitWIP) 

Returns INTEGER, a result code.  

Typical value:  

0x0000 Custom command executed successfully 

0x5201 QSPI interface not open 

0x526c QSPI device busy with full-chip erase 

0x5273 Custom command too long 

Arguments:  

nHandle byVal nHandle AS INTEGER 
Handle of the QSPI interface to use. 

strWr$ byRef strWr$ AS INTEGER 
String which contains op-code and data to write (maximuim 7 bytes) 

strRd$ ByRef strRd$ AS STRING 
On return, this variable will contain the string data that was read from QSPI memory. 

nIO2Level byVal nIO2Level AS INTEGER 
The logic level of the IO2 pin (0 = low, 1 = high) 

nIO3Level byVal nIO3Level AS INTEGER 
The logic level of the IO2 pin (0 = low, 1 = high) 

nEnableWrite byVal nEnableWrite AS INTEGER 
If to enable writing before executing the command (0 = do not enable writing, 1 = enable writing) 

nWaitWIP byVal nWaitWIP AS INTEGER 
If to wait for the write to complete (0 =do not wait, 1 = wait for the write to complete) 



https://www.lairdconnect.com/ 55 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

Example: 

// Example :: QSPI_Custom.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

dim rc 

dim qspihandle 

dim wr$, rd$ 

 

sub AssertRC(rc, tag) 

  if rc!=0 then 

        print "Failed with ";integer.h' rc;" at tag ";tag;"\n" 

  endif 

endsub 

 

function QSPICustomTest() 

    rc = QSPIOpen(qspihandle) 

    AssertRC(rc, 0) 

    if (rc != 0) then 

        exitfunc 0 

    endif 

    print "Opened QSPI interface, handle: ";qspihandle;"\r\n" 

 

    //This op-code, 0x9f, is the RDID (read identification) command 

    wr$ = "\9f\00\00\00" 

    rc = QSpiCustomCommand(qspihandle, wr$, rd$, 1, 1, 0, 0) 

    AssertRC(rc, 1) 

    if (rc != 0) then 

        exitfunc 0 

    endif 

    print "Custom command sent: ";strhexize$(wr$);", got: ";strhexize$(rd$);"\r\n" 

 

    rc = QSPIClose(qspihandle) 

    AssertRC(rc, 2) 

    if (rc != 0) then 

        exitfunc 0 

    endif 

    print "QSPI handle ";qspihandle;" closed.\r\n" 

endfunc 1 

 

print "QSPI custom command example, ensure SB4, SB5, SB6, SB7, SB10 and SB11 are soldered 

before running.\r\n\r\n" 

rc = QSPICustomTest() 

  

Expected Output: 

QSPI custom command example, ensure SB4, SB5, SB6, SB7, SB10 and SB11 are soldered before 

running. 

 

Opened QSPI interface, handle: -1698897952 

Custom command sent: 9F000000, got: C22813 

QSPI handle -1698897952 closed. 

 



https://www.lairdconnect.com/ 56 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

FUNCTION 

This function is used to change the power mode of the QSPI memory to either ultra-low power mode or high performance mode. 

QSPISETPOWERMODE(nHandle, nPowerMode) 

Returns INTEGER, a result code.  

Typical value:  

0x0000 QSPI power mode set successfully 

0x5201 QSPI interface not open 

0x526c QSPI device busy with full-chip erase 

0x5272 Supplied power mode is not valid 

0x5275 QSPI chip is in DPM mode 

Arguments:  

nHandle byVal nHandle AS INTEGER 
Handle of the QSPI interface to use. 

nPowerMode byVal nPowerMode AS INTEGER 
Power mode to set which can be: 

Mode Functionality 

0 Ultra power-save mode 

1 High performance mode 
 

See example for QSPIOpen. 

 

FUNCTION 

This function is used to query the QSPI memory and retrieve details about it. 

QSPIINFO(nHandle, nManufacturerID, nMemoryType, nMemoryDensity) 

Returns INTEGER, a result code.  

Typical value:  

0x0000 QSPI information returned successfully 

0x5201 QSPI interface not open 

0x526c QSPI device busy with full-chip erase 

0x5275 QSPI chip is in DPM mode 

Arguments:  

nHandle byVal nHandle AS INTEGER 
Handle of the QSPI interface to use. 

nManufacturerID byRef nManufacturerID AS INTEGER 
On return, this variable will contain the manufacturer ID of the QSPI chip. 

nMemoryType ByRef nMemoryType AS INTEGER 
On return, this variable will contain the memory type of the QSPI chip. 

nMemoryDensit

y 

ByRef nMemoryDensity AS INTEGER 
On return, this variable will contain the memory density of the QSPI chip. 

See example for QSPIOpen. 

 

FUNCTION 



https://www.lairdconnect.com/ 57 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

This function is used to query the QSPI memory and retrieve the size of the memory in the desired format. 

QSPIMEMORYSIZE(nHandle, nFormat, nSize) 

Returns INTEGER, a result code.  

Typical value:  

0x0000 QSPI memory size returned successfully 

0x0211 Invalid format specified 

0x5201 QSPI interface not open 

0x526c QSPI device busy with full-chip erase 

0x5275 QSPI chip is in DPM mode 

Arguments:  

nHandle byVal nHandle AS INTEGER 
Handle of the QSPI interface to use. 

nFormat byVal nFormat AS INTEGER 
Format of the memory size to return which can be: 

Format Functionality 

0 Bits 

1 Kilobits 

2 Megabits 

5 Bytes 

6 KiloBytes 

7 MegaBytes 
 

nSize ByRef nSize AS INTEGER 
On return, this variable will contain the size of the QSPI memory in the format specified. 

See example for QSPIOpen. 

 

FUNCTION 

This function is used to check if the QSPI memory is busy with a full-chip erase. 

QSPIISBUSY(nHandle) 

Returns INTEGER, if the memory is busy with an erase.  

Typical value:  

0x0000 QSPI memory is not busy with full-chip erase or is not open. 

0x0001 QSPI memory is busy with full-chip erase. 

Arguments:  

nHandle byRef nHandle AS INTEGER. 
Handle of the QSPI interface to use. 

See example for QSPIOpen. 

 

FUNCTION 

This function is used to enter or exit deep power-down mode. 



https://www.lairdconnect.com/ 58 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

QSPIDPMSET(nHandle, nDPM) 

Returns INTEGER, a result code.  

Typical value:  

0x0000 QSPI memory entered/exited DPM successfully 

0x0211 Invalid format specified 

0x5201 QSPI interface not open 

0x526c QSPI device busy with full-chip erase 

0x5276 QSPI interface was not opened with DPM support enabled 

Arguments:  

nHandle byVal nHandle AS INTEGER. 
Handle of the QSPI interface to use. 

nDPM byVal nDPM AS INTEGER 
If the QSPI memory should enter or exit DPM mode which can be: 

Mode Functionality 

0 Exit DPM 

1 Enter DPM 
 

See example for QSPIOpen. 

 

FUNCTION 

This function is used to check if the QSPI memory is in deep power-down mode. 

QSPIISDPM(nHandle) 

Returns INTEGER, if the QSPI memory is in DPM mode.  

Typical value:  

0x0000 QSPI memory is not in DPM mode or interface is not open. 

0x0001 QSPI memory is in DPM mode. 

Arguments:  

nHandle byRef nHandle AS INTEGER. 
Handle of the QSPI interface to use. 

See example for QSPIOpen. 

 

FUNCTION 

This function is used to reset a QSPI memory. 

QSPIRESET(nHandle, nType, nReapplyConfig) 

Returns INTEGER, a result code.  

Typical value:  

0x0000 QSPI memory reset successfully 

0x0211 Invalid type specified 

0x5201 QSPI interface not open 

0x526c QSPI device busy with full-chip erase 

0x5275 QSPI chip is in DPM mode 

Arguments:  



https://www.lairdconnect.com/ 59 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

nHandle byVal nHandle AS INTEGER 
Handle of the QSPI interface to use. 

nType byVal nType AS INTEGER 
This specifies if the QSPI reset should be forced regardless if the chip is busy with an erase and can 
be: 

Type Functionality 

0 Normal (will not reset if full-chip erase is active) 

1 Force (will reset if full-chip erase is active, this may lead to data corruption) 
 

nReapplyConfig ByVal nReapplyConfig AS INTEGER 
This controls if the volatile QSPI configuration should be re-applied after resetting the memory and 
can be: 

Mode Functionality 

0 Do not re-apply configuration after reset 

1 Re-apply configuration after reset (power mode and dummy cycles) 
 

See example for QSPIOpen. 

 

I/O and interface commands allow access to the physical interface pins and ports of the smartBASIC modules. Most of these 
commands are applicable to the entire range of modules. However, some are dependent on the actual I/O availability of each 
module. 

There are 48 SIO (Special I/O) pins available on the BL654. All of these pins can be configured to provide additional types of 
functionality. However, some of the pins have set functionality that should never be changed.  

Note: All of the pins can be configured as digital inputs or outputs, therefore these are not listed in the table below. 

 

Exception: On the BL654PA variant, SIO 34 and 36 are not available for general use as they are used to 

control the external PA and LNA 

Table 1: SIO pin functionality 

SIO Functionality 

0 XTAL1 

1 XTAL2 

2 Adc00, Vsp 

3 Adc01 

4 Adc02/SPIM MISO 

5 UART_RTS/Adc03 

6 UART_TX 

7 UART_CTS 

8 UART_RX 

9 NFC1 

10 NFC2 

11 No alternate functionality 

12 No alternate functionality 

13 No alternate functionality 



https://www.lairdconnect.com/ 60 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

SIO Functionality 

14 No alternate functionality 

15 No alternate functionality 

16 No alternate functionality 

17 QSPI_CS 

18 Reset (Cannot be used as an SIO pin) 

19 QSPI_CLK 

20 QSPI_DIO0 

21 QSPI_DIO1 

22 QSPI_DIO2 

23 QSPI_DIO3 

24 No alternate functionality 

25 No alternate functionality 

26 I2cData 

27 I2cClock 

28 Adc04 

29 Adc05 

30 Adc06 

31 Adc07 

32 No alternate functionality 

33 No alternate functionality 

34 No alternate functionality   Note: Not available on the BL654PA variant 

35 Autorun 

36 No alternate functionality  Note: Not available on the BL654PA variant 

37 No alternate functionality 

38 No alternate functionality 

39 No alternate functionality 

40 SPIM MOSI 

41 SPIM CLK 

42 No alternate functionality 

43 No alternate functionality 

44 SPIM CS 

45 No alternate functionality 

46 No alternate functionality 

47 No alternate functionality 

Notes: Where Autorun or Vsp functionality is required, that pin can only be used for that function and cannot be changed. 

 

Pwm option outputs a fully configurable waveform;  Freq option outputs a 50:50 mark space ratio waveform. 



https://www.lairdconnect.com/ 61 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 SPIM refers to SPI Master peripheral. 

 

EVGPIOCHANn Here n is from 0 to N where N is platform dependent and an event is generated when a 

preconfigured digital input transition occurs. The number of digital inputs that can auto-generate is 

hardware dependent. For the BL654. N can be 0, 1, 2, or 3. 

Use GpioBindEvent() to generate these events. See example for GpioBindEvent(). 

EVDETECTCHANn Here n is from 0 to N where N is platform dependent and an event is generated when a 

preconfigured digital input transition occurs. The number of digital inputs that can auto-generate is 

hardware dependent. For the BL654, N can only be 0. 

Use GpioAssignEvent() to generate these events.  

 

FUNCTION 

This routine sets the function of the SIO pin identified by the nSigNum argument.  

The module datasheet contains a pinout table which denotes SIO pins. The number designated for that special I/O pin 
corresponds to the nSigNum argument. 

The nFunction argument denotes the required functionality. Use only supported values from Table 1. 

The bSubFunc argument defines the configuration of the requested function. 

GPIOSETFUNC (nSigNum, nFunction, nSubFunc) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments:  

nSigNum byVal nSigNum AS INTEGER. 

The signal number as stated in the pinout table of the module. 

Note:  On the BL654PA variant, 34 and 36 are not available as they are used to control the external PA 

and LNA. 

nFunction byVal nFunction AS INTEGER.  

Specifies the configuration of the SIO pin as follows: 

1 = DIGITAL_IN 

2 = DIGITAL_OUT 

3 = ANALOG_IN   

nSubFunc byVal nSubFunc INTEGER 

Configures the pin as follows: 

If nFunction == DIGITAL_IN  

Bits 0..3 

0x01 Pull down resistor (weak) 

0x02 Pull up resistor (weak) 

0x03 Pull down resistor (strong) 

0x04 Pull up resistor (strong) 

Else No pull resistors 

Bits 4, 5 



https://www.lairdconnect.com/ 62 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

0x10 When in deep sleep mode, awake when this pin is LOW 

0x20 When in deep sleep mode, awake when this pin is HIGH 

Else No effect in deep sleep mode 

Bits 8..31 

Must be 0s 

If nFuncType == DIGITAL_OUT 

Values: 

0 Initial output to LOW 

1 Initial output to HIGH 

2 
Output is PWM (Pulse Width Modulated Output). See function GpioConfigPW() for more 

configuration. The duty cycle is set using function GpioWrite(). 

3 

Output is FREQUENCY. The frequency is set using function GpioWrite() where 0 switches off the 

output; any value in range 1..4000000 generates an output signal with 50% duty cycle with that 

frequency. 

Bits 4..6 (output drive capacity) 

0 0 = Standard; 1 = Standard 

1 0 = High; 1 = Standard 

2 0 = Standard; 1 = High 

3 0 = High; 1 = High 

4 0 = Disconnect; 1 = Standard 

5 0 = Disconnect; 1 = High 

6 0 = Standard; 1 = Disconnect 

7 0 = High; 1 = Disconnect 

If nFuncType == ANALOG_IN 

0 := Use Default for system. 

0 Use the system default: 10-bit ADC, 1/6 scaling 

0x16 10-bit ADC, 1/6 scaling 

0x15 10-bit ADC, 1/5 scaling 

0x14 10-bit ADC, 1/4 scaling 

0x13 10-bit ADC, 1/3 scaling 

0x12 10-bit ADC, 1/2 scaling 

0x11 10-bit ADC, 1/1 scaling  (Unity) 

0x21 10-bit ADC, 2/1 scaling 

0x41 10-bit ADC, 4/1 scaling 
 

Note:  The internal reference voltage is the same as the module Vcc value with +/- 1.5% accuracy.  

Example: 

// Example :: GpioSetFunc.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 



https://www.lairdconnect.com/ 63 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

PRINT GpioSetFunc(15,1,2)    //Digital In SIO 15, strong pull up resistor 

PRINT GpioSetFunc(3,3,0)     //Analog In SIO 3 (Temperature Sensor), default settings 

PRINT GpioSetFunc(17,2,1)    //SIO17 (LED0) digital out, initial output high 

Expected Output: 

 

000 
 

 

FUNCTION 

This routine sets the function of the SIO pin identified by the nSigNum argument and provides for more enhanced 
configurability compared to the legacy function GpioSetFunc(). 

The module datasheet contains a pinout table which denotes SIO pins. The number designated for that special I/O pin 
corresponds to the nSigNum argument. 

The nFunction argument denotes the required functionality. Use only supported values from Table 1. 

The bSubFunc argument defines the configuration of the requested function. 

GPIOSETFUNCEX (nSigNum, nFunction, subFunc$) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments:  

nSigNum 

byVal nSigNum AS INTEGER. 
The signal number as stated in the pinout table of the module. 

Note:  On the BL654PA variant, 34 and 36 are not available as they are used to control the external PA 

and LNA. 

nFunction 

byVal nFunction AS INTEGER.  
Specifies the configuration of the SIO pin as follows: 
1 = DIGITAL_IN 

2 = DIGITAL_OUT 

3 = ANALOG_IN   

subFunc$ 

byVal nSubFunc$ INTEGER 

 

If nFunction == DIGITAL_IN  

 

subFunc$ will be a string that has the following form:- “\Digital_In_Bitmask”, where Digital_In_Bitmask bits 

can be as follows: 

Bits 0..3 

0x01 Pull down resistor (weak) 

0x02 Pull up resistor (weak) 

0x03 Pull down resistor (strong) 

0x04 Pull up resistor (strong) 

Else No pull resistors 

Bits 4, 5 

0x10 When in deep sleep mode, awake when this pin is LOW 

0x20 When in deep sleep mode, awake when this pin is HIGH 

Else No effect in deep sleep mode 



https://www.lairdconnect.com/ 64 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

Bits 8..31 

Must be 0s 

 

If nFuncType == DIGITAL_OUT 

subFunc$ is a string that has the following form: \Digital_Out, where Digital_Out consists of the following: 

▪ Bits 0-3: Values 

▪ Bits 4-6: Drive Capacity (Only for LOW and HIGH configuration. For PWM and FREQUENCY this is 
always set to 0=Standard; 1=Standard) 

Values: 

0 Initial output to LOW 

1 Initial output to HIGH 

2 
Output is PWM (Pulse Width Modulated Output). See function GpioConfigPW() for more 

configuration. The duty cycle is set using function GpioWrite(). 

3 

Output is FREQUENCY. The frequency is set using function GpioWrite() where 0 switches off 

the output; any value in range 1..4000000 generates an output signal with 50% duty cycle with 

that frequency. 

Bits 4..6 (output drive capacity) 

0 0 = Standard; 1 = Standard 

1 0 = High; 1 = Standard 

2 0 = Standard; 1 = High 

3 0 = High; 1 = High 

4 0 = Disconnect; 1 = Standard 

5 0 = Disconnect; 1 = High 

6 0 = Standard; 1 = Disconnect 

7 0 = High; 1 = Disconnect 

If nFuncType == ANALOG_IN 

The reference voltage for the analog to digital converter is 0.6 volts. 

subFunc$ is a string that has the following form: \Gain_hex\Resolution_hex\Acquisition_hex 

If the string is empty, then default values are used. Otherwise, the values can be as follows: 

Gain_hex 

0 Use the system default: 10-bit ADC, 1/6 scaling 

0x16 1/6 scaling 

0x15 1/5 scaling 

0x14 1/4 scaling 

0x13 1/3 scaling 

0x12 1/2 scaling 

0x11 1/1 scaling  (Unity) 

0x21 2/1 scaling 

0x41 4/1 scaling 

For example, if you have a maximum analog voltage of 1.7 volts, then select a gain of 1/3 so that the 
maximum voltage into the convertor is 1.7 * 1/3 = 0.57. This means it is not bigger than the reference 
voltage of 0.6v and it is specified in subFunc$ so that the first byte in the string is \13 



https://www.lairdconnect.com/ 65 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

Resolution_hex 

0 Use the system default: 10-bit ADC 

0x08 8-bit ADC resolution 

0x0A 10-bit ADC resolution 

0x0C 12-bit ADC resolution 

 

Acquisition_hex 

0 Use the system default: 10 microseconds 

0x03 3 microseconds 

0x05 5 microseconds 

0x0A 10 microseconds 

0x0F 15 microseconds 

0x14 20 microseconds 

0x28 40 microseconds 

Any other value results in this function being rejected.  

For example, selecting 1/5th scaling, 12-bit resolution, and acquisition time of 20 microseconds requires that 
the variable subFunc$ be initialised as \15\0C\14. 

Note:  The internal reference voltage is the same as the module Vcc value with +/- 1.5% accuracy.  

Example: 

// Example :: GpioSetFuncEx.sb 

// https://github.com/LairdCP/BL6542-Applications/tree/master/UserGuideExamples 
 

//Digital In SIO 15, strong pull up resistor 

PRINT GpioSetFuncEx(15,1,"\02") 

//Analog In SIO 3 (Temperature Sensor), default settings 

PRINT GpioSetFuncEx(3,3,"") 

//Analog In SIO 23, 1/6 scaling, 12-bit resolution, 3us acquisition time 

PRINT GpioSetFuncEx(23,3,"\16\0C\03") 

//SIO17 (LED0) digital out, initial output high 

PRINT GpioSetFuncEx(17,2,"\01") 

//SIO26 digital out, PWM  

PRINT GpioSetFuncEx(26,2,"\02") 

    

Expected Output: 

 

00000 
 

 

FUNCTION 

This routine configures the PWM (Pulse Width Modulation) of all output pins when they are set as a PWM output using 
GpioSetFunc() function described above. 

Note:  This is a ‘sticky’ configuration; calling it affects all PWM outputs already configured. We recommend that this is 

called once at the beginning of your application and not changed again within the application unless all PWM 

outputs are deconfigured and then re-enabled after this function is called. 

https://github.com/LairdCP/BL6542-Applications/tree/master/UserGuideExamples


https://www.lairdconnect.com/ 66 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

The PWM output is generated using 32-bit hardware timers. The timers are clocked by a 1-MHz clock source. 

A PWM signal has a frequency and a duty cycle property; the frequency is set using this function and is defined by the 
nMaxResolution parameter. For a given nMaxResolution value, given that the timer is clocked using a 1-MHz source, the 
frequency of the generated signal is 1000000 divided by nMaxResolution. Hence, if nMinFreqHz is more than the 
1000000/nMaxResolution, this function will fail with a non-zero value. 

The nMaxResolution can also be viewed as defining the resolution of the PWM output in the sense that the duty cycle can be 
varied from 0 to nMaxResolution. The duty cycle of the PWM signal is modified using the GpioWrite() command. 

For example, a period of 1000 generates an output frequency of 1KHz, a period of 500, and a frequency of 2Khz etc. 

On exit, the function returns with the actual frequency in the nMinFreqHz parameter. 

GPIOCONFIGPWM (nMinFreqHz, nMaxResolution) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments:  

nMinFreqHz 
byRef nMinFreqHz AS INTEGER.  

The nominal frequency of the waveform. 

nMaxResolution 
byVal nMaxResolution AS  INTEGER.  

Set to same value as nMinFreqHz. 



https://www.lairdconnect.com/ 67 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

Example:  

// Example :: GpioConfigPwm.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

dim retval 

dim i 

dim nFreq 

dim nResolution 

dim res[5] as integer 

 

FUNCTION HandlerTimer1() 

  dim TmpVal 

  i=i+1 

  if i==5 then 

    i=0 

  endif 

  TmpVal = (res[i]*100/ nResolution) 

  PRINT "\nTimer event! PWM changed to "; TmpVal; "% duty cycle." 

  GpioWrite(13,res[i]) 

ENDFUNC 1  

 

i=0 

nFreq=1024 

nResolution=2048 

res[0]=nResolution/2 

res[1]=nResolution/4 

res[2]=nResolution/8 

res[3]=0 

res[4]=nResolution 

 

ONEVENT EVTMR1 CALL HandlerTimer1 

 

//Configure PWM 

retval = GpioConfigPWM(nFreq,nResolution) 

retval = GpioSetFunc(13,2,2) 

 

//Write the first value to the PWM out 

GpioWrite(13,res[i]) 

PRINT "\nTimer started. PWM on 50% duty cycle." 

 

//start a 5000 millisecond (5 second) recurring timer 

TimerStart(1,5000,1)     

 

WAITEVENT 

Expected Output: 
 

Timer started. PWM on 50% duty cycle. 

Timer event! PWM changed to 25% duty cycle. 

Timer event! PWM changed to 12% duty cycle. 

Timer event! PWM changed to 0% duty cycle. 

Timer event! PWM changed to 100% duty cycle. 
 



https://www.lairdconnect.com/ 68 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

FUNCTION 

This routine reads the value from a SIO pin. 

The module datasheet contains a pinout table which mentions SIO (Special I/O) pins and the number designated for that SIO 
pin corresponds to the nSigNum argument. 

Note:  For ADC readings, the value read has an error percentage of +/-3% for 1/6 and 1/4 gains, and +/-4% for 1/2 and 1 

gains. 

GPIOREAD (nSigNum) 

Returns INTEGER, the value from the signal.  

If the signal number is invalid, then it returns a value of 0.  

For digital pins, the value is 0 or 1. For ADC pins it is a value in the range 0 to M where M is the maximum 

value based on the bit resolution of the analogue to digital converter. 

Arguments:  

nSigNum 
byVal nSigNum INTEGER. 

The signal number as stated in the pinout table of the module. 

Refer to the example for GpioBindEvent. 

Example: 

// Example: GpioRead.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

//This example reads from temperature sensor, for it to work, a jumper needs to be placed 

on J6 between SIO_3 and TEMP_SENS 

#define GPIO_TEMP_SENS           3 

 

dim rc, adc 

 

//Start timer to read temperature sensor 

TimerStart(0,1000,1) 

 

//Remove resistor 

rc = GpioSetFunc(GPIO_TEMP_SENS, 1, 2) 

 

//Analogue in 

rc = GpioSetFunc(GPIO_TEMP_SENS, 3, 0) 

 

FUNCTION HandlerTimer0() 

    //Read the ADC 

    adc = GpioRead(GPIO_TEMP_SENS) 

    PRINT "\nRaw Temperature Sensor Reading: ";adc 

ENDFUNC 1 

 

OnEvent EVTMR0 call HandlerTimer0 

 

WAITEVENT 

Expected output: 

 

Raw Temperature Sensor Reading: 1943 

Raw Temperature Sensor Reading: 1943 

 



https://www.lairdconnect.com/ 69 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

FUNCTION 

This function writes a new value to the SIO pin. If the pin number is invalid, nothing happens. 

If the SIO pin is configured as a PWM output then the nNewValue specifies a value in the range 0 to N where N is the 
nMinFreqHz set in the GpioConfigPwm command. The write value controls the mark space ratio of the output waveform. A 
value of 0 outputs a low, a value of nMinFreqHz outputs a high, and a value in varies the mark space ratio. The higher the 
value, the longer the mark period. 

As with the GpioConfigPwm function, the nNewValue is used to calculate a hardware register value. This value must be less 
than the register value calculated from the GpioConfigPwm function that is used to set the PWM output frequency. Again, be 
careful to avoid non-integer results or the output waveform will not be accurate. 

As an indication, if you divide the PWM output frequency by the value of the register calculated in the GpioConfigPwm function 
above, that result is the minimum nNewValue you can enter to get a mark:space ratio. Other valid mark:space ratios are 
provided by integer multiples of this minimum value. 

For example, with a system frequency of 40 MHz and an output PWM frequency of 5 MHz, the register value to provide the 
output frequency is 8.  So the minimum value of nNewValue is 0.625 MHz and the remaining obtainable values are 4.375, 
3.75, 3.125, 2.5, 1.875, and 1.25 MHz. Any other nNewValue entered rounds down to one of these values. 

GPIOWRITE (nSigNum, nNewValue) 

Returns  

Arguments:  

nSigNum 
byVal nSigNum INTEGER.   

The signal number as stated in the pinout table of the module. 

nNewValue 

byVal nNewValue  INTEGER.  

The value to be written to the port.  

If the pin is configured as digital, then 0 clears the pin and a non-zero value sets it.  

If the pin is configured as a PWM then this value sets the duty cycle. 

If the pin is configured as a FREQUENCY then this value sets the frequency. 

Example: 

// Example :: GpioWrite.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

dim rc, i1, i2 

i2 = 1 

i1 = 1 

 

//------------------------------------------------------------------------------ 

// For debugging 

// --- rc = result code 

// --- ln = line number          

//------------------------------------------------------------------------------ 

Sub AssertRC(rc,ln)    

    if rc!=0 then 

        print "\nFail :";integer.h' rc;" at tag ";ln 

    endif 



https://www.lairdconnect.com/ 70 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

EndSub 

 

rc=GpioSetFunc(17,2,1) 

AssertRC(rc,20) 

 

rc=GpioSetFunc(19,2,1) 

AssertRC(rc,23) 

 

function HandlerTmr0() 

    i1=!i1 

    GpioWrite(19,i1) 

    AssertRC(rc,30) 

endfunc 1 

 

function HandlerTmr1() 

    i2=!i2 

    GpioWrite(17,i2) 

    AssertRC(rc,42) 

endfunc 1 

 

function HandlerUartRx() 

endfunc 0 

 

TimerStart(0,500,1) 

TimerStart(1,1000,1) 

 

onevent evuartrx call HandlerUartRx 

onevent evtmr0   call HandlerTmr0 

onevent evtmr1   call HandlerTmr1 

print "\n\nPress any key to exit" 

 

waitevent 

 

print "\nExiting..." 

Expected Output: 

Press any key to exit 

Exiting... 

 

 

FUNCTION 



https://www.lairdconnect.com/ 71 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

This routine binds an event to a level transition on a specified SIO line configured as a digital input so that changes in the input 
line can invoke a handler in smartBASIC user code.  

When this function is called on the BL654, the SIO pin specified by nSigNum is set up as a digital input in the underlying 
firmware so GpioSetFunc() does not need to be called beforehand. 

If this function is used in your smartBASIC application, we recommend that you unbind all bound events by calling 
GpioUnbindEvent() at the end of the application. Likewise for all assigned events, GpioUnassignEvent should be called. 

Note:  In the BL654 module, an SIO pin can only be bound to one event at a time. 

GPIOBINDEVENT (nEventNum, nSigNum, nPolarity) 

GPIOASSIGNEVENT (nEventNum, nSigNum, nPolarity) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments:  

nEventNum 

byVal nEventNum  INTEGER.   

The SIO event number (in the range of 0 - N) which results in the event EVGPIOCHANn being thrown to 

the smartBASIC runtime engine. 

nSigNum 

byVal nSigNum  INTEGER.   

The signal number as stated in the pinout table of the module.  

Note:  On the BL654PA variant, 34 and 36 are not available as they are used to control the external PA 

and LNA. 

nPolarity 

byVal nPolarity  INTEGER.  

States the transition as follows: 

0 Low to high transition 

1 High to low transition 

2 (GpioBindEvent Only) Either a low to high or high to low transition 

  

Note:  Using GpioBindEvent provides the capability to detect any transition. However, it results in slightly higher power 

consumption. If power is of importance, GpioAssignEvent() should be used instead as it uses other resources to 

expedite an event. 



https://www.lairdconnect.com/ 72 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

Example: 

// Example :: GpioBindEvent.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

dim rc 

 

function HandlerBtn0() 

    dim i : i = GpioRead(11) 

     

    '//if button 0 was pressed 

    if i==0 then 

        print "\nButton 0 Pressed" 

         

    '//if button 0 was released 

    elseif i==1 then 

        print "\nButton 0 Released" 

    endif 

endfunc 1 

 

function HandlerUartRx() 

endfunc 0 

 

rc= GpioBindEvent(0,11,2)        //Bind event 0 to high or low transition on SIO11 (button 

1)          

if rc==0 then 

    onevent evgpiochan0 call HandlerBtn0  //When event 0 happens, call Btn0Press 

    print "\nSIO11 - Button 0 is bound to event 0. Press button 0"     

else 

    print "\nGpioBindEvent Err: ";integer.h'rc 

endif 

 

onevent evuartrx call HandlerUartRx 

print "\n\nPress any key to exit" 

 

waitevent 

rc=GpioUnbindEvent(0) 

if rc==0 then 

    print "\n\nEvent 0 unbound\nExiting..." 

endif 

 

 



https://www.lairdconnect.com/ 73 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

Expected Output: 

SIO11 - Button 0 is bound to event 0. Press button 0 

 

Press any key to exit 

Button 0 Pressed 

Button 0 Released 

Button 0 Pressed 

Button 0 Released 

 

Event 0 unbound 

Exiting... 

00 

 

FUNCTION 

This routine unbinds the runtime engine event from a level transition bound using GpioBindEvent(). 

GPIOUNBINDEVENT (nEventNum) 

GPIOUNASSIGNEVENT (nEventNum) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments:  

nEventNum 

byVal nEventNum  INTEGER.   

The SIO event number (in the range of 0 - N) which is disabled so that it no longer generates run-time 

events in smartBASIC. 

See example for GpioBindEvent. 

 

This section describes all miscellaneous functions and subroutines. 

 

SUBROUTINE 

This function’s main use case is during smartBASIC source compilation and the presence of at least one instance of this 
statement ensures that the smartBASIC application only fully compiles without errors on a BL654 module. This ensures that 
apps for other modules are not mistakenly loaded into the BL654.  

AssertBL654 () 

Returns Not acceptable as it is a subroutine 

Arguments: None 

Example: 

AssertBL654()//Ensure loading on BL654 only 

 

FUNCTION 

This function is used to erase the flash file system which contains the application that invoked this function, if and only if, the 
SIO2 input pin is held high. 



https://www.lairdconnect.com/ 74 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

Given that SIO2 is high, after erasing the file system, the module resets and reboots into command mode with the virtual serial 
port service enabled; the module advertises for a few seconds. See the virtual serial port service section for more details. 

This facility allows the current $autorun$ application to be replaced with a new one. 

WARNING 

If this function is called from within $autorun$ and the SIO2 input is high, it is erased and a fresh download of the application 

is required which can be facilitated over the air. 

ERASEFILESYSTEM (nArg) 

Returns INTEGER Indicates success of command: 

0 Successful erasure. The module reboots. 

<>0 Failure. 
 

Exceptions ▪ Local Stack Frame Underflow 

▪ Local Stack Frame Overflow 

Arguments

: 

 

nArg byVal nArg AS INTEGER 

This is for future use and MUST always be set to 1. Any other value will result in a failure. 

Example: 

DIM rc 

 rc = EraseFileSystem(1234) 

 IF rc!=0 THEN 

   PRINT "\nFailed to erase file system because incorrect parameter" 

 ENDIF 

 //Input SIO2 is low 

 rc = EraseFileSystem(1) 

 IF rc!=0 THEN 

   PRINT "\nFailed to erase file system because SIO19 is low" 

 ENDIF 

Expected Output: 

Failed to erase file system because incorrect parameter 

Failed to erase file system because SIO19 is low 

00 

 

 

To address privacy concerns, there are four types of Bluetooth addresses in a BLE device which can change as often as 
required. For example, an iPhone regularly changes its BLE Bluetooth address and it always exposes only its resolvable 
random address.This feature is known as LE privacy. It allows the Bluetooth address within advertising packets to be replaced 
with a random value that can change at different time intervals. Malicious devices are not able to track your device as it 
actually looks like a series of different devices. 



https://www.lairdconnect.com/ 75 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

To manage this, the usual six-octet Bluetooth address is qualified on-air by a single bit which qualifies the Bluetooth address 
as public or random: 

▪ Public – The format is as defined by the IEEE organisation.  

▪ Random – The format can be up to three types and this qualification is done using the upper two bits of the most 
significant byte of the random Bluetooth address. 

Address types: 

00 Public 

01 Random Static 

02 Random Private Resolvable 

03 Random Private Non-Resolvable 

All other values are illegal 

On the BL654, the address type can be set using the function  BleSetAddressTypeEx(). On the other hand, Sysinfo$(4) can be 
used to retrieve the Bluetooth address if it is public or random static. Due to LE privacy 1.2, if the address type is random 
resolvable or random non-resolvable, it cannot be retrieved by the application layer since it is fully controlled by the baseband 
layer. 

Note:  The Bluetooth address portion in smartBASIC is always in big endian format. If you sniff on-air packets, the same 

six packets appear in little endian format, hence reverse order – and you do not see seven bytes, but a bit in the 

packet somewhere which specifies it to be public or random. 

 

FUNCTION 

This functions sets the current address type to be used by the LE radio scan/advert/connection requests. Type 2 and Type 3 
can be set to be refreshed periodically.  

BLESETADDRESSTYPEEX (nAddrType, nPeriodMS) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments:  

nAddrType 

byVal nAddrType AS INTEGER.  

Specifies the type of the LE address as follows: 

0 Public address, same as Classic. 

1 Random static address, generated first boot. 

2 Random address, resolvable with IRK, generated on call. 

3 Random address, non resolvable, generation on call 
 

nPeriodMS 

The time period for changing resolvable and non-resolvable addresses in milliseconds. If the nAddrType is 

0 or 1, this parameter is ignored. Negative values result in an error being returned. A value of 0 means the 

address will not change. 

Example: 

// Example: BleSetAddressTypeEx.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

DIM rc, addr$ 

// Set the address to pulic, nPeriodMS is ignored 

rc = BleSetAddressTypeEx(0,0) 

addr$ = SysInfo$(4) 



https://www.lairdconnect.com/ 76 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

PRINT "\nBluetooth Address - "; StrHexize$(addr$) 

 

// Set the address to random static, nPeriodMS is ignored 

rc = BleSetAddressTypeEx(1,0) 

addr$ = SysInfo$(4) 

PRINT "\nBluetooth Address - "; StrHexize$(addr$) 

 

// Set the address to be random resolvable that changes every 30 seconds 

rc = BleSetAddressTypeEx(2,30000) 

addr$ = SysInfo$(4) 

PRINT "\nCurrent Address - "; StrHexize$(addr$) 

 

// Set the address to be random non-resolvable that changes every 1 seconds 

rc = BleSetAddressTypeEx(3,1000) 

addr$ = SysInfo$(4) 

PRINT "\nBluetooth Address - "; StrHexize$(addr$) 

Expected Output: 

Bluetooth Address – 000016A4B75201 

Bluetooth Address – 01D3B61EE3F699 

Bluetooth Address – 01D3B61EE3F699 

Bluetooth Address – 01D3B61EE3F699 

Note:  Even though Sysinfo$(4) returns the random static address after setting address types 2 and 3, the actual address 

used by the radio packets are the random resolvable and the random non-resolvable addresses respectively. The 

reason for this is that private addresses are only known to the baseband.  



https://www.lairdconnect.com/ 77 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

 

This event is thrown when adverts that are started using BleAdvertStart() time out.  

Example: 

// Example :: EvBle_Adv_Timeout.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 DIM peerAddr$ 

 

 //handler to service an advert timeout 

 FUNCTION HndlrBleAdvTimOut()  

     PRINT "\nAdvert stopped via timeout" 

     //DbgMsg( "\n   - could use SystemStateSet(0) to switch off" ) 

  

     //------------------------------------------------------------ 

     //  Switch off the system - requires a power cycle to recover 

     //------------------------------------------------------------ 

     //  rc = SystemStateSet(0) 

 ENDFUNC 0 

 

 //start adverts 

 //rc = BleAdvertStart(0,"",100,5000,0) 

 IF BleAdvertStart(0,peerAddr$,100,2000,0)==0 THEN 

     PRINT "\n Advert Started" 

 ELSE 

     PRINT "\n\nAdvert not successful" 

 ENDIF 

 

 ONEVENT  EVBLE_ADV_TIMEOUT  CALL   HndlrBleAdvTimOut 

 

 WAITEVENT 

Expected Output: 

Advert Started 

Advert stopped via timeout 



https://www.lairdconnect.com/ 78 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

This event is thrown when a BLE connection attempt initiated by the BleConnect() function times out. 

See example for BleConnect. 

 

This event is thrown when an advert report is received whether successfully cached or not. 

See example for BleScanGetAdvReport. 

 

This event is thrown when an advert report is received which is of type ADV_DIRECT_IND and the advert had a target 
address (InitA in the spec) which matches the address of this module. 

See example for BleScanGetPagerAddr.  

 

This event is thrown when a BLE scanning procedure initiated by the BleScanStart() function times out. 

See example for BLESCANSTART.  

 

The BLE subsystem is capable of informing a smartBASIC application when a significant BLE-related event has occurred. It 
does so by throwing this message (as opposed to an EVENTTable 20, which is akin to an interrupt and has no context or 
queue associated with it).  

The message contains two parameters: 

▪ msgID – Identifies what event was triggered  

▪ msgCtx – Conveys some context data associated with that event.  

The smartBASIC application must register a handler function which takes two integer arguments to be able to receive and 
process this message. 

Note:  The messaging subsystem, unlike the event subsystem, has a queue associated with it and, unless that queue is 

full, pends all messages until they are handled. Only messages that have handlers associated with them are 

inserted into the queue. This prevents messages that will not get handled from filling that queue. The following 

table lists the triggers and associated context parameters. 

MsgID Description 

0 A BLE connection is established and msgCtx is the connection handle. 

1 A BLE disconnection event and msgCtx identifies the handle. 

4 A BLE Service Error. The second parameter contains the error code. 

9 Pairing in progress and displayed Passkey supplied in msgCtx. 

10 A new bond has been successfully created. 

11 Pairing in progress and authentication key requested. msgCtx is key type. 

14 Connection parameters update and msgCtx is the conn handle. 

15 Connection parameters update fail and msgCtx is the conn handle. 

16 Connected to a bonded master and msgCtx is the conn handle. 

17 A new pairing has replaced old key for the connection handle specified. 

18 The connection is now encrypted and msgCtx is the conn handle. 

20 The connection is no longer encrypted and msgCtx is the conn handle 

21 The device name characteristic in the GAP service of the local GATT table has been written by the remote 

GATT client. 



https://www.lairdconnect.com/ 79 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

MsgID Description 

22 Attempt to add a new bonding to the bonding database failed 

23 On a BLE connection to a bonded device, if the current GATT table schema does not match what existed at the 

last connection, then a GATT Service Change Indication is automatically sent and the app is informed via this 

event 

24 On a BLE connection to a bonded device, if the current gatt table schema does not match what existed at the 

last connection, then a GATT Service Change Indication is automatically sent and the app is informed when the 

client acknowledges that indication 

25 OOB availability is requested (for future use and not thrown in current firmware) 

26 Authentication has failed 

27 Informational to indicate that encryption was LESC based 

28 LESC pairing in progress and address+hash+random OOB data is required for remote device by security 

manager  

Note:  Message ID 13 is reserved for future use. 

Example: 

// Example :: EvBleMsg.sb 
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

DIM addr$ : addr$="" 

DIM rc 

 

//============================================================================== 

// This handler is called when there is a BLE message 

//============================================================================== 

FUNCTION HndlrBleMsg(BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER)  

    SELECT nMsgId 

        CASE 0 

            PRINT "\nBLE Connection ";nCtx 

        CASE 1 

            PRINT "\nDisconnected ";nCtx;"\n" 

        CASE 18 

            PRINT "\nConnection ";nCtx;" is now encrypted" 

        CASE 16 

            PRINT "\nConnected to a bonded master" 

        CASE 17 

            PRINT "\nA new pairing has replaced the old key";    

        CASE ELSE 

            PRINT "\nUnknown Ble Msg" 

    ENDSELECT 

ENDFUNC 1 



https://www.lairdconnect.com/ 80 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

FUNCTION HndlrBlrAdvTimOut()  

   PRINT "\nAdvert stopped via timeout" 

   PRINT "\nExiting..." 

ENDFUNC 0 

 

FUNCTION HndlrUartRx()    

    rc=BleAdvertStop() 

    PRINT "\nExiting..." 

ENDFUNC 0 

 

 

ONEVENT  EVBLEMSG           CALL HndlrBleMsg 

ONEVENT  EVBLE_ADV_TIMEOUT  CALL HndlrBlrAdvTimOut 

ONEVENT  EVUARTRX           CALL HndlrUartRx 

 

// start adverts 

IF BleAdvertStart(0,addr$,100,10000,0)==0 THEN 

    PRINT "\nAdverts Started" 

    PRINT "\nPress any key to exit\n" 

ELSE 

    PRINT "\n\nAdvertisement not successful" 

ENDIF 

 

WAITEVENT 

Expected Output (When connection made with the module): 

Adverts Started 

Press any key to exit 

 

BLE Connection 3634 

Connected to a bonded master 

Connection 3634 is now encrypted 

A new pairing has replaced the old key 

Disconnected 3634 

 

Exiting... 

Expected Output (When no connection made): 

Adverts Started 

Press any key to exit 

 

Advert stopped via timeout 

Exiting... 



https://www.lairdconnect.com/ 81 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

This event is thrown when there is a BLE disconnection. It comes with two parameters: 

▪ Connection handle 

▪ The reason for the disconnection 

The reason, for example, can be 0x08 which signifies a link connection supervision timeout which is used in the Proximity 
Profile.   

A full list of Bluetooth HCI result codes for the reason of disconnection is provided in this document here. 

Example: 

// Example :: EvDiscon.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 DIM addr$ : addr$="" 

 

 FUNCTION HndlrBleMsg(BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER)  

     IF nMsgID==0 THEN 

         PRINT "\nNew Connection ";nCtx 

     ENDIF 

 ENDFUNC 1 

 

 FUNCTION Btn0Press() 

     PRINT "\nExiting..." 

 ENDFUNC 0 

 

 FUNCTION HndlrDiscon(BYVAL hConn AS INTEGER, BYVAL nRsn AS INTEGER) AS INTEGER 

     PRINT "\nConnection ";hConn;" Closed: 0x";nRsn   

 ENDFUNC 0 

 

 ONEVENT EVBLEMSG    CALL HndlrBleMsg 

 ONEVENT EVDISCON    CALL HndlrDiscon 

 

 // start adverts 

 IF BleAdvertStart(0,addr$,100,10000,0)==0 THEN 

     PRINT "\nAdverts Started\n" 

 ELSE 

     PRINT "\n\nAdvertisement not successful" 

 ENDIF   

 

 WAITEVENT 

Expected Output: 

Adverts Started 

 

New Connection 2915 

Connection 2915 Closed: 0x19 



https://www.lairdconnect.com/ 82 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

This event is thrown when a characteristic is written to by a remote GATT client. It comes with three parameters: 

▪ Char Handle – Characteristic handle that was returned when the characteristic was registered using the function 
BleCharCommit() 

▪ Offset – Offset 

▪ Length – Length of the data from the characteristic value 

 

This event is thrown when the remote device writes to a characteristic value. It differs from EVCHARVAL in that the event 
contains the parameters including the connection handle and the string data. If the write operation is performed on a 
characteristic that requires authorisation, then EVAUTHVAL is thrown instead and the user should then authorize and read the 
value.  

If the event is thrown with an empty string but the length has a non-zero value, then this indicates that there was not enough 
memory to allocate to the event. 

The event comes with the following parameters: 

▪ Connection Handle – The handle of the connection that wrote to the characteristic value. 

▪ Char Handle – Characteristic handle that was returned when the characteristic was registered using the function 
BleCharCommit() 

▪ Offset – The offset at which the characteristic data was written. 

▪ Length – The length of the data that was written. This should be equal to StrLen$(Data$), and can be used to detect if 
there was any data loss. 

▪ Data$ – The string data that was written to the characteristic. 

Example: 

// Example :: EvCharVal.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

DIM hMyChar,rc,at$,conHndl 

 

//============================================================================== 

// Initialise and instantiate service, characteristic, start adverts 

//============================================================================== 

FUNCTION OnStartup() 

    DIM rc, hSvc, attr$, adRpt$, addr$, scRpt$ : attr$="Hi" 

     

    //commit service 

    rc=BleServiceNew(1, BleHandleUuid16(0x18EE), hSvc) 

    //initialise char, write/read enabled, accept signed writes 

    rc=BleCharNew(0x0A,BleHandleUuid16(1),BleAttrMetaData(1,1,20,0,rc),0,0)      

    //commit char initialised above, with initial value "hi" to service 'hSvc' 

    rc=BleCharCommit(hSvc,attr$,hMyChar) 

    //commit changes to service 

    rc=BleServiceCommit(hSvc) 

    rc=BleScanRptInit(scRpt$)  

    //Add 1 service handle to scan report 

    //rc=BleAdvRptAddUuid16(scRpt$,0x18EE,-1,-1,-1,-1,-1) 

    //commit reports to GATT table - adRpt$ is empty 

    rc=BleAdvRptsCommit(adRpt$,scRpt$) 

    rc=BleAdvertStart(0,addr$,20,300000,0) 

ENDFUNC rc 

 

//============================================================================== 

// Close connections so that we can run another app without problems 

//============================================================================== 

SUB CloseConnections() 



https://www.lairdconnect.com/ 83 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

    rc=BleDisconnect(conHndl) 

    rc=BleAdvertStop() 

ENDSUB 

 

//============================================================================== 

// Ble event handler 

//============================================================================== 

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)  

    conHndl=nCtx 

    IF nMsgID==1 THEN 

        PRINT "\n\n--- Disconnected from client" 

        EXITFUNC 0 

    ELSEIF nMsgID==0 THEN 

        PRINT "\n--- Connected to client" 

    ENDIF 

ENDFUNC 1 

 

//============================================================================== 

// New char value handler – Thrown when AT+CFG 213=0 

//============================================================================== 

FUNCTION HandlerCharVal(BYVAL charHandle, BYVAL offset, BYVAL len)  

    DIM s$ 

    IF charHandle == hMyChar THEN 

        PRINT "\n";len;" byte(s) have been written to char value attribute from offset 

";offset 

         

        rc=BleCharValueRead(hMyChar,s$) 

        PRINT "\nNew Char Value: ";s$ 

    ENDIF 

    CloseConnections() 

ENDFUNC 1 

 

//============================================================================== 

// New char value handler – Thrown when AT+CFG 213=1 

//============================================================================== 

FUNCTION HandlerCharValue(BYVAL nConnHandle, BYVAL charHandle, BYVAL offset, BYVAL len, 

BYVAL Data$) 

    DIM s$ 

    IF charHandle == hMyChar THEN 

        PRINT "\n";len;" byte(s) have been written to char value attribute from offset 

";offset 

        PRINT "\nData written is :";Data$ PRINT "\nData written is :";Data$;" - Connection 
Handle=";integer.h' nConnHandle 

 

         

        rc=BleCharValueRead(hMyChar,s$) 

        PRINT "\nNew Char Value: ";s$ 

    ENDIF 

    CloseConnections() 

ENDFUNC 1 

 

ONEVENT  EVCHARVAL   CALL HandlerCharVal    // This event is thrown if AT+CFG 213 = 0 

ONEVENT  EVCHARVALUE CALL HandlerCharValue  // This event is thrown if AT+CFG 213 = 1 

ONEVENT  EVBLEMSG    CALL HndlrBleMsg 

 

IF OnStartup()==0 THEN 

    rc = BleCharValueRead(hMyChar,at$) 

    PRINT "\nThe characteristic's value is ";at$ 

    PRINT "\nWrite a new value to the characteristic\n" 

ELSE 

    PRINT "\nFailure OnStartup" 



https://www.lairdconnect.com/ 84 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

ENDIF 

 

WAITEVENT 

 

PRINT "\nExiting..." 

 

Expected Output (AT+CFG 213=0): 

The characteristic’s value is Hi 

Write a new value to the characteristic 

 

--- Connected to client 

5 byte(s) have been written to char value attribute from offset 0 

New Char Value: Hello 

 

--- Disconnected from client 

Exiting... 

Expected Output (AT+CFG 213=1): 

The characteristic’s value is Hi 

Write a new value to the characteristic 

 

--- Connected to client 

5 byte(s) have been written to char value attribute from offset 0 

Data written is :hello – Connection Handle=0001FF00 

 

New Char Value: Hello 

 

--- Disconnected from client 

Exiting... 

 

This event is thrown when a value sent via an indication to a client gets acknowledged. It comes with one parameter:  

▪ The characteristic handle that was returned when the characteristic was registered using the function BleCharCommit() 

Example: 

// Example :: EVCHARHVC charHandle 

// See example that is provided for EVCHARCCCD 

 

This event is thrown when the client writes to the CCCD descriptor of a characteristic. It comes with two parameters: 

▪ The characteristic handle returned when the characteristic was registered with BleCharCommit() 

▪ The new 16-bit value in the updated CCCD attribute 

Example: 

// Example :: EvCharCccd.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 DIM hMyChar,rc,at$,conHndl 

 

 //============================================================================== 

 // Initialise and instantiate service, characteristic, start adverts 



https://www.lairdconnect.com/ 85 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 //============================================================================== 

 FUNCTION OnStartup() 

     DIM rc, hSvc, metaSuccess, at$, attr$, adRpt$, addr$, scRpt$   

     attr$="Hi" 

     DIM svcUuid : svcUuid=0x18EE 

     DIM charUuid : charUuid = BleHandleUuid16(1) 

     DIM charMet : charMet = BleAttrMetaData(0,0,20,1,metaSuccess) 

     DIM hSvcUuid : hSvcUuid = BleHandleUuid16(svcUuid) 

     DIM mdCccd : mdCccd = BleAttrMetadata(1,1,2,0,rc)   //CCCD metadata for char 

      

     //Create service 

     rc=BleServiceNew(1,hSvcUuid,hSvc)  

      

     //initialise char, write/read enabled, accept signed writes, indicatable 

     rc=BleCharNew(0x20,charUuid,charMet,mdCccd,0)   

      

     //commit char initialised above, with initial value "hi" to service 'hMyChar' 

     rc=BleCharCommit(hSvc,attr$,hMyChar) 

      

     //commit service to GATT table 

     rc=BleServiceCommit(hSvc) 

 

     rc=BleAdvertStart(0,addr$,20,300000,0) 

 ENDFUNC rc 

 

 //============================================================================== 

 // Close connections so that we can run another app without problems 

 //============================================================================== 

 SUB CloseConnections() 

     rc=BleDisconnect(conHndl) 

     rc=BleAdvertStop() 

     rc=GpioUnbindEvent(1) 

 ENDSUB 

 

 //============================================================================== 

 // Ble event handler 

 //============================================================================== 

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)  

     conHndl=nCtx 

     IF nMsgID==1 THEN 



https://www.lairdconnect.com/ 86 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

         PRINT "\n\n--- Disconnected from client" 

         EXITFUNC 0 

     ELSEIF nMsgID==0 THEN 

         PRINT "\n--- Connected to client" 

     ENDIF 

 ENDFUNC 1 

 

 //============================================================================== 

 // Indication acknowledgement from client handler 

 //============================================================================== 

 FUNCTION HndlrCharHvc(BYVAL charHandle AS INTEGER) AS INTEGER  

     IF charHandle == hMyChar THEN 

         PRINT "\nGot confirmation of recent indication" 

     ELSE 

         PRINT "\nGot confirmation of some other indication: ";charHandle 

     ENDIF 

 ENDFUNC 1 

 

 //============================================================================== 

 // Called when data received via the UART 

 //============================================================================== 

 FUNCTION HndlrUartRx() AS INTEGER 

 ENDFUNC 0 

 

 //============================================================================== 

 // CCCD descriptor written handler 

 //============================================================================== 

 FUNCTION HndlrCharCccd(BYVAL charHandle, BYVAL nVal) AS INTEGER 

     DIM value$ 

     IF charHandle==hMyChar THEN 

         IF nVal & 0x02 THEN 

             PRINT "\nIndications have been enabled by client" 

             value$="hello"  

             IF BleCharValueIndicate(hMyChar,value$)!=0 THEN 

                 PRINT "\nFailed to indicate new value" 

             ENDIF 

         ELSE 

             PRINT "\nIndications have been disabled by client" 

         ENDIF 

     ELSE 



https://www.lairdconnect.com/ 87 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

         PRINT "\nThis is for some other characteristic" 

     ENDIF 

 ENDFUNC 1 

 

 ONEVENT  EVBLEMSG    CALL HndlrBleMsg 

 ONEVENT  EVCHARHVC   CALL HndlrCharHvc 

 ONEVENT  EVCHARCCCD  CALL HndlrCharCccd 

 ONEVENT  EVUARTRX    CALL HndlrUartRx 

 

 IF OnStartup()==0 THEN 

     rc = BleCharValueRead(hMyChar,at$) 

     PRINT "\nValue of the characteristic ";hMyChar;" is: ";at$ 

     PRINT "\nYou can write to the CCCD characteristic." 

     PRINT "\nThe BL654 will then indicate a new characteristic value\n" 

     PRINT "\n--- Press any key to exit" 

 ELSE 

     PRINT "\nFailure OnStartup" 

 ENDIF 

 

 WAITEVENT 

 

 CloseConnections() 

 

 PRINT "\nExiting..." 

Expected Output: 

Value of the characteristic 1346437121 is: Hi 

You can write to the CCCD characteristic. 

The BL654 will then indicate a new characteristic value 

 

--- Press any key to exit 

--- Connected to client 

Indications have been enabled by client 

Got confirmation of recent indication 

Exiting... 

 

This event is thrown when the client writes to the SCCD descriptor of a characteristic. It comes with two parameters: 

▪ The characteristic handle that is returned when the characteristic is registered using the function BleCharCommit() 

▪ The new 16-bit value in the updated SCCD attribute  

The SCCD is used to manage broadcasts of characteristic values. 

Example: 

// Example :: EvCharSccd.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 



https://www.lairdconnect.com/ 88 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

 DIM hMyChar,rc,chVal$,conHndl 

 

 //============================================================================== 

 // Initialise and instantiate service, characteristic, start adverts 

 //============================================================================== 

 FUNCTION OnStartup() 

     DIM rc, hSvc, attr$, adRpt$, addr$, scRpt$  ,rc2 

     attr$="Hi" 

     DIM charMet : charMet = BleAttrMetaData(1,1,20,1,rc) 

     

     //Create service 

     rc=BleServiceNew(1,BleHandleUuid16(0x18EE),hSvc)     

     

     //initialise broadcast capable, readable, writeable 

     rc=BleCharNew(0x0B,BleHandleUuid16(1),charMet,0,BleAttrMetadata(1,1,1,0,rc2)) 

     

     //commit char initialised above, with initial value "hi" to service 'hMyChar' 

     rc=BleCharCommit(hSvc,attr$,hMyChar) 

     

     //commit service to GATT table 

     rc=BleServiceCommit(hSvc) 

 

     rc=BleAdvertStart(0,addr$,20,300000,0) 

 ENDFUNC rc 

 

 //============================================================================== 

 // Close connections so that we can run another app without problems 

 //============================================================================== 

 SUB CloseConnections() 

     rc=BleDisconnect(conHndl) 

     rc=BleAdvertStop() 

     rc=GpioUnbindEvent(1) 

 ENDSUB 

 

 //============================================================================== 

 // Broadcast characterstic value 

 //============================================================================== 

 FUNCTION PrepAdvReport() 



https://www.lairdconnect.com/ 89 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

     dim adRpt$, scRpt$, svcDta$ 

     

     //initialise new advert report 

     rc=BleAdvRptinit(adRpt$, 2, 0, 0) 

     

     //encode service UUID into service data string 

     rc=BleEncode16(svcDta$, 0x18EE, 0) 

     

     //append characteristic value 

     svcDta$ = svcDta$ + chVal$ 

     

     //append service data to advert report 

     rc=BleAdvRptAppendAD(adRpt$, 0x16, svcDta$) 

     

     //commit new advert report, and empty scan report 

     rc=BleAdvRptsCommit(adRpt$, scRpt$) 

 ENDFUNC rc 

 

 //============================================================================== 

 // Reset advert report 

 //============================================================================== 

 FUNCTION ResetAdvReport()   

     dim adRpt$, scRpt$ 

     

     //initialise new advert report 

     rc=BleAdvRptinit(adRpt$, 2, 0, 20) 

     

     //commit new advert report, and empty scan report 

     rc=BleAdvRptsCommit(adRpt$, scRpt$) 

 ENDFUNC rc 

     

 //============================================================================== 

 // Ble event handler 

 //============================================================================== 

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)  

     conHndl=nCtx 

     IF nMsgID==1 THEN 

         PRINT "\n\n--- Disconnected from client" 

         dim addr$ 



https://www.lairdconnect.com/ 90 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

         rc=BleAdvertStart(0,addr$,20,300000,0) 

         IF rc==0 THEN 

             PRINT "\nYou should now see the new characteristic value in the advertisment 

data" 

         ENDIF 

     ELSEIF nMsgID==0 THEN 

         PRINT "\n--- Connected to client" 

     ENDIF 

 ENDFUNC 1 

 

 //============================================================================== 

 // Called when data arrives via UART 

 //============================================================================== 

 FUNCTION HndlrUartRx() 

 ENDFUNC 0 

 

 //============================================================================== 

 // CCCD descriptor written handler 

 //============================================================================== 

 FUNCTION HndlrCharSccd(BYVAL charHandle, BYVAL nVal) AS INTEGER 

     DIM value$ 

     IF charHandle==hMyChar THEN 

         IF nVal & 0x01 THEN 

             PRINT "\nBroadcasts have been enabled by client"  

             IF PrepAdvReport()==0 THEN 

                 rc=BleDisconnect(conHndl) 

                 PRINT "\nDisconnecting..." 

             ELSE 

                 PRINT "\nError Committing advert reports: ";integer.h'rc 

             ENDIF 

         ELSE 

             PRINT "\nBroadcasts have been disabled by client" 

             IF ResetAdvReport()==0 THEN 

                 PRINT "\nAdvert reports reset" 

             ELSE 

                 PRINT "\nError Resetting advert reports: ";integer.h'rc 

             ENDIF 

         ENDIF 

     ELSE 



https://www.lairdconnect.com/ 91 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

         PRINT "\nThis is for some other characteristic" 

     ENDIF 

 ENDFUNC 1 

 

 //============================================================================== 

 // New char value handler 

 //============================================================================== 

 FUNCTION HndlrCharVal(BYVAL charHandle, BYVAL offset, BYVAL len)  

     DIM s$ 

     IF charHandle == hMyChar THEN         

         rc=BleCharValueRead(hMyChar,chVal$) 

         PRINT "\nNew Char Value: ";chVal$ 

     ENDIF     

 ENDFUNC 1 

 

 //============================================================================== 

 // Called after a disconnection 

 //============================================================================== 

 FUNCTION HndlrDiscon(hConn, nRsn) 

     dim addr$ 

     rc=BleAdvertStart(0,addr$,20,300000,0) 

 ENDFUNC 1 

 

 ONEVENT  EVBLEMSG    CALL HndlrBleMsg 

 ONEVENT  EVCHARSCCD  CALL HndlrCharSccd 

 ONEVENT  EVUARTRX    CALL HndlrUartRx 

 ONEVENT  EVCHARVAL   CALL HndlrCharVal 

 ONEVENT  EVDISCON    CALL HndlrDiscon 

 

 IF OnStartup()==0 THEN 

     rc = BleCharValueRead(hMyChar,chVal$) 

     PRINT "\nCharacteristic Value: ";chVal$ 

     PRINT "\nWrite a new value to the characteristic, then enable broadcasting.\nThe 

module will then disconnect and broadcast the new characteristic value." 

     PRINT "\n--- Press any key to exit\n" 

 ELSE 

     PRINT "\nFailure OnStartup" 

 ENDIF 

 



https://www.lairdconnect.com/ 92 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 WAITEVENT 

 

 CloseConnections() 

 

 PRINT "\nExiting..." 

Expected Output: 

Characteristic Value: Hi 

Write a new value to the characteristic, then enable broadcasting. 

The module will then disconnect and broadcast the new characteristic value. 

--- Press any key to exit 

 

--- Connected to client 

New Char Value: hello 

Broadcasts have been enabled by client 

Disconnecting... 

 

--- Disconnected from client 

You should now see the new characteristic value in the advertisment data 

Exiting... 

 

This event is thrown when the client writes to a writable descriptor of a characteristic which is not a CCCD or SCCD (they are 
catered for with their own dedicated messages). It comes with two parameters:  

▪ Thee characteristic handle that was returned when the characteristic was registered using the function BleCharCommit() 

▪ An index into an opaque array of handles managed inside the characteristic handle. Both parameters are supplied as-is 
as the first two parameters to the function BleCharDescRead(). 

Example: 

// Example :: EvCharDesc.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 DIM hMyChar,rc,at$,conHndl, hOtherDescr 

 

 //============================================================================== 

 // Initialise and instantiate service, characteristic, start adverts 

 //============================================================================== 

 FUNCTION OnStartup$() 

     DIM rc, hSvc, at$, adRpt$, addr$, scRpt$, hOtherDscr,attr$, attr2$, rc2 

     attr$="Hi" 

     DIM charMet : charMet = BleAttrMetaData(1,0,20,0,rc) 

     

     //Commit svc with handle 'hSvcUuid' 

     rc=BleServiceNew(1,BleHandleUuid16(0x18EE),hSvc)             

     //initialise characteristic - readable 

     rc=BleCharNew(0x02,BleHandleUuid16(1),charMet,0,0)    

     

     //Add user descriptor - variable length 



https://www.lairdconnect.com/ 93 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

     attr$="my char desc" 

     rc=BleCharDescUserDesc(attr$,BleAttrMetadata(1,1,20,1,rc2)) 

     

     //commit char initialised above, with initial value "char value" to service 'hSvc' 

     attr2$="char value" 

     rc=BleCharCommit(hSvc,attr2$,hMyChar) 

     

     //commit service to GATT table 

     rc=BleServiceCommit(hSvc) 

 

     rc=BleAdvertStart(0,addr$,20,300000,0) 

 ENDFUNC attr$ 

 

 //============================================================================== 

 // Close connections so that we can run another app without problems 

 //============================================================================== 

 SUB CloseConnections() 

     rc=BleDisconnect(conHndl) 

     rc=BleAdvertStop() 

     rc=GpioUnbindEvent(1) 

 ENDSUB 

 

 //============================================================================== 

 // Ble event handler 

 //============================================================================== 

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)  

     conHndl=nCtx 

     IF nMsgID==1 THEN 

         PRINT "\n\n--- Disconnected from client" 

         EXITFUNC 0 

     ELSEIF nMsgID==0 THEN 

         PRINT "\n--- Connected to client" 

     ENDIF 

 ENDFUNC 1 

 

 //============================================================================== 

 // Called when data arrives via UART 

 //============================================================================== 

 FUNCTION HndlrUartRx() 

 ENDFUNC 0 

 

 //============================================================================== 

 // Client has written to writeable descriptor 



https://www.lairdconnect.com/ 94 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 //============================================================================== 

 FUNCTION HndlrCharDesc(BYVAL hChar AS INTEGER, BYVAL hDesc AS INTEGER) AS INTEGER 

     dim duid,a$,rc 

     IF hChar == hMyChar THEN 

         rc = BleCharDescRead(hChar,hDesc,0,20,duid,a$) 

         IF rc ==0 THEN  

             PRINT "\nNew value for desriptor ";hDesc;" with uuid ";integer.h'duid;" is 

";a$ 

         ELSE 

             PRINT "\nCould not read the descriptor value" 

         ENDIF 

     ELSE 

         PRINT "\nThis is for some other characteristic" 

     ENDIF 

 ENDFUNC 1 

  

 ONEVENT  EVBLEMSG    CALL HndlrBleMsg 

 ONEVENT  EVCHARDESC  CALL HndlrCharDesc 

 ONEVENT  EVUARTRX    CALL HndlrUartRx 

  

 PRINT "\nOther Descriptor Value: ";OnStartup$() 

 PRINT "\nWrite a new value \n--- Press any key to exit\n" 

 

 WAITEVENT 

 

 CloseConnections() 

 

 PRINT "\nExiting..." 

Expected Output: 

Other Descriptor Value: my char desc 

Write a new value  

--- Press any key to exit 

 

--- Connected to client 

New value for desriptor 0 with uuid FE012901 is hello 

 

This event is thrown instead of EVCHARVAL when a characteristic with read and/or write authorisation is being read or 
written to by a remote GATT client. It comes with three parameters: 

• Connection handle – The connection handle of the GATT client  

• Char handle –The characteristic handle that was returned when the characteristic was registered using the function 
BleCharCommit()  

• ReadWrite –Will be 0x00000000 when this is a read attempt and 0x00010000 when write attempt 

Call BleAuthorizeChar() to either grant or deny access. 



https://www.lairdconnect.com/ 95 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

If this a write attempt and access is granted then as soon as the function BleAuthoriseChar() returns the new value is ready to 
be read using BleCharValueRead(). 

Note:  When a characteristic requires authentication and the remote device reads from it or writes to it using the 

WRITE_CMD (write without response), the event EVAUTHVALEX is thrown instead. The user should therefore 

have both EVAUTHVAL and EVAUTHVALEX events in their app and service the events appropriately. See the 

example below for more information. 

 

This event is thrown when the remote device writes to a characteristic value that requires authentication using the 
WRITE_CMD (write without response) command. You should then write the data using BleCharValueWriteEx at the app layer, 
otherwise the value is not updated. If the event is thrown with an empty string but the length has a non-zero value, this 
indicates that there was not enough memory to allocate to the event. The event comes with the following parameters: 

• Connection handle – The connection handle of the GATT client  

• Char handle –The characteristic handle that was returned when the characteristic was registered using the function 
BleCharCommit()  

• Offset – The offset of the characteristic at which the remote is attempting to write. 

• Length – The length of the data that the remote is attempting to write. This should be equal to StrLen$(Data$) and can 
be used to verify that no data loss has occurred. 

• Data$ – The string data that the remote device is attempting to write. 

Note:  When a characteristic requires authentication and the remote device reads from it or writes to it using a noramal 

WRITE, the event EVAUTHVAL is thrown instead. You should therefore have both EVAUTHVAL and 

EVAUTHVALEX events in their app and service the events appropriately. See the example below for more 

information. 

Example: 

// Example :: EvAuthVal.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

DIM hMyChar,rc,at$,conHndl 

 

//------------------------------------------------------------------------------ 

// Initialise and instantiate service, characteristic, start adverts 

//------------------------------------------------------------------------------ 

FUNCTION OnStartup() 

    DIM rc, hSvc, attr$, adRpt$, addr$, scRpt$ : attr$="Hi" 

     

    //Commit service 

    rc=BleServiceNew(1,BleHandleUuid16(0x18EE),hSvc)             

    //Initialise char, write/read enabled, accept signed writes 

    rc=BleCharNew(0x0A,BleHandleUuid16(1),BleAttrMetaDataex(1,1,20,8,rc),0,0)      

    //Commit char initialised above, with initial value "hi" to service 'hSvc' 

    rc=BleCharCommit(hSvc,attr$,hMyChar) 

    //Commit changes to the service 

    rc=BleServiceCommit(hSvc) 

    rc=BleScanRptInit(scRpt$)  

    //Add 1 service handle to scan report 

    //rc=BleAdvRptAddUuid16(scRpt$,hSvc,-1,-1,-1,-1,-1) 

    //Commit reports to GATT table - adRpt$ is empty 

    rc=BleAdvRptsCommit(adRpt$,scRpt$) 

    rc=BleAdvertStart(0,addr$,20,300000,0) 

ENDFUNC rc 

 

//------------------------------------------------------------------------------ 



https://www.lairdconnect.com/ 96 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

// Close connections so that we can run another app without problems 

//------------------------------------------------------------------------------ 

SUB CloseConnections() 

    rc=BleDisconnect(conHndl) 

    rc=BleAdvertStop() 

ENDSUB 

 

//------------------------------------------------------------------------------ 

// Ble event handler 

//------------------------------------------------------------------------------ 

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)  

    conHndl=nCtx 

    IF nMsgID==1 THEN 

        PRINT "\n\n--- Disconnected from client" 

        EXITFUNC 0 

    ELSEIF nMsgID==0 THEN 

        PRINT "\n--- Connected to client" 

    ENDIF 

ENDFUNC 1 

 

//------------------------------------------------------------------------------ 

// AUTHVAL - The remote has written to the characteristic using WRITE (write with response) 

//------------------------------------------------------------------------------ 

FUNCTION HndlrAuthVal(BYVAL connHandle, BYVAL charHandle, BYVAL readWrite)  

    DIM s$ 

    IF charHandle == hMyChar THEN 

        IF readWrite!=0 THEN 

            rc=BleAuthorizeChar(connHandle, charHandle, 3)  //Grant access 

            rc=BleCharValueRead(hMyChar,s$) 

            PRINT "\nAuthenticated char written using Write with response." 

            PRINT "\nNew Char Value: ";s$ 

        ENDIF 

    ENDIF 

ENDFUNC 1 

 

//------------------------------------------------------------------------------ 

// AUTHVALEX - The remote has written to the characteristic using WRITE_CMD (write without 

response) 

//------------------------------------------------------------------------------ 

FUNCTION HndlrAuthValEx(BYVAL connHandle, BYVAL charHandle, BYVAL offset, BYVAL length, 

BYVAL data$ AS STRING)  

    DIM s$ 

    IF charHandle == hMyChar THEN 

        // We are OK with this connection handle, so write the characteristic 

        rc = BleCharValueWriteEx(charHandle, offset, data$) 

        rc=BleCharValueRead(hMyChar,s$) 

        PRINT "\nAuthenticated char written using Write without response." 

        PRINT "\nNew Char Value: ";s$ 

    ENDIF 

ENDFUNC 1 

 

//------------------------------------------------------------------------------ 

// Enable synchronous event handlers 

//------------------------------------------------------------------------------ 

ONEVENT  EVBLEMSG       CALL HndlrBleMsg 

ONEVENT  EVAUTHVAL      CALL HndlrAuthVal 

ONEVENT  EVAUTHVALEX    CALL HndlrAuthValEx 

 

IF OnStartup()==0 THEN 

    rc = BleCharValueRead(hMyChar,at$) 

    PRINT "\nThe characteristic's value is ";at$ 

    PRINT "\nWrite a new value to the characteristic\n" 



https://www.lairdconnect.com/ 97 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

ELSE 

    PRINT "\nFailure OnStartup" 

ENDIF 

 

WAITEVENT 

 

Expected Output: 

The characteristic's value is Hi 

Write a new value to the characteristic 

--- Connected to client 

Authenticated char written using Write with response. 

New Char Value: "Test" 

Authenticated char written using Write without response. 

New Char Value: "Test" 

 

This event is thrown instead of EVCHARCCCD when a CCCD descriptor of a characterisic with read and/or write 
authorisation is being read or written to by a remote GATT client. It comes with following three parameters: 

• The connection handle of the Gatt client  

• The characteristic handle returned when the characteristic was registered with BleCharCommit() 

• Is 0x00000000 when this is a read attempt and 0x0001HHHH when write attempt where the new 16-bit value to be 
written is 0xHHHH 

Call BleAuthorizeDesc() to either grant or deny access. 

If this is a write attempt and access is granted, as soon as the function BleAuthoriseDesc() returns, the new value 0xHHHH is 
assumed to be written to the descriptor. 

Example: 

// Example :: EvAuthCccd.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 

DIM hMyChar,rc,at$,conHndl 

 

//============================================================================== 

// Initialise and instantiate service, characteristic, start adverts 

//============================================================================== 

FUNCTION OnStartup() 

    DIM rc, hSvc, metaSuccess, at$, attr$, adRpt$, addr$, scRpt$   

    attr$="Hi" 

    DIM svcUuid : svcUuid=0x18EE 

    DIM charUuid : charUuid = BleHandleUuid16(1) 

    DIM charMet : charMet = BleAttrMetaDataex(1,1,20,0,metaSuccess) 

    DIM hSvcUuid : hSvcUuid = BleHandleUuid16(svcUuid) 

    DIM mdCccd : mdCccd = BleAttrMetadataex(1,1,2,8,rc)   //CCCD metadata for char, write 

auth 

     

    //Commit svc with handle 'hSvcUuid' 

    rc=BleServiceNew(1, BleHandleUuid16(svcUuid), hSvc)            

    //Initialise char, write/read enabled, accept signed writes, indicatable 

    rc=BleCharNew(0x6A,charUuid,charMet,mdCccd,0)      

    //Commit char initialised above, with initial value "hi" to service 'hMyChar' 

    rc=BleCharCommit(hSvc,attr$,hMyChar) 

    rc=BleServiceCommit(hSvc) 

    rc=BleScanRptInit(scRpt$)  

    //Add 1 service handle to scan report 



https://www.lairdconnect.com/ 98 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

    rc=BleAdvRptAddUuid16(scRpt$,hSvc,-1,-1,-1,-1,-1) 

    //Commit reports to GATT table - adRpt$ is empty 

    rc=BleAdvRptsCommit(adRpt$,scRpt$) 

    rc=BleAdvertStart(0,addr$,20,300000,0) 

    rc=GpioBindEvent(1,16,1)     //Channel 1, bind to low transition on GPIO pin 16 

ENDFUNC rc 

 

//============================================================================== 

// Close connections so that we can run another app without problems 

//============================================================================== 

SUB CloseConnections() 

    rc=BleDisconnect(conHndl) 

    rc=BleAdvertStop() 

    rc=GpioUnbindEvent(1) 

ENDSUB 

 

//============================================================================== 

// Ble event handler 

//============================================================================== 

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)  

    conHndl=nCtx 

    IF nMsgID==1 THEN 

        PRINT "\n\n--- Disconnected from client" 

        EXITFUNC 0 

    ELSEIF nMsgID==0 THEN 

        PRINT "\n--- Connected to client" 

    ENDIF 

ENDFUNC 1 

 

//============================================================================== 

// Indication acknowledgement from client handler 

//============================================================================== 

FUNCTION HndlrCharHvc(BYVAL charHandle AS INTEGER) AS INTEGER  

  IF charHandle == hMyChar THEN 

    PRINT "\nGot confirmation of recent indication" 

  ELSE 

        PRINT "\nGot confirmation of some other indication: ";charHandle 

    ENDIF 

ENDFUNC 1 

 

//============================================================================== 

// Handler to service button 0 pressed 

//============================================================================== 

FUNCTION HndlrBtn0Pr() AS INTEGER 

    CloseConnections() 

ENDFUNC 1 

 

//============================================================================== 

// CCCD descriptor authorisation 

//============================================================================== 

FUNCTION HndlrAuthCccd(BYVAL connHandle,BYVAL charHandle, BYVAL readWrite) AS INTEGER 

    DIM value$ 

 

    IF charHandle==hMyChar THEN 

        IF readWrite != 0x0 THEN 

 

            rc=BleAuthorizeDesc(connHandle,charHandle, -1 ,3)  //grant access 

            IF readWrite == 0x10002 THEN 

                PRINT "\nSending indication..." 

                value$="hello"   

                IF BleCharValueIndicate(hMyChar,value$)!=0 THEN 

                    PRINT "\nFailed to indicate new value" 



https://www.lairdconnect.com/ 99 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

                ENDIF 

            ELSE 

                PRINT "\nIndications were disabled" 

            ENDIF 

        ENDIF 

    ELSE 

        PRINT "\nThis is for some other characteristic" 

    ENDIF 

ENDFUNC 1 

 

ONEVENT  EVBLEMSG    CALL HndlrBleMsg 

ONEVENT  EVCHARHVC   CALL HndlrCharHvc 

ONEVENT  EVAUTHCCCD  CALL HndlrAuthCccd 

ONEVENT  EVGPIOCHAN1 CALL HndlrBtn0Pr  

 

IF OnStartup()==0 THEN 

    rc = BleCharValueRead(hMyChar,at$) 

    PRINT "\nValue of the characteristic ";hMyChar;" is: ";at$ 

    PRINT "\nYou can write to the CCCD characteristic." 

    PRINT "\nThe BL654 will then indicate a new characteristic value\n" 

    PRINT "\n--- Press button 0 to exit" 

ELSE 

    PRINT "\nFailure OnStartup" 

ENDIF 

 

WAITEVENT 

 

PRINT "\nExiting..." 

Expected Output: 

Value of the characteristic 1818531328 is: Hi 

You can write to the CCCD characteristic. 

The BL654 will then indicate a new characteristic value 

 

--- Press button 0 to exit 

--- Connected to client 

Sending indication... 

Got confirmation of recent indication 

 

This event is thrown instead of EVCHARSCCD when a SCCD descriptor of a characterisic with read and/or write 
authorisation is being read or written to by a remote GATT client. It comes with the following three paramenters 

▪ The connection handle of the Gatt client  

▪ The characteristic handle returned when the characteristic was registered with BleCharCommit() 

▪ Is 0x00000000 when this is a read attempt and 0x0001HHHH when it’s a write attempt where the new 16-bit value to be 
written is 0xHHHH 

Call BleAuthorizeDesc() to either grant or deny access. 

If this a write attempt and access is granted then as soon as the function BleAuthoriseDesc() returns the new value 0xHHHH is 
assumed to be written to the descriptor. 

The SCCD is used to manage broadcasts of characteristic values. 

Example: 

// Example :: EvAuthSccd.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

DIM hMyChar,rc,at$,conHndl 

 



https://www.lairdconnect.com/ 100 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

//============================================================================== 

// Initialise and instantiate service, characteristic, start adverts 

//============================================================================== 

FUNCTION OnStartup() 

    DIM rc, hSvc, at$, attr$, adRpt$, addr$, scRpt$ , rc2   

    attr$="Hi" 

    DIM charMet : charMet = BleAttrMetaDataex(1,1,20,0,rc) 

 

    //Commit svc with handle 'hSvcUuid' 

    rc=BleServiceNew(1,BleHandleUuid16(0x18EE),hSvc)             

    //Initialise char, read enabled, accept signed writes, broadcast capable 

    rc=BleCharNew(0x4B,BleHandleUuid16(1),charMet,0,BleAttrMetadataex(1,1,2,8,rc2)) 

    //Commit char initialised above, with initial value "hi" to service 'hMyChar' 

    rc=BleCharCommit(hSvc,attr$,hMyChar) 

    //Commit svc 

    rc=BleServiceCommit(hSvc) 

 

    rc=BleAdvRptInit(adRpt$,0x02,0,20)  

    //Add 'hSvc' and 'hMyChar' to the advert report 

    rc=BleAdvRptAddUuid16(adRpt$,hSvc,hMyChar,-1,-1,-1,-1) 

    //Commit reports to GATT table - adRpt$ is empty 

    rc=BleAdvRptsCommit(adRpt$,scRpt$) 

    rc=BleAdvertStart(0,addr$,20,300000,0) 

    rc=GpioBindEvent(1,16,1)     //Channel 1, bind to low transition on GPIO pin 16 

ENDFUNC rc 

 

//============================================================================== 

// Close connections so that we can run another app without problems 

//============================================================================== 

SUB CloseConnections() 

    rc=BleDisconnect(conHndl) 

    rc=BleAdvertStop() 

    rc=GpioUnbindEvent(1) 

ENDSUB 

 

//============================================================================== 

// Ble event handler 

//============================================================================== 

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)  

    conHndl=nCtx 

    IF nMsgID==1 THEN 

        PRINT "\n\n--- Disconnected from client" 

        EXITFUNC 0 

    ELSEIF nMsgID==0 THEN 

        PRINT "\n--- Connected to client" 

    ENDIF 

ENDFUNC 1 

 

//============================================================================== 

//handler to service button 0 pressed 

//============================================================================== 

FUNCTION HndlrBtn0Pr() AS INTEGER 

    CloseConnections() 

ENDFUNC 1 

 

//============================================================================== 

// CCCD descriptor written handler 

//============================================================================== 

FUNCTION HndlrAuthSccd(BYVAL connHandle,BYVAL charHandle, BYVAL readWrite) AS INTEGER 

    DIM value$ 

 

    IF charHandle==hMyChar THEN 



https://www.lairdconnect.com/ 101 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

        IF readWrite != 0x0 THEN 

            rc=BleAuthorizeDesc(connHandle,charHandle, -2 ,3)  //grant access 

            if readWrite == 0x10000 then 

                PRINT "\nBroadcasts have been disabled by client" 

            ELSE 

                PRINT "\nBroadcasts have been enabled by client" 

            endif 

        ENDIF 

    ELSE 

        PRINT "\nThis is for some other characteristic" 

    ENDIF 

ENDFUNC 1 

 

ONEVENT  EVBLEMSG    CALL HndlrBleMsg 

ONEVENT  EVAUTHSCCD  CALL HndlrAuthSccd 

ONEVENT  EVGPIOCHAN1 CALL HndlrBtn0Pr  

 

IF OnStartup()==0 THEN 

    rc = BleCharValueRead(hMyChar,at$) 

    PRINT "\nCharacteristic Value: ";at$ 

    PRINT "\nYou can write to the SCCD attribute." 

    PRINT "\nThe BL654 will then indicate a new characteristic value" 

    PRINT "\n--- Press button 0 to exit\n" 

ELSE 

    PRINT "\nFailure OnStartup" 

ENDIF 

 

WAITEVENT 

 

PRINT "\nExiting..." 

Expected Output: 

Characteristic Value: Hi 

You can write to the SCCD attribute. 

The BL654 will then indicate a new characteristic value 

--- Press button 0 to exit 

 

--- Connected to client 

Broadcasts have been enabled by client 

 

This event is thrown instead of EVCHARDESC when a writable descriptor of a characteristic with read and/or write 
authorisation is being read or written by a remote GATT client. It comes with the following parameters: 

▪ The connection handle of the Gatt client  

▪ The characteristic handle that is returned when the characteristic is registered using the function BleCharCommit()  

▪ The descriptor Handle Index 

▪ Is 0x00000000 when this is a read attempt and 0x00010000 when it is a write attempt 

Call BleAuthorizeChar() to either grant or deny access. 

The first three parameters in the event are supplied as-is as the first three parameters to the function BleAuthizeChar(). 

If this event is for a write, as soon as the function BleAuthorizeDesc() returns, the descriptor contains the value and so the 
function BleCharDescRead() can be called to read it. 

Example: 

// Example :: EvAuthDesc.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

DIM hMyChar,rc,at$,conHndl, hOtherDescr 



https://www.lairdconnect.com/ 102 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

//============================================================================== 

// Initialise and instantiate service, characteristic, start adverts 

//============================================================================== 

FUNCTION OnStartup$() 

    DIM rc, hSvc, at$, adRpt$, addr$, scRpt$, hOtherDscr,attr$, attr2$ 

    attr$="Hi" 

    DIM charMet : charMet = BleAttrMetaData(1,1,20,0,rc) 

     

    //Commit svc with handle 'hSvcUuid' 

    rc=BleServiceNew(1,BleHandleUuid16(0x18EE),hSvc)             

    //Initialise char, read/write enabled, accept signed writes 

    rc=BleCharNew(0x4A,BleHandleUuid16(1),charMet,0,0)          

 

    //Add another descriptor 

    attr$="descr_value" 

    rc=BleCharDescAdd(0x2905,attr$,BleAttrMetadataex(1,1,20,9,rc)) 

    //Commit char initialised above, with initial value "hi" to service 'hMyChar' 

    attr2$="char value" 

    rc=BleCharCommit(hSvc,attr2$,hMyChar) 

    rc=BleServiceCommit(hSvc) 

 

    rc=BleAdvRptInit(adRpt$,0x02,0,20)  

    rc=BleScanRptInit(scRpt$) 

    //Get UUID handle for other descriptor 

    hOtherDscr=BleHandleUuid16(0x2905) 

    //Add 'hSvc','hMyChar' and the other descriptor to the advert report 

    rc=BleAdvRptAddUuid16(adRpt$,hSvc,hOtherDscr,-1,-1,-1,-1) 

    rc=BleAdvRptAddUuid16(scRpt$,hOtherDscr,-1,-1,-1,-1,-1) 

    //Commit reports to GATT table - adRpt$ is empty 

    rc=BleAdvRptsCommit(adRpt$,scRpt$) 

    rc=BleAdvertStart(0,addr$,20,300000,0) 

    rc=GpioBindEvent(1,16,1)     //Channel 1, bind to low transition on GPIO pin 16 

ENDFUNC attr$ 

 

//============================================================================== 

// Close connections so that we can run another app without problems 

//============================================================================== 

SUB CloseConnections() 

    rc=BleDisconnect(conHndl) 

    rc=BleAdvertStop() 

    rc=GpioUnbindEvent(1) 

ENDSUB 

 

//============================================================================== 

// Ble event handler 

//============================================================================== 

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)  

    conHndl=nCtx 

    IF nMsgID==1 THEN 

        PRINT "\n\n--- Disconnected from client" 

        EXITFUNC 0 

    ELSEIF nMsgID==0 THEN 

        PRINT "\n--- Connected to client" 

    ENDIF 

ENDFUNC 1 

 

//============================================================================== 

// Handler to service button 0 pressed 

//============================================================================== 

FUNCTION HndlrBtn0Pr() AS INTEGER 

    CloseConnections() 



https://www.lairdconnect.com/ 103 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

ENDFUNC 1 

 

//============================================================================== 

// Client has written to writeable descriptor 

//============================================================================== 

FUNCTION HndlrAuthDesc(BYVAL hConn AS INTEGER, BYVAL hChar AS INTEGER, BYVAL hDesc AS 

INTEGER, BYVAL rw) AS INTEGER 

    dim duid,a$,rc 

    IF hChar == hMyChar THEN 

        rc = BleAuthorizeDesc(hConn, hChar, hDesc, 3) 

        rc = BleCharDescRead(hChar,hDesc,0,512,duid,a$) 

        IF rc ==0 THEN  

            PRINT "\nNew value for desriptor ";hDesc;" is ";a$ 

        ELSE 

            PRINT "\nCould not access the uuid" 

        ENDIF 

    ELSE 

        PRINT "\nThis is for some other characteristic" 

    ENDIF 

ENDFUNC 1 

 

ONEVENT  EVBLEMSG    CALL HndlrBleMsg 

ONEVENT  EVAUTHDESC  CALL HndlrAuthDesc 

ONEVENT  EVGPIOCHAN1 CALL HndlrBtn0Pr  

 

PRINT "\nOther Descriptor Value: ";OnStartup$() 

PRINT "\nWrite a new value \n--- Press button 0 to exit\n" 

 

WAITEVENT 

 

PRINT "\nExiting..." 

Expected Output: 

Other Descriptor Value: descr_value 

Write a new value  

--- Press button 0 to exit 

 

--- Connected to client 

New value for desriptor 0 is cC 

 

This event is thrown when the Virtual Serial Port service is open and data has arrived from the peer.  

 

This event is thrown when the Virtual Serial Port service is open and the last block of data in the transmit buffer is sent via a 
notify or indicate.  See VSP (Virtual Serial Port) Events 

 

This event message is thrown when rssi reporting is enabled for specific connections using the function BleConnRssiStart() 
which takes the connection handle. 

It consists of a two integers payload with the following values: 

▪ Integer 1 – The connection handle for which the rssi is being reported  

▪ Integer 2 – The signed RSSI value in units of dBm. 

 

When in a connection and attribute data is sent to the GATT client using a notify procedure (such as the function 
BleCharValueNotify()) or when a Write_with_no_response is sent by the GATT client to a remote server, they are stored in 



https://www.lairdconnect.com/ 104 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

temporary buffers in the underlying stack. There is a finite number of these temporary buffers. If they are exhausted, the notify 
function or the write_with_no_resp command fails with a result code of 0x6803 (BLE_NO_TX_BUFFERS). Once the attribute 
data is transmitted over the air, if there are no acknowledges for Notify messages, the buffer is freed to be reused.  

This event is thrown when at least one buffer has been freed. Because of this, the smartBASIC application can handle this 
event to retrigger the data pump for sending data using notifies or writes_with_no_resp commands. 

Note:  When sending data using Indications, this event is not thrown. Those messages must be confirmed by the client 

which results in a EVCHARHVC message to the smartBASIC application. Likewise, writes which are 

acknowledged do not consume these buffers. 

Example: 

// Example :: EvNotifyBuf.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 DIM hMyChar,rc,at$,conHndl,ntfyEnabled 

 

 //============================================================================== 

 // Initialise and instantiate service, characteristic, start adverts 

 //============================================================================== 

 FUNCTION OnStartup() 

     DIM rc, hSvc, at$, attr$, adRpt$, addr$, scRpt$   

     attr$="Hi" 

     DIM mdCccd : mdCccd = BleAttrMetadata(1,1,2,0,rc)   //CCCD metadata for char 

     

     //Commit svc with handle 'hSvc' 

     rc=BleServiceNew(1, BleHandleUuid16(0x18EE), hSvc) 

     //initialise char, write/read enabled, accept signed writes, notifiable 

     rc=BleCharNew(0x12,BleHandleUuid16(1),BleAttrMetaData(1,0,20,0,rc),mdCccd,0)      

     //commit char initialised above, with initial value "hi" to service 'hMyChar' 

     rc=BleCharCommit(hSvc,attr$,hMyChar) 

     //commit changes to service 

     rc=BleServiceCommit(hSvc) 

     rc=BleScanRptInit(scRpt$)  

     //Add 1 service handle to scan report 

     rc=BleAdvRptAddUuid16(scRpt$,0x18EE,-1,-1,-1,-1,-1) 

     //commit reports to GATT table - adRpt$ is empty 

     rc=BleAdvRptsCommit(adRpt$,scRpt$) 

     rc=BleAdvertStart(0,addr$,50,0,0) 

 ENDFUNC rc 

 

 //============================================================================== 



https://www.lairdconnect.com/ 105 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 // Close connections so that we can run another app without problems 

 //============================================================================== 

 SUB CloseConnections() 

     rc=BleDisconnect(conHndl) 

     rc=BleAdvertStop() 

 ENDSUB 

 

 SUB SendData() 

     DIM tx$, count 

     IF ntfyEnabled then 

         PRINT "\n--- Notifying" 

         DO 

             tx$="SomeData" 

             rc=BleCharValueNotify(hMyChar,tx$) 

             count=count+1 

         UNTIL rc!=0 

         PRINT "\n--- Buffer full" 

         PRINT "\nNotified ";count;" times" 

     ENDIF 

 ENDSUB 

 

 //============================================================================== 

 // Ble event handler 

 //============================================================================== 

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)  

     conHndl=nCtx 

     IF nMsgID==0 THEN 

         PRINT "\n--- Connected to client" 

     ELSEIF nMsgID THEN 

         PRINT "\n--- Disconnected from client" 

         EXITFUNC 0 

     ENDIF 

 ENDFUNC 1 

 

 //============================================================================== 

 // Tx Buffer free handler 

 //============================================================================== 

 FUNCTION HndlrNtfyBuf() 

     SendData() 



https://www.lairdconnect.com/ 106 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 ENDFUNC 0 

 

 //============================================================================== 

 // CCCD descriptor written handler 

 //============================================================================== 

 FUNCTION HndlrCharCccd(BYVAL charHandle, BYVAL nVal) AS INTEGER 

     DIM value$,tx$ 

     IF charHandle==hMyChar THEN 

         IF nVal THEN 

             PRINT " : Notifications have been enabled by client" 

             ntfyEnabled=1 

             tx$="Hello" 

             rc=BleCharValueNotify(hMyChar,tx$) 

         ELSE 

             PRINT "\nNotifications have been disabled by client" 

             ntfyEnabled=0 

         ENDIF 

     ELSE 

         PRINT "\nThis is for some other characteristic" 

     ENDIF 

 ENDFUNC 1 

 

 ONEVENT  EVNOTIFYBUF CALL HndlrNtfyBuf 

 ONEVENT  EVBLEMSG    CALL HndlrBleMsg 

 ONEVENT  EVCHARCCCD  CALL HndlrCharCccd 

 

 IF OnStartup()==0 THEN 

     rc = BleCharValueRead(hMyChar,at$) 

     PRINT "\nYou can connect and write to the CCCD characteristic." 

     PRINT "\nThe BL654 will then send you data until buffer is full\n" 

 ELSE 

     PRINT "\nFailure OnStartup" 

 ENDIF 

 

 WAITEVENT 

 CloseConnections() 

 PRINT "\nExiting..." 

Expected Output: 

You can connect and write to the CCCD characteristic. 



https://www.lairdconnect.com/ 107 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

The BL654 will then send you data until buffer is full 

 

--- Connected to client 

Notifications have been disabled by client : Notifications have been enabled by client 

--- Notifying 

--- Buffer full 

Notified 1818505336 times 

Exiting... 

 

This event is only thrown for a central role connection when a peripheral requests an update to the connection parameters via 
BleSetCurConnParams(). The user must turn manual parameter control to receive this message by using 
BleConnectConfig(8,1). In this case, auto accept is disabled and full control is given to the user. 

The event contains the following integer values: 

▪ nConnHandle – The handle of the connection where the peripheral is requesting a change. 

▪ nMinIntUs – The minimum acceptable connection interval in microseconds. 

▪ nMaxIntUs – The maximum acceptable connection interval in microseconds. 

▪ nSuprToutUs – The link supervision timeout for the connection in microseconds. 

▪ nSlaveLatency – The number of connection interval polls that may be ignored. 

Example: 

//Example :: EvConnParamReq.sb 

 

// In order to get the expected output, this application should be run against 

// a peripheral device. The peripheral device should request new connection  

// parameters upon connection, which in turn will trigger EVCONNPARAMREQ on  

// this device. 

 

// This is the target Bluetooth device to connect to, 7 bytes in hex 

#define BTAddr "000016A4B75202" 

 

// BLE EVENT MSG IDs 

#define BLE_EVBLEMSGID_CONNECT                          0 // msgCtx = connection handle 

#define BLE_EVBLEMSGID_DISCONNECT                       1 // msgCtx = connection handle 

#define BLE_EVBLEMSGID_CONN_PARMS_UPDATE                14  //nCtx = connection handle 

#define BLE_EVBLEMSGID_CONN_PARMS_UPDATE_FAIL           15  //nCtx = connection handle 

 

DIM rc 

 

//============================================================================== 

// This handler is called when there is a BLE message 

//============================================================================== 

FUNCTION HndlrBleMsg(BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER)  

    SELECT nMsgId 

        CASE BLE_EVBLEMSGID_CONNECT 

            PRINT "\nBLE Connection ";integer.h' nCtx;"\n" 

        CASE BLE_EVBLEMSGID_DISCONNECT 

            PRINT "\nDisconnected ";nCtx;"\n" 

        CASE BLE_EVBLEMSGID_CONN_PARMS_UPDATE 

            // The connection parameter has been updated. Read connection parameters 

            dim intrvl,sprvto,slat 

            rc= BleGetCurConnParms(nCtx,intrvl,sprvto,slat) 

            print "--- Param Updated \n" 

            print "- interval:";intrvl;" supervision timeout:";sprvto;" latency:";slat;"\n" 

        CASE BLE_EVBLEMSGID_CONN_PARMS_UPDATE_FAIL 

            print "--- Param Update Failed\n" 

            print "- interval:";intrvl;" supervision timeout:";sprvto;" latency:";slat;"\n" 

        CASE ELSE 

            PRINT "\nUnknown Ble Msg" 



https://www.lairdconnect.com/ 108 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

    ENDSELECT 

ENDFUNC 1 

 

//============================================================================== 

// This handler is called when peripheral requests new parameter 

//============================================================================== 

function HandlerParamReq(BYVAL hConn AS INTEGER, BYVAL intrvlmin AS INTEGER, BYVAL intrvlmax 

AS INTEGER, BYVAL sprvto AS INTEGER, BYVAL slat AS INTEGER) 

 

    print "--- Param Request \n" 

    print "- intervalmin:";intrvlmin;" intervalmax:";intrvlmax;" supervision 

timeout:";sprvto;" latency:";slat;"\n" 

    // Accept the peripheral's request by changing the connection's conn parameters 

    rc = BleSetCurConnParms(hConn, intrvlmin, intrvlmax, sprvto, slat) 

 

endfunc 1 

 

//============================================================================== 

// Program starts here 

//============================================================================== 

// Disable auto accept so that we get an event when peripheral requests 

// new connection parameteres. Set to 0 to re-enable auto accept 

rc = BleConnectConfig(8,1) 

// Connect to peripheral 

DIM addr$ : addr$ = BTAddr 

addr$ = StrDehexize$(addr$) 

rc = BleConnect(addr$, 5000, 7500, 7700, 500000) 

 

//------------------------------------------------------------------------------ 

// Enable synchronous event handlers 

//------------------------------------------------------------------------------ 

ONEVENT  EVBLEMSG           CALL HndlrBleMsg 

ONEVENT  EVCONNPARAMREQ     CALL HandlerParamReq 

 

WAITEVENT 

Expected Output: 

BLE Connection 0001FF00 

--- Param Request  

- intervalmin:45000 intervalmax:50000 supervision timeout:6000000 latency:0 

--- Param Updated  

- interval:50000 supervision timeout:6000000 latency:0 

 

This event message is thrown when too many extended advert reports or scan responses have been received and the 
message queue does not have enough space to accommodate them. To mitigate this, call NVCFGKEYSET(45,n) to increase 
the size of the message queue. This configuration change will only come into effect after a reset, so call RESET() to make the 
change effective. 

 

This event message is thrown when an extended advert report has been received and there is no heap space to allow for it to 
be packaged into a STRING variable to be thrown to the smartBASIC user application in an event. The lack of space can also 
apply when there is available memory but it is in smaller fragments in the free space managed by the heap. 

 

This event message is thrown when a scanning is in progress and an outgoing connection is started. Given a connection 
attempt requires a scanning, then any existing scanning has to be aborted for that connection phase to work.  
This event is to let the app know that it has been aborted so that it can be restarted when the connection fails or is successful. 



https://www.lairdconnect.com/ 109 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

This event message is thrown when an extended advert identified by the set_id parameter in the message has terminated and 
will also provide the reason for the termination. 

It consists of a two integers payload with the following values: 

▪ Integer 1 – Set id  

▪ Integer 2 – Reason for termination. 0 for timeout and for positive values specifies how many adverts were sent. 

 

This event message is thrown when an extended advert report is to be conveyed to the application 

It consists of 3 string and 1 integer in the following order : 

▪ String 1 – Address of the device that send the advert 

▪ String 2 – Payload of the advert consisting of many concatenated AD elements 

▪ Integer 1 – RSSI of the receiced advert 

▪ String 3 – Metadata of the associated advert. Use BleExtRptMetadata() to extract fields 

 

This event message is thrown when an extended advert scan response is to be conveyed to the application 

It consists of 3 string and 1 integer in the following order : 

▪ String 1 – Address of the device that send the scan response 

▪ String 2 – Payload of the advert consisting of many concatenated AD elements 

▪ Integer 1 – RSSI of the receiced scan response 

▪ String 3 – Metadata of the scan response. Use BleExtRptMetadata() to extract fields 

 

This event message is thrown when an extended advert or scan response is to be conveyed to the application which has 
incomplete data. Use String 3 and function BleExtRptMetadata(metadata$,8) to determine if it was an advert report or a scan 
response. 
In addition, BleExtRptMetadata(metadata$,7,) will return the status field which will detail the reason why it is incomplete.  
See the description for BleExtRptMetadata() for more details. 

It consists of 3 string and 1 integer in the following order : 

▪ String 1 – Address of the device that send the scan response 

▪ String 2 – Payload of the advert consisting of many concatenated AD elements 

▪ Integer 1 – RSSI of the receiced scan response 

▪ String 3 – Metadata of the scan response. Use BleExtRptMetadata() to extract fields 

 

This section describes all BLE-related functions that are not related to advertising, connection, security manager, or GATT. 

 

FUNCTION 

This function sets the power of all packets that are transmitted subsequently.  

Although this function can accept any value, the actual transmit power is determined by the internal power table which 
depends on the variant of the module 

The standard BL654 supports -40, -20, -16, -12, -8, -4, 0, 2, 3, 4, 5, 6, 7, and 8 dBm.  

The BL654PA variant supports -26, -6, 0, 6, 14 and 18 dBmm. 

Note:  For LE_CODED transmissions, the transmit power is limited to +14 dBm for duty cycle requirements. 



https://www.lairdconnect.com/ 110 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

When a value is set, the highest transmit power that is less than or equal to the desired power is used.  

SYSINFO(2008) and AT I 2008 can be used to return the actual power level set. 

BLETXPOWERSET (nTxPower) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments:  

nTxPower 

byVal nTxPower AS INTEGER.  

Specifies the new transmit power in dBm units to be used for all subsequent tx packets.  

The actual value is determined by the radios internal power table. 

Example: 

// Example :: BleTxPowerSet.sb 
// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

DIM rc,dp 

 

dp=1000 : rc = BleTxPowerSet(dp) 

PRINT "\nrc = ";rc 

PRINT "\nTx power : desired= ";dp," actual= "; SysInfo(2008) 

dp=8 : rc = BleTxPowerSet(dp) 

PRINT "\nTx power : desired= ";dp," "," actual= "; SysInfo(2008) 

dp=2 : rc = BleTxPowerSet(dp) 

PRINT "\nTx power : desired= ";dp," "," actual= "; SysInfo(2008) 

dp=-10 : rc = BleTxPowerSet(dp) 

PRINT "\nTx power : desired= ";dp," "," actual= "; SysInfo(2008) 

dp=-25 : rc = BleTxPowerSet(dp) 

PRINT "\nTx power : desired= ";dp," "," actual= "; SysInfo(2008) 

dp=-45 : rc = BleTxPowerSet(dp) 

PRINT "\nTx power : desired= ";dp," "," actual= "; SysInfo(2008) 

dp=-1000 : rc = BleTxPowerSet(dp) 

PRINT "\nTx power : desired= ";dp," actual= "; SysInfo(2008) 

Expected Output: 

rc = 0 

Tx power : desired= 1000   actual= 4 

Tx power : desired= 8      actual= 4 

Tx power : desired= 2      actual= 0 

Tx power : desired= -10    actual= -12 

Tx power : desired= -25    actual= -40 

Tx power : desired= -45    actual= -40 

Tx power : desired= -1000  actual= -40  

 

FUNCTION 



https://www.lairdconnect.com/ 111 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

This function sets the transmit power of all packets that are transmitted while a pairing is in progress. This mode of pairing is 
referred to as Whisper Mode Pairing. The actual value is clipped to the transmit power for normal operation which is set using 
BleTxPowerSet() function. 

At any time SYSINFO(2018) returns the actual transmit power setting. Or when in command mode, uses the command AT I 
2018. 

Although this function can accept any value, the actual transmit power is determined by the internal power table which 
supports -40, -20, -16, -12, -8, -4, 0, 2, 3, 4, 5, 6, 7, and 8 dBm, when a value is set the highest transmit power that is less than 
or equal to the desired power is used. SYSINFO(2008) and AT I 2008 returns the power level set and does not reflect the 
transmit power level of the radio itself. 

BLETXPWRWHILEPAIRING (nTxPower) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments:  

nTxPower 

byVal nTxPower AS INTEGER.  

Specifies the new transmit power in dBm units to be used for all subsequent Tx packets while the 

pairing is in progress and normal power is resumed when the transaction is complete. The actual 

value is determined by the radios internal power table.  

 

Please note that the tx power will be reduced to nTxPower for ALL connections, even on 

connections that there is no pairing in progress. 



https://www.lairdconnect.com/ 112 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

Example: 

// Example :: BleTxPwrWhilePairing.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

DIM rc,dp 

 

dp=1000 : rc = BleTxPwrWhilePairing(dp) 

PRINT "\nrc = ";rc 

PRINT "\nTx power while pairing: desired= ";dp," actual= "; SysInfo(2018) 

dp=8 : rc = BleTxPwrWhilePairing(dp) 

PRINT "\nTx power while pairing: desired= ";dp," "," actual= "; SysInfo(2018) 

dp=2 : rc = BleTxPwrWhilePairing(dp) 

PRINT "\nTx power while pairing: desired= ";dp," "," actual= "; SysInfo(2018) 

dp=-10 : rc = BleTxPwrWhilePairing(dp) 

PRINT "\nTx power while pairing: desired= ";dp," actual= "; SysInfo(2018) 

dp=-25 : rc = BleTxPwrWhilePairing(dp) 

PRINT "\nTx power while pairing: desired= ";dp," actual= "; SysInfo(2018) 

dp=-45 : rc = BleTxPwrWhilePairing(dp) 

PRINT "\nTx power while pairing: desired= ";dp," actual= "; SysInfo(2018) 

dp=-1000 : rc = BleTxPwrWhilePairing(dp) 

PRINT "\nTx power while pairing: desired= ";dp," actual= "; SysInfo(2018) 

Expected Output: 

rc = 0 

Tx power while pairing: desired= 1000  actual= 10 

Tx power while pairing: desired= 8    actual= 8 

Tx power while pairing: desired= 2    actual= 2 

Tx power while pairing: desired= -10  actual= -10 

Tx power while pairing: desired= -25  actual= -20 

Tx power while pairing: desired= -45  actual= -20 

Tx power while pairing: desired= -1000  actual= -20  

 

SUBROUTINE 

This routine is used to configure the source of the high frequency clock (HFCLK) to be either the internal RC oscillator or an 
external 32MHz crystal. Enabling the 32MHz crystal increases current consumption but at extreme temperatures useful when 
the uart is in operation otherwise the baudrate will vary outside the limit and prevent proper communication. 

BLECONFIGHFCLOCK(nClkSrc) 

Returns None 

Arguments 

nClkSrc byVal nClkSrc AS INTEGER.  
Source of the High Frerquency Clock as follows: 

0 Internal RC Oscillator 

1 External 32MHz Crystal 

Other Values External 32MHz Crystal (but not recommended as in future it can change) 
 



https://www.lairdconnect.com/ 113 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

SUBROUTINE 

This routine is used to configure the DC to DC converter to one of two states: ENABLED or DISABLED. 

BLECONFIGDCDC (nNewState) 

Returns None 

Arguments 

nNewState byVal nNewState AS INTEGER.  
Configure the internal DC to DC converter as follows: 

0 Disabled 

All other values Enabled 
 

 

BleConfigDcDc(2)                    //Set for automatic operation 

 

FUNCTION 

This function is used to enable or disable data channel usage when in a connection. Applies to data channels 0 to 36 only. 

BLECHANNELMAP (chanMap$) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments:  

chanMap$ 

byVal chanMap$ AS STRING.  

This must be a string which is exactly 5 bytes long where a bit set means enable that channel to be 

used and a 0 means to disable. 

The mapping between bits in the 5 bytes to data channels in BLE are as follows:- 

Bit 0 of byte index 0 : BLE channel 0 

Bit 7 of byte index 0 : BLE channel 7 

Bit 0 of byte index 1 : BLE channel 8 

Bit 7 of byte index 1 : BLE channel 15 

Bit 0 of byte index 2 : BLE channel 16 

Bit 7 of byte index 2 : BLE channel 23 

Bit 0 of byte index 3 : BLE channel 24 

Bit 7 of byte index 3 : BLE channel 31 

Bit 0 of byte index 4 : BLE channel 32 

Bit 4 of byte index 4 : BLE channel 36 

Bit 5 to 7 of byte index 4 are ignored. 

Note:  This function can not be used on BL654PA. While operating a BL654PA as a peripheral device, the central device 

is able to change the channel map. As the BL654PA can not deny a channel map change, power will be limited to 

+14dBm to keep within regulatory requirements. 

 



https://www.lairdconnect.com/ 114 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

This section describes all the advertising-related routines. 

An advertisement consists of a packet of information with a header identifying it as one of four types along with an optional 
payload that consists of multiple advertising records, referred to as AD in the rest of this manual. 

Each AD record consists of up to three fields: 

▪ Field 1 – One octet in length and indicates the number of octets that follow it that belong to that record. 

▪ Field 2 – One octet in length and is a tag value which identifies the type of payload that starts at the next octet. Hence the 
payload data is ‘length – 1’. 

▪ Field 3 – (Length-1) Octets in length and is the payload for the AD record associated to the tag value specified. 

The specification also allows custom AD records to be created using the Manufacturer Specific Data AD record. 

Refer to the current version of the Supplement to the Bluetooth Core Specification, Version 1, Part A which contains the latest 
list of all AD records. You must register as at least an adopter, which is free, to gain access to this information. It is available at 
https://www.Bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=245130 

 

FUNCTION 

This function causes a BLE advertisement event as per the Bluetooth specification. An advertisement event consists of an 
advertising packet in each of the three advertising channels. 

The type of advertisement packet is determined by the nAdvType argument  and the data in the packet is initialised, created, 
and submitted by the BLEADVRPTINIT, BLEADVRPTADDxxx, and BLEADVRPTCOMMIT functions respectively. 

If the Advert packet type (nAdvType)  is specified as 1 (ADV_DIRECT_IND), then the peerAddr$ string must not be empty and 
should be a valid address. When advertising with this packet type, the timeout is automatically set to 1280 ms. 

When filter policy is enabled, the whitelist consisting of all bonded masters is submitted to the underlying stack so that only 
those bonded masters result in scan and connection requests being serviced. 

Note:  nAdvTimeout is rounded up to the nearest 1000 msec. 

 In order to advertise over CODED PHY (long range), BleAdvertConfig() should be called beforehand to set the 

advertising primary and secondary channels to CODED PHY. See BleAdvertConfig() for more details. Furthermore, 

the advertising type should be set to ADV_EXT_CONN_NONSCAN_DIRECTED. Finally, high bandwidth should be 

enabled using “AT+CFG 214 1” followed by “ATZ”. 

  

BLEADVERTSTART (nAdvType, peerAddr$, nAdvInterval, nAdvTimeout, nFilterPolicy) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

If a 0x6A01 resultcode is received, it implies a whitelist has been enabled but the Flags AD in the 

advertising report is set for Limited and/or General Discoverability. The solution is to resubmit a new advert 

report which is made up so that the nFlags argument to BleAdvRptInit() function is 0. 

The BT 4.0 spec disallows discoverability when a whitelist is enabled during advertisement. See Volume 3, 

Sections 9.2.3.2 and 9.2.4.2. 

Arguments:  

nAdvType 

byVal nAdvType  AS INTEGER.  

Specifies the advertisement type as follows: 

0 ADV_IND Invites connection requests 

1 ADV_DIRECT_IND 
Invites connection from addressed device.  

nAdvertTimeout imust be <= 1280ms 

https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=245130


https://www.lairdconnect.com/ 115 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

because nAdvInterval is ignored and will 

advertise at a rate of every 3.75milliseconds 

which means this type of advert is not power 

efficient and will impact battery life. 

See ADV_DIRECT_LOW_DUTYCYCLE_IND 

for a more power efficient alternative. 

2 ADV_SCAN_IND Invites scan request for more advert data 

3 ADV_NONCONN_IND Does not accept connections/active scans 

4 ADV_DIRECT_LOW_DUTYCYCLE_IND 

Invites connection from addressed device.  

No limit on nAdvertTimeout as the advertising 

interval is as per nAdvInterval, like a normal 

advert but with the payload being the target 

address. 

See ADV_DIRECT_IND for an alternative. 

5 Unused  

6 ADV_EXT_CONN_NONSCAN 

Invites connection requests over the 

secondary advertising channel. This 

advertising type can be used for CODED 

PHY connections. 

7 ADV_EXT_CONN_NONSCAN_DIRECTED 

Invites connection from addressed devices 

over the secondary advertising channel. This 

advertising type can be used for CODED 

PHY connections. 

8 ADV_EXT_NONCONN_SCAN 
Invites scan requests over the secondary 

advertising channel. 

9 ADV_EXT_NONCONN_SCAN_DIRECTED 
Invites scan requests from addressed devices 

over the secondary advertising channel. 

10 ADV_EXT_NONCONN_NONSCAN 

Undirected nonconnecatable nonscannable 

advertising using extended advertising 

packets.  

11 ADV_EXT_NONCONN_NONSCAN_DIRECTED 

Directed nonconnecatable nonscannable 

advertising using extended advertising 

packets.  
 

peerAddr$ 

byRef peerAddr$  AS STRING  

It can be an empty string that is omitted if the advertisement type is not ADV_DIRECT_IND. 

This is only required when nAdvType == 1. When not empty, a valid address string is exactly seven octets 

long (for example: \00\11\22\33\44\55\66) where the first octet is the address type and the rest of the six 

octets is the usual Bluetooth address in big endian format (so the most significant octet of the address is at 

offset 1), whether public or random.  

0 Public 

1 Random Static 

2 Random Private Resolvable 

3 Random Private Non-Resolvable 

All other values are illegal. 
 

nAdvInterval   

byVal nAdvInterval   AS INTEGER.  

The interval between two advertisement events (in milliseconds). 

An advertisement event consists of a total of three packets being transmitted in the three advertising 

channels. 

Valid range is between 20 and 10240 milliseconds. 



https://www.lairdconnect.com/ 116 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

nAdvTimeout          

byVal nAdvTimeout  AS INTEGER.  

The time after which the module stops advertising (in milliseconds). The range of this value is between 0 

and 16383000 milliseconds and is rounded up to the nearest 1 seconds (1000ms).   

A value of 0 means disable the timeout, but note that if limited advert modes was specified in 

BleAdvRptInit() then this function fails. When the advert type specified is ADV_DIRECT_IND , the timeout 

is automatically set to 1280 ms as per the Bluetooth Specification. 

WARNING: To save power, do not mistakenly set this to e.g. 100ms. 

nFilterPolicy            

byVal nFilterPolicy  AS INTEGER.  

Specifies the filter policy for the whitelist as follows: 

0 Disable whitelist 

1 Filter Policy – Filter scan request; allow connection request from any 

2 Filter Policy – Filter connection request; allow scan request from any 

3 Filter scan request and connection request 

hhh 
A whitelist handle (for more details see section “Whitelist Management 

Functions) 

If the filter policy is not 0, but 1,2 or 3 the whitelist is enabled and filled with first 8 addresses and 8 identity 

resolving keys of devices in the trusted device database. Given the database can accommodate more 

devices please note that if more than 8 devices exist than a partial whitelist is activated. 

To cater for that limitation, a whitelist can be manually created using the API described in the section 

“Whitelist Management Functions” and the handle returned from a manually created list can be supplied 

for this parameter 

Example: 

// Example :: BleAdvertStart.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 DIM addr$ : addr$="" 

 

 FUNCTION HndlrBlrAdvTimOut()  

    PRINT "\nAdvert stopped via timeout" 

    PRINT "\nExiting..." 

 ENDFUNC 0 

 

 //The advertising interval is set to 25 milliseconds. The module will stop  

 //advertising after 60000 ms (1 minute)                                              

 IF BleAdvertStart(0,addr$,25,60000,0)==0 THEN      

     PRINT "\nAdverts Started"                    

     PRINT "\nIf you search for Bluetooth devices on your device, you should see  'Laird 

BL654'" 

 ELSE                                             

     PRINT "\n\nAdvertisement not successful" 

 ENDIF 

 

 ONEVENT  EVBLE_ADV_TIMEOUT  CALL HndlrBlrAdvTimOut 

 

 WAITEVENT 



https://www.lairdconnect.com/ 117 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

Expected Output: 

Adverts Started 

 

If you search for Bluetooth devices on your device, you should see 'Laird BL654' 

 

Advert stopped via timeout 

Exiting... 

 

FUNCTION 

This function causes the BLE module to stop advertising.  

BLEADVERTSTOP () 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments None 

Example: 

// Example :: BleAdvertStop.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

DIM addr$ : addr$="" 

DIM rc 

 

 FUNCTION HndlrBlrAdvTimOut()  

    PRINT "\nAdvert stopped via timeout" 

    PRINT "\nExiting..." 

 ENDFUNC 0 

 

 FUNCTION Btn0Press() 

     IF BleAdvertStop()==0 THEN     

         PRINT "\nAdvertising Stopped"                    

     ELSE                                             

         PRINT "\n\nAdvertising failed to stop" 

     ENDIF    

 

     PRINT "\nExiting..." 

 ENDFUNC 0 

                                            

 IF BleAdvertStart(0,addr$,25,60000,0)==0 THEN      

     PRINT "\nAdverts Started. Press button 0 to stop.\n"                     

 ELSE                                             

     PRINT "\n\nAdvertisement not successful" 

 ENDIF 

 

 rc = GpioSetFunc(11,1,2) 

 rc = GpioBindEvent(0,11,1) 

 

 ONEVENT  EVBLE_ADV_TIMEOUT  CALL HndlrBlrAdvTimOut 

 ONEVENT  EVGPIOCHAN0        CALL Btn0Press 

 

 WAITEVENT 

Expected Output: 

Adverts Started. Press button 0 to stop. 

 

Advertising Stopped 

Exiting... 



https://www.lairdconnect.com/ 118 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

FUNCTION 

This function is used to modify the default parameters that are used when initiating an advertise operation using 
BleAdvertStart(). 

The following lists the default values for the parameters: 

Advert Channel Mask Bit field detailing the channels to advertise on. 

Note:  Set channel mask Bit 0 to enable advert channel 0, Bit 1 to enable advert channel 1, and Bit 2 to enable advert 

channel 2. 

BLEADVERTCONFIG  (configID, configValue)  

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments:  

configID 

byVal configID      AS INTEGER. 

This identifies the value to update as follows: 

0 Unused 

1 Unused 

2 Unused 

3 
Advert Channel Mask. Set t 0 to enable channel 37, bit 1 to enable channel 38, and bit 2 

to enable channel 39 

4 

Primary PHY to advertise on. Possible values are:- 

1 - 1MPHY 

4 - CODED PHY 

All other values are invalid 

5 

Secondary PHY to advertisie on. Possible values are:- 

1 - 1MPHY 

4 - CODED PHY 

All other values are invalid 

For all other configID values the function returns an error. 
 

configValue 
byVal configValue     AS INTEGER.  

This contains the new value to set in the parameters indentified by configID. 

 

FUNCTION 

This function is used to create and initialise an advert report with a minimal set of ADs (advertising records) and store it the 
string specified. It is not advertised until BLEADVRPTSCOMMIT is called.  

This report is for use with advertisement packets. 

BLEADVRPTINIT (advRpt$, nFlagsAD, nAdvAppearance, nMaxDevName) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful 

operation. 

Arguments:  

advRpt$ 
byRef advRpt$ AS STRING.  

This contains an advertisement report. 

nFlagsAD   byVal nFlagsAD  AS INTEGER.  



https://www.lairdconnect.com/ 119 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

Specifies the flags AD bits where bit 0 is set for limited discoverability and bit 1 is set 

for general discoverability. Bit 2 will be forced to 1 and bits 3 & 4 will be forced to 0. 

Bits 3 to 7 are reserved for future use by the BT SIG and must be set to 0. 

nAdvAppearance    

byVal nAdvAppearance  AS INTEGER. 

Determines whether the appearance advert should be added or omitted as follows: 

0 Omit appearance advert 

1 
Add appearance advert as specified in the GAP service which is supplied via 

the BleGapSvcInit() function 
 

nMaxDevName 

byVal nMaxDevName AS INTEGER.  

The n leftmost characters of the device name specified in the GAP service. If this 

value is set to zero (0) then the device name is not included. 

Example: 

// Example :: BleAdvRptInit.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 DIM advRpt$ : advRpt$="" 

 DIM discovMode : discovMode=0  

 DIM advAppearance : advAppearance = 1 

 DIM maxDevName : maxDevName = 10 

 

 IF BleAdvRptInit(advRpt$, discovMode, advAppearance, maxDevName)==0 THEN 

     PRINT "\nAdvert report initialised" 

 ENDIF 

Expected Output: 

Advert report initialised 

 

FUNCTION 

This function is used to create and initialise a scan report which will be sent in a SCAN_RSP message. It will not be used until 
BLEADVRPTSCOMMIT is called.  

This report is for use with SCAN_RESPONSE packets. 

BLESCANRPTINIT (scanRpt) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments:  

scanRpt 
byRef scanRpt ASSTRING.  

This contains a scan report. 

Example: 

// Example :: BleScanRptInit.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 DIM scnRpt$ : scnRpt$="" 

 



https://www.lairdconnect.com/ 120 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 IF BleScanRptInit(scnRpt$)==0 THEN 

     PRINT "\nScan report initialised" 

 ENDIF 

Expected Output: 

Scan report initialised 

 

FUNCTION 

This function returns the free space in the advert advRpt$. 

BLEADVRPTGETSPACE(advRpt) 

Returns INTEGER, the free space in bytes. 

Arguments:  

advRpt$ 
byRef advRpt$ AS STRING.  

This contains an advert/scan report. 

Example: 

// Example :: BleAdvRptGetSpace.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

dim rc, s$, dn$ 

rc=BleScanRptInit(s$) 

dn$ = BleGetDeviceName$() 

 

//Add device name to scan report 

rc=BleAdvRptAppendAD(s$,0x09,dn$) 

 

print "\nFree space in scan report: "; BleAdvRptGetSpace(s$); " bytes" 

Expected Output: 

Free space in scan report: 18 bytes 

 

See description in section “Extended Adverts Functions” here. 

 

FUNCTION 

This function is used to add a 16 bit UUID service list AD (Advertising record) to the advert report. This consists of all the 16 bit 
service UUIDs that the device supports as a server. Up to 6 16 bit UUIDs can be added. 

BLEADVRPTADDUUID16 (advRpt$, nUuid1, nUuid2, nUuid3, nUuid4, nUuid5, nUuid6) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments:  

AdvRpt$ 
byRef AdvRpt AS STRING.  

The advert report onto which the 16-bit uuids AD record is added. 

nUuid1 

byVal uuid1 AS INTEGER 

UUID in the range 0 to FFFF; if the value is outside that range, it is ignored. Set the value to -1 to 

have it ignored and then all further UUID arguments will also be ignored. 

nUuid2 byVal uuid2 AS INTEGER 



https://www.lairdconnect.com/ 121 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

UUID in the range 0 to FFFF; if the value is outside that range, it is ignored. Set the value to -1 to 

have it ignored and then all further UUID arguments will also be ignored. 

nUuid3 

byVal uuid3 AS INTEGER 

UUID in the range 0 to FFFF; if the value is outside that range, it is ignored. Set the value to -1 to 

have it ignored and then all further UUID arguments will also be ignored. 

nUuid4 

byVal uuid4 AS INTEGER 

UUID in the range 0 to FFFF; if the value is outside that range, it is ignored. Set the value to -1 to 

have it ignored and then all further UUID arguments will also be ignored. 

nUuid5 

byVal uuid5 AS INTEGER 

UUID in the range 0 to FFFF; if the value is outside that range, it is ignored. Set the value to -1 to 

have it ignored and then all further UUID arguments will also be ignored. 

nUuid6 

byVal uuid6 AS INTEGER 

UUID in the range 0 to FFFF; if the value is outside that range, it is ignored. Set the value to -1 to 

have it ignored and then all further UUID arguments will also be ignored. 

Example: 

// Example :: BleAdvAddUuid16.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 DIM advRpt$, rc 

 DIM discovMode : discovMode=0  

 DIM advAppearance : advAppearance = 1 

 DIM maxDevName : maxDevName = 10 

 

 rc = BleAdvRptInit(advRpt$, discovMode, advAppearance, maxDevName) 

 

 //BatteryService =  0x180F 

 //DeviceInfoService = 0x180A 

 

 IF BleAdvRptAddUuid16(advRpt$,0x180F,0x180A, -1, -1, -1, -1)==0 THEN 

     PRINT "\nUUID Service List AD added" 

 ENDIF 

 

 //Only the battery and device information services are included in the advert report 

Expected Output: 

UUID Service List AD added 



https://www.lairdconnect.com/ 122 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

FUNCTION 

This function is used to add a 128 bit UUID service list AD (Advertising record) to the advert report specified. Given that an 
advert can have a maximum of only 31 bytes, it is not possible to have a full UUID list unless there is only one to advertise. 

BLEADVRPTADDUUID128 (advRpt, nUuidHandle) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments:  

advRpt 
byRef AdvRpt AS STRING.  

The advert report into which the 128-bit UUID AD record is to be added. 

nUuidHandle 

byVal nUuidHandle AS INTEGER 

This is handle to a 128-bit UUID which was obtained using a function such as 

BleHandleUuid128() or some other function which returns one. 

Example: 

// Example :: BleAdvAddUuid128.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

DIM uuid$ , hUuidCustom  

DIM tx$,scRpt$,adRpt$,addr$, hndl 

 scRpt$="" 

 PRINT BleScanRptInit(scRpt$) 

 

//create a custom uuid for my ble widget 

 uuid$ = "ced9d91366924a1287d56f2764762b2a" 

 uuid$ = StrDehexize$(uuid$) 

 hUuidCustom = BleHandleUuid128(uuid$) 

 

 //Advertise the 128 bit uuid in a scan report 

 PRINT BleAdvRptAddUuid128(scRpt$, hUuidCustom) 

 adRpt$="" 

 PRINT BleAdvRptsCommit(adRpt$,scRpt$) 

 addr$=""  //because we are not doing a DIRECT advert 

 PRINT BleAdvertStart(0,addr$,20,30000,0) 

Expected Output: 

00000 



https://www.lairdconnect.com/ 123 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

FUNCTION 

This function adds an arbitrary AD (Advertising record) field to the advert report. An AD element consists of a LEN:TAG:DATA 
construct where TAG can be any value from 0 to 255 and DATA is a sequence of octets.  

BLEADVRPTAPPENDAD (advRpt, nTag, stData$) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments:  

AdvRpt 
byRef AdvRpt AS STRING.  

The advert report onto which the AD record is to be appended. 

nTag 
byVal nTag AS INTEGER 

nTag should be in the range 0 to FF and is the TAG field for the record. 

stData$ 

byRef stData$ AS STRING 

This is an octet string which can be 0 bytes long. The maximum length is governed by the space 

available in AdvRpt, a maximum of 31 bytes long. 

Example: 

// Example :: BleAdvRptAppendAD.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 DIM scnRpt$,ad$   

 ad$="\01\02\03\04" 

 

 PRINT BleScanRptInit(scnRpt$) 

 

 IF BleAdvRptAppendAD(scnRpt$,0x31,ad$)==0 THEN //6 bytes will be used up in the report 

     PRINT "\nAD with data '";ad$;"' was appended to the advert report" 

 ENDIF 

Expected Output: 

0 

AD with data '\01\02\03\04' was appended to the advert report 

 

See description in section “Extended Adverts Functions” here. 

 

FUNCTION 

This function is used to commit one or both advert reports. If the string is empty then that report type is not updated. Both 
strings can be empty. In that case, this call will have no effect. 

The advertisements will not happen until they are started using BleAdvertStart() function. 

BLEADVRPTSCOMMIT (advRpt, scanRpt) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 



https://www.lairdconnect.com/ 124 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

Arguments:  

advRpt 
byRef advRpt  AS STRING.  

The most recent advert report. 

scanRpt   
byRef scanRpt  AS STRING.  

The most recent scan report. 

Note:   If any one of the two strings is not valid then the call will be aborted without updating the other report even if this 

other report is valid. 

Tip:   You can commit advert reports to update your advertisement data while advertising. 

Example: 

// Example :: BleAdvRptsCommit.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 DIM advRpt$ : advRpt$="" 

 DIM scRpt$ : scRpt$="" 

 DIM discovMode : discovMode = 0 

 DIM advApprnce : advApprnce = 1 

 DIM maxDevName : maxDevName = 10 

 

 PRINT BleAdvRptInit(advRpt$, discovMode, advApprnce, maxDevName) 

 PRINT BleAdvRptAddUuid16(advRpt$, 0x180F,0x180A, -1, -1, -1, -1) 

 PRINT BleAdvRptsCommit(advRpt$, scRpt$) 

 

 // Only the advert report will be updated. 

Expected Output: 

000 

 

This section describes all the extended adverts related routines, including ones for scanning and connecting which is an 
enhancement that was introduced in the v5.0 specification. 

This enhancement allows for the advertising payload to be greater than 31 and in addition the use of all 40 channels and 
PHYs of 1M, 2M and LE_CODED. 

As a recap, the specification labels the 40 channels from 0 to 39 and in the 4.x specification channels 37,38 and 39 were 
dedicated as adverisement channels and they were always sent at 1M PHY as that was the only one possible. 

In v5.0, advertisment channels 37,38 and 39 are now qualified as ‘Primary Advertising Channels’ and channels 0 to 36 which 
were used exclusively for data in connections, they are now qualified as ‘Secondary Advertising Channels’. 

In extended adverts, the adverts sent in the primary channels are still limited to a payload of not more than 31 bytes and only 
those on secondary channels can have larger than 31 bytes. 

Each advert packet sent on a secondary channel can now have up to 255 bytes of payload (concatenated AD elements) and 
the specification allows for chaining up to 6 of those 255 byte packets so that up to 1650 bytes as a single object can be 
broadcast. However, field experience has shown that relibility of receiving all those chained packets is not 100% and so many 



https://www.lairdconnect.com/ 125 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

stack vendors do not offer the chaining capability and so each advert can only have up to 255 bytes of payload. On that basis, 
the Laird module also limits it to 255  bytes. 

When extended adverts are sent, a newly created primary channel advert, called ADV_EXT_IND, is used with a special 
payload that has a pointer to the advert that is subsequently sent on the secondary channel (no advert data is allowed in this 
payload). That pointer object contains the following information:- 

• Time offset to the start of the packet in one of the secondary channels. 

• The PHY that the advert will be sent out on, which will be one of 1M, 2M or LE_CODED 

• Then channel number which will be in the range 0 to 36 

Also note that for earlier specifications, the adverts on channels 37,38,39 were always sent on 1M PHY because that was the 
only PHY available. Given that v5.x has introduced new PHYs, it is now possible to send the ADV_EXT_IND (which only go 
out on primary channels) on LE_CODED, and that is to allow long range connections to be established. That is logical 
because when the two peers are far apart, normal 1M PHY adverts are not going to reach the master device for it to initiate 
connections. 

An advert or scan response payload consists of multiple advertising records, referred to as AD in the rest of this manual. 

Each AD record consists of up to three fields: 

▪ Field 1 – One octet in length and indicates the number of octets that follow it that belong to that record. 

▪ Field 2 – One octet in length and is a tag value which identifies the type of payload that starts at the next octet. Hence the 
payload data is ‘length – 1’. 

▪ Field 3 – (Length-1) Octets in length and is the payload for the AD record associated to the tag value specified. 

The specification also allows custom AD records to be created using the Manufacturer Specific Data AD record. 

Refer to the current version of the Supplement to the Bluetooth Core Specification, Part A which contains the latest list of all 
AD records. You must register as at least an adopter, which is free, to gain access to this information. It is available at 
https://www.Bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=245130 

In the ‘legacy’ adverts smartBASIC api functions have been provided that allow AD elements to be appended to the advert or 
scan response payload. Those functions are BleAdvRptInit(), BleScanRptInit(), BleAdvRptAddUuid16(), 
BleAdvRptAddUuid128() and BleAdvRptAppendAD() and they can still be used for extended adverts. However, if the report 
will exceed 31 bytes then it will fail. Once that happens a new function called BleExtAdvRptAppendAD() has been added that 
will allow any AD element to appended to an advert string and that new function will fail when the total length will exceed 255 
bytes. In fact, BleExtAdvRptAppendAD() should be used to populate the whole extended advert or scan response.  

 

The rest of this section will describe the new functions that have been added to facilitate extended adverts. In addition the 
following events have been added which are are described in an earlier section and can be naviagted to by clicking them. 

1. EVBLE_EXTADVDROPPED 
2. EVBLE_EXTADVNOMEM 
3. EVBLE_SCAN_ABORTED 
4. EVBLE_EXTADV_END 
5. EVBLE_EXTADV_RPT 
6. EVBLE_EXTSCN_RPT 
7. EVBLE_EXTADV_RPT_INCOMPLETE 

To summarise, to start extended adverts the smartBASIC application will make the following function calls in the sequence 
specified:- 

1. BleAdvSetCreate() 
2. BleAdvSetNewData() 
3. BleAdvSetStart() 

and once adverts are started BleAdvSetNewData() can be called as often as required to change the data that is currently 
being advertised. 

To stop adverts, call the following:- 

1. BleAdvSetStop() 

To scan for adverts, call the following:  

1. BleScanStartEx() 

https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=245130


https://www.lairdconnect.com/ 126 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

To stop scanning use the existing scan functions and to process advert reports or scan responses that are received register 
handlers for the following events: 

1.  EVBLE_EXTADV_RPT 
2. EVBLE_EXTSCN_RPT 
3. EVBLE_EXTADV_RPT_INCOMPLETE  

A scan started using the command above will also result in ‘legacy’ Adverts being received, these should be processed in the 
same manner they have previously which means a handler needs to be registered for the event EVBLE_ADV_REPORT, 
EVBLE_SCAN_TIMEOUT, and EVBLE_FAST_PAGED. 

To make connections, use the following function which will allow for making long range connections. In fact it is recommened 
that this new function should always be used as the existing function BleConnect() may be deprecated:- 

2. BleConnectExtended() 

 

FUNCTION 

This function is used to create a new advertising set identified by the nSetId parameter which is a value in the range 0 to N 
where N is function of the firmware build. The set identified by nSetID value of 0 is always available and at runtime use 
NvCfgKeyGet(217) to obtain the maximum sets that can be created. 

Think of a set as the definition of an advertising object and when multiple are defined they can all be advertised simultaneously 
in an interleaved manner so that it facilitates the transmission of say iBeacons and Eddystone beacons. Note that at the time 
when this was written the underlying stack only allows up to 1 set to be created and resused as often as desired. 

If the nAdvProperties argument is specified with bit 2 set (directed), then the peerAddr$ string must not be empty and should 
be a valid address.  

When filter policy is enabled, the whitelist consisting of all bonded masters is submitted to the underlying stack so that only 
those bonded masters result in scan and connection requests being serviced. 

BLEADVSETCREATE (nSetId, nAdvProperties, nPriSecPhy, nFilterPolicy, peerAddr$, chanMask$) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments:  

nSetId byVal nSetId  AS INTEGER.  

A value in the range 0 to N where N is the value returned by command AT+CFG 127?  

nAdvProperties 

byVal nAdvProperties  AS INTEGER.  

Specifies a bitmask as follows: 

Bit Description 

0 Set for Connectable, clear for Unconnectable 

1 
Set for Scannable, clear for Unscannable. 

Note when extended bit 3 is set, bits 0 and 1 cannot both be 1 

2 Set for Directed and clear for Undirected 

3 Set for Extended and clear for 4.x adverts 

4..7 Reserved for future use, set to 0 

8 
When directed bit 2 is set, set this bit for High latency and clear for low latency, will be 

ignored if extended bit 3 is set 

9 

Set to omit advertisers address from all CEAP extended advert pdus so that it is 

anonymous 

See specification for more details 

10 
Set to include the TX_POWER info field in the CEAP payload of extended adverts.  

See specification for more details 

11..31 Reserved for future use, set to 0 
 



https://www.lairdconnect.com/ 127 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

nPriSecPhy 

byVal nPriSecPhy AS INTEGER.  

Bitmask to set Primary and Secondary PHYs  

 bit 0   : Primary Phy  

           - Clear for 1MPHY and Set for LE_CODED 

           - When set, Bit 3 (Extended) in nAdvProperties overriden as always set 

 bit 123 : Secondary Phy 

             321 

           - 000 == Same Phy as Primary Phy 

           - 001 == 1MPHY  

           - 010 == 2MPHY  

           - 011 == LECODED 

           - 100 to 111 is reserved for future use 

nFilterPolicy            

byVal nFilterPolicy  AS INTEGER.  

A handle that will have been created using BleWhiteListCreate() that specifies the peer addresses that 

will be whitelisted.  

peerAddr$ 

byRef peerAddr$  AS STRING  

It can be an empty string that is omitted if the advertisement type is not ADV_DIRECT_IND. 

This is only required when nAdvType == 1. When not empty, a valid address string is exactly seven 

octets long (for example: \00\11\22\33\44\55\66) where the first octet is the address type and the rest of 

the six octets is the usual Bluetooth address in big endian format (so the most significant octet of the 

address is at offset 1), whether public or random.  

0 Public 

1 Random Static 

2 Random Private Resolvable 

3 Random Private Non-Resolvable 

All other values are illegal. 
 

chanMask$   

byVal chanMask$   AS STRING 

This is a string that will be exactly 0 or 5 bytes long that has 40 bits that map to the 40 channels 

available in BLE. If a bit is 1 then the corresponding channel is not allowed. 

Bit 0 of the first byte is channel 0 and bit 7 of the 5th byte is channel 39. 

At least one but corresponding to channels 37,38 and 39 must be clear. 

See specification v5.0, Vol 6, Part B, Section 1.4.1 

 

FUNCTION 

This function is used to attach advert and/or scan response data to the data set specified. If adverts are currently being 
transmitted for the set specified they need not be stopped, the data will automatically be updated in the next adverts sent. 
 
This function assumes that the set specified has already been created using BleAdvSetCreate() and if not will return an 
appropriate error code. 

BLEADVSETNEWDATA (nSetId, advData$, scanData$) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments:  

nSetId byVal nSetId  AS INTEGER.  

A value in the range 0 to N where N is the value returned by command AT+CFG 127?  

advData$ 

byRef advData$  AS STRING.  

Contains concatenated AD elements to be transmitted. The string will have been created with 

BleAdvRptInit().Depending on the type of advert, the length of the advert cannot be greater than 31 or 

238 or 255. 

31 limit when BleAdvSetCreate() nAdvProperties bit 3 is clear 



https://www.lairdconnect.com/ 128 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

238 limit when BleAdvSetCreate()  nAdvProperties bit 0 is set and bit 3 is set 

255 limit when BleAdvSetCreate()  nAdvProperties bit 0 is clear and bit 3 is set 

scanData$ 

byRef scanData$  AS STRING.  

Contains concatenated AD elements to be transmitted. The string will have been created with either 

BleScanRptInit(). Depending on the type of advert, the length of the scan response cannot be greater 

than 0, 31 or 255. 

0 when BleAdvSetCreate()  nAdvProperties bit 1 is clear 

31 limit when BleAdvSetCreate()  nAdvProperties bit 3 is clear 

255 limit when BleAdvSetCreate()  nAdvProperties bit 3  

 

FUNCTION 

This function is used to start adverts for the advertising set specified using interval and duration parameters specified. 

If the nAdvMaxCount is non-zero then when that many adverts are sent, advertising will be automatically stopped regardless 
of the value of the nAdvDuration parameter. 

If nAdvMaxCount is zero and nAdvDuration is also 0 then advertising will not autoamtically stopped until either 
BleAdvSetStop() with the same nSetID or BleAdvertStop() is called. 

BLEADVSETSTART (nSetId, nAdvInterval, nAdvDuration, nAdvMaxCount, nAuxOffset) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

If a 0x6A01 resultcode is received, it implies a whitelist has been enabled but the Flags AD in the 

advertising report is set for Limited and/or General Discoverability. The solution is to resubmit a new 

advert report which is made up so that the nFlags argument to BleAdvRptInit() function is 0. 

The BT spec disallows discoverability when a whitelist is enabled during advertisement.  

Arguments:  

nSetId byVal nSetId  AS INTEGER.  

A value in the range 0 to N where N is the value returned by command AT+CFG 127?  

nAdvInterval   

byVal nAdvInterval   AS INTEGER.  

The interval between two advertisement events (in milliseconds). 

Valid range is between 20 and 10240 milliseconds. 

nAdvDuration          

byVal nAdvTimeout  AS INTEGER.  

The time after which the module stops advertising (in milliseconds). The range of this value is between 

0 and 16383000 milliseconds and is rounded up to the nearest 1 seconds (1000ms).   

A value of 0 means disable the timeout 

nAdvMaxCount 

byVal nAdvMaxCount   AS INTEGER.  

This is a value in the range 0 to 255 

When non-zero, then advertising will automatically stop when this many adverts are sent. The event 

EVBLE_EXTADV_END will be received with the reason set to the number of adverts sent. 

nAuxOffset 

byVal nAuxOffset  AS INTEGER.  

This is reserved for future use and must always be set to 0 which signifies the use of stack default value 

which is around 4 milliseconds. No assumptions should be made on this value as the default value is 

subject to change by the stack vendor. 

 

FUNCTION 

This function is used to stop adverts for the advertising set specified. 

BLEADVSETSTOP (nSetId) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation.  



https://www.lairdconnect.com/ 129 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

Arguments:  

nSetId byVal nSetId  AS INTEGER.  

A value in the range 0 to N where N is the value returned by command AT+CFG 127?  

 

FUNCTION 

This function is used to start a scan for adverts which may result in at least one of the following events being thrown: 

EVBLE_SCAN_TIMEOUT End of scanning 

EVBLE_ADV_REPORT Advert report received 

EVBLE_FAST_PAGED               Peripheral inviting a connection to this module 

EVBLE_EXTADVDROPPED Event message queue full and extended advert arrived 

EVBLE_EXTADVNOMEM Extended advert or scan response arrived and malloc failed 

EVBLE_EXTADV_RPT Received an extended advert report  

EVBLE_EXTSCN_RPT Received an extended scan response 

EVBLE_EXTADV_RPT_INCOMPLETE 
Received and extended advert report or scan response which has 

incomplete data payload 

▪ EVBLE_ADV_REPORT – Received when an advert has been successfully cached in a ring buffer. The handler should 
call the function BleScanGetAdvReport() repeatedly to read all the advert reports that have been cached until the cache 
is empty, otherwise there is a risk that advert reports will be discarded. The output parameter nDiscarded returns the 
number of discarded reports, if any. 

▪ EVBLE_FAST_PAGED – Received when a peripheral has sent an advert with the address of this module. The handler 
should stop scanning using BleScanStop() and then initiate a connection using BleConnectExtended(). 

▪ EVBLE_EXTADV_RPT_INCOMPLETE is received when an advert report or scan response is received when the data is 
incomplete. This can happened for example when a advertiser has sent an advert or scan response which is greater than 
255 by sending chained packets. The underlying code in this buffer does not provide a buffer larger than 255 bytes for 
the data to be stored in and so it has to be reported as incomplete.  

There are two parameters used when initiating a scan that are configurable using BleScanConfig(), otherwise default values 
are used: 

▪ Scan Interval – Specify the duty cycle for listening for adverts. Default value: 80 milliseconds. 

▪ Scan Window – Specify the duty cycle for listening for adverts. Default value: 40 milliseconds. 

The values for these default parameters can be changed prior to invoking this function by calling the function BleScanConfig() 
appropriately. 
 

Scanning can be stopped at any time by called BleScanStop() or by starting a connection. 

As this command allows you to scan for both regular and extended Adverts, it is suggested to use this command over the 
existing BleScanStart() command. 

Note:  Be aware that scanning is a memory intensive operation and so heap memory is used to manage a cache for 

legacy adverts. If the heap is fragmented, it is likely this function will fail with an appropriate resultcode returned. If 

that happens, call Reset() and then attempt the scan start again. The memory that is allocated to manage this scan 

process is NOT released when the scanning times out. To force release of that memory, we recommend that you 

start the scan and then immediately call BleScanStop(). 

BLESCANSTARTEX(scanTimeoutMs, nPriPhyScan, chanMask$, nFilterHandle) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments:  



https://www.lairdconnect.com/ 130 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

scanTimeoutMs 

byVAL scanTimeoutMs  AS INTEGER.  

The length of time in milliseconds the scan for adverts lasts. If the timer times out then the 

event EVBLE_SCAN_TIMEOUT is thrown to the smartBASIC application. 

Valid range is 0 to 65535000 milliseconds (about 18 hours). If 0 is supplied, a timer is not 

started and scanning can only be stopped by calling either BleScanAbort() or Ble ScanStop(). 

nPriPhyScan 

byVAL nPriPhyScan  AS INTEGER 

Bit Mask to specify the PHY to scan on in the primary channels and whether passive or active 

scanning as follows 

Note: At least one bit MUST be set. 

    Bit 0: Scan on 1MPHY 

    Bit 1: Scan on LE_CODED 

    Bit 2: Set for Extended Scanning (If Bit 1 set, then this is overriden and always set) 

    Bit 3: Set for Passive Scanning and clear for Active Scanning 

 

Note when Bit 2 is clear and bit 1 is not set, then the scanning is as per legacy scanning which 

would if BleScanStart() was called. 

chanMask$ 

byVal chanMask$   AS STRING 

This is a string that will be exactly 0 or 5 bytes long that hass 40 bits that map to the 40 

channels available in BLE. If a bit is 1 then the corresponding channel is not allowed. 

Bit 0 of the first byte is channel 0 and bit 7 of the 5th byte is channel 39. 

At least one but corresponding to channels 37,38 and 39 must be clear. 

See specification v5.0, Vol 6, Part B, Section 1.4.1 

nFilterHandle 

byVal nFilterPolicy  AS INTEGER.  

A handle that will have been created using BleWhiteListCreate() that specifies the peer 

addresses that will be whitelisted.  

 

FUNCTION 

This function is used to extract information from the metaData$ string parameter that is sent in the following events:- 

EVBLE_EXTADV_RPT Received an extended advert report  

EVBLE_EXTSCN_RPT Received an extended scan response 

EVBLE_EXTADV_RPT_INCOMPLETE 
Received and extended advert report or scan response which has 

incomplete data payload 

BLEEXTRPTMETADATA (metaData$, nInfoId) 

Returns INTEGER, the value of the information field. 

It will be 0x80000000 if the metaData$ string is of the wrong length. 

It will be 0x80000001 if the metaData$ string is invalid due to not having correct magic header. 

Arguments:  

metaData$ byRef metaData$ as STRING 

The metadata$ string that arrived in one of the events listed above. 

nInfoId byVal nInfoId  AS INTEGER.  

The information extracted is as per the list below. 

 1  : Set_id 

 2  : data_id 

 3  : primary phy 

 4  : secondary phy 

 5  : channel_index 

 6  : tx_power (This field is set to 127 if the report does not contain the TxPower field) 

 7  : Status ( 0=Complete 



https://www.lairdconnect.com/ 131 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

               1=INCOMPLETE_MORE_DATA - More data to be received 

               2=INCOMPLETE_TRUNCATED - Buffer size insufficient to receive more 

               3=INCOMPLETE_MISSED    - Failed to receive the remaining data 

 8  : Packet type: 0 for Advert Report and 1 for Scan Response 

 

All other id values will return 0. 

 

FUNCTION 

This function is used to make normal or long range connections to a device in peripheral mode which is actively advertising. 

When the connection is complete, an EVBLEMSG message with msgId = 0 and context containing the handle are thrown to 
the smartBASIC runtime engine. 

If the connection times out, then the event EVBLE_CONN_TIMEOUT is thrown to the smartBASIC application. 

When a connection is attempted, there are additional parameters that are used to determine connection scan times, slave 
latency, and multiple connection periodicity, the default values for these are assumed. The default values for these parameters 
can be changed using the BleConnectConfig() function. At any time, the current settings can be obtained via the SYSINFO() 
command. 

BLECONNECTEXTENDED(peerAddr$, connTimeoutMs, minConnIntUs, maxConnIntUs, nSuprToutUs, nLongRange,hFilter ) 

Returns INTEGER, a result code.  

The most typical value is 0x0000, indicating a successful operation. 

Arguments:  

peerAddr$          

byRef peerAddr$        AS STRING 

The Bluetooth address of the device to connect to which MUST be properly formatted and is 

exactly seven bytes long. 

connTimeoutMs 

byVal connTimeoutMs        AS INTEGER.  

The length of time in milliseconds that the connection attempt lasts. If the timer times out then 

the event EVBLE_CONN_TIMEOUT is thrown to the smartBASIC application. 

minConnIntUs 

byVal minConnIntUs        AS INTEGER.  

The minimum connection interval in microseconds. Valid range is between 7500 and 4000000 

microseconds. 

maxConnIntUs 

byVal maxConnIntUs        AS INTEGER.  

The maximum connection interval in microseconds. Valid range is between 7500 and 4000000 

microseconds 

nSuprToutUs 
byVal nSuprToutUs        AS INTEGER.  

The link supervision timeout for the connection in microseconds. 

nLongRange 

byVal nLongRange        AS INTEGER.  

Set to 0 for normal 1MPHY connections and 1 for long ragne connections off LE_CODED 

adverts sent by the peer 

hFilter 

byVal nFilter  AS INTEGER.  

A handle that will have been created using BleWhiteListCreate() that specifies the peer 

addresses that will be whitelisted. 

 

 

FUNCTION 

This function adds an arbitrary AD (Advertising record) field to the advert or scan report. An AD element consists of a 
LEN:TAG:DATA construct where TAG can be any value from 0 to 255 and DATA is a sequence of octets.  
 



https://www.lairdconnect.com/ 132 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

This function is the only one that is able to add an AD element to a report when adding it will extend the report beyond 31 
bytes. It will not succeed of the report will result in it being over 255 bytes long. 
 
Use function BleExtAdvGetSpace() to determine current available space in advRpt$ string. 

BLEEXTADVRPTAPPENDAD (advRpt$, nTag, stData$) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments:  

AdvRpt$ 
byRef AdvRpt$ AS STRING.  

The advert report onto which the AD record is to be appended. 

nTag 
byVal nTag AS INTEGER 

nTag should be in the range 0 to FF and is the TAG field for the record. 

stData$ 

byRef stData$ AS STRING 

This is an octet string which can be 0 bytes long. The maximum length is governed by the space 

available in AdvRpt, a maximum of 255 bytes long. 

 

FUNCTION 

This function is used to add a 16 bit UUID service list AD (Advertising record) to the extended advert report. This consists of all 
the 16 bit service UUIDs that the device supports as a server. Up to six 16 bit UUIDs can be added. 

BLEEXTADVRPTADDUUID16 (advRpt$, nUuid1, nUuid2, nUuid3, nUuid4, nUuid5, nUuid6) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments:  

AdvRpt$ 
byRef AdvRpt AS STRING.  

The advert report onto which the 16-bit uuids AD record is added. 

nUuid1 
byVal uuid1 AS INTEGER 

UUID in the range 0 to FFFF; if the value is outside that range, it is ignored.  

nUuid2 

byVal uuid2 AS INTEGER 

UUID in the range 0 to FFFF; if the value is outside that range, it is ignored. Set the value to -1 to 

have it ignored and then all further UUID arguments will also be ignored. 

nUuid3 

byVal uuid3 AS INTEGER 

UUID in the range 0 to FFFF; if the value is outside that range, it is ignored. Set the value to -1 to 

have it ignored and then all further UUID arguments will also be ignored. 

nUuid4 

byVal uuid4 AS INTEGER 

UUID in the range 0 to FFFF; if the value is outside that range, it is ignored. Set the value to -1 to 

have it ignored and then all further UUID arguments will also be ignored. 

nUuid5 

byVal uuid5 AS INTEGER 

UUID in the range 0 to FFFF; if the value is outside that range, it is ignored. Set the value to -1 to 

have it ignored and then all further UUID arguments will also be ignored. 

nUuid6 

byVal uuid6 AS INTEGER 

UUID in the range 0 to FFFF; if the value is outside that range, it is ignored. Set the value to -1 to 

have it ignored and then all further UUID arguments will also be ignored. 

 

FUNCTION 

This function is used to add a 128 bit UUID service list AD (Advertising record) to the extended advert report. This consists of 
all the 128 bit service UUIDs that the device supports as a server. Up to six 128 bit UUIDs can be added. If there isn’t enough 
space to add an element with all the UUID’s specified then the AD element tag will be the incomplte list variant which has the 
value 0x06 instead of 0x07 which denotes the fact that all UUIDs fitted. 



https://www.lairdconnect.com/ 133 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

The function takes UUID handles that will have been obtained using functions like BleHandleUuid128() and 
BleHandleUuidSibling(). 

BLEEXTADVRPTADDUUID128 (advRpt$, hUuid1, hUuid2, hUuid3, hUuid4, hUuid5, hUuid6) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments:  

AdvRpt$ 
byRef AdvRpt AS STRING.  

The advert report onto which the 128-bit uuids AD record is added. 

hUuid1 
byVal hUuid1 AS INTEGER 

UUID handle that will have been obtained using BleHandleUuid128() or BleHandleUuidSibling().  

hUuid2 

byVal hUuid2 AS INTEGER 

UUID handle that will have been obtained using BleHandleUuid128() or BleHandleUuidSibling(). 

Set the value to 0 to have it ignored and then all further UUID handle arguments will also be 

ignored. 

hUuid3 

byVal hUuid3 AS INTEGER 

UUID handle that will have been obtained using BleHandleUuid128() or BleHandleUuidSibling(). 

Set the value to 0 to have it ignored and then all further UUID handle arguments will also be 

ignored. 

hUuid4 

byVal hUuid4 AS INTEGER 

UUID handle that will have been obtained using BleHandleUuid128() or BleHandleUuidSibling(). 

Set the value to 0 to have it ignored and then all further UUID handle arguments will also be 

ignored. 

hUuid5 

byVal hUuid5 AS INTEGER 

UUID handle that will have been obtained using BleHandleUuid128() or BleHandleUuidSibling(). 

Set the value to 0 to have it ignored and then all further UUID handle arguments will also be 

ignored. 

hUuid6 

byVal hUuid6 AS INTEGER 

UUID handle that will have been obtained using BleHandleUuid128() or BleHandleUuidSibling(). 

Set the value to 0 to have it ignored and then all further UUID handle arguments will also be 

ignored. 

 

FUNCTION 

This function returns the free space in the extended advert advRpt$. 

BLEEXTADVRPTGETSPACE(advRpt) 

Returns INTEGER, the free space in bytes. 

Arguments:  

advRpt$ 
byRef advRpt$ AS STRING.  

This contains an advert/scan report. 

 

 

When a peripheral advertises, the advert packet consists type of advert, address, RSSI, and some user data information. 

A central role device enters scanning mode to receive these advert packets from any device that is advertising. 

For each advert that is received, the data is cached in a ring buffer, if space exists, and the EVBLE_ADV_REPORT event is 
thrown to the smartBASIC application so that it can invoke the function BleScanGetAdvReport() to read it. 

The scan procedure ends when it times out (timeout parameter is supplied when scanning is initiated) or when explicity 
instructed to abort or stop. 



https://www.lairdconnect.com/ 134 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

Note:  While scanning for a long period of time, it is possible that a peripheral device is advertising for a connection to it 

using the ADV_DIRECT_IND advert type. When this happens, it is good practice for the central device to stop 

scanning and initiate the connection. To cater for this specific scenario, which would normally require the central 

device to look out for that advert type and the self address, the EVBLE_FAST_PAGED event is thrown to the 

application. This means that all the user app needs to do is to install a handler for that event which stops the scan 

procedure and immediately starts a connection procedure. 

For more information about adverts see the section Advertising Functions. 

 

FUNCTION 

This function is used to start a scan for adverts which may result in at least one of the following events being thrown: 

EVBLE_SCAN_TIMEOUT End of scanning 

EVBLE_ADV_REPORT Advert report received 

EVBLE_FAST_PAGED               Peripheral inviting a connection to this module 

▪ EVBLE_ADV_REPORT – Received when an advert has been successfully cached in a ring buffer. The handler should 
call the function BleScanGetAdvReport() repeatedly to read all the advert reports that have been cached until the cache 
is empty, otherwise there is a risk that advert reports will be discarded. The output parameter nDiscarded returns the 
number of discarded reports, if any. 

▪ EVBLE_FAST_PAGED – Received when a peripheral has sent an advert with the address of this module. The handler 
should stop scanning using BleScanStop() and then initiate a connection using BleConnect(). 

There are three parameters used when initiating a scan that are configurable using BleScanConfig(), otherwise default values 
are used: 

▪ Scan Interval – Specify the duty cycle for listening for adverts. Default value: 80 milliseconds. 

▪ Scan Window – Specify the duty cycle for listening for adverts. Default value: 40 milliseconds. 

▪ Scan Type – Default scan type: Active 

Active scanning means that for each advert received (if it is ADV_IND or ADV_DISCOVER_IND) a SCAN_REQ is sent to 
the advertising device so that the data in the scan response can be appended to the data that has already been received 
for the advert. 

The values for these default parameters can be changed prior to invoking this function by calling the function BleScanConfig() 
appropriately. 

Note:  Be aware that scanning is a memory intensive operation and so heap memory is used to manage a cache. If the 

heap is fragmented, it is likely this function will fail with an appropriate resultcode returned. If that happens, call 

reset() and then attempt the scan start again. The memory that is allocated to manage this scan process is NOT 

released when the scanning times out. To force release of that memory, we recommend that you start the scan and 

then immediately call BleScanStop(). 

 Connections may not be established during a scan operation. If a continued scan is required, stop the scan or let it 

timeout, connect, then restart the scan. 

 In order to scan for devices over the CODED PHY medium (long range), BleScanConfig() should be called 

beforehand to configure the device with this capability. See BleScanConfig() for more information. Furthermore, 

high bandwidth should be enabled using “AT+CFG 214 1” followed by “ATZ”. 

BLESCANSTART (scanTimeoutMs, nFilterHandle) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments:  



https://www.lairdconnect.com/ 135 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

scanTimeoutMs 

byVAL scanTimeoutMs  AS INTEGER.  

The length of time in milliseconds the scan for adverts lasts. If the timer times out then the 

event EVBLE_SCAN_TIMEOUT is thrown to the smartBASIC application. 

Valid range is 0 to 65535000 milliseconds (about 18 hours). If 0 is supplied, a timer is not 

started and scanning can only be stopped by calling either BleScanAbort() or Ble ScanStop(). 

nFilterHandle 

byVAL nFilterHandle  AS INTEGER 

This must be zero (0) to specify no filtering of adverts.  

Note: In this current firmware version, this is only a placeholder. 

Example: 

// Example :: BleScanStart.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

DIM rc 

 

 '//Scan for 20 seconds with no filtering 

 rc = BleScanStart(20000, 0) 

 

 IF rc==0 THEN 

     PRINT "\nScanning" 

 ELSE 

     PRINT "\nError: "; INTEGER.H'rc 

 ENDIF  

 

 '//This handler will be called when scanning times out 

 FUNCTION HndlrScanTO() 

     PRINT "\nScan timeout" 

 ENDFUNC 0 

 

 ONEVENT EVBLE_SCAN_TIMEOUT CALL HndlrScanTO 

 

 WAITEVENT 

Expected Output: 

Scanning 

Scan timeout 

 

See description in section “Extended Adverts Functions” here. 

 

FUNCTION 

This function is used to cancel an ongoing scan for adverts which has not timed out. It takes no parameters as there can only 
be one scan in progress. 

Use the value returned by SYSINFO(2016) to determine if there is an ongoing scan operation in progress. The value is a bit 
mask where: 

▪ bit 0 is set if advertising is in progress 

▪ bit 1 is set if there is already a connection in a peripheral role 

▪ bit 2 is set if there is a current ongoing connection attempt 

▪ bit 3 is set when scanning 

▪ bit 4 is set if there is already a connection to a peripheral 

There is also BleScanStop() which cancels an ongoing scan. The difference is that, by calling BleScanAbort(), the memory 
that was allocated from heap by BleScanStart() is not released back to the heap. The scan manager retains it for the next scan 
operation. 

https://github.com/LairdCP/BL652-Applications/tree/master/UserGuideExamples


https://www.lairdconnect.com/ 136 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

BLESCANABORT () 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments None 

Example: 

// Example :: BleScanAbort.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 DIM rc, startTick 

 

 '//Scan for 20 seconds with no filtering 

 rc = BleScanStart(20000, 0) 

 

 IF rc==0 THEN 

     PRINT "\nScanning" 

 ELSE 

     PRINT "\nError: "; INTEGER.H'rc 

 ENDIF 

 

 '//Wait 2 seconds before aborting scan 

 startTick = GetTickCount() 

 WHILE GetTickSince(startTick) < 2000 

 ENDWHILE 

 

 '//If scan in progress, abort 

 IF SysInfo(2016) == 0x08 THEN 

     PRINT "\nAborting scan" 

     rc = BleScanAbort()  

     IF SysInfo(2016) == 0 THEN 

         PRINT "\nScan aborted" 

     ENDIF   

 ENDIF 

Expected Output: 

Scanning 

Aborting scan 

Scan aborted 

 

FUNCTION 

This function is used to cancel an ongoing scan for adverts which has not timed out. It takes no parameters, as there can only 
be one scan in progress. 

Use the value returned by SYSINFO(2016) to determine if there is an ongoing scan operation in progress. The value is a bit 
mask where: 



https://www.lairdconnect.com/ 137 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

▪ bit 0 is set if advertising is in progress 

▪ bit 1 is set if there is already a connection in a peripheral role 

▪ bit 2 is set if there is a current ongoing connection attempt 

▪ bit 3 is set when scanning 

▪ bit 4 is set if there is already a connection to a peripheral 

There is also BleScanAbort() which cancels an ongoing scan. The difference is that, by calling BleScanStop(), the memory 
that was allocated from heap by BleScanStart() is released back to the heap. The scan manager must reallocate the memory if 
BleScanStart() is called again. 

BLESCANSTOP () 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments None 

Example: 

// Example :: BleScanStop.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 DIM rc, startTick 

 

 '//Scan for 20 seconds with no filtering 

 rc = BleScanStart(20000, 0) 

 

 IF rc==0 THEN 

     PRINT "\nScanning" 

 ELSE 

     PRINT "\nError: "; INTEGER.H'rc 

 ENDIF 

 

 '//Wait 2 seconds before aborting scan 

 startTick = GetTickCount() 

 WHILE GetTickSince(startTick) < 2000 

 ENDWHILE 

 

 '//If scan in progress, abort 

 IF SysInfo(2016) == 0x08 THEN 

     PRINT "\nStop scanning. Freeing up allocated memory" 

     rc = BleScanStop()    

     IF SysInfo(2016) == 0 THEN 

         PRINT "\nScan stopped" 

     ENDIF 

 ENDIF 

Expected Output: 

Scanning 



https://www.lairdconnect.com/ 138 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

Stop scanning. Freeing up allocated memory 

Scan stopped 

 

FUNCTION 

This function is used to flush the ring buffer which stores incoming adverts which are later read. 

BLESCANFLUSH () 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments None 

Example: 

// Example :: BleScanFlush.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 DIM rc, startTick 

 

 '//Scan for 20 seconds with no filtering 

 rc = BleScanStart(20000, 0) 

 

 IF rc==0 THEN 

     PRINT "\nScanning" 

 ELSE 

     PRINT "\nError: "; INTEGER.H'rc 

 ENDIF 

 

 '//Wait 2 seconds before aborting scan 

 startTick = GetTickCount() 

 WHILE GetTickSince(startTick) < 2000 

 ENDWHILE 

 

 '//If scan in progress, abort 

 IF SysInfo(2016) == 0x08 THEN 

     PRINT "\nAborting scan" 

     rc = BleScanAbort()  

     IF SysInfo(2016) == 0 THEN 

         PRINT "\nScan aborted" 

     ENDIF 

      

     '//Free up memory 

     rc = BleScanFlush() 

     IF (rc == 0) THEN 

        PRINT "\nScan results flushed." 

     ENDIF 



https://www.lairdconnect.com/ 139 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 ENDIF 

Expected Output: 

Scanning 

Aborting scan 

Scan aborted 

Scan results flushed. 

 

FUNCTION 

This function is used to modify the default parameters that are used when initiating a scan operation using BleScanStart(). 

The following are the default values for the parameters: 

Scan Interval 80 milliseconds 

Scan Window 40 milliseconds 

Scan Type (Active/Passive) Active 

Minimum Reports in Cache 4 

Note:  The default Scan Window and Interval give a 50% duty cycle. The 50% duty cycle attempts to ensure that 

connection events for existing connections are missed as infrequently as possible. 

BLESCANCONFIG (configID, configValue)  

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments:  

configID 

byVal configID      AS INTEGER. 

This identifies the value to update as follows: 

0 Scan Interval in milliseconds (range 0..10240) 

1 Scan Window in milliseconds (range 0..10240) 

2 Scan Type (0=Passive, 1=Active) 

3 Advert Report Cache SIze 

4 

Scan PHYs. Possible values are:- 

1 - 1MPHY 

4 - CODED PHY 

All other values are invalid 

 

DEPRACATED DO NOT USE, use BleScanStartEx() 

5 

Extended advertising. Possible values are:- 

0 - Only return legacy advertising packets 

1 - Return both legacy and extended advertisitng packets (required for CODED adverts) 

 

DEPRACATED DO NOT USE, use BleScanStartEx() 

 

For all other configID values the function returns an error. 
 

configValue 
byVal configValue     AS INTEGER.  

This contains the new value to set in the parameters indentified by configID. 

Example: 

// Example :: BleScanConfig.sb 



https://www.lairdconnect.com/ 140 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 DIM rc, startTick 

 

 PRINT "\nScan Interval: "; SysInfo(2150)    //get current scan interval 

 PRINT "\nScan Window: "; SysInfo(2151)      //get current scan window 

 PRINT "\nScan Type: ";  

 IF SysInfo(2152)==0 THEN                  //get current scan type 

     PRINT "Passive" 

 ELSE 

     PRINT "Active" 

 ENDIF 

 PRINT "\nReport Cache Size: "; SysInfo(2153) //get report cache size 

 

 PRINT "\n\nSetting new parameters..." 

 rc = BleScanConfig(0, 100)               //set scan interval to 100 

 rc = BleScanConfig(1, 50)                //set scan window to 50 

 rc = BleScanConfig(2, 0)                 //set scan type to passive 

 rc = BleScanConfig(3, 3)                 //set report cache size 

 

 PRINT "\n\n--- New Parameters:" 

 PRINT "\nScan Interval: "; SysInfo(2150)    //get current scan interval 

 PRINT "\nScan Window: "; SysInfo(2151)      //get current scan window 

 PRINT "\nScan Type: ";  

 IF SysInfo(2152)==0 THEN                  //get current scan type 

     PRINT "Passive" 

 ELSE 

     PRINT "Active" 

 ENDIF 

 PRINT "\nReport Cache Size: "; SysInfo(2153) //get report cache size 

Expected Output: 

Scan Interval: 80 

Scan Window: 40 

Scan Type: Active 

Report Cache Size: 4 

 

Setting new parameters.. 

 

--- New Parameters: 

Scan Interval: 100 

Scan Window: 50 

Scan Type: Passive 

Report Cache Size: 3 



https://www.lairdconnect.com/ 141 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

FUNCTION 

When a scan is in progress after having called BleScanStart() for each advert report, the information is cached in a queue 
buffer and an EVBLE_ADV_REPORT event is thrown to the smartBASIC application.  

This function is used by the smartBASIC application to extract it from the queue for further processing in the handler for the 
EVBLE_ADV_REPORT event. 

The retrieved information consists of the address of the peripheral that sent the advert, the data payload, the number of 
adverts (all, not just from that peripheral) that have been discarded since the last time this function was called and the RSSI 
value for that packet.  

Note: The RSSI can be used to determine the closest device. However, due to fading and reflections, it is possible that a 

device further away could result in a higher RSSI value. 

BLESCANGETADVREPORT (periphAddr$, advData$, nDiscarded, nRssi) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments:  

periphAddr$       
byREF periphAddr$  AS STRING  

On return, this parameter is updated with the address of the peripheral that sent the advert. 

advData$       

byREF advData$  AS STRING  

On return, this parameter is updated with the data payload of the advert which consists of multiple AD 

elements. 

nDiscarded       

byREF nDiscarded AS INTEGER  

On return, this parameter is updated with the number of adverts that were discarded because there 

was no space in the internal queue. 

nRssi       

byREF nRssi AS INTEGER  

On return, this parameter is updated with the RSSI as reported by the stack for that advert. 

Note:   This is NOT a value that is sent by the peripheral but a value that is calculated by the receiver 

in this module. 

Note:    This code snippet was tested with another BL654 running the iBeacon app (see in smartBASIC_Sample_Apps 

folder) on peripheral firmware. 

Example: 

// Example :: BleScanGetAdvReport.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 DIM rc 

 

 '//Scan for 20 seconds with no filtering 

 rc = BleScanStart(5000, 0) 

 

 IF rc==0 THEN 

     PRINT "\nScanning" 

 ELSE 

     PRINT "\nError: "; INTEGER.H'rc 



https://www.lairdconnect.com/ 142 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 ENDIF 

 

 '//This handler will be called when scanning times out 

 FUNCTION HndlrScanTO() 

     PRINT "\nScan timeout" 

 ENDFUNC 0 

 

 '//This handler will be called when an advert is received 

 FUNCTION HndlrAdvRpt() 

     DIM periphAddr$, advData$, nDiscarded, nRssi 

     

     '//Read all cached advert reports 

     rc=BleScanGetAdvReport(periphAddr$, advData$, nDiscarded, nRssi) 

     WHILE (rc == 0) 

         PRINT "\n\nPeer Address: "; StrHexize$(periphAddr$) 

         PRINT "\nAdvert Data: ";StrHexize$(advData$) 

         PRINT "\nNo. Discarded Adverts: ";nDiscarded 

         PRINT "\nRSSI: ";nRssi 

         rc=BleScanGetAdvReport(periphAddr$, advData$, nDiscarded, nRssi) 

     ENDWHILE 

 

     PRINT "\n\n --- No more adverts in cache" 

 ENDFUNC 1 

 

 ONEVENT EVBLE_SCAN_TIMEOUT CALL HndlrScanTO 

 ONEVENT EVBLE_ADV_REPORT   CALL HndlrAdvRpt 

 WAITEVENT 

Expected Output: 

Scanning 

 

Peer Address: 01D8CFCF14498D 

Advert Data: 0201061AFF4C000215E2C56DB5DFFB48D2B060D0F5A71096E012345678C4 

No. Discarded Adverts: 0 

RSSI: -97 

 

Peer Address: 01D8CFCF14498D 

Advert Data: 0201061AFF4C000215E2C56DB5DFFB48D2B060D0F5A71096E012345678C4 

No. Discarded Adverts: 0 

RSSI: -97 

 

 --- No more adverts in cache 

 

Peer Address: 01D8CFCF14498D 

Advert Data: 0201061AFF4C000215E2C56DB5DFFB48D2B060D0F5A71096E012345678C4 

No. Discarded Adverts: 0 



https://www.lairdconnect.com/ 143 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

RSSI: -92 

 

Peer Address: 01D8CFCF14498D 

Advert Data: 0201061AFF4C000215E2C56DB5DFFB48D2B060D0F5A71096E012345678C4 

No. Discarded Adverts: 0 

RSSI: -92 

 

 --- No more adverts in cache 

Scan timeout 

 

When a scan is in progress after having called BleScanStart() for each advert report, the information is cached in a queue 
buffer and an EVBLE_ADV_REPORT event is thrown to the smartBASIC application.  

This function is used by the smartBASIC application to extract it from the queue for further processing in the handler for the 
EVBLE_ADV_REPORT event. 

The retrieved information consists of the address of the peripheral that sent the advert, the data payload, the number of 
adverts (all, not just from that peripheral) that have been discarded since the last time this function was called and the RSSI 
value for that packet, in addition to the advert type and the channel number on which the advert was received. 

BLESCANGETADVREPORTEX (nAdvertType, periphAddr$, advData$, nDiscarded, nRssi, nChannel) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments:  

nAdvertTyp

e    

byREF nAdvertType AS STRING  

On return, this parameter will contain the type of the advert that was read. Possible values are as follows:- 

0 ADV_IND Invites connection requests 

1 ADV_DIRECT_IND Invites connection from addressed device 

2 ADV_SCAN_IND Invites scan request for more advert data 

3 ADV_NONCONN_IND Does not accept connections/active scans 
 

periphAddr$    
byREF periphAddr$ AS STRING  

On return, this parameter is updated with the address of the peripheral that sent the advert. 

advData$    

byREF advData $ AS STRING  

On return, this parameter is updated with the data payload of the advert which consists of multiple AD 

elements. 

nDiscarded    

byREF nDiscarded AS INTEGER  

On return, this parameter is updated with the number of adverts that were discarded because there was 

no space in the internal queue. 

nRssi    

byREF nRssi AS INTEGER  

On return, this parameter is updated with the RSSI as reported by the stack for that advert. 

Note:  This is NOT a value that is sent by the peripheral but a value that is calculated by the receiver in 

this module. 

nChannel 

byREF nChannel AS INTEGER 

On return, this parameter is set to the channel on which the advert has arrived. Valid values are  

0, 1, or 2 corresponding to channels 37,38 and 39 respectively. 

//Example :: BleScanGetAdvReportEx.sb 

DIM rc 

 

'//Scan for 5 seconds with no filtering 

rc = BleScanStart(5000, 0) 

 

IF rc==0 THEN 



https://www.lairdconnect.com/ 144 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

    PRINT "\nScanning" 

ELSE 

    PRINT "\nError: "; INTEGER.H'rc 

ENDIF 

 

'//This handler will be called when scanning times out 

FUNCTION HndlrScanTO() 

    PRINT "\nScan timeout" 

ENDFUNC 0 

 

'//This handler will be called when an advert is received 

FUNCTION HndlrAdvRpt() 

    DIM nAdvType, periphAddr$, advData$, nDiscarded, nRssi, nChannel 

     

    '//Read all cached advert reports 

    rc=BleScanGetAdvReportEx(nAdvType, periphAddr$, advData$, nDiscarded, nRssi, nChannel) 

    WHILE (rc == 0) 

       PRINT "\n\nAdvert Type: "; nAdvType 

       PRINT "\nPeer Address: "; StrHexize$(periphAddr$) 

       PRINT "\nAdvert Data: ";StrHexize$(advData$) 

       PRINT "\nNo. Discarded Adverts: ";nDiscarded 

       PRINT "\nRSSI: ";nRssi 

       PRINT "\nChannel: ";nChannel 

       rc=BleScanGetAdvReportEx(nAdvType, periphAddr$, advData$, nDiscarded, nRssi, nChannel) 

    ENDWHILE 

 

    PRINT "\n\n --- No more adverts in cache" 

ENDFUNC 1 

        

 

ONEVENT EVBLE_SCAN_TIMEOUT CALL HndlrScanTO 

ONEVENT EVBLE_ADV_REPORT   CALL HndlrAdvRpt 

 

WAITEVENT 

 

Scanning 

 

Advert Type: 2 

Peer Address: 01CDBD40C5A79A 

Advert Data: 0201061AFF4C000215E2C56DB5DFFB48D2B060D0F5A71096E012345678C40409526F6E 

No. Discarded Adverts: 0 

RSSI: -81 

Channel: 1 

 

 --- No more adverts in cache 

Scan timeout 

00 

 

FUNCTION 

This function is used to extract a copy of the nth (zero based) advertising data (AD) element from a string which is assumed to 
contain the data portion of an advert report, incoming or outgoing. 

Note: If the last AD element is malformed then it is treated as not existing. For example, it is malformed if the length byte 

for that AD element suggests that more data bytes are required than actually exist in the report string. 

BLEGETADBYINDEX (nIndex, rptData$, nADtag, ADval$) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 



https://www.lairdconnect.com/ 145 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

Arguments:  

nIndex 
byVAL nIndex AS INTEGER 

This is a zero-based index of the AD element that is copied into the output data parameter ADval$. 

rptData$ 

byREF rptData$ AS STRING.  

This parameter is a string that contains concatenated AD elements which were either constructed 

for an outgoing advert or were received in a scan. 

nADTag 

byREF nADTag AS INTEGER 

When the nth index is found, the single byte tag value for that AD element is returned in this 

parameter. 

ADval$ 

byREF ADval$ AS STRING 

When the nth index is found, the data excluding single byte the tag value for that AD element is 

returned in this parameter. 

Example: 

// Example :: BleGetADbyIndex.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 DIM rc,  ad1$, ad2$, fullAD$, nADTag, ADval$ 

 

 '//AD with length = 6 bytes, tag = 0xDD 

 ad1$="\06\DD\11\22\33\44\55" 

 

 '//AD with length = 7 bytes, tag = 0xDA 

 ad2$="\07\EE\AA\BB\CC\DD\EE\FF" 

 

 fullAD$ = ad1$ + ad2$ 

 PRINT "\n\n"; Strhexize$(fullAD$);"\n" 

 

 rc=BleGetADbyIndex(0, fullAD$ , nADTag, ADval$ ) 

 IF rc==0 THEN 

     PRINT "\nFirst AD element with tag 0x"; INTEGER.H'nADTag ;" is  ";StrHexize$(ADval$) 

 ELSE 

     PRINT "\nError reading AD: " ;INTEGER.H'rc 

 ENDIF 

 

 rc=BleGetADbyIndex(1, fullAD$ , nADTag, ADval$) 

 IF rc==0 THEN 

     PRINT "\nSecond AD element with tag 0x"; INTEGER.H'nADTag ;" is  ";StrHexize$(ADval$) 

 ELSE 

     PRINT "\nError reading AD: "; INTEGER.H'rc 

 ENDIF 



https://www.lairdconnect.com/ 146 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

 '//Will fail because there are only 2 AD elements 

 rc=BleGetADbyIndex(2, fullAD$ , nADTag, ADval$) 

 IF rc==0 THEN 

     PRINT "\nThird AD element with tag 0x"; INTEGER.H'nADTag ;" is ";StrHexize$(ADval$) 

 ELSE 

     PRINT "\nError reading AD: "; INTEGER.H'rc 

 ENDIF 

Expected Output: 

06DD112233445507EEAABBCCDDEEFF 

 

First AD element with tag 0x000000DD is 1122334455 

Second AD element with tag 0x000000EE is AABBCCDDEEFF 

Error reading AD: 00006060 

 

FUNCTION 

This function is used to extract a copy of the first advertising data (AD) element that has the tag byte specified from a string 
which is assumed to contain the data portion of an advert report, incoming or outgoing. If multiple instances of that AD tag type 
are suspected, then use the function BleGetADbyIndex to extract. 

Note:  If the last AD element is malformed, then it is treated as nonexistent. For example, it is malformed if the length byte 

for that AD element suggests that more data bytes are required than actually exist in the report string. 

BLEGETADBYTAG (rptData$, nADtag, ADval$) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments:  

rptData$ 

byREF rptData$ AS STRING.  

This parameter is a string that contains concatenated AD elements which were either constructed 

for an outgoing advert or were received in a scan. 

nADTag 

byVAL nADTag AS INTEGER 

This parameter specifies the single byte tag value for the AD element that is to returned in the 

ADval$ parameter. Only the first instance can be catered for. If multiple instances are suspected, 

then use BleAdvADbyIndex() to extract it. 

ADval$ 

byREF ADval$ AS STRING 

When the nth index is found, the data excluding single byte the tag value for that AT element is 

returned in this parameter. 

Example: 

// Example :: BleGetADbyTag.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 DIM rc,  ad1$, ad2$, fullAD$, nADTag, ADval$ 

 

 '//AD with length = 6 bytes, tag = 0xDD 



https://www.lairdconnect.com/ 147 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 ad1$="\06\DD\11\22\33\44\55" 

  

 '//AD with length = 7 bytes, tag = 0xDA 

 ad2$="\07\EE\AA\BB\CC\DD\EE\FF" 

 

 fullAD$ = ad1$ + ad2$ 

 PRINT "\n\n"; Strhexize$(fullAD$);"\n" 

 

 nADTag = 0xDD 

 rc=BleGetADbyTag(fullAD$ , nADTag, ADval$ ) 

 IF rc==0 THEN 

     PRINT "\nAD element with tag 0x"; INTEGER.H'nADTag ;" is ";StrHexize$(ADval$) 

 ELSE 

     PRINT "\nError reading AD: " ;INTEGER.H'rc 

 ENDIF 

 

 nADTag = 0xEE 

 rc=BleGetADbyTag(fullAD$ , nADTag, ADval$) 

 IF rc==0 THEN 

     PRINT "\nAD element with tag 0x"; INTEGER.H'nADTag ;" is ";StrHexize$(ADval$) 

 ELSE 

     PRINT "\nError reading AD: "; INTEGER.H'rc 

 ENDIF 

 

 nADTAG = 0xFF 

 '//Will fail because no AD exists in 'fullAD$' with the tag 'FF' 

 rc=BleGetADbyTag(fullAD$ , nADTag, ADval$) 

 IF rc==0 THEN 

     PRINT "\nAD element with tag 0x"; INTEGER.H'nADTag ;" is ";StrHexize$(ADval$) 

 ELSE 

     PRINT "\nError reading AD: "; INTEGER.H'rc 

 ENDIF 

Expected Output: 

06DD112233445507EEAABBCCDDEEFF 

 

AD element with tag 0x000000DD is 1122334455 

AD element with tag 0x000000EE is AABBCCDDEEFF 

Error reading AD: 00006060 



https://www.lairdconnect.com/ 148 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

FUNCTION 

When a scan is in progress after calling BleScanStart(), an EVBLE_FAST_PAGED event is thrown whenever an 
ADV_DIRECT_IND advert is received with the address of this module, requesting a connection to it. 

This function returns the address of the peripheral requesting a connection and the RSSI. It should be used in the handler of 
the EVBLE_FAST_PAGED event to get the peripheral’s address. Scanning should then be stopped using either 
BleScanAbort() or BleScanStop(). You can then use the address supplied by this function to connect to the peripheral using 
BleConnect() if that is the desired use case. The Bluetooth specification does NOT mandate a connection. 

BLESCANGETPAGERADDR (periphAddr$, nRssi) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments:  

periphAddr$       
byREF periphAddr$  AS STRING  

On return, this parameter is updated with the address of the peripheral that sent the advert. 

nRssi 

byREF nRssi AS INTEGER  

On return, this parameter is updated with the RSSI as reported by the stack for that advert. 

Note:   This is NOT a value that is sent by the peripheral but a value that is calculated by the 

receiver in this module.                

Example: 

// Example :: BleScanGetPagerAddr.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 DIM rc 

 

 '//Scan for 20 seconds with no filtering 

 rc = BleScanStart(10000, 0) 

 

 IF rc==0 THEN 

     PRINT "\nScanning" 

 ELSE 

     PRINT "\nError: "; INTEGER.H'rc 

 ENDIF 

 

 '//This handler will be called when scanning times out 

 FUNCTION HndlrScanTO() 

     PRINT "\nScan timeout" 

 ENDFUNC 0 

 

 '//This handler will be called when an advert is received requesting a connection to  

this module  



https://www.lairdconnect.com/ 149 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

FUNCTION HndlrFastPaged() 

     DIM periphAddr$, nRssi 

     rc = BleScanGetPagerAddr(periphAddr$, nRssi) 

     PRINT "\nAdvert received from peripheral "; StrHexize$(periphAddr$); " with RSSI 

";nRssi 

     PRINT "\nrequesting a connection to this module"   

     rc = BleScanStop() 

 ENDFUNC 0 

 

 ONEVENT EVBLE_SCAN_TIMEOUT CALL HndlrScanTO 

 ONEVENT EVBLE_FAST_PAGED   CALL HndlrFastPaged 

 

 WAITEVENT 

Expected Output: 

Scanning 

Advert received from peripheral 01D8CFCF14498D with RSSI -96 

requesting a connection to this module 

 

This section describes all the connection manager-related routines. 

The Bluetooth specification stipulates that a peripheral cannot initiate a connection but can perform disconnections. Only 
Central Role devices are allowed to connect when an appropriate advertising packet is received from a peripheral. 

 

See also Events and Messages for BLE-related messages that are thrown to the application when there is a connection or 
disconnection. The relevant message IDs are (0), (1), (14), (15), (16), (17), (18) and (20): 

MsgId Description 

0 There is a connection and the context parameter contains the connection handle. 

1 There is a disconnection and the context parameter contains the connection handle. 

14 New connection parameters for connection associated with connection handle. 

15 Request for new connection parameters failed for connection handle supplied. 

16 The connection is to a bonded master  

17 The bonding has been updated with a new long term key 

18 The connection is encrypted 

20 The connection is no longer encrypted   

 

FUNCTION 

This function is used to make a connection to a device in peripheral mode which is actively advertising.  

Note:  The peripheral device MUST be advertising with either ADV_IND or ADV_DIRECT_IND type of advert to be able to 

successfully connect.  



https://www.lairdconnect.com/ 150 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 In the case of multiple connections, it is recommended that this function is not called in quick succession so that 

the underlying stack is given time to complete the setup of the new connection before moving on to establish a new 

connection. Calling this function in quick succession may cause newly established connections to be dropped. 

 In order to perform connections over CODED PHY (long range), BleConnectConfig() should be called beforehand 

to set the connection PHYs to CODED PHY and enable extended connection. See BleConnectConfig() for more 

details. Furthermore, high bandwidth should be enabled using “AT+CFG 214 1” followed by “ATZ”. 

When the connection is complete, a EVBLEMSG message with msgId = 0 and context containing the handle are thrown to the 
smartBASIC runtime engine. 

If the connection times out, then the event EVBLE_CONN_TIMEOUT is thrown to the smartBASIC application. 

When a connection is attempted, there are other parameters that are used and the default values for those are assumed; for 
example, scan window, scan interval, and periodicity. The default values for those can be changed using the 
BleConnectConfig() function. At any time, the current settings can be obtained via the SYSINFO() command. 

BLECONNECT (periphAddr$, connTimeoutMs, minConnIntUs, maxConnIntUs, nSuprToutUs ) 

Returns INTEGER, a result code.  

The most typical value is 0x0000, indicating a successful operation. 

Arguments:  

periphAddr$          

byRef periphAddr$        AS STRING 

The Bluetooth address of the device to connect to which MUST be properly formatted and is 

exactly seven bytes long. 

connTimeoutMs 

byVal connTimeoutMs        AS INTEGER.  

The length of time in milliseconds that the connection attempt lasts. If the timer times out then 

the event EVBLE_CONN_TIMEOUT is thrown to the smartBASIC application. 

minConnIntUs 

byVal minConnIntUs        AS INTEGER.  

The minimum connection interval in microseconds. Valid range is between 7500 and 4000000 

microseconds. 

maxConnIntUs 

byVal maxConnIntUs        AS INTEGER.  

The maximum connection interval in microseconds. Valid range is between 7500 and 4000000 

microseconds 

nSuprToutUs 
byVal nSuprToutUs        AS INTEGER.  

The link supervision timeout for the connection in microseconds. 

Example: 

// Example :: BleConnect.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 DIM rc, periphAddr$ 

 

 '//Scan indefinitely 

 rc=BleScanStart(0, 0) 

 

 IF rc==0 THEN 

     PRINT "\nScanning" 

 ELSE 



https://www.lairdconnect.com/ 151 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

     PRINT "\nError: "; INTEGER.H'rc 

 ENDIF 

 

 '//This handler will be called when an advert is received 

 FUNCTION HndlrAdvRpt() 

    DIM advData$, nDiscarded, nRssi 

     

     '//Read an advert report and connect to the sender 

     rc=BleScanGetAdvReport(periphAddr$, advData$, nDiscarded, nRssi) 

     rc=BleScanStop() 

     

     '//Connect to device with Bluetooth address obtained above with 5s connection 

timeout, 

     '//20ms min connection interval, 75 max, 5 second supervision timeout. 

     rc=BleConnect(periphAddr$, 5000, 20000, 75000, 5000000) 

     IF rc==0 THEN 

         PRINT "\n--- Connecting" 

     ELSE 

         PRINT "\nError: "; INTEGER.H'rc 

     ENDIF 

 ENDFUNC 1 

 

 '//This handler will be called in the event of a connection timeout 

 FUNCTION HndlrConnTO() 

     PRINT "\n--- Connection timeout" 

     rc=BleScanStart(0, 0) 

 ENDFUNC 1 

 

 '//This handler will be called when there is a BLE message 

 FUNCTION HndlrBleMsg(nMsgId, nCtx) 

     IF nMsgId == 0 THEN 

         PRINT "\n--- Connected to device with Bluetooth address "; 

StrHexize$(periphAddr$) 

         PRINT "\n--- Disconnecting now" 

         rc=BleDisconnect(nCtx)        

     ENDIF 

 ENDFUNC 1 

 

 '//This handler will be called when a disconnection happens 

 FUNCTION HndlrDiscon(nCtx, nRsn) 



https://www.lairdconnect.com/ 152 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 ENDFUNC 0 

        

 ONEVENT EVBLEMSG           CALL HndlrBleMsg 

 ONEVENT EVDISCON           CALL HndlrDiscon 

 ONEVENT EVBLE_ADV_REPORT   CALL HndlrAdvRpt 

 ONEVENT EVBLE_CONN_TIMEOUT CALL HndlrConnTO 

 

 WAITEVENT 

Expected Output: 

Scanning 

--- Connecting 

--- Connected to device with Bluetooth address 01D8CFCF14498D 

--- Disconnecting now 

 

See description in section “Extended Adverts Functions” here. 

 

FUNCTION 

This function is used to cancel an ongoing connection attempt which has not timed out. It takes no parameters as there can 
only be one attempt in progress. 

Use the value returned by SYSINFO(2016) to determine if there is an ongoing scan operation in progress. The value is a bit 
mask where: 

▪ bit 0 is set if advertising is in progress 

▪ bit 1 is set if there is already a connection in a peripheral role 

▪ bit 2 is set if there is a current ongoing connection attempt 

▪ bit 3 is set when scanning 

▪ bit 4 is set if there is already a connection to a peripheral 

BLECONNECTCANCEL () 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments None 

Example: 

// Example :: BleConnectCancel.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 DIM rc, periphAddr$ 

 

 '//Scan indefinitely 

 rc=BleScanStart(0, 0) 

 

 IF rc==0 THEN 

     PRINT "\nScanning" 



https://www.lairdconnect.com/ 153 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 ELSE 

     PRINT "\nError: "; INTEGER.H'rc 

 ENDIF 

 

 '//This handler will be called when an advert is received 

 FUNCTION HndlrAdvRpt() 

     DIM advData$, nDiscarded, nRssi 

     

     '//Read an advert report and connect to the sender 

     rc=BleScanGetAdvReport(periphAddr$, advData$, nDiscarded, nRssi) 

     rc=BleScanStop() 

 

     '//Wait until module stops scanning 

     WHILE SysInfo(2016)==8 

     ENDWHILE 

     

     '//Connect to device with Bluetooth address obtained above with 5s connection 

timeout, 

     '//20ms min connection interval, 75 max, 5 second supervision timeout. 

     rc=BleConnect(periphAddr$, 5000, 20000, 75000, 5000000) 

     IF rc==0 THEN 

         PRINT "\n--- Connecting \nCancel" 

     ELSE 

         PRINT "\nError: "; INTEGER.H'rc 

     ENDIF 

     

     '//Cancel current connection attempt 

     rc=BleConnectCancel() 

     

     PRINT "\n--- Connection attempt cancelled" 

 ENDFUNC 0 

 ONEVENT EVBLE_ADV_REPORT   CALL HndlrAdvRpt 

 WAITEVENT 

Expected Output: 

Scanning 

--- Connecting  

Cancel 

--- Connection attempt cancelled 



https://www.lairdconnect.com/ 154 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

FUNCTION 

This function is used to modify the default parameters that are used when attempting a connection using BleConnect() and 
BleConnectExtended(). At any time they can be read by adding the configID to 2100 and then passing that value to 
SYSINFO(). 

When connecting, the central device must scan for adverts and then, when the particular peer address is encountered, it can 
send the connection message to that peripheral. 

Therefore, a connection attempt requires the underlying stack API to be supplied with a scan interval and scan window. In 
addition, when multiple connections are in place, the radio has to be shared as efficiently as possible; one potential scheme is 
to have all connection parmeters being integer multiples of  a ‘base’ value. For the purpose of this documentation, this 
parameter is referred to as multi-link connection interval periodicity. 

The following are the default settings for these parameters: 

Multi-link Connection Interval Periodicity 20 milliseconds 

Scan Interval 80 milliseconds 

Scan Window 40 milliseconds 

Slave Latency 0 

Notes: The Scan Window and Interval are multiple integers of the periodicity (although not required to be). The scanning 

has a 50% duty cycle. The 50% duty cycle attempts to ensure that connection events for existing connections 

are missed as infrequently as possible. 

 

The Scan Window and Interval are internally stored in units of 0.625 milliseconds slots so reading back via 

SYSINFO() does not accurately return the value you set. 

BLECONNECTCONFIG (configID, configValue) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments:  

configID   

byVal configID      AS INTEGER.  

The following are the values to update: 

0 Scan interval in milliseconds (range 0..10240) 

1 Scan Window in milliseconds (range 0..10240) 

2 Slave Latency (0..1000) 

5 Multi-Link Connection Interval Periodicity (20..200) 

8 
Turn manual control for connection parameter update. See EvConnParamReq for 

more details. 

9 

Action to take when a PHY change request is received from remote device as 

follows:- 

0: Automatically ccept incoming PHY change request from remote device.      This is 

the default operation. 

1: Throw an event to the smartBASIC app to allow the user to accept or reject 

incoming PHY change request. The event thrown is EVBLE_PHY_REQUEST. See 

LE 2M PHY for more information.  

10 

BLE PHY to perform the connection on. Possible values are:- 

1 - 1MPHY 

4 - CODED PHY 

All other values are invalid 

11 
Extended Connection. Possible values are:- 

0 - Connect to device sending out legacy adverts 



https://www.lairdconnect.com/ 155 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

1 - Connect to device sending out legacy or extended adverts 

 

For all other configID values, the function returns an error. 

configValue 
byVal configValue     AS INTEGER.  

This contains the new value to set in the parameters indentified by configID. 

Example: 

// Example :: BleConnectConfig.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 DIM rc, startTick 

 

 SUB GetParms() 

     //get default scan interval for connecting 

     PRINT "\nConn Scan Interval: "; SysInfo(2100);"ms"    

     //get default scan window for connecting 

     PRINT "\nConn Scan Window: "; SysInfo(2101);"ms” 

     //get default slave latency for connecting 

     PRINT "\nConn slave latency: "; SysInfo(2102) 

     //get current multi-link connection interval periodicity 

     PRINT "\nML Conn Interval Periodicity: "; SysInfo(2105);"ms"    

 ENDSUB 

 

 PRINT "\n\n--- Current Parameters:" 

 GetParms() 

 

 PRINT "\n\nSetting new parameters..." 

 rc = BleConnectConfig(0, 60)         //set scan interval to 60 

 rc = BleConnectConfig(1, 13)         //set scan window to 13 (will round to 12) 

 rc = BleConnectConfig(2, 3)          //set slave latency to 1 

 rc = BleConnectConfig(5, 30)         //set ML connection interval periodicity to 30 

 PRINT "\n"; integer.h'rc 

 

 PRINT "\n\n--- New Parameters:" 

 GetParms() 

Expected Output: 

--- Current Parameters: 

Conn Scan Interval: 80ms 

Conn Scan Window: 40ms 

Conn slave latency: 0 

ML Conn Interval Periodicity: 20ms 

 

Setting new parameters... 



https://www.lairdconnect.com/ 156 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

--- New Parameters: 

Conn Scan Interval: 60ms 

Conn Scan Window: 12ms 

Conn slave latency: 3 

ML Conn Interval Periodicity: 30ms 

 

FUNCTION 

This function causes an existing connection identified by a handle to be disconnected from the peer. 

When the disconnection is complete, a EVBLEMSG message with msgId = 1 and context containing the handle is thrown to 
the smartBASIC runtime engine. 

BLEDISCONNECT (nConnHandle) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation 

Arguments:  

nConnHandle    
byVal nConnHandle        AS INTEGER.  

Specifies the handle of the connection that must be disconnected. 

Example: 

// Example :: BleDisconnect.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 DIM addr$ : addr$="" 

 DIM rc 

 

 FUNCTION HndlrBleMsg(BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER)  

     SELECT nMsgId 

         CASE 0  

             PRINT "\nNew Connection ";nCtx 

             rc = BleAuthenticate(nCtx) 

             PRINT BleDisconnect(nCtx) 

         CASE 1 

             PRINT "\nDisconnected ";nCtx;"\n" 

             EXITFUNC 0 

     ENDSELECT 

 ENDFUNC 1 

 

 ONEVENT  EVBLEMSG           CALL HndlrBleMsg 

 

 IF BleAdvertStart(0,addr$,100,30000,0)==0 THEN 

     PRINT "\nAdverts Started\n" 

 ELSE 



https://www.lairdconnect.com/ 157 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

     PRINT "\n\nAdvertisement not successful" 

 ENDIF 

 

 WAITEVENT 

Expected Output: 

Adverts Started 

 

New Connection 35800 

Disconnected 3580 

 

FUNCTION 

This function triggers an existing connection identified by a handle to have new connection parameters. For example: interval, 
slave latency, and link supervision timeout. 

When the request is complete, a EVBLEMSG message with msgId = 14 and context containing the handle are thrown to the 
smartBASIC runtime engine if it is successful. If the request to change the connection parameters fails, an EVBLEMSG 
message with msgid = 15 is thrown to the smartBASIC runtime engine. 

BLESETCURCONNPARMS (nConnHandle, nMinIntUs, nMaxIntUs, nSuprToutUs, nSlaveLatency) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments:  

nConnHandle   
byVal nConnHandle       AS INTEGER.  

Specifies the handle of the connection that must have the connection parameters changed. 

nMinIntUs 
byVal nMinIntUs                  AS INTEGER.  

The minimum acceptable connection interval in microseconds. 

nMaxIntUs 
byVal nMaxIntUs                 AS INTEGER.  

The maximum acceptable connection interval in microseconds. 

nSuprToutUs 

byVal nSuprToutUs            AS INTEGER.  

The link supervision timeout for the connection in microseconds. It should be greater than the slave 

latency times that granted the connection interval. 

nSlaveLatency 

byVal nSlaveLatency     AS INTEGER.  

The number of connection interval polls that the peripheral may ignore. This times the connection 

interval shall not be greater than the link supervision timeout.   

Note:  Slave latency is a mechanism that reduces power usage in a peripheral device and maintains short latency. 

Generally, a slave reduces power usage by setting the largest connection interval possible. This means the latency 

is equivalent to that connection interval. To mitigate this, the peripheral can greatly reduce the connection interval 

and then have a non-zero slave latency. 

 For example, a keyboard could set the connection interval to 1000 msec and slave latency to 0. In this case, key 

presses are reported to the central device once per second, a poor user experience. Instead, the connection 

interval can be set to 50 msec, for example, and slave latency to 19. If there are no key presses, the power use is 

the same as before because ((19+1) * 50) equals 1000. When a key is pressed, the peripheral knows that the 

central device will poll within 50 msec, so it can send that keypress with a latency of 50 msec. A connection interval 

of 50 and slave latency of 19 means the slave is allowed to NOT acknowledge a poll for up to 19 poll messages 

from the central device. 



https://www.lairdconnect.com/ 158 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

Example: 

// Example :: BleSetCurConnParms.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 DIM rc 

 DIM addr$ : addr$="" 

 

 FUNCTION HandlerBleMsg(BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER) AS INTEGER 

     DIM intrvl,sprvTo,sLat 

 

     SELECT nMsgId 

         CASE 0 //BLE_EVBLEMSGID_CONNECT 

             PRINT "\n --- New Connection : ","",nCtx 

             rc=BleGetCurconnParms(nCtx,intrvl,sprvto,slat) 

             IF rc==0 THEN 

                 PRINT "\nConn Interval","","",intrvl 

                 PRINT "\nConn Supervision Timeout",sprvto 

                 PRINT "\nConn Slave Latency","",slat 

                 PRINT "\n\nRequest new parameters"   

                 //request connection interval in range 50ms to 75ms and link  

                 //supervision timeout of 4seconds with a slave latency of 19 

                 rc =  BleSetCurconnParms(nCtx, 50000,75000,4000000,19)                               

             ENDIF                                                                                                                                                                                                 

         CASE 1 //BLE_EVBLEMSGID_DISCONNECT 

             PRINT "\n --- Disconnected : ",nCtx 

             EXITFUNC 0         

         CASE 14 //BLE_EVBLEMSGID_CONN_PARMS_UPDATE 

             rc=BleGetCurconnParms(nCtx,intrvl,sprvto,slat) 

             IF rc==0 THEN 

                 PRINT "\n\nConn Interval",intrvl 

                 PRINT "\nConn Supervision Timeout",sprvto 

                 PRINT "\nConn Slave Latency",slat 

             ENDIF 

         CASE 15 //BLE_EVBLEMSGID_CONN_PARMS_UPDATE_FAIL 

             PRINT "\n ??? Conn Parm Negotiation FAILED"             

         CASE ELSE 

             PRINT "\nBle Msg",nMsgId 

     ENDSELECT 

 ENDFUNC 1 

 



https://www.lairdconnect.com/ 159 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 ONEVENT  EVBLEMSG    CALL HandlerBleMsg 

 

 IF BleAdvertStart(0,addr$,25,60000,0)==0 THEN      

     PRINT "\nAdverts Started\n"                  

     PRINT "\nMake a connection to the BL654" 

 ELSE                                             

     PRINT "\n\nAdvertisement not successful" 

 ENDIF 

 

 WAITEVENT 

Expected Output (Unsuccessful Negotiation): 

Adverts Started 

 

Make a connection to the BL654 

 --- New Connection : 1352 

Conn Interval   7500 

Conn Supervision Timeout 7000000 

Conn Slave Latency  0 

 

Request new parameters 

 ??? Conn Parm Negotiation FAILED 

 --- Disconnected :   1352 

Expected Output (Successful Negotiation): 

Adverts Started 

 

Make a connection to the BL654 

 --- New Connection : 134 

Conn Interval   30000 

Conn Supervision Timeout 720000 

Conn Slave Latency  0 

 

Request new parameters 

 

New conn Interval   75000 

New conn Supervision Timeout 4000000 

New conn Slave Latency  19 

--- Disconnected :    134 

Note:  The first set of parameters differ depending on your central device. 

 

FUNCTION 

This function gets the current connection parameters for the connection identified by the connection handle. Given there are 3 
connection parameters, the function takes three variables by reference so that the function can return the values in those 
variables. 

BLEGETCURCONNPARMS (nConnHandle, nIntervalUs,  nSuprToutUs, nSlaveLatency) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments:  

nConnHandle         
byVal nConnHandle    AS INTEGER.  

Specifies the handle of the connection to read the connection parameters of 



https://www.lairdconnect.com/ 160 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

nIntervalUs 
byRef nIntervalUs  AS INTEGER.  

The current connection interval in microseconds 

nSuprToutUs 
byRef nSuprToutUs         AS INTEGER.  

The current link supervision timeout in microseconds for the connection. 

nSlaveLatency 

byRef nSlaveLatency  AS INTEGER.  

The current number of connection interval polls that the peripheral may ignore. This value  

multiplied by  the connection interval will not be greater than the link supervision timeout.  

Note:  See Note on Slave Latency. 

See previous example. 

 

FUNCTION 

This function is used to initialise the connection manager for slave/peripheral role. 

BLECONNMNGRUPDCFG (nConnUpdateFirstDelay, nConnUpdateNextDelay,  nConnUpdateMaxRetry) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful 

operation. 

Arguments:  

nConnUpdateFirstDelay 
byVal nConnUpdateFirstDelay AS INTEGER.  

In milliseconds 100 to 32000 

nConnUpdateNextDelay  
BYVAL nConnUpdateNextDelay AS INTEGER 

In milliseconds 100 to 32000 

nConnUpdateMaxRetry 
BYVAL nConnUpdateMaxRetry AS INTEGER 

In number of retries 

Example: 

dim rc 

#define CONN_UPD_FIRST_DELAY 500 

#define CONN_UPD_NEXT_DELAY 800 

#define CONN_UPD_MAX_RETRY 800 

 

rc=BleConnMngrUpdCfg(CONN_UPD_FIRST_DELAY, CONN_UPD_NEXT_DELAY, CONN_UPD_MAX_RETRY) 

if rc == 0 then 

    print "\nConnection manager successfully initialised" 

else 

    print "\nError: ";integer.h'rc 

endif 

Expected Output: 

Connection manager successfully initialised 

 

FUNCTION 

This function is used to get the connection handle from a specified Bluetooth address. 



https://www.lairdconnect.com/ 161 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

BLEGETCONNHANDLEFROMADDR (BtAddrBE$, nConnHandle) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments:  

BtAddrBE$ 
byRef BtAddrBE$ AS STRING.  

The Bluetooth address of the connected remote device. 

nConnHandle 
byRef nConnHandle AS INTEGER.  

Returned connection handle. 

Example: 

// Example :: BleGetConnHandleFromAddr.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

DIM rc, periphAddr$ 

 

'//Scan indefinitely   

rc=BleScanStart(0, 0) 

 

IF rc==0 THEN 

    PRINT "\nScanning" 

ELSE 

    PRINT "\nError: "; INTEGER.H'rc 

ENDIF 

 

'//This handler will be called when an advert is received 

FUNCTION HndlrAdvRpt() 

    DIM advData$, nDiscarded, nRssi 

     

    '//Read an advert report and connect to the sender 

    rc=BleScanGetAdvReport(periphAddr$, advData$, nDiscarded, nRssi) 

    rc=BleScanStop() 

     

    '//Connect to device with MAC address obtained above with 5s connection timeout, 

    '//20ms min connection interval, 75 max, 5 second supervision timeout. 

    rc=BleConnect(periphAddr$, 5000, 20000, 75000, 5000000) 

    IF rc==0 THEN 

        PRINT "\n--- Connecting" 

    ELSE 

        PRINT "\nError: "; INTEGER.H'rc 

    ENDIF 

ENDFUNC 1 

 

'//This handler will be called in the event of a connection timeout 

FUNCTION HndlrConnTO() 

    PRINT "\n--- Connection timeout" 



https://www.lairdconnect.com/ 162 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

    rc=BleScanStart(0, 0) 

ENDFUNC 1 

 

'//This handler will be called when there is a BLE message 

FUNCTION HndlrBleMsg(nMsgId, nCtx) 

    IF nMsgId == 0 THEN 

        dim h 

        rc=BleGetConnHandleFromAddr(periphAddr$, h) 

        PRINT "\n--- Connected to device with MAC address "; StrHexize$(periphAddr$);" 

Handle: ";h 

        PRINT "\n--- Disconnecting now" 

        rc=BleDisconnect(nCtx)        

    ENDIF 

ENDFUNC 1 

 

'//This handler will be called when a disconnection happens 

FUNCTION HndlrDiscon(nCtx, nRsn) 

ENDFUNC 0 

 

ONEVENT EVBLEMSG          CALL HndlrBleMsg 

ONEVENT EVDISCON          CALL HndlrDiscon 

ONEVENT EVBLE_ADV_REPORT   CALL HndlrAdvRpt 

ONEVENT EVBLE_CONN_TIMEOUT CALL HndlrConnTO 

 

WAITEVENT 

Expected Output: 

Scanning 

--- Connecting 

--- Connected to device with MAC address 000016A4093A64 Handle: 261888 

--- Disconnecting now 

00 

 

FUNCTION 

This function is used to get the Bluetooth address of a device from a connection handle. 

BLEGETADDRFROMCONNHANDLE (nConnHandle, BtAddrBE$) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments:  

nConnHandle 
byRef nConnHandle AS INTEGER. 

Connection handle from which to get Bluetooth address  

BtAddrBE$ 
byRef BtAddrBE$ AS STRING. 

Returned Bluetooth address. 

Example: 

// Example :: BleGetAddrFromConnHandle.sb 



https://www.lairdconnect.com/ 163 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

DIM rc, periphAddr$ 

 

'//Scan indefinitely 

rc=BleScanStart(0, 0) 

 

IF rc==0 THEN 

    PRINT "\nScanning" 

ELSE 

    PRINT "\nError: "; INTEGER.H'rc 

ENDIF 

 

'//This handler will be called when an advert is received 

FUNCTION HndlrAdvRpt() 

    DIM advData$, nDiscarded, nRssi 

     

    '//Read an advert report and connect to the sender 

    rc=BleScanGetAdvReport(periphAddr$, advData$, nDiscarded, nRssi) 

    rc=BleScanStop() 

     

    '//Connect to device with MAC address obtained above with 5s connection timeout, 

    '//20ms min connection interval, 75 max, 5 second supervision timeout. 

    rc=BleConnect(periphAddr$, 5000, 20000, 75000, 5000000) 

    IF rc==0 THEN 

        PRINT "\n--- Connecting" 

    ELSE 

        PRINT "\nError: "; INTEGER.H'rc 

    ENDIF 

ENDFUNC 1 

 

'//This handler will be called in the event of a connection timeout 

FUNCTION HndlrConnTO() 

    PRINT "\n--- Connection timeout" 

    rc=BleScanStart(0, 0) 

ENDFUNC 1 

 

'//This handler will be called when there is a BLE message 

FUNCTION HndlrBleMsg(nMsgId, nCtx) 

    IF nMsgId == 0 THEN 



https://www.lairdconnect.com/ 164 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

        dim addr$ 

        rc=BleGetAddrFromConnHandle(nCtx,addr$) 

        PRINT "\n--- Connected to device with MAC address "; StrHexize$(addr$) 

        PRINT "\n--- Disconnecting now" 

        rc=BleDisconnect(nCtx)        

    ENDIF 

ENDFUNC 1 

 

'//This handler will be called when a disconnection happens 

FUNCTION HndlrDiscon(nCtx, nRsn) 

ENDFUNC 0 

        

ONEVENT EVBLEMSG          CALL HndlrBleMsg 

ONEVENT EVDISCON          CALL HndlrDiscon 

ONEVENT EVBLE_ADV_REPORT   CALL HndlrAdvRpt 

ONEVENT EVBLE_CONN_TIMEOUT CALL HndlrConnTO 

 

WAITEVENT 

Expected Output: 

Scanning 

--- Connecting 

--- Connected to device with MAC address 000016A4093A64 

--- Disconnecting now 

00 

 

FUNCTION 

This function is used to enable RSSI reporting for a particular connection. Given an RSSI value is generated for every 
connection event, this can result in a flood of events which will result in increased power consumption as the CPU will need to 
be in active mode for longer to process them. To mitigate this, this function also takes a threshold dBm value and a skipcount 
to reduce and manage these events. 

The threshold dBm parameter ensures that a report is only generated if the change in detected RSSI value is greater or less 
than the most reported value by this amount and the skipcount is how many times this condition has to occur for the event to 
be thrown to the application. 

BLECONNRSSISTART (nConnHandle, nThresholdDbm,  nSkipCount) 

Returns 
INTEGER, a result code.  

Typical value: 0x0000 (indicates a successful operation) 

Arguments 

nConnHandle 
byVal nConnHandle    AS INTEGER.  

Specifies the handle of the connection for which rssi reporting is to be enabled 

nThresholdDbm 
byVal nThresholdDbm  AS INTEGER.  

The minimum change in dBm before triggering the EVCONNRSSI event 

nSkipCount byRef nSkipCount AS INTEGER.  



https://www.lairdconnect.com/ 165 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

The number of RSSI samples with a change of nThresholdDbm or more before triggering 

the EVCONNRSSI event 

 
Example: 

// Example :: BleConnRssiStart.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

DIM rc,conHndl 

DIM addr$ : addr$=""     

//============================================================================== 

// Initialise 

//============================================================================== 

FUNCTION OnStartup() 

    rc=BleAdvertStart(0,addr$,50,0,0) 

ENDFUNC rc 

//============================================================================== 

// Ble event handler 

//============================================================================== 

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)  

    conHndl=nCtx 

    IF nMsgID==1 THEN 

        PRINT "\n\n--- Disconnected from client" 

        EXITFUNC 0 

    ELSEIF nMsgID==0 THEN 

        PRINT "\n--- Connected to client" 

        rc=BleConnRssiStart(conHndl,4,10) 

    ENDIF 

ENDFUNC 1 

//============================================================================== 

// Connection related RSSI events 

//============================================================================== 

FUNCTION HndlrConnRssi(BYVAL charHandle, BYVAL rssi) AS INTEGER 

    PRINT "\nRSSI=";rssi;" for connection "; integer.h' charHandle 

    IF rssi < -80 then 

        //too far away so stop monitoring the rssi (this is just an example) 

        //in reality use some other reason to stop  

        rc=BleConnRssiStop(conHndl) 

    ENDIF 

ENDFUNC 1 

//============================================================================== 

//============================================================================== 



https://www.lairdconnect.com/ 166 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

ONEVENT  EVBLEMSG    CALL HndlrBleMsg 

ONEVENT  EVCONNRSSI  CALL HndlrConnRssi 

 

IF OnStartup()!=0 THEN 

    PRINT "\nFailure OnStartup" 

ENDIF 

 

//Wait for events 

WAITEVENT 

 

FUNCTION 

This function is used to disable RSSI reporting for a particular connection which was enabled using the function 
BleConnRssiStart described above.  

On disconnection, reporting will automatically stop. 

BLECONNRSSISTOP (nConnHandle) 

Returns 
INTEGER, a result code.  

Typical value: 0x0000 (indicates a successful operation) 

Arguments 

nConnHandle 
byVal nConnHandle    AS INTEGER.  

Specifies the handle of the connection for which rssi reporting is to be enabled 

For example, see description of BleConnRssiStart() above. 

 

This section describes routines which are used to manage whitelists.  

A whitelist is a list of Bluetooth addresses and Identity Resolving Keys (IRKs) which the baseband radio will use to gate 
incoming packets upwards to the stack as they are received. 

If the whitelist is active, then any radio packet whose source Bluetooth address is not in the list will be rejected. However, note 
that in BLE for privacy reasons, resolvable Bluetooth addresses can be used and so the address will not match with one in the 
list and so for that type of address the list of Indentity Resolving Keys in the whitelist is also consulted to see if the resolvable 
address is a trusted device. 

A trusted device by definition will have supplied its IRK key when the pairing and bonding happened in the past. 

Hence treat this group of functions as a means of creating, maintaining and destroying that list of addresses and IRKs. 

The operation that enables whitelisting is the function that starts advertising, scanning. And extended connection So refer to 
the functions BleAdvertStart(), BleScanStart() and BleConnectExtended() 

 

FUNCTION 

This function is used to create a new whitelist to which addresses and identity resolving keys can be added using 
BleWhitelistAddAddr() or BleWhitelistAddIndex(). 

BLEWHITELISTCREATE (hWlist, nMaxAddrs, nMaxIrks, nPktFilterMask) 

Returns INTEGER, a result code.  



https://www.lairdconnect.com/ 167 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

Typical value:  

0x0000 indicates a successful operation 

0x605E indicates too many whitelists already created. 

Arguments 

hWlist 

byRef hWlist AS INTEGER.  

If an empty whitelist is successfully created then this will be updated with a valid handle. If not 

then this will contain -1 (0xFFFFFFFF) 

nMaxAddrs 
byVal nMaxAddrs AS INTEGER.  

Maximum addresses that will be stored in this whitelist  

nMaxIrks 
byVal nMaxIrks AS INTEGER.  

Maximum Identity Resolving Keys (IRKs) that will be stored in this whitelist 

nPktFilterMask 

byVal nPktFilterMask AS INTEGER.  

This is a bit mask which specifies what type of incoming packets this list will apply to, as 

follows: 

▪ Bit 0  : Set to 1 for Scan Request packets 
▪ Bit 1  : Set to 1 for Connection Request packets 
▪ Bit 2  : Set to 1 for Advert Report Packets 
▪ Bits 3 to 31 : reserved for future use 

Note:  If all bits are 0, then a default mask of 7 is used for the BL654. 



https://www.lairdconnect.com/ 168 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

Example: 



https://www.lairdconnect.com/ 169 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

// Example :: BleWhitelist.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

DIM rc,conHndl,hWlist, val 

DIM addr$ : addr$=""     

 

//============================================================================== 

//============================================================================== 

sub AssertRC(byval tag as integer) 

  if rc!=0 then 

    print "\nFailed with ";integer.h' rc;" at tag ";tag 

  endif 

endsub 

 

//============================================================================== 

// Ble event handler 

//============================================================================== 

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)  

    conHndl=nCtx 

    IF nMsgID==1 THEN 

        PRINT "\n\n--- Disconnected from client" 

        EXITFUNC 0 

    ELSEIF nMsgID==0 THEN 

        PRINT "\n--- Connected to client" 

    ENDIF 

ENDFUNC 1 

 

//============================================================================== 

// This handler is called when there is an advert report waiting to be read 

//============================================================================== 

function HandlerAdvRpt() as integer 

  dim ad$,dta$,ndisc,rsi 

  rc = BleScanGetAdvReport(ad$,dta$,ndisc,rsi) 

  while rc==0 

    print "\nADV:";strhexize$(ad$);" ";strhexize$(dta$);" ";ndisc;" ";rsi 

    rc = BleScanGetAdvReport(ad$,dta$,ndisc,rsi) 

  endwhile 

endfunc 1 

 



https://www.lairdconnect.com/ 170 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

//============================================================================== 

// This handler is called when there is an advert report waiting to be read 

//============================================================================== 

sub WhiteListInit() 

  //set invalid whitelist handle 

  hWlist=-1 

  //now check maximum whitelists that can be defined and for that valid handle 

  //is not required 

  rc=BleWhiteListInfo(hWlist,0, val)  //get max number of whitelists allowes 

  AssertRC(100) 

  print "\n Max allowed whitelists = "; val 

 

  //create a whitelist 

  rc=BleWhitelistCreate(hWlist,8,8,0) 

  IF rc==0 THEN 

    //Add address we want to specifically look for 

    addr$="000016A40B1623" 

    rc=BleWhitelistAddAddr(hWlist,addr$) 

    AssertRC(110) 

    //Made a mistake so clear it 

    rc=BleWhitelistClear(hWlist) 

    AssertRC(120) 

    //now add the correct address 

    addr$="000016A40B1642" 

    rc=BleWhitelistAddAddr(hWlist,addr$) 

    AssertRC(130) 

    //now add first one in the trusted database 

    rc=BleWhitelistAddIndex(hWlist,0) 

    AssertRC(140) 

    //Change the filter property from default used in the create function 

    //so that connection requests are disallowed 

    rc=BleWhitelistSetFilter(hWlist,1) 

    AssertRC(150) 

    //now check the whitelist by interogating the whitelist handle 

    rc=BleWhiteListInfo(hWlist,101, val)  //get current number of mac addresses 

    AssertRC(160) 

    print "\n Current number of addresses = "; val 

  ENDIF 

endsub 



https://www.lairdconnect.com/ 171 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

//============================================================================== 

//============================================================================== 

ONEVENT  EVBLEMSG             CALL HndlrBleMsg 

OnEvent  EVBLE_ADV_REPORT     CALL HandlerAdvRpt 

 

//Initiliase a whitelist 

WhiteListInit() 

 

//start adverts with whitelisting 

addr$="" 

rc=BleAdvertStart(0,addr$,50,0,hWlist) 

AssertRC(910) 

 

//Wait for events 

WAITEVENT 

 

//destroy the whitelist 

BleWhitelistDestroy(hWlist) 

 

FUNCTION 

This function is used to destroy an existing whitelist identified by a valid handle previously returned from BleWhitelistCreate() 
so that new addresses and Identity Resolving Keys (IRKs) can be added. This function completely destroys the whitelist of the 
given handle, and a new one will need to be created if necessary (using BleWhitelistCreate). 

BLEWHITELISTDESTROY (hWlist) 

Returns 
INTEGER, a result code.  

Typical value: 0x0000 (indicates a successful operation) 

Arguments 

hWlist 

byRef hWlist AS INTEGER.  

This is the handle of the whitelist and is passed as a reference so that on exit it will have an 

invalid handle value so cannot be used inadvertently. The handle will have been returned by 

BleWhitelistCreate() 

   
For example, see description of BleWhitelistCreate() above. 



https://www.lairdconnect.com/ 172 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

FUNCTION 

This function is used to clear an existing whitelist identified by a valid handle previously returned from BleWhitelistCreate() so 
that new addresses and Identity Resolving Keys (IRKs) can be added. The handle of the whitelist is still valid so data can be 
added to the whitelist without having to call BleWhitelistCreate again. 

BLEWHITELISTCLEAR (hWlist) 

Returns 
INTEGER, a result code.  

Typical value: 0x0000 (indicates a successful operation) 

Arguments 

hWlist 

byVal hWlist AS INTEGER.  

This is the handle of the whitelist to clear and will have been returned by 

BleWhitelistCreate() 

   
For example, see description of BleWhitelistCreate() above. 

 

FUNCTION 

This function is used to change the filter policy mask associated with the whitelist object identified by the handle. 

BLEWHITELISTSETFILTER (hWlist, nPktFilterMask) 

Returns 
INTEGER, a result code.  

Typical value: 0x0000 (indicates a successful operation) 

Arguments 

hWlist 
byRef hWlist AS INTEGER.  

This is the handle of the whitelist and will have been returned by BleWhitelistCreate() 

nPktFilterMask 

byVal nPktFilterMask AS INTEGER.  

This is a bit mask which specifies what type of incoming packets this list will apply to, as 

follows: 

▪ Bit 0  : Set to 1 for Scan Request packets 

▪ Bit 1  : Set to 1 for Connection Request packets 

▪ Bit 2  : Set to 1 for Advert Report Packets 

▪ Bits 3 to 31 : reserved for future use 

Note:  If all bits are 0, then a default mask of 7 is used for the BL654. 

 
For example, see description of BleWhitelistCreate() above. 

 

FUNCTION 

This function is used to add a 7 byte BT address to the whitelist identified by the handle supplied. The function will 
automatically check if the BT address is trusted by interrogating the trusted device database and if it is, then the address 
stored there along with the IRK is added instead of the address supplied. This means that in smartphones with Android and 
iOS (which make heavy use of resolvable addresses) there is seemless and hassle free integration. 

BLEWHITELISTADDADDR (hWlist, addr$) 

Returns 
INTEGER, a result code.  

Typical value: 0x0000 (indicates a successful operation) 

Arguments 



https://www.lairdconnect.com/ 173 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

hWlist 
byVal hWlist AS INTEGER.  

This is the handle of the whitelist and will have been returned by BleWhitelistCreate() 

addr$ 

byRef addr$ AS STRING. 

This is the address that is to be added to the whitelist. It will be checked for presence in 

trusted device database and if trusted, the IRK will also be added automatically to the 

whitelist 

 
For example, see description of BleWhitelistCreate() above. 

 

FUNCTION 
This function is used to add the Nth indexed device in the trusted device database to the whitelist identified by the handle 
supplied. If that Nth record exists in the database then the Identity Resolving Key will also be added automatically. 

BLEWHITELISTADDINDEX (hWlist, nIndex) 

Returns 
INTEGER, a result code.  

Typical value: 0x0000 (indicates a successful operation) 

Arguments 

hWlist 
byVal hWlist AS INTEGER.  

This is the handle of the whitelist and will have been returned by BleWhitelistCreate() 

nIndex 

byVal nIndex AS INTEGER. 

This is the Nth index (zero based) of the record in the trusted device database to add to the 

whitelist. The IRK will also be added automatically to the whitelist. 

The index is the same entity per the function BleBondMngrGetInfo() 

   
For example, see description of BleWhitelistCreate() above. 

 

FUNCTION 

This function is used to return information about the whitelist provided. This may be invalid for certain nInfoID values, as that is 
information about the whitelist manager in general. 

BLEWHITELISTINFO (hWlist, nInfoID, nValue) 

Returns 
INTEGER, a result code.  

Typical value: 0x0000 (indicates a successful operation) 

Arguments 

hWlist 
byVal hWlist AS INTEGER.  

This is the handle of the whitelist and will have been returned by BleWhitelistCreate() 

nInfoID 

byVal nInfoID AS INTEGER. 

This is ID of the information to be returned as follows: 

▪ 0      : maximum number of whitelists (hWlist is ignored) 

▪ 1      : maximum number of Bluetooth addresses  (hWlist is ignored) 

▪ 2      : maximum number of IRKs  (hWlist is ignored) 

▪ 101  : current number of addresses added 

▪ 102  : current number of IRKs added 

Note:  For 101 and 102, the values will be cleared to 0 if BleWhitelistClear() is called. 

nValue 
byRef nValue AS INTEGER. 

The information value is returned in this variable 

  
For example, see description of BleWhitelistCreate() above. 



https://www.lairdconnect.com/ 174 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

This section describes all functions related to creating and managing services that collectively define a GATT table from a 
GATT server role perspective. These functions allow the developer to create any service that has is described and adopted by 
the Bluetooth SIG or any custom service that implements some custom unique functionality, within resource constraints such 
as the limited RAM and FLASH memory that is exist in the module. 

A GATT table is a collection of adopted or custom services which, in turn, are a collection of adopted or custom 
characteristics. By definition, an adopted service cannot contain custom characteristics but the reverse is possible where a 
custom service can include both adopted and custom characteristics. 

Descriptions of services and characteristics are available in the Bluetooth Specification v4.0 or newer. Because these 
descriptions are concise and difficult to understand, the following section attempts to familiarise you with these concepts using 
the smartBASIC programming environment perspective. 

To help understand service and characteristic better, think of a characteristic as a container (or a pot) of data where the pot 
comes with space to store the data and a set of properties that are officially called Descriptors in the BT spec. In the pot 
analogy, think of a descriptor as the color of the pot, whether it has a lid, whether the lid has a lock, whether it has a handle or 
a spout, etc. For a full list of these descriptors online, see 
http://developer.Bluetooth.org/GATT/descriptors/Pages/DescriptorsHomePage.aspx . These descriptors are assigned 16-bit 
UUIDs (value 0x29xx) and are referenced in some of the smartBASIC API functions if you decide to add those to your 
characteristic definition. 

You can consider a service as a carrier bag to hold a group of related characterisics together where the printing on the carrier 
bag is a UUID. From a smartBASIC developer’s perspective, a set of characteristics is what you need to manage and the 
concept of service is only required at GATT table creation time. 

A GATT table can have many services, each containing one or more characteristics. The difference between services and 
characteristics is expedited using an identification number called a UUID (Universally Unique Identifier) which is a 128-bit (16-
byte) number. Adopted services or characteristics have a 16-bit (2-byte) shorthand identifier (which is an offset plus a base 
128-bit UUID defined and reserved by the Bluetooth SIG); custom service or characteristics have the full 128-bit UUID. The 
logic behind this is that a 16-bit UUID implies that a specification has been published by the Bluetooth SIG whereas using a 
128-bit UUID does NOT require any central authority to maintain a register of those UUIDs or specifications describing them.  

The lack of the requirement for a central register is important to understand in the sense that, if a custom service or 
characteristic must be created, the developer can use any publicly available UUID (sometimes also known as GUID) 
generation utility.  

These utilities use entropy from the real world to generate a 128-bit random number that has an extremely low probability to be 
the same as that generated by someone else at the same time or in the past or future. 

As an example, at the time of writing this document, the following website http://www.guidgenerator.com/online-guid-
generator.aspx offers an immediate UUID generation service, although it uses the term GUID. From the GUID Generator 
website: 

How unique is a GUID?  

128-bits is big enough and the generation algorithm is unique enough that if 1,000,000,000 GUIDs per second 
were generated for 1 year the probability of a duplicate would be only 50%. Or if every human on Earth 
generated 600,000,000 GUIDs there would only be a 50% probability of a duplicate.  

This extremely low probability of generating the same UUID is why there is no need for a central register maintained by the 
Bluetooth SIG for custom UUIDs.  

Please note that Laird does not guarantee that the UUID generated by this website or any other utility is unique. It is left to the 
judgement of the developer whether to use it or not. 

Note:  If the developer intends to create custom services and/or characteristics then it is recommended that a single UUID 

is generated and used from then on as a 128-bit (16 byte) company/developer unique base along with a 16-bit (2-

byte) offset, in the same manner as the Bluetooth SIG. 

 

This allows up to 65536 custom services and characteristics to be created, with the added advantage that it is 

easier to maintain a list of 16-bit integers. 

 

The main reason for avoiding more than one long UUID is to keep RAM usage down given that 16 bytes of RAM is 

http://developer.bluetooth.org/gatt/descriptors/Pages/DescriptorsHomePage.aspx
http://www.guidgenerator.com/online-guid-generator.aspx
http://www.guidgenerator.com/online-guid-generator.aspx


https://www.lairdconnect.com/ 175 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

used to store a long UUID. smart BASIC functions have been provided to manage these custom 2-byte UUIDs 

along with their 16-byte base UUIDs. 

In this document, when a service or characteristic is described as adopted, it implies that the Bluetooth SIG published a 
specification which defines that service or characteristic and there is a requirement that any device claiming to support them 
has proof that the functionality has been tested and verified to behave as per that specification.  

Currently there is no requirement for custom service and/or characteristics to have any approval. By definition, interoperability 
is restricted to the provider and implementer. 

A service is an abstraction of some collectivised functionality which, if broken down further, would cease to provide the 
intended behaviour. Two examples in the BLE domain that have been adopted by the Bluetooth SIG are Blood Pressure 
Service and Heart Rate Service. Each have sub-components that map to characteristics.  

Blood pressure is defined by a collection of data entities such as Systolic Pressure, Diastolic Pressure, and Pulse Rate. 
Likewise, a Heart Rate service has a collection which includes entities such as the Pulse Rate and Body Sensor Location.  

A list of all the adopted services is at: http://developer.Bluetooth.org/GATT/services/Pages/ServicesHome.aspx. Laird 
recommends that, if you decide to create a custom service, it should be defined and described in a similar fashion; your goal 
should be to get the Bluetooth SIG to adopt it for everyone to use in an interoperable manner.  

These services are also assigned 16-bit UUIDs (value 0x18xx) and are referenced in some of the smart BASIC API functions 
described in this section. 

Services, as described above, are a collection of one or more characteristics. A list of all adopted characteristics is found at: 
http://developer.Bluetooth.org/GATT/characteristics/Pages/CharacteristicsHome.aspx. You should note that these descriptors 
are also assigned 16-bit UUIDs (value 0x2Axx) and are referenced in some of the API functions described in this section. 
Custom characteristics have 128-bit (16-byte) UUIDs and API functions are provided to handle those. 

Note: If you intend to create a custom service or characteristic and adopt the recommendation of a single 16-byte base 

UUID so that the service can be identified using a 2-byte UUID, then allocate a 16-bit value which is not going to 

coincide with any adopted values to minimise confusion. Selecting a similar value is possible and legal given that 

the base UUID is different. 

The remainder of this introduction focuses on the specifics of how to create and manage a GATT table from a perspective of 
the smart BASIC API functions in the module. 

Recall that a service was described as a carrier bag that groups related characteristics together and a characteristic is a data 
container (pot). Therefore, a remote GATT client looking at the server which is presented in your GATT table, sees multiple 
carrier bags each containing one or more pots of data. 

The GATT client (remote end of the wireless connection) msut see those carrier bags to determine the groupings and, once it 
has identified the pots, it only needs to keep a list of references to the pots it is interested in. Once that list is made at the client 
end, it can ‘throw away the carrier bag’. 

http://developer.bluetooth.org/gatt/services/Pages/ServicesHome.aspx
http://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicsHome.aspx


https://www.lairdconnect.com/ 176 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

Similarly in the module, once the GATT table is 
created and after each service is fully populated 
with one or more characteristics, there is no 
need to keep that ‘carrier bag’. However, as each 
characterstic is ‘placed in the carrier bag’ using 
the appropriate smartBASIC API function, a 
receipt is returned and is referred to as a 
char_handle. The developer must then keep 
those handles to be able to interact with that 
characteristic. The handle does not care whether 
the characteristic is adopted or custom because, 
from then on the firmware managing it behind the 
scenes in smartBASIC does not care. 

From the smartBASIC application developer’s 
logical perspective, a GATT table looks nothing 
like the table that is presented in most BLE 
literature. Instead, the GATT table is simply a 
collection of char_handles that reference the 
characteristics (data containers) which have 
been registered with the underlying GATT table 
in the BLE stack. 

A particular char_handle is used to make 
something happen to the referenced 
characteristic (data container) using a smart 
BASIC function and conversely, if data is written 
into that characteristic (data container) by a 
remote GATT client, then an event is thrown in 
the form of a message, into the smart BASIC 
runtime engine which is processed if and only if 
a handler function has been registered by the 
apps developer using the ONEVENT statement. 

With this simple model in mind, an overview of 
how the smart BASIC functions are used to 
register services and characteristics is illustrated 
in the flowchart on the right and sample code 
follows on the next page. 

 

 Yes 

 Yes 
Broadcastable

Create a metadata object which
defines the permissions for the

characteristic value attribute

Notifiable OR
Indicatable

BleHandleUuid()

BleSvcCommit()

BleAttrMetadata()

BleAttrMetadata()

Create a metadata object which
defines the permissions for the
characteristic CCCD attribute

BleAttrMetadata()

Create a metadata object which
defines the permissions for the
characteristic SCCD attribute

Start the definition of a new characteristic 
which will be later commited to the GATT

table in a single transaction
BleCharNew()

 Yes User Desc
Descriptor?

BleAttrMetadata()

Create a metadata object which
defines the permissions for the

User Desc Descriptor

Add parameters for creation of
User Desc Descriptor

BleCharDescUserDesc()

BleHandleUuid()

Create a UUID Handle for Service (16/128)

Create a UUID Handle for Characterisitic (16/128)

 Yes 

BleAttrMetadata()

Add other
Descriptor?

Add parameters for creation of
other Descriptor

Create a metadata object which
defines the permissions for the

other Descriptor

BleCharDescAdd()

Commit the Characteristic to the 
Gatt ServerTable in single transaction

BleCharCommit()

Commit a PRIMARY or SECONDARY 
service which returns a service handle

 Yes 

More
Services?

 Yes 

More
Characteristics?

Save the handle 

that is returned

as it is used to

interact with the 

characteristic

 Yes Pres'tion Format
Descriptor?

Add parameters for creation of
Presentation Format Descriptor
BleCharDescPrstnFrmt()



https://www.lairdconnect.com/ 177 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

Example: 

// Example :: ServicesAndCharacteristics.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 //============================================================================== 

 //Register two Services in the GATT Table. Service 1 with 2 Characteristics and 

 //Service 2 with 1 characteristic. This implies a total of 3 characteristics to  

 //manage. 

 //The characteristic 2 in Service 1 will not be readable or writable but only  

 //indicatable 

 //The characteristic 1 in Service 2 will not be readable or writable but only  

 //notifyable 

 //============================================================================== 

 

 DIM rc      //result code 

 DIM hSvc    //service handle 

 DIM mdAttr  

 DIM mdCccd 

 DIM mdSccd 

 DIM chProp 

 DIM attr$ 

 

 DIM hChar11  // handles for characteristic 1 of Service 1 

 DIM hChar21  // handles for characteristic 2 of Service 1 

 DIM hChar12  // handles for characteristic 1 of Service 2 

 

 DIM hUuidS1   // handles for uuid of Service 1 

 DIM hUuidS2   // handles for uuid of Service 2 

 DIM hUuidC11  // handles for uuid of characteristic 1 in Service 1 

 DIM hUuidC12  // handles for uuid of characteristic 2 in Service 1 

 DIM hUuidC21  // handles for uuid of characteristic 1 in Service 2 

 

 //---Register Service 1 

 hUuidS1 = BleHandleUuid16(0x180D) 

 rc = BleServiceNew(BLE_SERVICE_PRIMARY, hUuidS1, hSvc) 

 

 //---Register Characteristic 1 in Service 1 

 mdAttr = BleAttrMetadata(BLE_ATTR_ACCESS_OPEN,BLE_ATTR_ACCESS_OPEN,10,0,rc) 

 mdCccd = BLE_CHAR_METADATA_ATTR_NOT_PRESENT 



https://www.lairdconnect.com/ 178 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 mdSccd = BLE_CHAR_METADATA_ATTR_NOT_PRESENT 

 chProp = BLE_CHAR_PROPERTIES_READ + BLE_CHAR_PROPERTIES_WRITE 

 hUuidC11 = BleHandleUuid16(0x2A37) 

 rc = BleCharNew(chProp, hUuidC11,mdAttr,mdCccd,mdSccd) 

 rc = BleCharCommit(shHrs,hrs$,hChar11)   

 

 //---Register Characteristic 2 in Service 1 

 mdAttr = BleAttrMetadata(BLE_ATTR_ACCESS_OPEN,BLE_ATTR_ACCESS_OPEN,10,0,rc) 

 mdCccd = BleAttrMetadata(BLE_ATTR_ACCESS_OPEN,BLE_ATTR_ACCESS_OPEN,2,0,rc) 

 mdSccd = BLE_CHAR_METADATA_ATTR_NOT_PRESENT 

 chProp = BLE_CHAR_PROPERTIES_INDICATE 

 hUuidC12 = BleHandleUuid16(0x2A39) 

 rc = BleCharNew(chProp, hUuidC12,mdAttr,mdCccd,mdSccd) 

 attr$="\00\00" 

 rc = BleCharCommit(hSvc,attr$,hChar21) 

 rc = BleServiceCommit(hSvc) 

 

 //---Register Service 2  (can now reuse the service handle) 

 hUuidS2 = BleHandleUuid16(0x1856) 

 rc = BleServiceNew(BLE_SERVICE_PRIMARY, hUuidS2, hSvc) 

 

 //---Register Characteristic 1 in Service 2 

 mdAttr = BleAttrMetadata(BLE_ATTR_ACCESS_NONE,BLE_ATTR_ACCESS_NONE,10,0,rc) 

 mdCccd = BleAttrMetadata(BLE_ATTR_ACCESS_OPEN,BLE_ATTR_ACCESS_OPEN,2,0,rc) 

 mdSccd = BLE_CHAR_METADATA_ATTR_NOT_PRESENT 

 chProp = BLE_CHAR_PROPERTIES_NOTIFY 

 hUuidC21 = BleHandleUuid16(0x2A54) 

 rc = BleCharNew(chProp, hUuidC21,mdAttr,mdCccd,mdSccd) 

 attr$="\00\00\00\00" 

 rc = BleCharCommit(hSvc,attr$,hChar12)  

 rc = BleServiceCommit(hSvc) 

 //===The 2 services are now visible in the gatt table 

Writes into a characteristic from a remote client are detected and processed as follows: 

 //------------------------------------------------------------------------------ 

 // To deal with writes from a GATT client into characteristic 1 of Service 1 

 // which has the handle hChar11 

 //------------------------------------------------------------------------------ 

 

 // This handler is called when there is a EVCHARVAL message 



https://www.lairdconnect.com/ 179 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 FUNCTION HandlerCharVal(BYVAL hChar AS INTEGER) AS INTEGER 

   DIM attr$ 

   IF hChar == hChar11 THEN 

     rc = BleCharValueRead(hChar11,attr$) 

     print "Svc1/Char1 has been writen with = ";attr$ 

      

   ENDIF 

 ENDFUNC 1 

 

 //enable characteristic value write handler 

 OnEvent  EVCHARVAL          call HandlerCharVal 

 

 WAITEVENT 

Assuming there is a connection and notify has been enabled, a value notification is expedited as follows: 

 //------------------------------------------------------------------------------ 

 // Notify a value for characteristic 1 in service 2 

 //------------------------------------------------------------------------------ 

 attr$="somevalue" 

 rc = BleCharValueNotify(hChar12,attr$) 

Assuming there is a connection and indicate has been enabled, a value indication is expedited as follows: 

 //------------------------------------------------------------------------------ 

 // indicate  a value for characteristic 2 in service 1 

 //------------------------------------------------------------------------------ 

 

 // This handler is called when there is a EVCHARHVC message 

 FUNCTION HandlerCharHvc(BYVAL hChar AS INTEGER) AS INTEGER 

   IF hChar == hChar12 THEN 

     PRINT "Svc1/Char2 indicate has been confirmed" 

   ENDIF 

 ENDFUNC 1  

 

 //enable characteristic value indication confirm  handler 

 OnEvent  EVCHARHVC          CALL HandlerCharHvc 

 

 attr$="somevalue" 

 rc = BleCharValueIndicate(hChar12,attr$) 

The rest of this section details all the smartBASIC functions that help create that framework. 



https://www.lairdconnect.com/ 180 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

See also Events and Messages for the messages that are thrown to the application which are related to the generic 
characteristics API. The relevant messages are those that start with EVCHARxxx. 

 

FUNCTION 

This function updates the GAP service, which is mandatory for all approved devices to expose, with the information provided. 
If it is not called before adverts are started, default values are exposed. Given this is a mandatory service, unlike other 
services which must be registered, this one must only be initialised as the underlying BLE stack unconditionally registers it 
when starting up. 

The GAP service contains five characteristics as listed at the following site: 
http://developer.Bluetooth.org/GATT/services/Pages/ServiceViewer.aspx?u=org.Bluetooth.service.generic_access.xml 

BLEGAPSVCINIT (deviceName, nameWritable, nAppearance, nMinConnInterval, nMaxConnInterval,  nSupervisionTout, nSlaveLatency ) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation 

Arguments:  

deviceName 

byRef deviceName  AS STRING 

The name of the device (such as Laird_Thermometer) to store in the Device Name 

characteristic of the GAP service. 

Note:  When an advert report is created using BLEADVRPTINIT(), this field is read from 

the service and an attempt is made to append  it in the Device Name AD. If the 

name is too long, that function fails to initialise the advert report and a default 

name is transmitted. We recommend that the device name submitted in this call 

be as short as possible. 

nameWritable 

byVal nameWritable AS INTEGER 

If non-zero, the peer device is allowed to write the device name. Some profiles allow this to 

be made optional. 

nAppearance 

byVal nAppearance  AS INTEGER 

Field lists the external appearance of the device and updates the Appearance characteristic 

of the GAP service. Possible values:   org.Bluetooth.characteristic.gap.appearance 

nMinConnInterval 

byVal nMinConnInterval  AS INTEGER 

The preferred minimum connection interval, updates the ‘Peripheral Preferred Connection 

Parameters’ characteristic of the GAP service.  

Range is between 7500 and 4000000 microseconds (rounded to the nearest 1250 

microseconds). This must be smaller than nMaxConnInterval. 

nMaxConnInterval 

byVal nMaxConnInterval  AS INTEGER 

The preferred maximum connection interval, updates the ‘Peripheral Preferred Connection 

Parameters’ characteristic of the GAP service.  

Range is between 7500 and 4000000 microseconds (rounded to the nearest 1250 

microseconds). This must be larger than nMinConnInterval. 

nSupervisionTimeout 

byVal nSupervisionTimeout  AS INTEGER 

The preferred link supervision timeout and updates the ‘Peripheral Preferred Connection 

Parameters’ characteristic of the GAP service.  

Range is between 100000 to 32000000 microseconds (rounded to the nearest 10000 

microseconds). 

http://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.generic_access.xml
https://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicViewer.aspx?u=org.bluetooth.characteristic.gap.appearance.xml


https://www.lairdconnect.com/ 181 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

nSlaveLatency 

byVal nSlaveLatency  AS INTEGER 

The preferred slave latency is the number of communication intervals that a slave may 

ignore without losing the connection and updates the ‘Peripheral Preferred Connection 

Parameters’ characteristic of the GAP service.  

This value must be smaller than (nSupervisionTimeout/ nMaxConnInterval) -1. i.e. 

nSlaveLatency < (nSupervisionTimeout / nMaxConnInterval) -1 

Example: 

// Example :: BleGapSvcInit.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 DIM rc,dvcNme$,nmeWrtble,apprnce,MinConnInt,MaxConnInt,ConnSupTO,sL,s$ 

 

 dvcNme$= "Laird_TS" 

 nmeWrtble = 0             //Device name will not be writable by peer 

 apprnce = 768             //The device will appear as a Generic Thermometer 

 MinConnInt = 500000       //Minimum acceptable connection interval is 0.5 seconds 

 MaxConnInt = 1000000      //Maximum acceptable connection interval is 1 second 

 ConnSupTO = 4000000       //Connection supervisory timeout is 4 seconds 

 sL = 0                    //Slave latency--number of conn events that can be missed 

 

 rc=BleGapSvcInit(dvcNme$,nmeWrtble,apprnce,MinConnInt,MaxConnInt,ConnSupTO,sL) 

 

 IF !rc THEN 

     PRINT "\nSuccess" 

 ELSE  

     PRINT "\nFailed 0x"; INTEGER.H'rc      //Print result code as 4 hex digits 

 ENDIF 

Expected Output: 

Success 

 

FUNCTION 

This function reads the device name characteristic value from the local GATT table. This value is the same as that supplied in 
BleGapSvcInit() if the ‘nameWritable’ parameter was 0, otherwise it may be different.  

EVBLEMSG event is thrown with ‘msgid’ == 21 when the GATT client writes a new value and is the best time to call this 
function. 

BLEGETDEVICENAME$ () 

Returns STRING, the current device name in the local GATT table. It is the same as that supplied in 

BleGapSvcInit() if the ‘nameWritable’ parameter was 0, otherwise it can be different. 

EVBLEMSG event is thrown with ‘msgid’ == 21 when the GATT client writes a new value. 

Arguments None 



https://www.lairdconnect.com/ 182 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

Example: 

// Example :: BleGetDeviceName$.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 DIM rc,dvcNme$,nmeWrtble,apprnce,MinConnInt,MaxConnInt,ConnSupTO,sL 

 

 PRINT "\n --- DevName : "; BleGetDeviceName$() 

 

 // Changing device name manually 

 dvcNme$= "My BL654" 

 nmeWrtble = 0              

 apprnce = 768            

 MinConnInt = 500000         

 MaxConnInt = 1000000          

 ConnSupTO = 4000000       

 sL = 0                       

 

 rc = BleGapSvcInit(dvcNme$,nmeWrtble,apprnce,MinConnInt,MaxConnInt,ConnSupTO,sL) 

 PRINT "\n --- New DevName : "; BleGetDeviceName$() 

Expected Output: 

--- DevName : LAIRD BL654 

--- New DevName : My BL654 

 

FUNCTION 

This function is used to register the Device Information service with the GATT server. The Device Information service contains 
nine characteristics as listed at the following website: 
http://developer.Bluetooth.org/GATT/services/Pages/ServiceViewer.aspx?u=org.Bluetooth.service.device_information.xml 

The firmware revision string is always set to BL654:vW.X.Y.Z where W,X,Y,Z are as per the revision information which is 
returned to the command AT I 4.  

BLESVCREGDEVINFO (manfName$,  modelNum$,  serialNum$,  hwRev$, swRev$,  sysId$,  regDataList$,  pnpId$) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments:  

manfName$ 
byVal manfName$  AS STRING  

The device manufacturer. Can be set empty to omit submission. 

modelNum$ 
byVal modelNum$  AS STRING  

The device model number. Can be set empty to omit submission. 

serialNum$ 
byVal serialNum$  AS STRING  

The device serial number. Can be set empty to omit submission. 

hwRev$ 
byVal hwRev$  AS STRING  

The device hardware revision string. Can be set empty to omit submission. 

http://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.device_information.xml


https://www.lairdconnect.com/ 183 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

swRev$ 
byVal swRev$  AS STRING  

The device software revision string. Can be set empty to omit submission. 

sysId$ 

byVal sysId$  AS STRING  

The device system ID as defined in the specifications. Can be set empty to omit submission. 

Otherwise it shall be a string exactly eight octets long, where: 

 Byte 0..4 := Manufacturer Identifier 

 Byte 5..7 := Organisationally Unique Identifier 

If the string is one character long and contains @, the system ID is created from the Bluetooth address if 

(and only if) an IEEE public address is set. If the address is the random static variety, this characteristic 

is omitted. 

regDataList$ 

byVal regDataList$  AS STRING  

The device’s regulatory certification data list as defined in the specification. It can be set as an empty 

string to omit submission. 

pnpId$ 

byVal pnpId$  AS STRING  

The device’s plug and play ID as defined in the specification. Can be set empty to omit submission. 

Otherwise, it shall be exactly 7 octets long,  where: 

▪ Byte 0    := Vendor Id Source 

▪ Byte 1,2 := Vendor Id (Byte 1 is LSB) 

▪ Byte 3,4 := Product Id (Byte 3 is LSB) 

▪ Byte 5,6 := Product Version (Byte 5 is LSB) 



https://www.lairdconnect.com/ 184 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

Example: 

// Example :: BleSvcRegDevInfo.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 DIM rc,manfNme$,mdlNum$,srlNum$,hwRev$,swRev$,sysId$,regDtaLst$,pnpId$ 

 

 manfNme$ = "Laird Technologies" 

 mdlNum$ = "BL654"              

 srlNum$ = ""                   //empty to omit submission           

 hwRev$ = "1.0"        

 swRev$ = "1.0"                

 sysId$ = ""                    //empty to omit submission 

 regDtaLst$ = ""                //empty to omit submission 

 pnpId$ = ""                   //empty to omit submission 

 

 rc=BleSvcRegDevInfo(manfNme$,mdlNum$,srlNum$,hwRev$,swRev$,sysId$,regDtaLst$,pnpId$) 

 

 IF !rc THEN 

     PRINT "\nSuccess" 

 ELSE  

     PRINT "\nFailed 0x"; INTEGER.H'rc       

 ENDIF 

Expected Output: 

Success 

 

FUNCTION 

This function takes an integer in the range 0 to 65535 and converts it into a 32-bit integer handle that associates the integer as 
an offset into the Bluetooth SIG 128-bit (16-byte) base UUID which is used for all adopted services, characteristics, and 
descriptors. 

If the input value is not in the valid range, then an invalid handle (0) is returned. 

The returned handle is treated by the developer as an opaque entity and no further logic is based on the bit content, apart from 
all zeros which represent an invalid UUID handle. 

BLEHANDLEUUID16 (nUuid16) 

Returns INTEGER, a nonzero handle shorthand for the UUID. Zero is an invalid UUID handle 

Arguments:  

nUuid16 

byVal nUuid16  AS INTEGER 

nUuid16 is first bitwise ANDed with 0xFFFF and the result is treated as an offset into the Bluetooth SIG 

128 bit base UUID 



https://www.lairdconnect.com/ 185 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

Example: 

// Example :: BleHandleUuid16.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 DIM uuid 

 DIM hUuidHRS 

 

 uuid = 0x180D  //this is UUID for Heart Rate Service 

 hUuidHRS = BleHandleUuid16(uuid) 

 IF hUuidHRS == 0 THEN 

     PRINT "\nFailed to create a handle" 

 ELSE 

     PRINT "Handle for HRS Uuid is "; integer.h' hUuidHRS;"(";hUuidHRS;")" 

 ENDIF 

Expected Output: 

Handle for HRS Uuid is FE01180D (-33482739)  

 

FUNCTION 

This function takes a 16-byte string and converts it into a 32-bit integer handle. The handle consists of a 16-bit (2-byte) offset 
into a new 128-bit base UUID.   

The base UUID is created by taking the 16-byte input string and setting bytes 12 and 13 to zero after extracting those bytes 
and storing them in the handle object. The handle also contains an index into an array of these 16-byte base UUIDs which are 
managed opaquely in the underlying stack. 

The returned handle shall be treated by the developer as an opaque entity and no further logic shall be based on the bit 
content. However, note that a string of zeroes represents an invalid UUID handle. 

Note:  Ensure that you use a 16-byte UUID that has been generated using a random number generator with sufficient 

entropy to minimise duplication and that the first byte of the array is the most significant byte of the UUID. 

BLEHANDLEUUID128 (stUuid$) 

Returns INTEGER, A handle representing the shorthand UUID.  

If zero, which is an invalid UUID handle, there is either no spare RAM memory to save the 16-byte base or 

more than 253 custom base UUIDs have been registered. 

Arguments:  

stUuid$ 

byRef stUuid$  AS STRING 

Any 16-byte string that was generated using a UUID generation utility that has enough entropy to ensure 

that it is random. The first byte of the string is the MSB of the UUID (big endian format). 

Example: 

//Example :: BleHandleUuid128.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 DIM uuid$, hUuidCustom 



https://www.lairdconnect.com/ 186 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

 //create a custom uuid for my ble widget 

 uuid$ = "ced9d91366924a1287d56f2764762b2a" 

 uuid$ = StrDehexize$(uuid$) 

 hUuidCustom = BleHandleUuid128(uuid$) 

 IF hUuidCustom == 0 THEN 

     PRINT "\nFailed to create a handle" 

 ELSE 

     PRINT "Handle for custom Uuid is ";integer.h’ hUuidCustom; "(";hUuidCustom;")" 

 ENDIF 

 // hUuidCustom now references an object which points to 

 // a base uuid = ced9d91366924a1287d56f2747622b2a  (note 0's in byte position 2/3) 

 // and an offset = 0xd913 

Expected Output: 

Handle for custom Uuid is FC03D913 (-66856685) 

 

FUNCTION 

This function takes an integer in the range 0 to 65535 along with a UUID handle which had been previously created using 
BleHandleUuid16() or BleHandleUuid128() to create a new UUID handle. This handle references the same 128 base UUID as 
the one referenced by the UUID handle supplied as the input parameter. 

The returned handle shall be treated by the developer as an opaque entity and no further logic shall be based on the bit 
content, apart from all zeroes (which represents an invalid UUID handle). 

BLEHANDLEUUIDSIBLING (nUuidHandle, nUuid16) 

Returns INTEGER, a handle representing the shorthand UUID and can be zero which is an invalid UUID handle, 

if nUuidHandle is an invalid handle in the first place. 

Arguments:  

nUuidHandle 
byVal nUuidHandle  AS INTEGER 

A handle that was previously created using either BleHandleUui16() or BleHandleUuid128(). 

nUuid16 

byVal nUuid16  AS INTEGER 

A UUID value in the range 0 t0 65535 which is treated as an offset into the 128-bit base UUID 

referenced by nUuidHandle. 

Example: 

// Example :: BleHandleUuidSibling.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 DIM uuid$ ,hUuid1, hUuid2    //hUuid2 will have the same base uuid as hUuid1 

 

 //create a custom uuid for my ble widget 

 uuid$ = "ced9d91366924a1287d56f2764762b2a" 

 uuid$ = StrDehexize$(uuid$) 



https://www.lairdconnect.com/ 187 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 hUuid1 = BleHandleUuid128(uuid$) 

 IF hUuid1 == 0 THEN 

     PRINT "\nFailed to create a handle" 

 ELSE 

     PRINT "Handle for custom Uuid is ";integer.h' hUuid1;"(";hUuid1;")" 

 ENDIF 

 // hUuid1 now references an object which points to 

 // a base uuid = ced9000066924a1287d56f2747622b2a  (note 0's in byte position 2/3) 

 // and an offset = 0xd913 

 

 hUuid2 = BleHandleUuidSibling(hUuid1,0x1234) 

 IF hUuid2 == 0 THEN 

     PRINT "\nFailed to create a handle" 

 ELSE 

     PRINT "\nHandle for custom sibling Uuid is ";integer.h'hUuid2;"(";hUuid2;")" 

 ENDIF 

 // hUuid2 now references an object which also points to 

 // the base uuid = ced9000066924a1287d56f2700004762 (note 0's in byte position 2/3) 

 // and has the offset = 0x1234 

Expected Output: 

Handle for custom Uuid is FC03D913 (-66856685) 

Handle for custom sibling Uuid is FC031234 (-66907596) 

 

FUNCTION  

As explained in GATT Server Functions, a service in the context of a GATT table is a collection of related characteristics. This 
function is used to inform the underlying GATT table manager that one or more related characteristics are going to be created 
and installed in the GATT table and that, until the next call of this function, they will be associated with the service handle that 
it provides upon return of this call. 

Under the hood, this call results in a single attribute being installed in the GATT table with a type signifying a PRIMARY or a 
SECONDARY service. The value for this attribute is the UUID that identifies this service and in turn have been precreated 
using one of the functions: BleHandleUuid16(), BleHandleUuid128(), or BleHandleUuidSibling(). 

Note:   When a GATT client queries a GATT server for services over a BLE connection, it only receives a list of PRIMARY 

services. SECONDARY services are a mechanism for multiple PRIMARY services to reference single instances of 

shared characteristics that are collected in a SECONDARY service. This referencing is expedited within the 

definition of a service using the concept of INCLUDED SERVICE which is an attribute that is grouped with the 

PRIMARY service definition. An Included Service is expedited using the function BleSvcAddIncludeSvc() which is 

described immediately after this function. 

This function now replaces BleSvcCom() and marks the beginning of a service definition in the GATT server table. When the 
last descriptor of the last characteristic has been registered the service definition should be terminated by calling 
BleServiceCommit().  



https://www.lairdconnect.com/ 188 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

BLESERVICENEW (nSvcType, nUuidHandle, hService ) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments:  

nSvcType 

byVal nSvcType  AS INTEGER 

This is zero for a SECONDARY service and 1 for a PRIMARY service. All other values are reserved 

for future use and result in this function failing with an appropriate result code. 

nUuidHandle 

byVal nUuidHandle  AS INTEGER 

This is a handle to a 16-bit or 128-bit UUID that identifies the type of service function provided by all 

the characteristics collected under it. It has been pre-created using one of the three functions: 

BleHandleUuid16(), BleHandleUuid128(), or BleHandleUuidSibling(). 

hService 

byRef hService  AS INTEGER 

If the service attribute is created in the GATT table, then this contains a composite handle which 

references the actual attribute handle. This is then subsequently used when adding characteristics to 

the GATT table. If the function fails to install the service attribute for any reason, this variable will 

contain 0 and the returned result code will be non-zero. 

Example: 

// Example :: BleServiceNew.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 #DEFINE BLE_SERVICE_SECONDARY                           0 

 #DEFINE BLE_SERVICE_PRIMARY                             1 

 //---------------------------------------------------------------------------- 

 //Create a Health Thermometer PRIMARY service attribute which has a uuid of 0x1809 

 //---------------------------------------------------------------------------- 

 DIM hHtsSvc    //composite handle for hts primary service 

 DIM hUuidHT : hUuidHT = BleHandleUuid16(0x1809)     //HT Svc UUID Handle 

 

 IF BleServiceNew(BLE_SERVICE_PRIMARY,hUuidHT,hHtsSvc)==0 THEN 

     PRINT "\nHealth Thermometer Service attribute written to GATT table" 

     PRINT "\nUUID Handle value: ";hUuidHT 

     PRINT "\nService Attribute Handle value: ";hHtsSvc 

 ELSE 

     PRINT "\nService Commit Failed" 

 ENDIF 

 //---------------------------------------------------------------------------- 

 //Create a Battery PRIMARY service attribute which has a uuid of 0x180F 

 //---------------------------------------------------------------------------- 

 DIM hBatSvc    //composite handle for battery primary service 

               //or we could have reused nHtsSvc 

 DIM hUuidBatt : hUuidBatt = BleHandleUuid16(0x180F)     //Batt Svc UUID Handle 

 



https://www.lairdconnect.com/ 189 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 IF BleServiceNew(BLE_SERVICE_PRIMARY,hUuidBatt,hBatSvc)==0 THEN 

     PRINT "\n\nBattery Service attribute written to GATT table" 

     PRINT "\nUUID Handle value: ";hUuidBatt 

     PRINT "\nService Attribute Handle value: ";hBatSvc 

 ELSE 

     PRINT "\nService Commit Failed" 

 ENDIF 

Expected Output: 

Health Thermometer Service attribute written to GATT table 

UUID Handle value: -33482743 

Service Attribute Handle value: 16 

 

Battery Service attribute written to GATT table 

UUID Handle value: -33482737 

Service Attribute Handle value: 17 

 

This function in the BL654 is used to commit a defined service using BleServiceNew() to the GATT table and should be called 
after the last characteristic/description has been created/commited for that service. 

BLESERVICECOMMIT (hService) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments:  

hService 
byVal hService  AS INTEGER 

This handle is returned from BleServiceNew(). 

See example for BleCharCommit(). 

 

FUNCTION 

Note:  This function is currently not available for use on this module 

This function is used to add a reference to a service within another service. This is usually, but not necessarily, a  
SECONDARY service which is virtually identical to a PRIMARY service from the GATT server perspective. The only difference 
is that, when a GATT client queries a device for all services, it does not receive mention of SECONDARY services. 

When a GATT client encounters an INCLUDED SERVICE object when querying a particular service it performs a sub-
procedure to get handles to all the characteristics that are part of that INCLUDED service. 

This mechanism is provided to allow for a single set of characteristics to be shared by multiple primary services. This is most 
relevant if a characteristic is defined so that it can have only one instance in a GATT table but needs to be offered in multiple 
PRIMARY services. A typical implementation, where a characteristic is part of many PRIMARY services, installs that 
characteristic in a SECONDARY service ( see BleSvcCommit() ) and then uses the function defined in this section to add it to 
all the PRIMARY services that want to have that characteristic as part of their group. 

It is possible to include a service which is also a PRIMARY or SECONDARY service, which in turn can include further 
PRIMARY or SECONDARY services. The only restriction to nested includes is that there cannot be recursion. 



https://www.lairdconnect.com/ 190 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

Note:  If a service has INCLUDED services, then they is installed in the GATT table immediately after a service is created 

using BleSvcCommit() and before BleCharCommit(). The BT 4.0 specification mandates that any ‘included service’ 

attribute be present before any characteristic attributes within a particular service group declaration. 

BleSvcAddIncludeSvc (hService) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation 

Arguments:  

hService 
byVal hService  AS INTEGER 

This argument contains a handle that was previously created using the function BleSvcCommit(). 

Example: 

// Example :: BleSvcAddIncludeSvc.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 #define BLE_SERVICE_SECONDARY                           0 

 #define BLE_SERVICE_PRIMARY                             1 

 //---------------------------------------------------------------------------- 

 //Create a Battery SECONDARY service attribure which has a uuid of 0x180F 

 //---------------------------------------------------------------------------- 

 dim hBatSvc    //composite handle for batteru primary service 

 dim rc               //or we could have reused nHtsSvc 

 dim metaSuccess 

 DIM charMet : charMet = BleAttrMetaData(1,1,10,1,metaSuccess) 

 DIM s$ : s$ = "Hello"       //initial value of char in Battery Service 

 DIM hBatChar 

 

 rc = BleServiceNew(BLE_SERVICE_SECONDARY, BleHandleUuid16(0x180F), hBatSvc) 

 rc = BleCharNew(3,BleHandleUuid16(0x2A1C),charMet,0,0) 

 rc = BleCharCommit(hBatSvc, s$ ,hBatChar) 

 rc = BleServiceCommit(hBatSvc) 

 

 //---------------------------------------------------------------------------- 

 //Create a Health Thermometer PRIMARY service attribure which has a uuid of 0x1809 

 //---------------------------------------------------------------------------- 

 DIM hHtsSvc    //composite handle for hts primary service 

 

 rc = BleServiceNew(BLE_SERVICE_PRIMARY, BleHandleUuid16(0x1809), hHtsSvc) 

 rc = BleServiceCommit(hHtsSvc) 

 

 //Have to add includes before any characteristics are committed 

 PRINT INTEGER.h'BleSvcAddIncludeSvc(hBatSvc) 



https://www.lairdconnect.com/ 191 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

FUNCTION 

A GATT Table is an array of attributes which are grouped into Characteristics which in turn are further grouped into Services. 
Each attribute consists of a data value which can be anything from 1 to 512 bytes long according to the specification and 
properties such as read and write permissions, authentication and security properties. When Services and Characteristics are 
added to a GATT server table, multiple attributes with appropriate data and properties get added.  

This function allows a 32 bit integer to be created, which is an opaque object, which defines those properties and is then 
submitted along with other information to add the attribute to the GATT table.  

When adding a Service attribute (not the whole service, in this present context), the properties are defined in the BT 
specification so that it is open for reads without any security requirements but cannot be written and always has the same data 
content structure. This implies that a metadata object does NOT need to be created. 

However, when adding Characteristics, which consists of a minimum of 2 attributes, one similar in function as the 
aforementioned Service attribute and the other the actual data container, then properties for the value attribute must be 
specified. Here, ‘properties’ refers to properties for the attribute, not properties for the Characteristic container as a whole. 
These also exist and must be specified, but that is done in a different manner as explained later. 

For example, the value attribute must be specified for read/write permission and whether it needs security and authentication 
to be accessed. 

If the Characteristic is capable of notification and indication, the client implicitly must be able to enable or disable that. This is 
done through a Characteristic Descriptor which is also another attribute. The attribute will also need to have a metadata 
supplied when the Characteristic is created and registered in the GATT table. This attribute, if it exists, is called a Client 
Characteristic Configuration Descriptor or CCCD for short. A CCCD always has two bytes of data and currently only two bits 
are used as on/off settings for notification and indication. 

A Characteristic can also optionally be capable of broadcasting its value data in advertisements. For the GATT client to be 
able to control this, there is yet another type of Characteristic Descriptor which also needs a metadata object to be supplied 
when the Characteristic is created and registered in the GATT table. This attribute, if it exists, is called a Server Characteristic 
Configuration Descriptor or SCCD for short. A SCCD always has two bytes of data and currently only one bit is used as on/off 
settings for broadcasts. 

Finally if the Characteristic has other Descriptors to qualify its behaviour, a separate API function is also supplied to add that to 
the GATT table and when setting up a metadata object will also need to be supplied. 

In a nutshell, think of a metadata object as a note to define how an attribute will behave and the GATT table manager will need 
that before it is added. Some attributes have those ‘notes’ specified by the BT specification and so the GATT table manager 
will not need to be provided with any, but the rest require it. 

This function helps write that metadata. 

BLEATTRMETADATAEX (nReadRights, nWriteRights, nMaxDataLen, nFlags, resCode) 

Returns INTEGER, a 32-bit opaque data object to be used in subsequent calls when adding 

Characteristics to a GATT table. 

Arguments:  

nReadRights 

byVal nReadRights  AS INTEGER 

This specifies the read rights and shall have one of the following values: 

0 No access 

1 Open 

2 Encrypted with No Man-In-The-Middle (MITM) protection 

3 Encrypted with Man-In-The-Middle (MITM) protection 

4 Signed with No Man-In-The-Middle (MITM) protection (not available) 

5 Signed with Man-In-The-Middle (MITM) protection (not available) 

6 LESC encrypted with Man-In-The-Middle (MITM) protection 
 



https://www.lairdconnect.com/ 192 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

nWriteRights 

byVal nWriteRights  AS INTEGER 

This specifies the write rights and shall have one of the following values: 

0 No access 

1 Open 

2 Encrypted with No Man-In-The-Middle (MITM) protection 

3 Encrypted with Man-In-The-Middle (MITM) protection 

4 Signed with No Man-In-The-Middle (MITM) protection (not available) 

5 Signed with Man-In-The-Middle (MITM) protection (not available) 

6 LESC encrypted with Man-In-The-Middle (MITM) protection 
 

nMaxDataLen 

byVal nMaxDataLen  AS INTEGER 

This specifies the maximum data length of the VALUE attribute. 

Range is from 1 to 512 bytes according to the BT specification; the stack implemented in the 

module may limit it for early versions. 

nFlags 

byVal nFlags AS INTEGER 

 

This is a bit mask where the bits are defined as follows: 

▪ Bit 0: Set this to 1 only if you want the attribute to automatically shorten it’s length 
according to the number of bytes written by the client. For example, if the initial length is 2 
and the client writes only 1 byte, then if this is 0, then only the first byte gets updated and 
the rest remain unchanged. If this parameter is set to 1, then when a single byte is written 
the attribute will shorten it’s length to accommodate. If the client tries to write more bytes 
than the initial maximum length, then the client will get an error response. 

▪ Bit 1: Set this to 1 to ensure that the memory for the attribute is allocated from User space 
(and hence less memory available for smartBASIC) so that a larger gatt table can be 
created. This bit is ignored for all attributes other than for characteristic value. 

▪ Bit 2: Set this to 1 to require authorisation for reads. When an attempt to read is made by 
the client then one of the events EVAUTHVAL, EVAUTHCCCD, EVAUTHSCCD or 
EVAUTHDESC is thrown to the app and in the handler for that event, either 
BleAuthorizeChar() or BleAuthorizeDesc() is called with appropriate parameters to grant or 
deny access. 

▪ Bit 3: Set this to 1 to require authorisation for writes. When an attempt to write is made by 
the client then one of the events EVAUTHVAL, EVAUTHCCCD, EVAUTHSCCD or 
EVAUTHDESC is thrown to the app and in the handler for that event, either 
BleAuthorizeChar() or BleAuthorizeDesc() is called with appropriate parameters to grant or 
deny access. 

 

resCode 

byRef resCode AS INTEGER 

This variable is updated with a result code which is 0 if a metadata object was successfully 

returned by this call. Any other value implies a metadata object did not get created. 

Example: 

// Example :: BleAttrMetadata.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 DIM mdVal    //metadata for value attribute of Characteristic 

 DIM mdCccd   //metadata for CCCD attribute of Characteristic 

 DIM mdSccd   //metadata for SCCD attribute of Characteristic 

 DIM rc 



https://www.lairdconnect.com/ 193 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

 //++++ 

 // Create the metadata for the value attribute in the characteristic 

 // and Heart Rate attribute has variable length 

 //++++ 

 

 //There is always a Value attribute in a characteristic 

 mdVal=BleAttrMetadataEx(17,0,20,0,rc) 

 //There is a CCCD and SCCD in this characteristic 

 mdCccd=BleAttrMetadataEx(1,2,2,0,rc) 

 mdSccd=BleAttrMetadataEx(0,0,2,0,rc) 

 

 //Create the Characteristic object 

 IF BleCharNew(3,BleHandleUuid16(0x2A1C),mdVal,mdCccd,mdSccd)==0 THEN 

     PRINT "\nSuccess" 

 ELSE 

     PRINT "\nFailed" 

 ENDIF 

Expected Output: 

Success 



https://www.lairdconnect.com/ 194 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

FUNCTION 

When a characteristic is to be added to a GATT table, multiple attribute objects must be precreated. After they are created 
successfully, they are committed to the GATT table in a single atomic transaction. 

This function is the first function that is called to start the process of creating those multiple attribute objects. It is used to select 
the characteristic properties (which are distinct and different from attribute properties), the UUID to be allocated for it and then 
up to three metadata objects for the value attribute, and CCCD/SCCD Descriptors respectively. 

BLECHARNEW (nCharProps, nUuidHandle, mdVal, mdCccd, mdSccd) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments:  

nCharProps 

byVal nCharProps  AS INTEGER 

This variable contains a bit mask to specify the following high level properties for the 

characteristic that is added to the GATT table: 

Bit Description 

0 Broadcast capable (SCCD descriptor must be present) 

1 Can be read by the client 

2 Can be written by the client without a response 

3 Can be written 

4 Can be notifiable (CCCD descriptor must be present) 

5 Can be indicatable (CCCD descriptor must be present) 

6 Can accept signed writes 

7 Reliable writes 
 

nUuidHandle 

byVal nUuidHandle  AS INTEGER 

This specifies the UUID that is allocated to the characteristic, either 16 or 128 bits. This variable 

is a handle, pre-created using one of the following functions:  

BleHandleUuid16(), BleHandleUuid128(), BleHandleUuidSibling().   

mdVal 

byVal mdVal  AS INTEGER 

This is the mandatory metadata used to define the properties of the Value attribute that is 

created in the characteristic and is pre-created with help from function BleAttrMetadata(). 

mdCccd 

byVal mdCccd  AS INTEGER 

This is an optional metadata that is used to define the properties of the CCCD descriptor 

attribute that is created in the characteristic and is pre-created using the help of the function 

BleAttrMetadata() or set to 0 if CCCD is not to be created.  

If nCharProps specifies that the characteristic is notifiable or indicatable and this value contains 

0, this function will treat the descriptor so that read and write access is open. 

mdSccd 

byVal mdSccd  AS INTEGER 

This is an optional metadata that is used to define the properties of the SCCD descriptor 

attribute that is created in the characteristic and is pre-created using the help of the function 

BleAttrMetadata() or set to 0 if SCCD is not to be created.  

If nCharProps specifies that the characteristic is broadcastable and this value contains 0, this 

function will treat the descriptor so that read and write access is open. 



https://www.lairdconnect.com/ 195 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

Example: 

// Example :: BleCharNew.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 DIM rc 

 DIM charUuid : charUuid = BleHandleUuid16(2)       //Characteristic's UUID 

 DIM mdVal : mdVal = BleAttrMetadataEx(1,0,20,0,rc)   //Metadata for value attribute 

 DIM mdCccd : mdCccd = BleAttrMetadataEx(1,1,2,0,rc)  //Metadata for CCCD attribute of 

Characteristic 

 

 //============================================================================== 

 // Create a new char: 

 // --- Indicatable, not Broadcastable (so mdCccd is included, but not mdSccd) 

 // --- Can be read, not written (shown in mdVal as well) 

 //============================================================================== 

 IF BleCharNew(0x22,charUuid,mdVal,mdCccd,0)==0 THEN 

     PRINT "\nNew Characteristic created" 

 ELSE 

     PRINT "\nFailed" 

 ENDIF 

Expected Output: 

New Characteristic created 

 

FUNCTION 

This function adds an optional User Description Descriptor to a Characteristic and can only be called after BleCharNew() starts 
the process of describing a new characteristic. 

The BT 4.0 specification describes the User Description Descriptor as “.. a UTF-8 string of variable size that is a textual 
description of the characteristic value.” It further stipulates that this attribute is optionally writable and so a metadata argument 
exists to configure it as such. The metadata automatically updates the Writable Auxilliaries properties flag for the 
characteristic. This is why that flag bit is NOT specified for the nCharProps argument to the BleCharNew() function. 

BLECHARDESCUSERDESC (userDesc$, mdUser) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments:  

userDesc$ 

byRef userDesc$  AS STRING 

The user description string with which to initiliase the descriptor. If the length of the string exceeds the 

maximum length of an attribute then this function aborts with an error result code. 

mdUser 

byVal mdUser  AS INTEGER 

This is a mandatory metadata that defines the properties of the User Description Descriptor attribute 

created in the characteristic and pre-created using the help of BleAttrMetadata(). If the write rights are set 

to 1 or greater, the attribute is marked as writable and the client is able to provide a user description that 

overwrites the one provided in this call. 



https://www.lairdconnect.com/ 196 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

Example: 

// Example :: BleCharDescUserDesc.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 DIM rc, metaSuccess,usrDesc$ : usrDesc$="A description"  

 DIM charUuid : charUuid = BleHandleUuid16(1) 

 DIM charMet : charMet = BleAttrMetaData(1,1,20,0,metaSuccess) 

 DIM mdUsrDsc : mdUsrDsc = BleAttrMetaData(1,1,20,0,metaSuccess) 

 DIM mdSccd : mdSccd = BleAttrMetadata(1,1,2,0,rc)   //CCCD metadata for char 

            

 //initialise char, write/read enabled, accept signed writes, indicatable 

 rc=BleCharNew(0x4B,charUuid,charMet,0,mdSccd)      

 rc=BleCharDescUserDesc(usrDesc$,mdUsrDsc) 

 

 IF rc==0 THEN 

     PRINT "\nChar created and User Description '";usrDesc$;"' added" 

 ELSE 

     PRINT "\nFailed" 

 ENDIF 

Expected Output: 

Char created and User Description 'A description' added 

 

FUNCTION 

This function adds an optional Presentation Format Descriptor to a characteristic and can only be called after BleCharNew() 
has started the process of describing a new characteristic. It adds the descriptor to the GATT table with open read permission  
and no write access, which means a metadata parameter is not required. 

The BT 4.0 specification states that one or more presentation format descriptors can occur in a characteristic and that if more 
than one, then an Aggregate Format description is also included. 

The book Bluetooth Low Energy: The Developer's Handbook by Robin Heydon, says the following on the subject of the 
Presentation Format Descriptor: 

“One of the goals for the Generic Attribute Profile was to enable generic clients. A generic client is defined as a 
device that can read the values of a characteristic and display them to the user without understanding what they 
mean. 
. . . 
The most important aspect that denotes if a characteristic can be used by a generic client is the Characteristic 
Presentation Format descriptor. If this exists, it’s possible for the generic client to display its value, and it is safe to 
read this value.” 



https://www.lairdconnect.com/ 197 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

BLECHARDESCPRSTNFRMT (nFormat, nExponent, nUnit, nNameSpace, nNSdesc) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments:  

nFormat 

byVal nFormat  AS INTEGER 

Valid range 0 to 255. 

The format specifies how the data in the Value attribute is structured. A list of valid values for this 

argument is found at http://developer.Bluetooth.org/GATT/Pages/FormatTypes.aspx and the 

enumeration is described in the BT 4.0 spec, section 3.3.3.5.2. 

The following is the enumeration list at the time of writing: 

0x00 RFU 0x01 boolean 

0x02 2bit 0x03 nibble 

0x04 unit8 0x05 uint12 

0x06 uint16 0x07 uint24 

0x08 uint32 0x09 uint48 

0x0A uint64 0x0B uint128 

0x0C sint8 0x0D sint12 

0x0E sint16 0x0F sint24 

0x10 sint32 0x11 sint48 

0x12 sint64 0x13 sint128 

0x14 float32 0x15 float64 

0x16 SFLOAT 0x17 FLOAT 

0x18 duint16 0x19 utf8s 

0x1A utf16s 0x1B struct 

0x1C-0xFF RFU   
 

nExponent 

byVal nExponent  AS INTEGER 

This value is used with integer data types given by the enumeration in nFormat to further qualify the 

value so that the actual value is: 

actual value = Characteristic Value * 10 to the power of nExponent. 

Valid range -128 to 127 

nUnit 

byVal nUnit  AS INTEGER 

This value is a 16-bit UUID used as an enumeration to specify the units which are listed in the Assigned 

Numbers document published by the Bluetooth SIG, found at: 

http://developer.Bluetooth.org/GATT/units/Pages/default.aspx 

Valid range 0 to 65535. 

nNameSpace 

byVal nNameSpace  AS INTEGER 

The value identifies the organization, defined in the Assigned Numbers document published by the 

Bluetooth SIG, found at: 

https://developer.Bluetooth.org/GATT/Pages/GATTNamespaceDescriptors.aspx 

Valid range 0 to 255. 

nNSdesc 

byVal nNSdesc  AS INTEGER 

This value is a description of the organisation specified by nNameSpace. 

Valid range 0 to 65535. 

Example: 

// Example :: BleCharDescPrstnFrmt.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 DIM rc, metaSuccess,usrDesc$ : usrDesc$="A description"  

 DIM charUuid : charUuid = BleHandleUuid16(1) 

http://developer.bluetooth.org/gatt/Pages/FormatTypes.aspx
http://developer.bluetooth.org/gatt/units/Pages/default.aspx
https://developer.bluetooth.org/gatt/Pages/GattNamespaceDescriptors.aspx


https://www.lairdconnect.com/ 198 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 DIM charMet : charMet = BleAttrMetaData(1,1,20,0,metaSuccess) 

 DIM mdUsrDsc : mdUsrDsc = BleAttrMetaData(1,1,20,0,metaSuccess) 

 DIM mdSccd : mdSccd = BleAttrMetadata(1,1,2,0,rc)   //CCCD metadata for char 

            

 //initialise char, write/read enabled, accept signed writes, indicatable 

 rc=BleCharNew(0x4B,charUuid,charMet,0,mdSccd)      

 rc=BleCharDescUserDesc(usrDesc$,mdUsrDsc) 

 

 IF rc==0 THEN 

     PRINT "\nChar created and User Description '";usrDesc$;"' added" 

 ELSE 

     PRINT "\nFailed" 

 ENDIF 

 

 // ~ ~ ~ 

 // other optional descriptors 

 // ~ ~ ~  

 

 // 16 bit signed integer = 0x0E 

 // exponent = 2 

 // unit = 0x271A ( amount concentration (mole per cubic metre) ) 

 // namespace = 0x01 == Bluetooth SIG 

 // description = 0x0000 == unknown 

 IF BleCharDescPrstnFrmt(0x0E,2,0x271A,0x01,0x0000)==0 THEN 

     PRINT "\nPresentation Format Descriptor added" 

 ELSE 

     PRINT "\nPresentation Format Descriptor not added" 

 ENDIF 

Expected Output: 

Char created and User Description 'A description' added 

Presentation Format Descriptor added 



https://www.lairdconnect.com/ 199 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

FUNCTION 

This function is used to add any Characteristic Descriptor as long as its UUID is not in the range 0x2900 to 0x2904 inclusive, 
as they are treated specially using dedicated API functions. For example, 0x2904 is the Presentation Format Descriptor and it 
is catered for by the API function BleCharDescPrstnFrmt(). 

Since this function allows existing /future defined Descriptors to be added that may or may not have write access or require 
security requirements, a metadata object must be supplied allowing that to be configured. 

BLECHARDESCADD (nUuid16, attr$, mdDesc) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments:  

nUuid16 

byVal nUuid16  AS INTEGER  

This is a value in the range 0x2905 to 0x2999  

Note: This is the actual UUID value, NOT the handle.  

The highest value at the time of writing is 0x290E, defined for the Report Reference Descriptor.  

See http://developer.Bluetooth.org/GATT/descriptors/Pages/DescriptorsHomePage.aspx for a list of 

Descriptors defined and adopted by the Bluetooth SIG. 

attr$ 
byRef attr$  AS STRING 

This is the data that is saved in the Descriptor’s attribute 

mdDesc 

byVal n  AS INTEGER 

This is mandatory metadata that is used to define the properties of the Descriptor attribute that is 

created in the Characteristic and was pre-created using the help of the function BleAttrMetadata(). If the 

write rights are set to 1 or greater, then the attribute is marked as writable and the client is able to 

modify the attribute value. 

Example: 

// Example :: BleCharDescAdd.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 DIM rc, metaSuccess,usrDesc$ : usrDesc$="A description"  

 DIM charUuid : charUuid = BleHandleUuid16(1) 

 DIM charMet : charMet = BleAttrMetaData(1,1,20,0,metaSuccess) 

 DIM mdUsrDsc : mdUsrDsc = charMet 

 DIM mdSccd : mdSccd = charMet 

            

 //initialise char, write/read enabled, accept signed writes, indicatable 

 rc=BleCharNew(0x4B,charUuid,charMet,0,mdSccd)      

 rc=BleCharDescUserDesc(usrDesc$,mdUsrDsc) 

 rc=BleCharDescPrstnFrmt(0x0E,2,0x271A,0x01,0x0000) 

 

 // ~ ~ ~ 

 // other descriptors 

 // ~ ~ ~ 

http://developer.bluetooth.org/gatt/descriptors/Pages/DescriptorsHomePage.aspx


https://www.lairdconnect.com/ 200 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

 //++++ 

 //Add the other Descriptor 0x29XX  -- first one 

 //++++ 

 DIM mdChrDsc : mdChrDsc = BleAttrMetadata(1,0,20,0,metaSuccess)  

 DIM attr$ : attr$="some_value1" 

 rc=BleCharDescAdd(0x2905,attr$,mdChrDsc) 

 

 //++++ 

 //Add the other Descriptor 0x29XX  -- second one 

 //++++ 

 attr$="some_value2" 

 rc=rc+BleCharDescAdd(0x2906,attr$,mdChrDsc) 

 

 //++++ 

 //Add the other Descriptor 0x29XX  -- last one 

 //++++ 

 attr$="some_value3" 

 rc=rc+BleCharDescAdd(0x2907,attr$,mdChrDsc) 

 

 IF rc==0 THEN 

     PRINT "\nOther descriptors added successfully" 

 ELSE    

     PRINT "\nFailed" 

 ENDIF 

Expected Output: 

Other descriptors added successfully 

 

FUNCTION 

This function commits a characteristic which was prepared by calling BleCharNew() and optionally 
BleCharDescUserDesc(),BleCharDescPrstnFrmt() or BleCharDescAdd(). 

It is an instruction to the GATT table manager that all relevant attributes that make up the characteristic should appear in the 
GATT table in a single atomic transaction. If it successfully created, a single composite characteristic handle is returned which 
should not be confused with GATT table attribute handles. If the Characteristic was not accepted then this function returns a 
non-zero result code which conveys the reason and the handle argument that is returned has a special invalid handle of 0. 

The characteristic handle that is returned references an internal opaque object that is a linked list of all the attribute handles in 
the characteristic which by definition implies that there is a minimum of 1 (for the characteristic value attribute) and more as 
appropriate. For example, if the characteristic’s property specified is notifiable then a single CCCD attribute also exists. 

Note:   In the GATT table, when a characteristic is registered, there are actually a minimum of two attribute handles, one 

for the Characteristic Declaration and the other for the Value. However there is no need for the smart BASIC apps 



https://www.lairdconnect.com/ 201 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

developer to access it, so it is not exposed. Access is not required because the characteristic was created by the 

application developer and so shall already know its content – which never changes once created. 

BLECHARCOMMIT (hService, attr$, charHandle) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments:  

hService 

byVal hService  AS INTEGER 
This is the handle of the service to which the characteristic belongs, which in turn was created using the 
function BleSvcCommit(). 

attr$ 

byRef attr$  AS STRING 
This string contains the initial value of the value attribute in the characteristic. The content of this string is 
copied into the GATT table and the variable can be reused after this function returns. 

charHandle 

byRef charHandle  AS INTEGER 
The composite handle for the newly created characteristic is returned in this argument. It is zero if the 
function fails with a non-zero result code. This handle is then used as an argument in subsequent 
function calls to perform read/write actions, so it is must be placed in a global smartBASIC variable. 
When a significant event occurs as a result of action by a remote client, an event message is sent to the 
application which can be serviced using a handler. That message contains a handle field corresponding 
to this composite characteristic handle. Standard procedure is to select on that value to determine for 
which characteristic the message is intended. 
See event messages: EVCHARHVC, EVCHARVAL, EVCHARCCCD, EVCHARSCCD, EVCHARDESC. 

Example: 

// Example :: BleCharCommit.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 #DEFINE BLE_SERVICE_SECONDARY                           0 

 #DEFINE BLE_SERVICE_PRIMARY                             1 

  

 DIM rc  

 DIM attr$,usrDesc$ : usrDesc$="A description"  

 DIM hHtsSvc    //composite handle for hts primary service 

 DIM mdCharVal : mdCharVal = BleAttrMetaData(1,1,20,0,rc) 

 DIM mdCccd : mdCccd = BleAttrMetadata(1,1,2,0,rc) 

 DIM mdUsrDsc : mdUsrDsc = BleAttrMetaData(1,1,20,0,rc) 

 DIM hHtsMeas    //composite handle for htsMeas characteristic 

 

 //---------------------------------------------------------------------------- 

 //Create a Health Thermometer PRIMARY service attribute which has a uuid of 0x1809 

 //---------------------------------------------------------------------------- 

 rc=BleServiceNew(BLE_SERVICE_PRIMARY, BleHandleUuid16(0x1809), hHtsSvc) 

 



https://www.lairdconnect.com/ 202 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 //---------------------------------------------------------------------------- 

 //Create the Measurement Characteristic object, add user description descriptor 

 //---------------------------------------------------------------------------- 

 rc=BleCharNew(0x2A,BleHandleUuid16(0x2A1C),mdCharVal,mdCccd,0) 

 rc=BleCharDescUserDesc(usrDesc$,mdUsrDsc)    

 

 //---------------------------------------------------------------------------- 

 //Commit the characteristics with some initial data 

 //---------------------------------------------------------------------------- 

 attr$="hello\00worl\64"  

 IF BleCharCommit(hHtsSvc,attr$,hHtsMeas)==0 THEN 

     PRINT "\nCharacteristic Commited" 

 ELSE 

     PRINT "\nFailed" 

 ENDIF 

 rc=BleServiceCommit(hHtsSvc) 

 

 //the characteristic will now be visible in the GATT table 

 //and is refrenced by ‘hHtsMeas’for subsequent calls 

Expected Output: 

Characteristic Commited 

 

FUNCTION 

This function reads the current content of a characteristic identified by a composite handle that was previously returned by the 
function BleCharCommit(). 

In most cases a read will be performed when a GATT client writes to a characteristic value attribute. The write event is 
presented asynchronously to the smart BASIC application in the form of EVCHARVAL event. This function will most often be 
accessed from the handler that services that event. 

BLECHARVALUEREAD (charHandle, attr$) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments:  

charHandle 

byVal charHandle  AS INTEGER 

This is the handle to the characteristic whose value must be read which was returned when 
BleCharCommit() was called. 

attr$ 
byRef attr$  AS STRING 
This string variable contains the new value from the characteristic. 



https://www.lairdconnect.com/ 203 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

Example: 

// Example :: BleCharValueRead.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 DIM hMyChar,rc, conHndl 

 

 //============================================================================== 

 // Initialise and instantiate service, characteristic,  

 //============================================================================== 

 FUNCTION OnStartup() 

     DIM rc, hSvc, scRpt$, adRpt$, addr$, attr$ : attr$="Hi" 

 

     //commit service 

     rc=BleServiceNew(1, BleHandleUuid16(0x18EE), hSvc) 

     //initialise char, write/read enabled, accept signed writes 

     rc=BleCharNew(0x0A,BleHandleUuid16(1),BleAttrMetaData(1,1,20,0,rc),0,0)      

     //commit char initialised above, with initial value "hi" to service 'hSvc' 

     rc=BleCharCommit(hSvc,attr$,hMyChar) 

     //commit changes to service 

     rc=BleServiceCommit(hSvc) 

     //initialise scan report 

     rc=BleScanRptInit(scRpt$)  

     //Add 1 service handle to scan report 

     rc=BleAdvRptAddUuid16(scRpt$,0x18EE,-1,-1,-1,-1,-1) 

     //commit reports to GATT table - adRpt$ is empty 

     rc=BleAdvRptsCommit(adRpt$,scRpt$) 

     rc=BleAdvertStart(0,addr$,150,0,0) 

 ENDFUNC rc 

 

 //============================================================================== 

 // New char value handler 

 //==============================================================================   

 FUNCTION HndlrChar(BYVAL chrHndl, BYVAL offset, BYVAL len)   

     dim s$ 

     IF chrHndl == hMyChar THEN 

         PRINT "\n";len;" byte(s) have been written to char value attribute from offset 

";offset 

         

         rc=BleCharValueRead(hMyChar,s$) 



https://www.lairdconnect.com/ 204 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

         PRINT "\nNew Char Value: ";s$ 

     ENDIF 

     rc=BleAdvertStop() 

     rc=BleDisconnect(conHndl) 

 ENDFUNC 0 

 

 //============================================================================== 

 // Get the connnection handle  

 //============================================================================== 

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtn) 

     conHndl=nCtn 

 ENDFUNC 1 

 

 IF OnStartup()==0 THEN 

     DIM at$ : rc = BleCharValueRead(hMyChar,at$) 

     PRINT "\nCharacteristic value attribute: ";at$;"\nConnect to BL654 and send a new 

value\n" 

 ELSE 

     PRINT "\nFailure OnStartup" 

 ENDIF 

 

 ONEVENT EVCHARVAL  CALL HndlrChar 

 ONEVENT EVBLEMSG  CALL HndlrBleMsg 

 

 WAITEVENT 

 

 PRINT "\nExiting..." 

Expected Output: 

Characteristic value attribute: Hi 

Connect to BL654 and send a new value 

 

New characteristic value: Laird 

Exiting... 



https://www.lairdconnect.com/ 205 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

FUNCTION 

This function writes new data into the VALUE attribute of a Characteristic, which is in turn identified by a composite handle 
returned by the function BleCharCommit(). 

BLECHARVALUEWRITE (charHandle, attr$) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments:  

charHandle 

byVal charHandle  AS INTEGER 

This is the handle to the characteristic whose value must be updated which was returned when 

BleCharCommit() was called. 

attr$ 
byRef attr$  AS STRING 

String variable, contains new value to write to the characteristic. 

Example: 

// Example :: BleCharValueWrite.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 DIM hMyChar,rc 

 

 //============================================================================== 

 // Initialise and instantiate service, characteristic,  

 //============================================================================== 

 FUNCTION OnStartup() 

     DIM rc, hSvc, attr$ : attr$="Hi" 

 

     //commit service 

     rc = BleServiceNew(1, BleHandleUuid16(0x18EE), hSvc) 

     //initialise char, write/read enabled, accept signed writes 

     rc=BleCharNew(0x4A,BleHandleUuid16(1),BleAttrMetaData(1,1,20,0,rc),0,0)      

     //commit char initialised above, with initial value "hi" to service 'hSvc' 

     rc=BleCharCommit(hSvc,attr$,hMyChar) 

     //commit changes to service 

     rc = BleServiceCommit(hSvc) 

 ENDFUNC rc 

 

 //============================================================================== 

 // Uart Rx handler - write input to characteristic 

 //============================================================================== 

 FUNCTION HndlrUartRx() 

     TimerStart(0,10,0)     

 ENDFUNC 1       

 

 //============================================================================== 

 // Timer0 timeout handler 

 //==============================================================================  

 FUNCTION HndlrTmr0() 

     DIM t$ : rc=UartRead(t$) 

     rc = BleCharValueWrite(hMyChar,t$) 

     IF rc==0 THEN 

         PRINT "\nNew characteristic value: ";t$ 

     ELSE 

         PRINT "\nFailed to write new characteristic value ";integer.h'rc;"\n" 

     ENDIF 

 ENDFUNC 0 

 

 IF OnStartup()==0 THEN 



https://www.lairdconnect.com/ 206 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

     DIM at$ : rc = BleCharValueRead(hMyChar,at$) 

     PRINT "\nCharacteristic value attribute: ";at$;"\nType a new value\n" 

 ELSE 

     PRINT "\nFailure OnStartup" 

 ENDIF 

 

 ONEVENT EVUARTRX    CALL HndlrUartRx 

 ONEVENT EVTMR0     CALL HndlrTmr0 

 

 WAITEVENT 

 

 PRINT "\nExiting..." 

 

Expected Output: 

Characteristic value attribute: Hi 

Send a new value 

Laird 

 

New characteristic value: Laird 

Exiting... 

 

FUNCTION 

This function writes new data into the VALUE attribute of a Characteristic, which is in turn identified by a composite handle 
returned by the function BleCharCommit(). It differs from the original BleCharValueWrite in that the offset at which to write the 
data can now be specified. 

BLECHARVALUEWRITEEX (charHandle, offset, attr$) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments:  

charHandle 

byVal charHandle  AS INTEGER 

This is the handle to the characteristic whose value must be updated which was returned when 

BleCharCommit() was called. 

offset 
byVal charHandle  AS INTEGER 

This is the offset at which to write the characteristic value. 

attr$ 
byRef attr$  AS STRING 

String variable, contains new value to write to the characteristic. 

See example for EVAUTHVALEX 

 

FUNCTION 

If there is BLE connection, this function writes new data into the VALUE attribute of a characteristic so that it can be sent as a 
notification to the GATT client. The characteristic is identified by a composite handle that is returned by the function 
BleCharCommit(). 

A notification does not result in an acknowledgement from the client. 

BLECHARVALUENOTIFY (charHandle, attr$) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments:  

charHandle 

byVal charHandle  AS INTEGER 

This is the handle to the characteristic whose value must be updated which is returned when 

BleCharCommit() is called. 



https://www.lairdconnect.com/ 207 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

attr$ 

byRef attr$  AS STRING 

String variable containing new value to write to the characteristic and then send as a notification to the 

client. If there is no connection, this function fails with an appropriate result code. 

Example: 

// Example :: BleCharValueNotify.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 DIM hMyChar,rc,at$,conHndl 

 //============================================================================== 

 // Initialise and instantiate service, characteristic, start adverts 

 //============================================================================== 

 FUNCTION OnStartup() 

     DIM rc, hSvc, at$, attr$, adRpt$, addr$, scRpt$   

     attr$="Hi" 

     DIM mdCccd : mdCccd = BleAttrMetadata(1,1,2,0,rc)   //CCCD metadata for char 

     

     //Commit svc with handle 'hSvcUuid' 

     rc=BleServiceNew(1, BleHandleUuid16(0x18EE), hSvc) 

     //initialise char, write/read enabled, accept signed writes, notifiable 

     rc=BleCharNew(0x12,BleHandleUuid16(1),BleAttrMetaData(1,0,20,0,rc),mdCccd,0)      

     //commit char initialised above, with initial value "hi" to service 'hMyChar' 

     rc=BleCharCommit(hSvc,attr$,hMyChar) 

     //commit changes to service 

     rc=BleServiceCommit(hSvc) 

     rc=BleScanRptInit(scRpt$)  

     //Add 1 service handle to scan report 

     rc=BleAdvRptAddUuid16(scRpt$,0x18EE,-1,-1,-1,-1,-1) 

     //commit reports to GATT table - adRpt$ is empty 

     rc=BleAdvRptsCommit(adRpt$,scRpt$) 

     rc=BleAdvertStart(0,addr$,50,0,0) 

 ENDFUNC rc 

 

 //============================================================================== 

 // Close connections so that we can run another app without problems 

 //============================================================================== 

 SUB CloseConnections() 

     rc=BleDisconnect(conHndl) 

     rc=BleAdvertStop() 

 ENDSUB 

 

 //============================================================================== 

 // Ble event handler 

 //============================================================================== 

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)  

     conHndl=nCtx 

     IF nMsgID==1 THEN 

         PRINT "\n\n--- Disconnected from client" 

         EXITFUNC 0 

     ELSEIF nMsgID==0 THEN 

         PRINT "\n--- Connected to client" 

     ENDIF 

 ENDFUNC 1 

 

 //============================================================================== 

 // CCCD descriptor written handler 

 //============================================================================== 

 FUNCTION HndlrCharCccd(BYVAL charHandle, BYVAL nVal) AS INTEGER 

     DIM value$ 

     IF charHandle==hMyChar THEN 

         PRINT "\nCCCD Val: ";nVal 



https://www.lairdconnect.com/ 208 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

         IF nVal THEN 

             PRINT " : Notifications have been enabled by client" 

             value$="hello" 

             IF BleCharValueNotify(hMyChar,value$)!=0 THEN 

                 PRINT "\nFailed to notify new value :";INTEGER.H'rc 

             ELSE 

                 PRINT "\nSuccessful notification of new value"               

                 EXITFUNC 0 

             ENDIF 

         ELSE 

             PRINT " : Notifications have been disabled by client" 

         ENDIF 

     ELSE 

         PRINT "\nThis is for some other characteristic" 

     ENDIF 

 ENDFUNC 1 

 

 ONEVENT  EVBLEMSG    CALL HndlrBleMsg 

 ONEVENT  EVCHARCCCD  CALL HndlrCharCccd 

 

 IF OnStartup()==0 THEN 

     rc = BleCharValueRead(hMyChar,at$) 

     PRINT "\nCharacteristic Value: ";at$ 

     PRINT "\nYou can connect and write to the CCCD characteristic." 

     PRINT "\nThe BL654 will then notify your device of a new characteristic value\n" 

 ELSE 

     PRINT "\nFailure OnStartup" 

 ENDIF 

 

 WAITEVENT 

 

 CloseConnections() 

 PRINT "\nExiting..." 

Expected Output: 

Characteristic Value: Hi 

You can connect and write to the CCCD characteristic. 

The BL654 will then notify your device of a new characteristic value 

 

--- Connected to client 

CCCD Val: 0 : Notifications have been disabled by client 

CCCD Val: 1 : Notifications have been enabled by client 

Successful notification of new value 

Exiting... 

 

FUNCTION 

If there is BLE connection, this function is used to write new data into the VALUE attribute of a characteristic so that it can be 
sent as an indication to the GATT client. The characteristic is identified by a composite handle returned by the function 
BleCharCommit(). 

An indication results in an acknowledgement from the client and that is presented to the smartBASIC application as the 
EVCHARHVC event. 

BLECHARVALUEINDICATE (charHandle, attr$) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments:  



https://www.lairdconnect.com/ 209 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

charHandle 

byVal charHandle  AS INTEGER 

This is the handle to the characteristic whose value must be updated which is returned when 

BleCharCommit() was called. 

attr$ 

byRef attr$  AS STRING 

String variable containing new value to write to the characteristic and then to send as a notification to the 

client. If there is no connection, this function fails with an appropriate result code. 

Example: 

// Example :: BleCharValueIndicate.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 DIM hMyChar,rc,at$,conHndl 

 

 //============================================================================== 

 // Initialise and instantiate service, characteristic, start adverts 

 //============================================================================== 

 FUNCTION OnStartup() 

     DIM rc, hSvc, at$, attr$, adRpt$, addr$, scRpt$   

     attr$="Hi" 

     DIM mdCccd : mdCccd = BleAttrMetadata(1,1,2,0,rc)   //CCCD metadata for char 

     

     //Commit svc with handle 'hSvcUuid' 

     rc=BleServiceNew(1, BleHandleUuid16(0x18EE), hSvc) 

     //initialise char, write/read enabled, accept signed writes, notifiable 

     rc=BleCharNew(0x22,BleHandleUuid16(1),BleAttrMetaData(1,0,20,0,rc),mdCccd,0)      

     //commit char initialised above, with initial value "hi" to service 'hMyChar' 

     rc=BleCharCommit(hSvc,attr$,hMyChar) 

     //commit changes to service 

     rc=BleServiceCommit(hSvc) 

     rc=BleScanRptInit(scRpt$)  

     //Add 1 service handle to scan report 

     rc=BleAdvRptAddUuid16(scRpt$,0x18EE,-1,-1,-1,-1,-1) 

     //commit reports to GATT table - adRpt$ is empty 

     rc=BleAdvRptsCommit(adRpt$,scRpt$) 

     rc=BleAdvertStart(0,addr$,50,0,0) 

 ENDFUNC rc 

 

 //============================================================================== 

 // Ble event handler 

 //==============================================================================  

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)  

     conHndl=nCtx 

     IF nMsgID==1 THEN 

         PRINT "\n\n--- Disconnected from client" 

         EXITFUNC 0 

     ELSEIF nMsgID==0 THEN 

         PRINT "\n--- Connected to client" 

     ENDIF 

 ENDFUNC 1 

 

 //============================================================================== 

 // CCCD descriptor written handler 

 //============================================================================== 

 FUNCTION HndlrCharCccd(BYVAL charHandle, BYVAL nVal)  

     DIM value$ 

     IF charHandle==hMyChar THEN 

         PRINT "\nCCCD Val: ";nVal 

         IF nVal THEN 

             PRINT " : Indications have been enabled by client" 

             value$="hello" 

             rc=BleCharValueIndicate(hMyChar,value$) 

             IF rc!=0 THEN 



https://www.lairdconnect.com/ 210 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

                 PRINT "\nFailed to indicate new value :";INTEGER.H'rc 

             ELSE 

                 PRINT "\nSuccessful indication of new value"               

                 EXITFUNC 1 

             ENDIF 

         ELSE 

             PRINT " : Indications have been disabled by client" 

         ENDIF 

     ELSE 

         PRINT "\nThis is for some other characteristic" 

     ENDIF 

 ENDFUNC 1 

 

 //============================================================================== 

 // Indication Acknowledgement Handler 

 //============================================================================== 

 FUNCTION HndlrChrHvc(BYVAL charHandle)  

     IF charHandle == hMyChar THEN 

         PRINT "\n\nGot confirmation of recent indication" 

     ELSE 

         PRINT "\n\nGot confirmation of some other indication: ";charHandle 

     ENDIF 

 ENDFUNC 0 

 

 ONEVENT  EVBLEMSG    CALL HndlrBleMsg 

 ONEVENT  EVCHARCCCD  CALL HndlrCharCccd 

 ONEVENT  EVCHARHVC   CALL HndlrChrHvc 

 

 IF OnStartup()==0 THEN 

     rc = BleCharValueRead(hMyChar,at$) 

     PRINT "\nCharacteristic Value: ";at$ 

     PRINT "\nYou can connect and write to the CCCD characteristic." 

     PRINT "\nThe BL654 will then indicate a new characteristic value\n" 

 ELSE 

     PRINT "\nFailure OnStartup" 

 ENDIF 

 

 WAITEVENT 

 

 rc=BleDisconnect(conHndl) 

 rc=BleAdvertStop() 

 PRINT "\nExiting..." 

Expected Output: 

Characteristic Value: Hi 

You can connect and write to the CCCD characteristic. 

The BL654 will then indicate a new characteristic value 

 

--- Connected to client 

CCCD Val: 0 : Indications have been disabled by client 

CCCD Val: 2 : Indications have been enabled by client 

Successful indication of new value 

 

Got confirmation of recent indication 

Exiting... 

 

FUNCTION 

This function reads the current content of a writable Characteristic Descriptor identified by the two parameters supplied in the 
EVCHARDESC event message after a GATT client writes to it. 



https://www.lairdconnect.com/ 211 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

In most cases a local read is performed when a GATT client writes to a characteristic descriptor attribute. The write event is 
presented asynchronously to the smartBASIC application in the form of an EVCHARDESC event and so this function is most 
often accessed from the handler that services that event. 

BLECHARDESCREAD (charHandle, nDescHandle, nOffset, nLength, nDescUuidHandle, attr$) 

Returns INTEGER, a result code. The typical value is 0x0000, indicating a successful operation. 

Arguments:  

charHandle 

byVal charHandle  AS INTEGER 

This is the handle to the characteristic whose descriptor must be read which is returned when 

BleCharCommit() is called and is been supplied in the EVCHARDESC event message. 

nDescHandle 

byVal nDescHandle AS INTEGER 

This is an index into an opaque array of descriptor handles inside the charHandle and is supplied 

as the second parameter in the EVCHARDESC event message. 

nOffset 

byVal nOffset  AS INTEGER 

This is the offset into the descriptor attribute from which the data shoud be read and copied into 

attr$. 

nLength 

byVal nLength AS INTEGER 

This is the number of bytes to read from the descriptor attribute from offset nOffset and copied into 

attr$. 

nDescUuidHandle 
byRef nDescUuidHandle AS INTEGER 

On exit, this is updated with the uuid handle of the descriptor that got updated. 

attr$ 
byRef attr$  AS STRING 

On exit, this string variable contains the new value from the characteristic descriptor. 

Example: 

// Example :: BleCharDescRead.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 DIM rc,conHndl,hMyChar 

 

 //---------------------------------------------------------------------------- 

 //Create some PRIMARY service attribure which has a uuid of 0x18FF 

 //---------------------------------------------------------------------------- 

 SUB OnStartup() 

     DIM hSvc,attr$,scRpt$,adRpt$,addr$     

     rc = BleServiceNew(1, BleHandleUuid16(0x18FF), hSvc) 

     //Add one or more characteristics  

     rc = BleCharNew(0x0a,BleHandleUuid16(0x2AFF),BleAttrMetadata(1,1,20,1,rc),0,0) 

 

     //Add a user description 

     DIM s$ : s$="You can change this" 

     rc=BleCharDescUserDesc(s$,BleAttrMetadata(1,1,20,0,rc)) 

 

     attr$="\00"  //no initial alert 

     rc = BleCharCommit(hSvc,attr$,hMyChar) 

     //Commit the service 

     rc = BleServiceCommit(hSvc) 

     rc=BleScanRptInit(scRpt$)  

     //Add 1 char handle to scan report 

     rc=BleAdvRptAddUuid16(scRpt$,0x2AFF,-1,-1,-1,-1,-1) 

     //commit reports to GATT table - adRpt$ is empty 

     rc=BleAdvRptsCommit(adRpt$,scRpt$) 

     rc=BleAdvertStart(0,addr$,200,0,0) 



https://www.lairdconnect.com/ 212 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 ENDSUB  

 

 //============================================================================== 

 // Close connections so that we can run another app without problems 

 //============================================================================== 

 SUB CloseConnections() 

     rc=BleDisconnect(conHndl) 

     rc=BleAdvertStop() 

 ENDSUB 

 

 //============================================================================== 

 // Ble event handler - Just to get the connection handle 

 //============================================================================== 

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)  

     conHndl=nCtx 

 ENDFUNC 1 

 

 //============================================================================== 

 // Handler to service writes to descriptors by a GATT client  

 //============================================================================== 

 FUNCTION HandlerCharDesc(BYVAL hChar AS INTEGER, BYVAL hDesc AS INTEGER)  

     DIM instnc,nUuid,a$, offset,duid 

     

     IF hChar == hMyChar THEN 

         rc = BleCharDescRead(hChar,hDesc,0,20,duid,a$) 

         IF rc==0 THEN  

             PRINT "\nRead 20 bytes from index ";offset;" in new char value."          

             PRINT "\n  ::New Descriptor Data:  ";StrHexize$(a$); 

             PRINT "\n  ::Length=";StrLen(a$) 

             PRINT "\n  ::Descriptor UUID   ";integer.h' duid 

             EXITFUNC 0 

         ELSE 

             PRINT "\nCould not access the uuid" 

         ENDIF 

     ELSE 

         PRINT "\nThis is for some other characteristic" 

     ENDIF 

 ENDFUNC 1 

 

 //install a handler for writes to characteristic values 

 ONEVENT  EVCHARDESC   CALL HandlerCharDesc 

 ONEVENT  EVBLEMSG  CALL HndlrBleMsg 

 

 OnStartup() 

 PRINT "\nWrite to the User Descriptor with UUID 0x2999" 

 

 //wait for events and messages 

 WAITEVENT 

 

 CloseConnections() 

 PRINT "\nExiting..." 

Expected Output: 

Write to the User Descriptor with UUID 0x2999 

Read 20 bytes from index 0 in new char value. 

  ::New Descriptor Data:  4C61697264 

  ::Length=5 

  ::Descriptor UUID   FE012999 

Exiting... 



https://www.lairdconnect.com/ 213 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

FUNCTION 

This function is used to grant or deny a read or write access of characteristic and is called in the handler for the event 
EVAUTHVAL. When the function returns and if write access was requested and granted then the characteristic value is 
deemed to be updated and so function BleCharValueRead() can be used to get the new value. 

BLEAUTHORIZECHAR (connHandle, charHandle, readWrite) 

Returns 
INTEGER, a result code.  

Typical value: 0x0000 (indicates a successful operation) 

Arguments 

connHandle 

byVal connHandle  AS INTEGER 

This is the connection handle of the gatt client requesting the read or write access and will 

have been supplied in the EVAUTHVAL message. 

charHandle 

byVal charHandle  AS INTEGER 

This is the handle to the characteristic whose value must be read which was returned when 

BleCharCommit() was called and will have been supplied in the EVAUTHVAL event 

message. 

readWrite 

byVal readWrite  AS INTEGER 

This will be to  

• 0 to deny read access 

• 1 to allow read access 

• 2 to deny write access 

• 3 to allow write access 

 

//Example :: See description for EVAUTHVAL 

 

FUNCTION 

This function is used to grant or deny a read or write access of characteristic descriptor and is called in the handler for the 
three events EVAUTHCCCD, EVAUTHSCCD and EVAUTHDESC. When the function returns and if write access was 
requested and granted then the characteristic descriptor value is deemed to be updated and so function BleCharDescRead() 
can be used to get the new value of the descriptor when the event is EVAUTHDESC. For events EVAUTHCCCD and 
EVAUTHSCCD the event itself will have supplied the new value. 

BLEAUTHORIZEDESC (connHandle, charHandle, nDescType, readWrite) 

Returns 
INTEGER, a result code.  

Typical value: 0x0000 (indicates a successful operation) 

Arguments 

connHandle 

byVal connHandle  AS INTEGER 

This is the connection handle of the gatt client requesting the read or write access and will 

have been supplied in the EVAUTHVAL message. 

charHandle 

byVal charHandle  AS INTEGER 

This is the handle to the characteristic whose descriptor must be read which was returned 

when BleCharCommit() was called and will have been supplied in the EVAUTHVAL event 

message. 

nDescType byVal nDescType  AS INTEGER 



https://www.lairdconnect.com/ 214 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

This is as was supplied in the EVAUTHDESC event 

readWrite 

byVal readWrite  AS INTEGER 

This will be to  

• 0 to deny read access 

• 1 to allow read access 

• 2 to deny write access 

• 3 to allow write access 

 

//Example :: See description for EVAUTHCCCD, EVAUTHSCCD or EVAUTHDESC 

 

 

FUNCTION 

This function causes an indication of the Service Changed Characteristic of the GATT Service and specifies a start attribute 
handle and an end attribute handle, which the client shall mark as changed so that it can update it’s cache if need be. 

The EVBLEMSG event will be thown with subevent ID set to BLE_EVBLEMSGID_SRVCCHNG_IND_CNF when other 
indications can be sent. 

Note that if on connection to a bonded device the CCCD CRC does not match with the current GATT table then a Service 
Change Indication is automatically sent to the client. Additionally, the local application is sent the event 
BLE_EVBLEMSGID_SRVCCHNG_IND_SENT. 

BLESERVICECHANGEDNTFY (nConnHandle, nStartHandle, nEndHandle) 

Returns 
INTEGER, a result code.  

Typical value: 0x0000 (indicates a successful operation) 

Arguments 

nConnHandle 
byVal nConnHandle   AS INTEGER.  

Specifies the handle of the connection that must be disconnected. 

nStartHandle 

byVal nStartHandle   AS INTEGER.  

Specifies the start attribute handle of GATT table that has changed. Set to 0 to mark the entire 

table as changed. 

nEndHandle 

byVal nEndHandle   AS INTEGER.  

Specifies the end attribute handle of GATT table that has changed. Set to 0 to mark the entire 

table as changed. 

 

This section describes all functions related to GATT client capability which enables interaction with GATT servers of a 
connected BLE device. The Bluetooth Specification 4.0 and newer allows for a device to be a GATT server and/or GATT client 
simultaneously; the fact that a peripheral mode device accepts a connection and has a GATT server table does not preclude it 
from interacting with a GATT table in the central role device with which it is connected. 

These GATT client functions allow the developer to discover services, characteristics and descriptors, read and write to 
characteristics and descriptors, and handle either notifications or indications. 

To interact with a remote GATT server, it is important to have a good understanding of how it is constructed. It is best to see it 
as a table consisting of many rows and three visible columns (handle, type, value) and at least one more invisible column 
whose content affects access to the data column. 

16 bit Handle Type (16 or 128 bit) Value (1 to 512 bytes) Permissions 



https://www.lairdconnect.com/ 215 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

These rows are grouped into collections called services and characteristics. The grouping is achieved by creating a row with 
Type = 0x2800 or 0x2801 for services (primary and secondary respectively) and 0x2803 for characteristics. 

A table should be scanned from top to bottom; the specification stipulates that the 16-bit handle field contains values in the 
range 1 to 65535 and SHALL be in ascending order. Gaps are allowed. 

When scanning, if a row is encountered with the value 0x2800 or 0x2801 in the Type column, then it is understood as the start 
of a primary or secondary service which in turn contains at least one charactestic or one ‘included service’ which have 
Type=0x2803 and 0x2802 respectively. 

When a row with Type = 0x2803 (a characteristic) is encountered, then the next row contains the value for that characteristic; 
afterwards, there may be zero or more descriptors. 

This means each characteristic consists of at least two rows in the table; and if descriptors exist for that characteristic, then a 
single row per descriptor.  

Handle Type Value Comments 

0x0001 0x2800 UUID of the Service Primary Service  1 Start 

0x0002 0x2803 Properties, Value Handle, Value UUID1 Characteristic 1 Start 

0x0003 Value UUID1 Value : 1 to 512 bytes Actual data  

0x0004 0x2803 Properties, Value Handle, Value UUID2 Characteristic 2 Start 

0x0005 Value UUID2 Value : 1 to 512 bytes Actual data  

0x0006 0x2902 Value Descriptor 1( CCCD) 

0x0007 0x2903 Value Descriptor 2 (SCCD) 

0x0008 0x2800 UUID of the Service Primary Service  2 Start 

0x0009 0x2803 Properties, Value Handle, Value UUID3 Characteristic 1 Start 

0x000A Value UUID3 Value : 1 to 512 bytes Actual data  

0x000B 0x2800 UUID of the Service Primary Service  3 Start 

0x000C 0x2803 Properties, Value Handle, Value UUID3 Characteristic 3 Start 

0x000D Value UUID3 Value : 1 to 512 bytes Actual data  

0x000E 0x2902 Value Descriptor 1( CCCD) 

0x000F 0x2903 Value Descriptor 2 (SCCD) 

0x0010 0x2904 Value (presentation format data) Descriptor 3  

0x00111 0x2906 Value (valid range) Descriptor 4 (Range) 

A colour highlighted example of a GATT server table is shown above. There are three services (at handles 0x0001,0x0008 
and 0x000B) because there are three rows where the Type = 0x2800. All rows up to the next instance of a row with 
Type=0x2800 or 2801 belong to that service. 

In each group of rows for a service, there is one or more characteristics where Type=0x2803. For example the service 
beginning at handle 0x0008 has one characteristic which contains two rows identified by handles 0x0009 and 0x000A and the 
actual value for the characteristic starting at 0x0009 is in the row identified by 0x000A. 

Likewise, each characteristic starts with a row with Type=0x2803 and all rows following it (up to a row with type = 
0x2800/2801/2803) are considered belonging to that characteristic. For example, the characteristic at row with handle = 
0x0004 has the mandatory value row and then two descriptors. 

The Bluetooth specification allows for multiple instances of the same service or characteristics or descriptors and they are 
differentiated by the unique handle. This ensures no ambiguity. 



https://www.lairdconnect.com/ 216 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

Each GATT server table allocates the handle numbers, the only stipulation being that they be in ascending order (gaps are 
allowed). This is important to understand because two devices containing the same services and characteristic and in 
EXACTLY the same order may NOT allocate the same handle values, especially if one device increments handles by 1 and 
another with some other arbitrary random value. The specification does stipulate that once the handle values are allocated, 
they are fixed for all subsequent connections unless the device exposes a GATT service which allows for indications to the 
client that the handle order has changed and thus force it to flush its cache and rescan the GATT table. 

When a connection is first established, there is no prior knowledge as to which services exist or their handles. Therefore, the 
GATT protocol which is used to interact with GATT servers, provides  procedures that allow for the GATT table to be scanned 
so that the client can ascertain which services are offered. This section describes smartBASIC functions which encapsulate 
and manage those procedures to enable a smartBASIC application to map the table.  

These helper functions have been written to help gather the handles of all the rows which contain the value type for 
appropriate characteristics as those are the ones that will be read or written to. The smartBASIC internal engine also maintains 
data objects so that it is possible to interact with descriptors associated with the characteristic. 

Basically, the table scanning process reveals characteristic handles (as handles of handles) which are used in other GATT 
client related smartBASIC functions to interact with the table to, for example, read/write or accept and process incoming 
notifications and indications. 

This approach ensures that the least amount of RAM resource is required to implement a GATT client and, given that these 
procedures operate at speeds many orders of magnitude slower compared to the speed of the CPU and energy consumption 
is to be kept as low as possible, the response to a command is delivered asynchronously as an event for which a handler must 
be specified in the user smartBASIC application. 

The rest of this chapter details all GATT client commands, responses, and events along with example code demonstrating 
usage and expected output. 

 

The nature of GATT client operation consists of multiple queries and acting on the responses. Because the connection 
intervals are slower than the CPU speed, responses can arrive many tens of milliseconds after the procudure is triggered; 
these are delivered to an application using an event or message. Since these event/messages are tightly coupled with the 
appropriate commands, all but one is described when the command that triggers them is described. 

The event EVGATTCTOUT is applicable for all GATT client-related functions which result in transactions over the air. The 
Bluetooth specification states that if an operation is initiated and is not completed within 30 seconds then the connection is 
dropped as no further GATT client transaction can be initiated. 

 

This event message is thrown if a GATT client transaction takes longer than 30 seconds. It contains one INTEGER parameter: 

▪ Connection Handle 

Example: 

// Example :: EVGATTCTOUT.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

DIM rc,conHndl 

 

//============================================================================== 

// Initialise and instantiate service, characteristic, start adverts 

//============================================================================== 

FUNCTION OnStartup() 

    DIM rc, adRpt$, addr$, scRpt$   

    rc=BleAdvRptInit(adRpt$, 2, 0, 10) 

    IF rc==0 THEN : rc=BleScanRptInit(scRpt$) : ENDIF 

    IF rc==0 THEN : rc=BleAdvRptsCommit(adRpt$,scRpt$) : ENDIF 

    IF rc==0 THEN : rc=BleAdvertStart(0,addr$,50,0,0) : ENDIF 

    //open the GATT client with default notify/indicate ring buffer size 

    IF rc==0 THEN : rc = BleGATTcOpen(0,0) : ENDIF 

ENDFUNC rc 

 

 



https://www.lairdconnect.com/ 217 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

//============================================================================== 

// Ble event handler 

//============================================================================== 

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx) 

    conHndl=nCtx 

    IF nMsgID==1 THEN 

        PRINT "\n\n- Disconnected" 

        EXITFUNC 0 

    ELSEIF nMsgID==0 THEN 

        PRINT "\n- Connected" 

    ENDIF 

ENDFUNC 1 

 

'//============================================================================== 

'//============================================================================== 

FUNCTION HandlerGATTcTout(cHndl) AS INTEGER 

    PRINT "\nEVGATTCTOUT connHandle=";cHndl 

ENDFUNC 1 

 

//============================================================================== 

// Main() equivalent 

//============================================================================== 

ONEVENT  EVBLEMSG           CALL HndlrBleMsg 

OnEvent  EVGATTCTOUT        call HandlerGATTcTout 

 

rc = OnStartup() 

 

WAITEVENT 

Expected Output: 

. . . 

. . . 

EVGATTCTOUT connHandle=123 

. . . 

. . . 

 

This event message is thrown if either BleDiscServiceFirst() or BleDiscServiceNext() returns a success. The message 
contains the following four INTEGER parameters: 

▪ Connection Handle 

▪ Service UUID Handle 

▪ Start Handle of the service in the GATT table 

▪ End Handle for the service 

If no additional services were discovered because the end of the table was reached, then all parameters contain zero apart 
from the Connection Handle. 

 

This event message is thrown if either BleDiscCharFirst() or BleDiscCharNext() returns a success. The message contains the 
following INTEGER parameters: 

▪ Connection Handle 

▪ Characteristic UUID Handle 

▪ Characteristic properties 

▪ Handle for the value attribute of the characteristic 

▪ Included Service UUID Handle 

If no more characteristics were discovered because the end of the table was reached, then all parameters contain zero apart 
from the Connection Handle. 



https://www.lairdconnect.com/ 218 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

‘Characteristic Uuid Handle’ contains the UUID of the characteristic and supplied as a handle. 

‘Characteristic Properties’ contains the properties of the characteristic and is a bit mask as follows: 

Bit 0 Set if BROADCAST is enabled 

Bit 1 Set if READ is enabled 

Bit 2 Set if WRITE_WITHOUT_RESPONSE is enabled 

Bit 3 Set if WRITE is enabled 

Bit 4 Set if NOTIFY is enabled 

Bit 5 Set if INDICATE is enabled 

Bit 6 Set if AUTHENTICATED_SIGNED_WRITE is enabled 

Bit 7 Set if RELIABLE_WRITE is enabled 

‘Handle for the Value Attribute of the Characteristic’ is the handle for the value attribute and is the value to store to keep 
track of important characteristics in a GATT server for later read/write operations. 

‘Included Service Uuid Handle’ is for future use and is always 0.  

 

This event message is thrown if either BleDissDescFirst() or BleDiscDescNext() returns a success. The message contains the 
following INTEGER parameters: 

▪ Connection Handle 

▪ Descriptor Uuid Handle  

▪ Handle for the Descriptor in the remote GATT Table 

If no more descriptors were discovered because the end of the table was reached, then all parameters contain zero apart from 
the Connection Handle. 

‘Descriptor Uuid Handle’ contains the UUID of the descriptor and is supplied as a handle. 

‘Handle for the Descriptor in the remote GATT Table’ is the handle for the descriptor as well as the value to store to keep 
track of important characteristics in a GATT server for later read/write operations. 

 

This event message is thrown if BleGATTcFindChar() returns a success. The message contains the following INTEGER 
parameters: 

▪ Connection Handle 

▪ Characteristic Properties  

▪ Handle for the Value Attribute of the Characteristic 

▪ Included Service Uuid Handle 

If the specified instance of the service/characteristic is not present in the remote GATT server table, then all parameters 
contain zero apart from the Connection Handle. 

‘Characteristic Properties’ contains the properties of the characteristic and is a bit mask as follows: 

Bit Description 

0 Set if BROADCAST is enabled 

1 Set if READ is enabled 

2 Set if WRITE_WITHOUT_RESPONSE is enabled 

3 Set if WRITE is enabled 

4 Set if NOTIFY is enabled 

5 Set if INDICATE is enabled 

6 Set if AUTHENTICATED_SIGNED_WRITE is enabled 



https://www.lairdconnect.com/ 219 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

7 Set if RELIABLE_WRITE is enabled 

15 Set if the characteristic has extended properties 

‘Handle for the Value Attribute of the Characteristic’ is the handle for the value attribute and is the value to store to keep 
track of important characteristics in a GATT server for later read/write operations. 

‘Included Service Uuid Handle’ is for future use and is always 0.  

 

This event message is thrown if BleGATTcFindDesc() returned a success. The message contains the following INTEGER 
parameters: 

▪ Connection Handle 

▪ Handle of the Descriptor 

If the specified instance of the service/characteristic/descriptor is not present in the remote GATT server table, then all 
parameters contain zero apart from the Connection Handle. 

‘Handle of the Descriptor’ is the handle for the descriptor and is the value to store to keep track of important descriptors in a 
GATT server for later read/write operations – for example, CCCDs to enable notifications and/or indications. 

 

This event message is thrown if BleGattcRead() returns a success. The message contains the following INTEGER 
parameters: 

▪ Connection Handle 

▪ Handle of the Attribute 

▪ GATT status of the read operation 

‘GATT status of the read operation’ is one of the following values, where 0 implies the read was successfully expedited and 
the data can be obtained by calling BlePubGattClientReadData(). 

Hex     Dec  Description 

0x0000  0 Success 

0x0001  1 Unknown or not applicable status 

0x0100  256 ATT Error: Invalid Error Code 

0x0101  257 ATT Error: Invalid Attribute Handle 

0x0102  258 ATT Error: Read not permitted 

0x0103  259 ATT Error: Write not permitted 

0x0104  260 ATT Error: Used in ATT as Invalid PDU 

0x0105  261 ATT Error: Authenticated link required 

0x0106  262 ATT Error: Used in ATT as Request Not Supported 

0x0107  263 ATT Error: Offset specified was past the end of the attribute 

0x0108  264 ATT Error: Used in ATT as Insufficient Authorisation 

0x0109  265 ATT Error: Used in ATT as Prepare Queue Full 

0x010A  266 ATT Error: Used in ATT as Attribute not found 

0x010B  267 ATT Error: Attribute cannot be read or written using read/write blob 

requests 

0x010C  268 ATT Error: Encryption key size used is insufficient 

0x010D  269 ATT Error: Invalid value size 

0x010E  270 ATT Error: Very unlikely error 

0x010F  271 ATT Error: Encrypted link required 

0x0110  272 ATT Error: Attribute type is not a supported grouping attribute 

0x0111  273 ATT Error: Encrypted link required 

0x0112  274 ATT Error: Reserved for Future Use range #1 begin 

0x017F  383 ATT Error: Reserved for Future Use range #1 end 

0x0180  384 ATT Error: Application range begin 

0x019F  415 ATT Error: Application range end 

0x01A0  416 ATT Error: Reserved for Future Use range #2 begin 

0x01DF  479 ATT Error: Reserved for Future Use range #2 end 

0x01E0  480 ATT Error: Reserved for Future Use range #3 begin 



https://www.lairdconnect.com/ 220 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

0x01FC  508 ATT Error: Reserved for Future Use range #3 end 

0x01FD  509 ATT Common Profile and Service Error: Client Characteristic Config 

Descriptor    

                                              (CCCD)improperly configured 

0x01FE  510 ATT Common Profile and Service Error:Procedure Already in Progress 

0x01FF  511 ATT Common Profile and Service Error: Out Of Range 

 

This event message is thrown if BleGattcWrite() returns a success. The message contains the following INTEGER 
parameters: 

▪ Connection Handle 

▪ Handle of the Attribute 

▪ GATT status of the write operation 

‘GATT status of the write operation’ is one of the following values, where 0 implies the write was successfully expedited. 

Hex     Dec  Description 

0x0000  0 Success 

0x0001  1 Unknown or not applicable status 

0x0100  256 ATT Error: Invalid Error Code 

0x0101  257 ATT Error: Invalid Attribute Handle 

0x0102  258 ATT Error: Read not permitted 

0x0103  259 ATT Error: Write not permitted 

0x0104  260 ATT Error: Used in ATT as Invalid PDU 

0x0105  261 ATT Error: Authenticated link required 

0x0106  262 ATT Error: Used in ATT as Request Not Supported 

0x0107  263 ATT Error: Offset specified was past the end of the attribute 

0x0108  264 ATT Error: Used in ATT as Insufficient Authorisation 

0x0109  265 ATT Error: Used in ATT as Prepare Queue Full 

0x010A  266 ATT Error: Used in ATT as Attribute not found 

0x010B  267 ATT Error: Attribute cannot be read or written using read/write blob 

requests 

0x010C  268 ATT Error: Encryption key size used is insufficient 

0x010D  269 ATT Error: Invalid value size 

0x010E  270 ATT Error: Very unlikely error 

0x010F  271 ATT Error: Encrypted link required 

0x0110  272 ATT Error: Attribute type is not a supported grouping attribute 

0x0111  273 ATT Error: Encrypted link required 

0x0112  274 ATT Error: Reserved for Future Use range #1 begin 

0x017F  383 ATT Error: Reserved for Future Use range #1 end 

0x0180  384 ATT Error: Application range begin 

0x019F  415 ATT Error: Application range end 

0x01A0  416 ATT Error: Reserved for Future Use range #2 begin 

0x01DF  479 ATT Error: Reserved for Future Use range #2 end 

0x01E0  480 ATT Error: Reserved for Future Use range #3 begin 

0x01FC  508 ATT Error: Reserved for Future Use range #3 end 

0x01FD  509 ATT Common Profile and Service Error: Client Characteristic Config 

Descriptor    

                                              (CCCD)improperly configured 

0x01FE  510 ATT Common Profile and Service Error:Procedure Already in Progress 

0x01FF  511 ATT Common Profile and Service Error: Out Of Range 

 

This event message is thrown if BleGattcWriteCmd() returned a success. The message contains no parameters. 

 

This event is thrown when an notification or an indication arrives from a GATT server. The event contains no parameters. 
Please note that if one notification/indication arrives or many, like in the case of UART events, the same event mask bit is 



https://www.lairdconnect.com/ 221 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

asserted. The smartBASIC application is informed that it must go and service the ring buffer using the function 
BleGattcNotifyRead. This event is only thrown if at+cfg 213=0. See BleGattcNotifyRead for usage. 

 

This message from the underlying BLE manager informs the app that the remote has sent characteristic 
notifications/indications. The difference between this event and EVATTRNOTIFY is that this event contains the paramers such 
as the connection handle and the notification data. Data_length and strLen(Data$) should be of equal length. This event is 
only thrown if at+cfg 213=1. See BleGattcNotifyRead for usage. 

The event comes with the following parameters: 

▪ Connection Handle – The handle of the connection that wrote to the characteristic value. 

▪ Char Handle – Characteristic handle for which the value is being notified. 

▪ Type – 0: Invalid, 1: Notification, 2: Indication. 

▪ Data_Length – The length of the data that was notified. If negative, then this value indicates the amount of data lost. 

▪ Data$ - The string data that was notified from the attribute. 

 

FUNCTION 

This function is used to initialise the GATT client functionality for immediate use so that appropriate buffers for caching GATT 
responses are created in the heap memory. About 300 bytes of RAM is required by the GATT client manager; given that a 
majority of BL654 use cases do not use it, the sacrifice of 300 bytes is not worth the permament allocation of memory. 

There are various buffers that are needed for scanning a remote GATT table which are of fixed size. The ring buffer can be 
configured by the smartBASIC apps developer; this buffer is used to store incoming notifiable and indicatable characteristics. 
At the time of writing this user guide, the default minimum size is 64 unless a bigger one is desired; in that case, the input 
parameter to this function specifies that size. A maximum of 2048 bytes is allowed, but this can result in unreliable operation 
as the smartBASIC runtime engine is quickly starved of memory. 

Use SYSINFO(2019) to obtain the actual default size and SYSINFO(2020) to obtain the maximum allowed. The same 
information can be obtained in interactive mode using the commands AT I 2019 and 2020 respectively. 

Note: When the ring buffer for the notifiable and indicatable characteristics is full, then any new messages are discarded. 

Depending on the flags parameter, the indicates are or are not confirmed. 

This function is safe to call when the GATT client manager is already open. However, in that case, the parameters are ignored 
and existing values are retained. Existing GATT client operations are not interrupted. 

It is recommended that this function NOT be called when in a connection. 

BLEGATTCOPEN (nNotifyBufLen, nFlags) 

Returns INTEGER, a result code. The typical value is 0x0000, indicating a successful operation. 

Arguments:  

nNotifyBufLen 

byVal nNotifyBufLen  AS INTEGER 

This is the size of the ring buffer used for incoming notifiable and indicatable characteristic data. Set 

to 0 to use the default size. 

nFlags 

byVal nFlags  AS INTEGER 

Bit 0 – Set to 1 to disable automatic indication confirmations. If the buffer is full then the Handle 

Value Confirmation is only sent when BleGattcNotifyRead() is called to read the ring buffer. 

Bit 1..31 – Reserved for future use and must be set to 0s. 

Example: 

// Example :: BleGattcOpen.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

DIM rc 

//open the GATT client with default notify/indicate ring buffer size 



https://www.lairdconnect.com/ 222 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

rc = BleGATTcOpen(0,0) 

IF rc == 0 THEN 

    PRINT "\nGATT Client is now open" 

ENDIF 

//open the client with default notify/indicate ring buffer size - again 

rc = BleGattcOpen(128,1) 

IF rc == 0 THEN 

    PRINT "\nGATT Client is still open, because already open" 

ENDIF 

Expected Output: 

GATT Client is now open 

GATT Client is still open, because already open 

 

SUBROUTINE 

This function is used to close the GATT client manager and is safe to call if it is already closed. 

It is recommended that this function NOT be called when in a connection. 

BLEGATTCCLOSE () 

Returns  

Arguments None 

Example: 

// Example :: BleGattcClose.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

DIM rc 

//open the GATT client with default notify/indicate ring buffer size 

rc = BleGattcOpen(0,0) 

IF rc == 0 THEN 

    PRINT "\nGATT Client is now open" 

ENDIF 

BleGattcClose() 

PRINT "\nGATT Client is now closed" 

BleGattcClose() 

PRINT "\nGATT Client is closed - was safe to call when already closed" 

Expected Output: 

GATT Client is now open 

GATT Client is now closed 

GATT Client is closed - was safe to call when already closed 

 

FUNCTIONS 

This pair of functions is used to scan the remote GATT server for all primary services with the help of the EVDISCPRIMSVC 
message event. When called, a handler for the event message must be registered as the discovered primary service 
information is passed back in that message. 

A generic or UUID-based scan can be initiated. The former scans for all primary services and the latter scans for a primary 
service with a particular UUID, the handle of which must be supplied and is generated by using either BleHandleUuid16() or 
BleHandleUuid128(). 

While the scan is in progress and waiting for the next piece of data from a GATT server, the module enters low power state as 
the WAITEVENT statement is used as normal to wait for events and messages. 



https://www.lairdconnect.com/ 223 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

Depending on the size of the remote GATT server table and the connection interval, the scan of all primary may take many 
hundreds of milliseconds. While this is in progress, it is safe to do other non-GATT-related operations such as servicing 
sensors and displays or any of the onboard peripherals. 

BLEDISCSERVICEFIRST (connHandle, startAttrHandle, uuidHandle) 

A typical pseudo code for discovering primary services involves first calling BleDiscServiceFirst(), then waiting for the 
EVDISCPRIMSVC event message and depending on the information returned in that message calling BleDiscServiceNext(), 
which in turn will result in another EVDISCPRIMSVC event message and typically is as follows: 

Register a handler for the EVDISCPRIMSVC event message 

 

On EVDISCPRIMSVC event message 

 If Start/End Handle == 0 then scan is complete 

 Else Process information then 

         call BleDiscServiceNext() 

       if BleDiscServiceNext() not OK then scan complete 

 

Call BleDiscServiceFirst() 

If BleDiscServiceFirst() ok then Wait for EVDISCPRIMSVC 

 

Returns INTEGER, a result code. The typical value is 0x0000, indicating a successful operation. This means 

an EVDISCPRIMSVC event message is thrown by the smartBASIC runtime engine containing the 

results. A non-zero return value implies an EVDISCPRIMSVC message is NOT thrown. 

Arguments:  

connHandle 

byVal nConnHandle  AS INTEGER 

This is the connection handle as returned in the on-connect event for the connection on which the 

remote GATT server can be accessed. This is returned in the EVBLEMSG event message with 

msgId == 0 and msgCtx is the connection handle. 

startAttrHandle 

byVal startAttrHandle  AS INTEGER 

This is the attribute handle from where the scan for primary services will be started and you can 

typically set it to 0 to ensure that the entire remote GATT Server is scanned 

uuidHandle 

byVal uuidHandle  AS INTEGER 

Set this to 0 if you want to scan for any service, otherwise this value will have been generated either 

by BleHandleUuid16() or BleHandleUuid128() or BleHandleUuidSibling(). 

BLEDISCSERVICENEXT (connHandle) 

Calling this assumes that BleDiscServiceFirst() was called at least once to set up the internal primary services scanning state 
machine. 

Returns INTEGER, a result code.  

The typical value is 0x0000, indicating a successful operation and it means an EVDISCPRIMSVC event 

message is thrown by the smartBASIC runtime engine containing the results. A non-zero return value 

implies an EVDISCPRIMSVC message is not thrown. 

Arguments:  

connHandle 

byVal nConnHandle  AS INTEGER 

This is the connection handle as returned in the on-connect event for the connection on which the remote 

GATT server can be accessed. This is returned in the EVBLEMSG event message with msgId == 0 and 

msgCtx is the connection handle 

Example: 

// Example :: BleDiscServiceFirst.Next.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 



https://www.lairdconnect.com/ 224 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

// 

//Remote server has 5 prim services with 16 bit uuid and 3 with 128 bit uuids 

//  3 of the 16 bit uuid are the same value 0xDEAD and  

//  2 of the 128 bit uuids are also the same 112233445566778899AABBCCDDEEFF 

// 

// Server created using BleGATTcTblDiscPrimSvc.sub invoked in _OpenMcp.scr 

// using Nordic Usb Dongle PC10000 

 

DIM rc,at$,conHndl,uHndl,uuid$ 

 

//============================================================================== 

// Initialise and instantiate service, characteristic, start adverts 

//============================================================================== 

FUNCTION OnStartup() 

    DIM rc, adRpt$, addr$, scRpt$   

    rc=BleAdvRptInit(adRpt$, 2, 0, 10) 

    IF rc==0 THEN : rc=BleScanRptInit(scRpt$) : ENDIF 

    IF rc==0 THEN : rc=BleAdvRptsCommit(adRpt$,scRpt$) : ENDIF 

    IF rc==0 THEN : rc=BleAdvertStart(0,addr$,50,0,0) : ENDIF 

    //open the GATT client with default notify/indicate ring buffer size 

    IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF 

ENDFUNC rc 

 

//============================================================================== 

// Close connections so that we can run another app without problems 

//============================================================================== 

SUB CloseConnections() 

    rc=BleDisconnect(conHndl) 

    rc=BleAdvertStop() 

ENDSUB 

 

//============================================================================== 

// Ble event handler 

//============================================================================== 

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx) 

    DIM uu$  

    conHndl=nCtx 

    IF nMsgID==1 THEN 

        PRINT "\n\n- Disconnected" 

        EXITFUNC 0 

    ELSEIF nMsgID==0 THEN 

 

        PRINT "\n- Connected, so scan remote GATT Table for ALL services" 

        rc = BleDiscServiceFirst(conHndl,0,0) 

        IF rc==0 THEN 

            //HandlerPrimSvc() will exit with 0 when operation is complete 

            WAITEVENT 

 

            PRINT "\nScan for service with uuid = 0xDEAD" 

            uHndl = BleHandleUuid16(0xDEAD) 

            rc = BleDiscServiceFirst(conHndl,0,uHndl) 

            IF rc==0 THEN 

                //HandlerPrimSvc() will exit with 0 when operation is complete 

                WAITEVENT 

 

                uu$ = "112233445566778899AABBCCDDEEFF00" 

                PRINT "\nScan for service with custom uuid ";uu$ 

                uu$ = StrDehexize$(uu$) 

                uHndl = BleHandleUuid128(uu$) 

                rc = BleDiscServiceFirst(conHndl,0,uHndl) 

                IF rc==0 THEN 

                    //HandlerPrimSvc() will exit with 0 when operation is complete 



https://www.lairdconnect.com/ 225 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

                    WAITEVENT 

                ENDIF 

            ENDIF 

        ENDIF 

        CloseConnections() 

    ENDIF 

ENDFUNC 1 

 

//============================================================================== 

// EVDISCPRIMSVC event handler 

//============================================================================== 

FUNCTION HandlerPrimSvc(cHndl,svcUuid,sHndl,eHndl) AS INTEGER 

    PRINT "\nEVDISCPRIMSVC :" 

    PRINT " cHndl=";cHndl 

    PRINT " svcUuid=";integer.h' svcUuid 

    PRINT " sHndl=";sHndl 

    PRINT " eHndl=";eHndl 

    IF sHndl == 0 THEN 

        PRINT "\nScan complete" 

 

        EXITFUNC 0 

    ELSE 

        rc = BleDiscServiceNext(cHndl) 

        IF rc != 0 THEN 

            PRINT "\nScan abort" 

 

            EXITFUNC 0 

        ENDIF 

    ENDIF 

endfunc 1 

 

//============================================================================== 

// Main() equivalent 

//============================================================================== 

ONEVENT  EVBLEMSG           CALL HndlrBleMsg 

OnEvent  EVDISCPRIMSVC      call HandlerPrimSvc 

 

//Register base uuids with the underlying stack, otherwise the services with the 

//128bit uuid's will be delivered with a uuid handle == FF000000 == UNKNOWN 

uuid$ = "112233445566778899AABBCCDDEEFF00" 

uuid$ = StrDehexize$(uuid$) 

uHndl = BleHandleUuid128(uuid$) 

 

uuid$ = "1122DEAD5566778899AABBCCDDBEEF00" 

uuid$ = StrDehexize$(uuid$) 

uHndl = BleHandleUuid128(uuid$) 

 

IF OnStartup()==0 THEN 

    PRINT "\nAdvertising, and GATT Client is open\n" 

ELSE 

    PRINT "\nFailure OnStartup" 

ENDIF 

 

WAITEVENT 

PRINT "\nExiting..." 

Expected Output: 

Advertising, and GATT Client is open 

 

- Connected, so scan remote GATT Table for ALL services 

EVDISCPRIMSVC : cHndl=2804 svcUuid=FE01FE01 sHndl=1 eHndl=3 



https://www.lairdconnect.com/ 226 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

EVDISCPRIMSVC : cHndl=2804 svcUuid=FC033344 sHndl=4 eHndl=6 

EVDISCPRIMSVC : cHndl=2804 svcUuid=FE01DEAD sHndl=7 eHndl=9 

EVDISCPRIMSVC : cHndl=2804 svcUuid=FB04BEEF sHndl=10 eHndl=12 

EVDISCPRIMSVC : cHndl=2804 svcUuid=FC033344 sHndl=13 eHndl=15 

EVDISCPRIMSVC : cHndl=2804 svcUuid=FE01DEAD sHndl=16 eHndl=18 

EVDISCPRIMSVC : cHndl=2804 svcUuid=FE01FE03 sHndl=19 eHndl=21 

EVDISCPRIMSVC : cHndl=2804 svcUuid=FE01DEAD sHndl=22 eHndl=24 

EVDISCPRIMSVC : cHndl=2804 svcUuid=00000000 sHndl=0 eHndl=0 

Scan complete 

Scan for service with uuid = 0xDEAD 

EVDISCPRIMSVC : cHndl=2804 svcUuid=FE01DEAD sHndl=7 eHndl=9 

EVDISCPRIMSVC : cHndl=2804 svcUuid=FE01DEAD sHndl=16 eHndl=18 

EVDISCPRIMSVC : cHndl=2804 svcUuid=FE01DEAD sHndl=22 eHndl=65535 

Scan abort 

Scan for service with custom uuid 112233445566778899AABBCCDDEEFF00 

EVDISCPRIMSVC : cHndl=2804 svcUuid=FC033344 sHndl=4 eHndl=6 

EVDISCPRIMSVC : cHndl=2804 svcUuid=FC033344 sHndl=13 eHndl=15 

EVDISCPRIMSVC : cHndl=2804 svcUuid=00000000 sHndl=0 eHndl=0 

Scan complete 

 

- Disconnected 

Exiting... 

 

FUNCTIONS 

These pair of functions are used to scan the remote GATT server for characteristics in a service with the help of the 
EVDISCCHAR message event. When called, a handler for the event message must be registered because the discovered 
characteristics information is passed back in that message. 

A generic or UUID based scan can be initiated. The generic version scans for all characteristics; the UUID version scans for a 
characteristic with a particular UUID, the handle of which must be supplied and is generated by using either 
BleHandleUuid16() or BleHandleUuid128(). 

If a GATT table has a specific service and a specific characteristic, then it is more efficient to locate details of that 
characteristic by using the function BleGATTcFindChar(). This function is described later. 

While the scan is in progress and waiting for the next piece of data from a GATT server, the module enters low power state as 
the WAITEVENT statement is used as normal to wait for events and messages. 

Depending on the size of the remote GATT server table and the connection interval, the scan of all characteristics may take 
many hundreds of milliseconds. While this is in progress, it is safe to do other non- GATT-related operations such as servicing 
sensors and displays or any of the onboard peripherals. 

Note:   It is not currently possible to scan for characteristics in included services. This is planned for a future release. 

BLEDISCCHARFIRST (connHandle, charUuidHandle, startAttrHandle, endAttrHandle) 

A typical pseudo code for discovering characteristic involves first calling BleDiscCharFirst() with information obtained from a 
primary services scan, waiting for the EVDISCCHAR event message, and (depending on the information returned in that 
message) calling BleDiscCharNext(). This in turn results in another EVDISCCHAR event message and typically is as follows: 

Register a handler for the EVDISCCHAR event message 

 

On EVDISCCHAR event message 
 If Char Value Handle == 0 then scan is complete 
 Else Process information then 
         call BleDiscCharNext() 
       if BleDiscCharNext() not OK then scan complete 
 
Call BleDiscCharFirst( --information from EVDISCPRIMSVC ) 
If BleDiscCharFirst() ok then Wait for EVDISCCHAR 



https://www.lairdconnect.com/ 227 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

Returns INTEGER, a result code.  

The typical value is 0x0000, indicating a successful operation and it means an EVDISCCHAR event 

message is thrown by the smartBASIC runtime engine containing the results. A non-zero return 

value implies an EVDISCCHAR message is not thrown. 

Arguments:  

connHandle 

byVal nConnHandle  AS INTEGER 

This is the connection handle as returned in the on-connect event for the connection on which the 

remote GATT server can be accessed. This is returned in the EVBLEMSG event message with 

msgId == 0 and msgCtx is the connection handle. 

charUuidHandle 

byVal charUuidHandle AS INTEGER 

Set this to 0 if you want to scan for any characteristic in the service, otherwise this value is 

generated either by BleHandleUuid16() or BleHandleUuid128() or BleHandleUuidSibling(). 

startAttrHandle 

byVal startAttrHandle  AS INTEGER 

This is the attribute handle from where the scan for characteristic is started and is acquired by doing 

a primary services scan, which returns the start and end handles of services. 

endAttrHandle 

byVal endAttrHandle  AS INTEGER 

This is the end attribute handle for the scan and is acquired by doing a primary services scan, which 

returns the start and end handles of services. 

BLEDISCCHARNEXT (connHandle) 

Calling this assumes that BleDiscCharFirst() has been called at least once to set up the internal characteristics scanning state 
machine. It scans for the next characteristic. 

Returns INTEGER, a result code.  

The typical value is 0x0000, indicating a successful operation. It means an EVDISCCHAR event 

message is thrown by the smartBASIC runtime engine containing the results. A non-zero return value 

implies an EVDISCCHAR message is not thrown. 

Arguments:  

connHandle 

byVal nConnHandle  AS INTEGER 

This is the connection handle as returned in the on-connect event for the connection on which the 

remote GATT server can be accessed. This is returned in the EVBLEMSG event message with msgId == 

0 and msgCtx is the connection handle. 

Example: 

// Example :: BleDiscCharFirst.Next.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

// 

//Remote server has 1 prim service with 16 bit uuid and 8 characteristics where 

// 5 uuids are 16 bit and 3 are 128 bit 

//  3 of the 16 bit uuid are the same value 0xDEAD and  

//  2 of the 128 bit uuids are also the same 112233445566778899AABBCCDDEEFF 

// 

// Server created using BleGATTcTblDiscChar.sub invoked in _OpenMcp.scr 

// using Nordic Usb Dongle PC10000 

 

DIM rc,at$,conHndl,uHndl,uuid$,sAttr,eAttr 

 

 

//============================================================================== 

// Initialise and instantiate service, characteristic, start adverts 

//============================================================================== 

FUNCTION OnStartup() 

    DIM rc, adRpt$, addr$, scRpt$   

    rc=BleAdvRptInit(adRpt$, 2, 0, 10) 



https://www.lairdconnect.com/ 228 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

    IF rc==0 THEN : rc=BleScanRptInit(scRpt$) : ENDIF 

    IF rc==0 THEN : rc=BleAdvRptsCommit(adRpt$,scRpt$) : ENDIF 

    IF rc==0 THEN : rc=BleAdvertStart(0,addr$,50,0,0) : ENDIF 

    //open the GATT client with default notify/indicate ring buffer size 

    IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF 

ENDFUNC rc 

 

//============================================================================== 

// Close connections so that we can run another app without problems 

//============================================================================== 

SUB CloseConnections() 

    rc=BleDisconnect(conHndl) 

    rc=BleAdvertStop() 

ENDSUB 

 

//============================================================================== 

// Ble event handler 

//============================================================================== 

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx) 

    DIM uu$  

    conHndl=nCtx 

    IF nMsgID==1 THEN 

        PRINT "\n\n- Disconnected" 

        EXITFUNC 0 

    ELSEIF nMsgID==0 THEN 

        PRINT "\n- Connected, so scan remote GATT Table for first service" 

        PRINT "\n- and a characeristic scan will be initiated in the event" 

        rc = BleDiscServiceFirst(conHndl,0,0) 

        IF rc==0 THEN 

            //wait for start and end handles for first primary service 

            WAITEVENT 

            PRINT "\n\nScan for characteristic with uuid = 0xDEAD" 

            uHndl = BleHandleUuid16(0xDEAD) 

            rc = BleDiscCharFirst(conHndl,uHndl,sAttr,eAttr) 

            IF rc == 0 THEN 

                //HandlerCharDisc() will exit with 0 when operation is complete 

                WAITEVENT 

                uu$ = "112233445566778899AABBCCDDEEFF00" 

                PRINT "\n\nScan for service with custom uuid ";uu$ 

                uu$ = StrDehexize$(uu$) 

                uHndl = BleHandleUuid128(uu$) 

                rc = BleDiscCharFirst(conHndl,uHndl,sAttr,eAttr) 

                IF rc==0 THEN 

                    //HandlerCharDisc() will exit with 0 when operation is complete 

                    WAITEVENT 

                ENDIF 

            ENDIF 

        ENDIF 

        CloseConnections() 

    ENDIF 

ENDFUNC 1 

 

//============================================================================== 

// EVDISCPRIMSVC event handler 

//============================================================================== 

FUNCTION HandlerPrimSvc(cHndl,svcUuid,sHndl,eHndl) AS INTEGER 

    PRINT "\nEVDISCPRIMSVC :" 

    PRINT " cHndl=";cHndl 

    PRINT " svcUuid=";integer.h' svcUuid 

    PRINT " sHndl=";sHndl 

    PRINT " eHndl=";eHndl 

    IF sHndl == 0 THEN 



https://www.lairdconnect.com/ 229 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

        PRINT "\nPrimary Service Scan complete" 

        EXITFUNC 0 

    ELSE 

        PRINT "\nGot first primary service so scan for ALL characteristics" 

        sAttr = sHndl 

        eAttr = eHndl 

        rc = BleDiscCharFirst(conHndl,0,sAttr,eAttr) 

        IF rc != 0 THEN 

            PRINT "\nScan characteristics failed" 

            EXITFUNC 0 

        ENDIF 

    ENDIF 

endfunc 1 

 

'//============================================================================== 

// EVDISCCHAR event handler 

'//============================================================================== 

function HandlerCharDisc(cHndl,cUuid,cProp,hVal,isUuid) as integer 

    print "\nEVDISCCHAR :" 

    print " cHndl=";cHndl 

    print " chUuid=";integer.h' cUuid 

    print " Props=";cProp 

    print " valHndl=";hVal 

    print " ISvcUuid=";isUuid 

    IF hVal == 0 THEN 

        PRINT "\nCharacteristic Scan complete" 

        EXITFUNC 0 

    ELSE 

        rc = BleDiscCharNext(conHndl) 

        IF rc != 0 THEN 

            PRINT "\nCharacteristics scan abort" 

            EXITFUNC 0 

        ENDIF 

    ENDIF 

endfunc 1 

 

//============================================================================== 

// Main() equivalent 

//============================================================================== 

ONEVENT  EVBLEMSG           CALL HndlrBleMsg 

OnEvent  EVDISCPRIMSVC      call HandlerPrimSvc 

OnEvent  EVDISCCHAR         call HandlerCharDisc 

 

//Register base uuids with the underlying stack, otherwise the services with the 

//128bit uuid's will be delivered with a uuid handle == FF000000 == UNKNOWN 

uuid$ = "112233445566778899AABBCCDDEEFF00" 

uuid$ = StrDehexize$(uuid$) 

uHndl = BleHandleUuid128(uuid$) 

uuid$ = "1122DEAD5566778899AABBCCDDBEEF00" 

uuid$ = StrDehexize$(uuid$) 

uHndl = BleHandleUuid128(uuid$) 

 

IF OnStartup()==0 THEN 

    PRINT "\nAdvertising, and GATT Client is open\n" 

ELSE 

    PRINT "\nFailure OnStartup" 

ENDIF 

WAITEVENT 

PRINT "\nExiting..." 

Expected Output: 

Advertising, and GATT Client is open 



https://www.lairdconnect.com/ 230 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

- Connected, so scan remote GATT Table for first service 

- and a characeristic scan will be initiated in the event 

EVDISCPRIMSVC : cHndl=3549 svcUuid=FE01FE02 sHndl=1 eHndl=17 

Got first primary service so scan for ALL characteristics 

EVDISCCHAR : cHndl=3549 chUuid=FE01FC21 Props=2 valHndl=3 ISvcUuid=0 

EVDISCCHAR : cHndl=3549 chUuid=FC033344 Props=2 valHndl=5 ISvcUuid=0 

EVDISCCHAR : cHndl=3549 chUuid=FE01DEAD Props=2 valHndl=7 ISvcUuid=0 

EVDISCCHAR : cHndl=3549 chUuid=FB04BEEF Props=2 valHndl=9 ISvcUuid=0 

EVDISCCHAR : cHndl=3549 chUuid=FC033344 Props=2 valHndl=11 ISvcUuid=0 

EVDISCCHAR : cHndl=3549 chUuid=FE01FC23 Props=2 valHndl=13 ISvcUuid=0 

EVDISCCHAR : cHndl=3549 chUuid=FE01DEAD Props=2 valHndl=15 ISvcUuid=0 

EVDISCCHAR : cHndl=3549 chUuid=FE01DEAD Props=2 valHndl=17 ISvcUuid=0 

EVDISCCHAR : cHndl=3549 chUuid=00000000 Props=0 valHndl=0 ISvcUuid=0 

Characteristic Scan complete 

 

Scan for characteristic with uuid = 0xDEAD 

EVDISCCHAR : cHndl=3549 chUuid=FE01DEAD Props=2 valHndl=7 ISvcUuid=0 

EVDISCCHAR : cHndl=3549 chUuid=FE01DEAD Props=2 valHndl=15 ISvcUuid=0 

EVDISCCHAR : cHndl=3549 chUuid=FE01DEAD Props=2 valHndl=17 ISvcUuid=0 

EVDISCCHAR : cHndl=3549 chUuid=00000000 Props=0 valHndl=0 ISvcUuid=0 

Characteristic Scan complete 

 

Scan for service with custom uuid 112233445566778899AABBCCDDEEFF00 

EVDISCCHAR : cHndl=3549 chUuid=FC033344 Props=2 valHndl=5 ISvcUuid=0 

EVDISCCHAR : cHndl=3549 chUuid=FC033344 Props=2 valHndl=11 ISvcUuid=0 

EVDISCCHAR : cHndl=3549 chUuid=00000000 Props=0 valHndl=0 ISvcUuid=0 

Characteristic Scan complete 

 

- Disconnected 

Exiting... 

 

FUNCTIONS 

This pair of functions is used to scan the remote GATT server for descriptors in a characteristic with the help of the 
EVDISCDESC message event. When called, a handler for the event message must be registered because the discovered 
descriptor information is passed back in that message.  

A generic or UUID-based scan can be initiated. The generic version scans for all descriptors; The UUID version scans for a 
descriptor with a particular UUID, the handle of which must be supplied and is generated by using either BleHandleUuid16() or 
BleHandleUuid128(). 

If a GATT table has a specific service, characteristic, and a specific descriptor, then it is more efficient to locate the 
characteristic’s details by using the function BleGATTcFindDesc(). This is described later.  

While the scan is in progress and waiting for the next piece of data from a GATT server, the module enters low power state as 
the WAITEVENT statement is used as normal to wait for events and messages. 

Depending on the size of the remote GATT server table and the connection interval, the scan of all descriptors may take many 
hundreds of milliseconds. While this is in progress, it is safe to do other non-GATT-related operations such as servicing 
sensors and displays or any of the onboard peripherals. 

BLEDISCDESCFIRST (connHandle, descUuidHandle, charValHandle) 

A typical pseudo code for discovering descriptors involves first calling BleDiscDescFirst() with information obtained from a 
characteristics scan and then waiting for the EVDISCDESC event message. Depending on the information returned in that 
message, calling BleDiscDescNext() results in another EVDISCDESC event message and typically is as follows: 

Register a handler for the EVDISCDESC event message 

On EVDISCDESC event message 

 If Descriptor Handle == 0 then scan is complete 

 Else Process information then 



https://www.lairdconnect.com/ 231 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

         call BleDiscDescNext() 

       if BleDiscDescNext() not OK then scan complete 

Call BleDiscDescFirst( --information from EVDISCCHAR ) 

If BleDiscDescFirst() ok then Wait for EVDISCDESC 

 

Returns INTEGER, a result code.  

The typical value is 0x0000, indicating a successful operation and it means an EVDISCDESC 

event message is thrown by the smartBASIC runtime engine containing the results. A non-

zero return value implies an EVDISCDESC message is not thrown. 

Arguments:  

connHandle 

byVal nConnHandle  AS INTEGER 

This is the connection handle as returned in the on-connect event for the connection on which 

the remote GATT server can be accessed. This is returned in the EVBLEMSG event message 

with msgId == 0 and msgCtx is the connection handle. 

descUuidHandle 

byVal descUuidHandle AS INTEGER 

Set this to 0 if you want to scan for any descriptor in the characteristic, otherwise this value is 

generated either by BleHandleUuid16() or BleHandleUuid128() or BleHandleUuidSibling(). 

charValHandle 

byVal charValHandle AS INTEGER 

This is the value attribute handle of the characteristic on which the descriptor scan is to be 

performed. It will have been acquired from an EVDISCCHAR event. 

BLEDISCDESCNEXT (connHandle) 

Calling this assumes that BleDiscCharFirst() has been called at least once to set up the internal characteristics scanning state 
machine and that BleDiscDescFirst() has been called at least once to start the descriptor discovery process. 

Returns INTEGER, a result code.  

The typical value is 0x0000, indicating a successful operation and it means an EVDISCDESC 

event message is thrown by the smartBASIC runtime engine containing the results. A non-zero 

return value implies an EVDISCDESC message is not thrown. 

Arguments:  

connHandle 

byVal nConnHandle  AS INTEGER 

This is the connection handle as returned in the on-connect event for the connection on which the 

remote GATT server can be accessed. This is returned in the EVBLEMSG event message with 

msgId == 0 and msgCtx is the connection handle. 

Example: 

// Example :: BleDiscDescFirst.Next.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

// 

//Remote server has 1 prim service with 16 bit uuid and 1 characteristics 

// which contains 8 descriptors, that are ... 

// 5 uuids are 16 bit and 3 are 128 bit 

//  3 of the 16 bit uuid are the same value 0xDEAD and  

//  2 of the 128 bit uuids are also the same 112233445566778899AABBCCDDEEFF 

// 

// Server created using BleGATTcTblDiscDesc.sub invoked in _OpenMcp.scr 

// using Nordic Usb Dongle PC10000 

 

DIM rc,at$,conHndl,uHndl,uuid$,sAttr,eAttr,cValAttr 

 

 



https://www.lairdconnect.com/ 232 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

//============================================================================== 

// Initialise and instantiate service, characteristic, start adverts 

//============================================================================== 

FUNCTION OnStartup() 

    DIM rc, adRpt$, addr$, scRpt$   

    rc=BleAdvRptInit(adRpt$, 2, 0, 10) 

    IF rc==0 THEN : rc=BleScanRptInit(scRpt$) : ENDIF 

    IF rc==0 THEN : rc=BleAdvRptsCommit(adRpt$,scRpt$) : ENDIF 

    IF rc==0 THEN : rc=BleAdvertStart(0,addr$,50,0,0) : ENDIF 

    //open the GATT client with default notify/indicate ring buffer size 

    IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF 

ENDFUNC rc 

//============================================================================== 

// Close connections so that we can run another app without problems 

//============================================================================== 

SUB CloseConnections() 

    rc=BleDisconnect(conHndl) 

    rc=BleAdvertStop() 

ENDSUB 

 

//============================================================================== 

// Ble event handler 

//============================================================================== 

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx) 

    DIM uu$  

    conHndl=nCtx 

    IF nMsgID==1 THEN 

        PRINT "\n\n- Disconnected" 

        EXITFUNC 0 

    ELSEIF nMsgID==0 THEN 

        PRINT "\n- Connected, so scan remote GATT Table for first service" 

        PRINT "\n- and a characeristic scan will be initiated in the event" 

        rc = BleDiscServiceFirst(conHndl,0,0) 

        IF rc==0 THEN 

            //wait for start and end handles for first primary service 

            WAITEVENT 

            PRINT "\n\nScan for descritors with uuid = 0xDEAD" 

            uHndl = BleHandleUuid16(0xDEAD) 

            rc = BleDiscDescFirst(conHndl,uHndl,cValAttr) 

            IF rc == 0 THEN 

                //HandlerDescDisc() will exit with 0 when operation is complete 

                WAITEVENT 

                uu$ = "112233445566778899AABBCCDDEEFF00" 

                PRINT "\n\nScan for service with custom uuid ";uu$ 

                uu$ = StrDehexize$(uu$) 

                uHndl = BleHandleUuid128(uu$) 

                rc = BleDiscDescFirst(conHndl,uHndl,cValAttr) 

                IF rc==0 THEN 

                    //HandlerDescDisc() will exit with 0 when operation is complete 

                    WAITEVENT 

                ENDIF 

            ENDIF 

        ENDIF 

        CloseConnections() 

    ENDIF 

ENDFUNC 1 

 

//============================================================================== 

// EVDISCPRIMSVC event handler 

//============================================================================== 

FUNCTION HandlerPrimSvc(cHndl,svcUuid,sHndl,eHndl) AS INTEGER 

    PRINT "\nEVDISCPRIMSVC :" 



https://www.lairdconnect.com/ 233 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

    PRINT " cHndl=";cHndl 

    PRINT " svcUuid=";integer.h' svcUuid 

    PRINT " sHndl=";sHndl 

    PRINT " eHndl=";eHndl 

    IF sHndl == 0 THEN 

        PRINT "\nPrimary Service Scan complete" 

        EXITFUNC 0 

    ELSE 

        PRINT "\nGot first primary service so scan for ALL characteristics" 

        sAttr = sHndl 

        eAttr = eHndl 

        rc = BleDiscCharFirst(conHndl,0,sAttr,eAttr) 

        IF rc != 0 THEN 

            PRINT "\nScan characteristics failed" 

            EXITFUNC 0 

        ENDIF 

    ENDIF 

endfunc 1 

 

'//============================================================================== 

// EVDISCCHAR event handler 

'//============================================================================== 

function HandlerCharDisc(cHndl,cUuid,cProp,hVal,isUuid) as integer 

    print "\nEVDISCCHAR :" 

    print " cHndl=";cHndl 

    print " chUuid=";integer.h' cUuid 

    print " Props=";cProp 

    print " valHndl=";hVal 

    print " ISvcUuid=";isUuid 

    IF hVal == 0 THEN 

        PRINT "\nCharacteristic Scan complete" 

        EXITFUNC 0 

    ELSE 

        PRINT "\nGot first characteristic service at handle ";hVal 

        PRINT "\nScan for ALL Descs" 

        cValAttr = hVal 

        rc = BleDiscDescFirst(conHndl,0,cValAttr) 

        IF rc != 0 THEN 

            PRINT "\nScan descriptors failed" 

            EXITFUNC 0 

        ENDIF 

    ENDIF 

endfunc 1 

 

'//============================================================================== 

// EVDISCDESC event handler 

'//============================================================================== 

function HandlerDescDisc(cHndl,cUuid,hndl) as integer 

    print "\nEVDISCDESC" 

    print " cHndl=";cHndl 

    print " dscUuid=";integer.h' cUuid 

    print " dscHndl=";hndl 

    IF hndl == 0 THEN 

        PRINT "\nDescriptor Scan complete" 

        EXITFUNC 0 

    ELSE 

        rc = BleDiscDescNext(cHndl) 

        IF rc != 0 THEN 

            PRINT "\nDescriptor scan abort" 

            EXITFUNC 0 

        ENDIF 

    ENDIF 



https://www.lairdconnect.com/ 234 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

endfunc 1 

 

//============================================================================== 

// Main() equivalent 

//============================================================================== 

ONEVENT  EVBLEMSG           CALL HndlrBleMsg 

OnEvent  EVDISCPRIMSVC      call HandlerPrimSvc 

OnEvent  EVDISCCHAR         call HandlerCharDisc 

OnEvent  EVDISCDESC         call HandlerDescDisc 

 

//Register base uuids with the underlying stack, otherwise the services with the 

//128bit uuid's will be delivered with a uuid handle == FF000000 == UNKNOWN 

uuid$ = "112233445566778899AABBCCDDEEFF00" 

uuid$ = StrDehexize$(uuid$) 

uHndl = BleHandleUuid128(uuid$) 

uuid$ = "1122DEAD5566778899AABBCCDDBEEF00" 

uuid$ = StrDehexize$(uuid$) 

uHndl = BleHandleUuid128(uuid$) 

 

IF OnStartup()==0 THEN 

    PRINT "\nAdvertising, and GATT Client is open\n" 

ELSE 

    PRINT "\nFailure OnStartup" 

ENDIF 

 

WAITEVENT 

PRINT "\nExiting..." 

Expected Output: 

Advertising, and GATT Client is open 

 

- Connected, so scan remote GATT Table for first service 

- and a characeristic scan will be initiated in the event 

EVDISCPRIMSVC : cHndl=3790 svcUuid=FE01FE02 sHndl=1 eHndl=11 

Got first primary service so scan for ALL characteristics 

EVDISCCHAR : cHndl=3790 chUuid=FE01FC21 Props=2 valHndl=3 ISvcUuid=0 

Got first characteristic service at handle 3 

Scan for ALL Descs 

EVDISCDESC cHndl=3790 dscUuid=FE01FD21 dscHndl=4 

EVDISCDESC cHndl=3790 dscUuid=FC033344 dscHndl=5 

EVDISCDESC cHndl=3790 dscUuid=FE01DEAD dscHndl=6 

EVDISCDESC cHndl=3790 dscUuid=FB04BEEF dscHndl=7 

EVDISCDESC cHndl=3790 dscUuid=FC033344 dscHndl=8 

EVDISCDESC cHndl=3790 dscUuid=FE01FD23 dscHndl=9 

EVDISCDESC cHndl=3790 dscUuid=FE01DEAD dscHndl=10 

EVDISCDESC cHndl=3790 dscUuid=FE01DEAD dscHndl=11 

EVDISCDESC cHndl=3790 dscUuid=00000000 dscHndl=0 

Descriptor Scan complete 

 

Scan for descritors with uuid = 0xDEAD 

EVDISCDESC cHndl=3790 dscUuid=FE01DEAD dscHndl=6 

EVDISCDESC cHndl=3790 dscUuid=FE01DEAD dscHndl=10 

EVDISCDESC cHndl=3790 dscUuid=FE01DEAD dscHndl=11 

EVDISCDESC cHndl=3790 dscUuid=00000000 dscHndl=0 

Descriptor Scan complete 

 

Scan for service with custom uuid 112233445566778899AABBCCDDEEFF00 

EVDISCDESC cHndl=3790 dscUuid=FC033344 dscHndl=5 

EVDISCDESC cHndl=3790 dscUuid=FC033344 dscHndl=8 

EVDISCDESC cHndl=3790 dscUuid=00000000 dscHndl=0 

Descriptor Scan complete 

 



https://www.lairdconnect.com/ 235 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

- Disconnected 

Exiting... 

 

FUNCTION 

This function facilitates an efficient way of locating the details of a characteristic if the UUID is known along with the UUID of 
the service containing it. The results are delived in an EVFINDCHAR event message. If the GATT server table has multiple 
instances of the same service/characteristic combination then this function works because, in addition to the UUID handles to 
be searched for, it also accepts instance parameters which are indexed from 0. This means the fourth instance of a 
characteristic with the same UUID in the third instance of a service with the same UUID is located with index values 3 and 2 
respectively. 

Given that the results are returned in an event message, a handler must be registered for the EVFINDCHAR event. 

Depending on the size of the remote GATT server table and the connection interval, the search of the characteristic may take 
many hundreds of milliseconds. While this is in progress, it is safe to do other non-GATT-related operations such as servicing 
sensors and displays or any of the onboard peripherals. 

Note: It is not currently possible to scan for characteristics in included services. This is a future enhancement.  

BLEGATTCFINDCHAR (connHandle, svcUuidHndl, svcIndex, charUuidHndl, charIndex) 

A typical pseudo code for finding a characteristic involves calling BleGATTcFindChar() which in turn will result in the 
EVFINDCHAR event message and typically is as follows: 

Register a handler for the EVFINDCHAR event message 

 

On EVFINDCHAR event message 

 If Char Value Handle == 0 then 

       Characteristic not found 

 Else  

      Characteristic has been found 

 

Call BleGATTcFindChar() 

If BleGATTcFindChar () ok then Wait for EVFINDCHAR 

 

Returns INTEGER, a result code.  

The typical value is 0x0000, indicating a successful operation and it means an EVFINDCHAR 

event message is thrown by the smartBASIC runtime engine containing the results. A non-zero 

return value implies an EVFINDCHAR message is not thrown. 

Arguments:  

connHandle 

byVal nConnHandle  AS INTEGER 

This is the connection handle as returned in the on-connect event for the connection on which 

the remote GATT server can be accessed. This is returned in the EVBLEMSG event message 

with msgId == 0 and msgCtx is the connection handle. 

svcUuidHndl 

byVal svcUuidHndl AS INTEGER 

Set this to the service UUID handle which is generated either by BleHandleUuid16() or 

BleHandleUuid128() or BleHandleUuidSibling(). 

svcIndex 

byVal svcIndex AS INTEGER 

This is the instance of the service to look for with the UUID handle svcUuidHndl, where 0 is the 

first instance, 1 is the second, and so on. 

charUuidHndl 

byVal charUuidHndl AS INTEGER 

Set this to the characteristic UUID handle which is generated either by BleHandleUuid16() or 

BleHandleUuid128() or BleHandleUuidSibling(). 



https://www.lairdconnect.com/ 236 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

charIndex 

byVal charIndex AS INTEGER 

This is the instance of the characteristic to look for with the UUID handle charUuidHndl, where 0 

is the first instance, 1 is the second, and so on. 

Example: 

// Example :: BleGATTcFindChar.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

// 

//Remote server has 5 prim services with 16 bit uuid and 3 with 128 bit uuids 

//  3 of the 16 bit uuid are the same value 0xDEAD and  

//  2 of the 128 bit uuids are also the same 112233445566778899AABBCCDDEEFF 

// 

// Server created using BleGATTcTblFindChar.sub invoked in _OpenMcp.scr 

// using Nordic Usb Dongle PC10000 

 

DIM rc,at$,conHndl,uHndl,uuid$,sIdx,cIdx 

 

//============================================================================== 

// Initialise and instantiate service, characteristic, start adverts 

//============================================================================== 

FUNCTION OnStartup() 

    DIM rc, adRpt$, addr$, scRpt$   

    rc=BleAdvRptInit(adRpt$, 2, 0, 10) 

    IF rc==0 THEN : rc=BleScanRptInit(scRpt$) : ENDIF 

    IF rc==0 THEN : rc=BleAdvRptsCommit(adRpt$,scRpt$) : ENDIF 

    IF rc==0 THEN : rc=BleAdvertStart(0,addr$,50,0,0) : ENDIF 

    //open the GATT client with default notify/indicate ring buffer size 

    IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF 

ENDFUNC rc 

 

 

//============================================================================== 

// Close connections so that we can run another app without problems 

//============================================================================== 

SUB CloseConnections() 

    rc=BleDisconnect(conHndl) 

    rc=BleAdvertStop() 

ENDSUB 

 

//============================================================================== 



https://www.lairdconnect.com/ 237 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

// Ble event handler 

//============================================================================== 

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx) 

    DIM uu$,uHndS,uHndC 

    conHndl=nCtx 

    IF nMsgID==1 THEN 

        PRINT "\n\n- Disconnected" 

        EXITFUNC 0 

    ELSEIF nMsgID==0 THEN 

        PRINT "\n- Connected, so scan remote GATT Table for an instance of char" 

        uHndS = BleHandleUuid16(0xDEAD) 

        uu$ = "112233445566778899AABBCCDDEEFF00" 

        uu$ = StrDehexize$(uu$) 

        uHndC = BleHandleUuid128(uu$) 

        sIdx = 2 

        cIdx = 1 //valHandle will be 32 

        rc = BleGattcFindChar(conHndl,uHndS,sIdx,uHndC,cIdx)   

        IF rc==0 THEN 

            //BleDiscCharFirst() will exit with 0 when operation is complete 

            WAITEVENT 

        ENDIF 

        sIdx = 1 

        cIdx = 3 //does not exist 

        rc = BleGattcFindChar(conHndl,uHndS,sIdx,uHndC,cIdx)   

        IF rc==0 THEN 

            //BleDiscCharFirst() will exit with 0 when operation is complete 

            WAITEVENT 

        ENDIF 

        CloseConnections() 

    ENDIF 

ENDFUNC 1 

 

'//============================================================================== 

'//============================================================================== 

function HandlerFindChar(cHndl,cProp,hVal,isUuid) as integer 

    print "\nEVFINDCHAR " 

    print " cHndl=";cHndl 

    print " Props=";cProp 

    print " valHndl=";hVal 



https://www.lairdconnect.com/ 238 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

    print " ISvcUuid=";isUuid 

    IF hVal == 0 THEN 

        PRINT "\nDid NOT find the characteristic" 

    ELSE 

        PRINT "\nFound the characteristic at handle ";hVal 

        PRINT "\nSvc Idx=";sIdx;" Char Idx=";cIdx 

    ENDIF    

endfunc 0 

 

 

//============================================================================== 

// Main() equivalent 

//============================================================================== 

ONEVENT  EVBLEMSG           CALL HndlrBleMsg 

OnEvent  EVFINDCHAR         call HandlerFindChar 

 

//Register base uuids with the underlying stack, otherwise the services with the 

//128bit uuid's will be delivered with a uuid handle == FF000000 == UNKNOWN 

uuid$ = "112233445566778899AABBCCDDEEFF00" 

uuid$ = StrDehexize$(uuid$) 

uHndl = BleHandleUuid128(uuid$) 

uuid$ = "1122DEAD5566778899AABBCCDDBEEF00" 

uuid$ = StrDehexize$(uuid$) 

uHndl = BleHandleUuid128(uuid$) 

 

IF OnStartup()==0 THEN 

    PRINT "\nAdvertising, and GATT Client is open\n" 

ELSE 

    PRINT "\nFailure OnStartup" 

ENDIF 

 

WAITEVENT 

PRINT "\nExiting..." 

Expected Output: 

Advertising, and GATT Client is open 

 

- Connected, so scan remote GATT Table for an instance of char 

EVFINDCHAR  cHndl=866 Props=2 valHndl=32 ISvcUuid=0 

Found the characteristic at handle 32 

Svc Idx=2 Char Idx=1 

EVFINDCHAR  cHndl=866 Props=0 valHndl=0 ISvcUuid=0 

Did NOT find the characteristic 



https://www.lairdconnect.com/ 239 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

- Disconnected 

Exiting... 

 

FUNCTION 

This function facilitates an efficient way of locating the details of a descriptor if the UUID is known along with the UUID of the 
service and the UUID of the characteristic containing it. The results are delivered in a EVFINDDESC event message. If the 
GATT server table has multiple instances of the same service/characteristic/descriptor combination then this function works 
because, in addition to the UUID handles to be searched for, it accepts instance parameters which are indexed from 0. This 
means that the second instance of a descriptor in the fourth instance of a characteristic with the same UUID in the third 
instance of a service with the same UUID is located with index values 1, 3, and 2 respectively. 

Given that the results are returned in an event message, a handler must be registered for the EVFINDDESC event. 

Depending on the size of the remote GATT server table and the connection interval, the search of the characteristic may take 
many hundreds of milliseconds. While this is in progress, it is safe to do other non-GATT-related operations such as servicing 
sensors and displays or any of the onboard peripherals. 

Note:  It is not currently possible to scan for characteristics in included services. This planned for a future release. 

BLEGATTCFINDDESC (connHndl, svcUuHndl, svcIdx, charUuHndl, charIdx,descUuHndl, descIdx) 

A typical pseudo code for finding a descrirptor involves calling BleGATTcFindDesc() which in turn results in the EVFINDDESC 
event message and typically is as follows: 

Register a handler for the EVFINDDESC event message 

 

On EVFINDDESC event message 

 If Descriptor Handle == 0 then 

       Descriptor not found 

 Else  

      Descriptor has been found 

 

Call BleGATTcFindDesc() 

If BleGATTcFindDesc() ok then Wait for EVFINDDESC 

 

 

Returns INTEGER, a result code.  

The typical value is 0x0000, indicating a successful operation and it means an EVFINDDESC event 

message is thrown by the smartBASIC runtime engine containing the results. A non-zero return value 

implies an EVFINDDESC message is not thrown 

Arguments:  

connHndl 

byVal connHndl AS INTEGER 

This is the connection handle as returned in the on-connect event for the connection on which the remote 

GATT server can be accessed. This is returned in the EVBLEMSG event message with msgId == 0 and 

msgCtx is the connection handle. 

svcUuHndl 

byVal svcUuHndl AS INTEGER 

Set this to the service UUID handle which is generated either by BleHandleUuid16() or 

BleHandleUuid128() or BleHandleUuidSibling(). 

svcIdx 

byVal svcIdx AS INTEGER 

This is the instance of the service to look for with the UUID handle svcUuidHndl, where 0 is the first 

instance, 1 is the second, and so on. 



https://www.lairdconnect.com/ 240 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

charUuHndl 

byVal charUuHndl AS INTEGER 

Set this to the characteristic UUID handle which is generated either by BleHandleUuid16() or 

BleHandleUuid128() or BleHandleUuidSibling(). 

charIdx 

byVal charIdx AS INTEGER 

This is the instance of the characteristic to look for with the UUID handle charUuidHndl, where 0 is the first 

instance, 1 is the second, and so on. 

descUuHndl 

byVal descUuHndl AS INTEGER 

Set this to the descriptor uuid handle which is generated either by BleHandleUuid16() or 

BleHandleUuid128() or BleHandleUuidSibling(). 

descIdx 

byVal descIdx AS INTEGER 

This is the instance of the descriptor to look for with the UUID handle charUuidHndl, where 0 is the first 

instance, 1 is the second, and so on. 

Example: 

// Example :: BleGATTcFindDesc.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

// 

//Remote server has 5 prim services with 16 bit uuid and 3 with 128 bit uuids 

//  3 of the 16 bit uuid are the same value 0xDEAD and  

//  2 of the 128 bit uuids are also the same 112233445566778899AABBCCDDEEFF 

// 

// Server created using BleGATTcTblFindDesc.sub invoked in _OpenMcp.scr 

// using Nordic Usb Dongle PC10000 

 

DIM rc,at$,conHndl,uHndl,uuid$,sIdx,cIdx,dIdx 

 

//============================================================================== 

// Initialise and instantiate service, characteristic, start adverts 

//============================================================================== 

FUNCTION OnStartup() 

    DIM rc, adRpt$, addr$, scRpt$   

    rc=BleAdvRptInit(adRpt$, 2, 0, 10) 

    IF rc==0 THEN : rc=BleScanRptInit(scRpt$) : ENDIF 

    IF rc==0 THEN : rc=BleAdvRptsCommit(adRpt$,scRpt$) : ENDIF 

    IF rc==0 THEN : rc=BleAdvertStart(0,addr$,50,0,0) : ENDIF 

    //open the GATT client with default notify/indicate ring buffer size 

    IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF 

ENDFUNC rc 

 

//============================================================================== 

// Close connections so that we can run another app without problems 



https://www.lairdconnect.com/ 241 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

//============================================================================== 

SUB CloseConnections() 

    rc=BleDisconnect(conHndl) 

    rc=BleAdvertStop() 

ENDSUB 

 

//============================================================================== 

// Ble event handler 

//============================================================================== 

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx) 

    DIM uu$,uHndS,uHndC,uHndD 

    conHndl=nCtx 

    IF nMsgID==1 THEN 

        PRINT "\n\n- Disconnected" 

        EXITFUNC 0 

    ELSEIF nMsgID==0 THEN 

        PRINT "\n- Connected, so scan remote GATT Table for ALL services" 

        uHndS = BleHandleUuid16(0xDEAD) 

        uu$ = "112233445566778899AABBCCDDEEFF00" 

        uu$ = StrDehexize$(uu$) 

        uHndC = BleHandleUuid128(uu$) 

        uu$ = "1122C0DE5566778899AABBCCDDEEFF00" 

        uu$ = StrDehexize$(uu$) 

        uHndD = BleHandleUuid128(uu$) 

        sIdx = 2 

        cIdx = 1 

        dIdx = 1 // handle will be 37 

        rc = BleGattcFindDesc(conHndl,uHndS,sIdx,uHndC,cIdx,uHndD,dIdx)   

        IF rc==0 THEN 

            //BleDiscCharFirst() will exit with 0 when operation is complete 

            WAITEVENT 

        ENDIF 

        sIdx = 1 

        cIdx = 3 

        dIdx = 4 //does not exist 

        rc = BleGattcFindDesc(conHndl,uHndS,sIdx,uHndC,cIdx,uHndD,dIdx)   

        IF rc==0 THEN 

            //BleDiscCharFirst() will exit with 0 when operation is complete 

            WAITEVENT 



https://www.lairdconnect.com/ 242 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

        ENDIF 

        CloseConnections() 

    ENDIF 

ENDFUNC 1 

 

'//============================================================================== 

'//============================================================================== 

function HandlerFindDesc(cHndl,hndl) as integer 

    print "\nEVFINDDESC " 

    print " cHndl=";cHndl 

    print " dscHndl=";hndl 

    IF hndl == 0 THEN 

        PRINT "\nDid NOT find the descriptor" 

    ELSE 

        PRINT "\nFound the descriptor at handle ";hndl 

        PRINT "\nSvc Idx=";sIdx;" Char Idx=";cIdx;" desc Idx=";dIdx 

    ENDIF    

endfunc 0 

 

 

//============================================================================== 

// Main() equivalent 

//============================================================================== 

ONEVENT  EVBLEMSG           CALL HndlrBleMsg 

OnEvent  EVFINDDESC         call HandlerFindDesc 

 

//Register base uuids with the underlying stack, otherwise the services with the 

//128bit uuid's will be delivered with a uuid handle == FF000000 == UNKNOWN 

uuid$ = "112233445566778899AABBCCDDEEFF00" 

uuid$ = StrDehexize$(uuid$) 

uHndl = BleHandleUuid128(uuid$) 

uuid$ = "1122DEAD5566778899AABBCCDDBEEF00" 

uuid$ = StrDehexize$(uuid$) 

uHndl = BleHandleUuid128(uuid$) 

 

IF OnStartup()==0 THEN 

    PRINT "\nAdvertising, and GATT Client is open\n" 

ELSE 

    PRINT "\nFailure OnStartup" 



https://www.lairdconnect.com/ 243 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

ENDIF 

 

WAITEVENT 

PRINT "\nExiting..." 

Expected Output: 

Advertising, and GATT Client is open 

 

- Connected, so scan remote GATT Table for ALL services 

EVFINDDESC  cHndl=1106 dscHndl=37 

Found the descriptor at handle 37 

Svc Idx=2 Char Idx=1 desc Idx=1 

EVFINDDESC  cHndl=1106 dscHndl=0 

Did NOT find the descriptor 

 

- Disconnected 

Exiting... 

 

FUNCTIONS 

If the handle for an attribute is known, then these functions are used to read the content of that attribute from a specified offset 
in the array of octets in that attribute value. 

Given that the success or failure of this read operation is returned in an event message, a handler must be registered for the 
EVATTRREAD event. 

Depending on the connection interval, the read of the attribute may take many hundreds of milliseconds. While this is in 
progress, it is safe to do other non-GATT-related operations such as servicing sensors and displays or any of the onboard 
peripherals. 

BleGATTcRead is used to trigger the procedure and BleGattcReadData is used to read the data from the underlying cache 
when the EVATTRREAD event message is received with a success status. 

BLEGATTCREAD (connHndl, attrHndl, offset) 

A typical pseudo code for reading the content of an attribute calling BleGattcRead() which in turn results in the EVATTRREAD 
event message and typically is as follows: 

Register a handler for the EVATTRREAD event message 

 

On EVATTRREAD event message 

 If GATT_Status == 0 then 

       BleGattcReadData()  //to actually get the data  

 Else  

      Attribute could not be read 

 

Call BleGattcRead() 

If BleGattcRead() ok then Wait for EVATTRREAD 

 

Returns INTEGER, a result code.  

The typical value is 0x0000, indicating a successful operation and it means an EVATTRREAD event 

message is thrown by the smartBASIC runtime engine containing the results. A non-zero return value 

implies an EVATTRREAD message is not thrown. 

Arguments:  

connHndl 
byVal connHndl AS INTEGER 

This is the connection handle as returned in the on-connect event for the connection on which the remote 



https://www.lairdconnect.com/ 244 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

GATT server can be accessed. This is returned in the EVBLEMSG event message with msgId == 0 and 

msgCtx is the connection handle. 

attrHndl 
byVal attrHndl AS INTEGER 

Set to the handle of the attribute to read. It is a value in the range 1 to 65535. 

offset 
byVal offset AS INTEGER 

This is the offset from which the data in the attribute is to be read. 

BLEGATTCREADDATA (connHndl, attrHndl, offset, attrData$) 

This function is used to collect the data from the underlying cache when the EVATTRREAD event message has a success 
GATT status code. 

Returns INTEGER, a result code. The typical value is 0x0000, indicating a successful read. 

Arguments:  

connHndl 

byVal connHndl AS INTEGER 

This is the connection handle as returned in the on-connect event for the connection on which the 

remote GATT server can be accessed. This is returned in the EVBLEMSG event message with 

msgId == 0 and msgCtx is the connection handle. 

attrHndl 

byRef attrHndl AS INTEGER 

The handle for the attribute that was read is returned in this variable. It is the same as the one 

supplied in BleGATTcRead, but supplied here so that the code can be stateless. 

offset 

byRef offset AS INTEGER 

The offset into the attribute data that was read is returned in this variable. It is the same as the one 

supplied in BleGATTcRead, but supplied here so that the code can be stateless. 

attrData$ 
byRef attrData$ AS STRING 

The attribute data which was read is supplied in this parameter. 

Example: 

// Example :: BleGATTcRead.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

// 

//Remote server has 3 prim services with 16 bit uuid. First service has one 

//characteristic whose value attribute is at handle 3 and has read/write props 

// 

// Server created using BleGattcTblRead.sub invoked in _OpenMcp.scr 

// using Nordic Usb Dongle PC10000 

 

DIM rc,at$,conHndl,uHndl,nOff,atHndl 

 

//============================================================================== 

// Initialise and instantiate service, characteristic, start adverts 

//============================================================================== 

FUNCTION OnStartup() 

    DIM rc, adRpt$, addr$, scRpt$   



https://www.lairdconnect.com/ 245 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

    rc=BleAdvRptInit(adRpt$, 2, 0, 10) 

    IF rc==0 THEN : rc=BleScanRptInit(scRpt$) : ENDIF 

    IF rc==0 THEN : rc=BleAdvRptsCommit(adRpt$,scRpt$) : ENDIF 

    IF rc==0 THEN : rc=BleAdvertStart(0,addr$,50,0,0) : ENDIF 

    //open the GATT client with default notify/indicate ring buffer size 

    IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF 

ENDFUNC rc 

 

//============================================================================== 

// Close connections so that we can run another app without problems 

//============================================================================== 

SUB CloseConnections() 

    rc=BleDisconnect(conHndl) 

    rc=BleAdvertStop() 

ENDSUB 

 

//============================================================================== 

// Ble event handler 

//============================================================================== 

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx) 

    DIM uHndA 

    conHndl=nCtx 

    IF nMsgID==1 THEN 

        PRINT "\n\n- Disconnected" 

        EXITFUNC 0 

    ELSEIF nMsgID==0 THEN 

        PRINT "\n- Connected, so read attibute handle 3" 

        atHndl = 3 

        nOff = 0 

        rc=BleGattcRead(conHndl,atHndl,nOff) 

        IF rc==0 THEN 

            WAITEVENT 

        ENDIF 

        PRINT "\nread attibute handle 300 which does not exist" 

        atHndl = 300 

        nOff = 0 

        rc=BleGattcRead(conHndl,atHndl,nOff) 

        IF rc==0 THEN 

            WAITEVENT 



https://www.lairdconnect.com/ 246 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

        ENDIF 

        CloseConnections() 

    ENDIF 

ENDFUNC 1 

 

'//============================================================================== 

'//============================================================================== 

function HandlerAttrRead(cHndl,aHndl,nSts) as integer 

    dim nOfst,nAhndl,at$ 

    print "\nEVATTRREAD " 

    print " cHndl=";cHndl 

    print " attrHndl=";aHndl 

    print " status=";integer.h' nSts 

    if nSts == 0 then 

        print "\nAttribute read OK" 

        rc = BleGattcReadData(cHndl,nAhndl,nOfst,at$) 

        print "\nData   = ";StrHexize$(at$) 

        print " Offset= ";nOfst 

        print " Len=";strlen(at$) 

        print "\nhandle = ";nAhndl 

    else 

        print "\nFailed to read attribute" 

    endif 

endfunc 0 

//============================================================================== 

// Main() equivalent 

//============================================================================== 

ONEVENT  EVBLEMSG           CALL HndlrBleMsg 

OnEvent  EVATTRREAD         call HandlerAttrRead 

 

IF OnStartup()==0 THEN 

    PRINT "\nAdvertising, and GATT Client is open\n" 

ELSE 

    PRINT "\nFailure OnStartup" 

ENDIF 

 

WAITEVENT 

PRINT "\nExiting..." 



https://www.lairdconnect.com/ 247 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

Expected Output: 

Advertising, and GATT Client is open 

 

- Connected, so read attibute handle 3 

EVATTRREAD  cHndl=2960 attrHndl=3 status=00000000 

Attribute read OK 

Data   = 00000000 Offset= 0 Len=4 

handle = 3 

read attibute handle 300 which does not exist 

EVATTRREAD  cHndl=2960 attrHndl=300 status=00000101 

Failed to read attribute 

 

- Disconnected 

Exiting... 

 

FUNCTION 

If the handle for an attribute is known then this function is used to write into an attribute starting at offset 0. The 
acknowledgement is returned via a EVATTRWRITE event message. 

Given that the success or failure of this write operation is returned in an event message, a handler must be registered for the 
EVATTRWRITE event. 

Depending on the connection interval, the write to the attribute may take many hundreds of milliseconds. While this is in 
progress, it is safe to do other non GATT related operations such as servicing sensors and displays or any of the onboard 
peripherals. 

BLEGATTCWRITE (connHndl, attrHndl, attrData$) 

A typical pseudo code for writing to an attribute which results in the EVATTRWRITE event message and typically is as follows: 

Register a handler for the EVATTRWRITE event message 

 

On EVATTWRITE event message 

 If GATT_Status == 0 then 

      Attribute was written successfully 

 Else  

      Attribute could not be written 

 

Call BleGattcWrite() 

If BleGattcWrite() ok then Wait for EVATTRWRITE 

 

Returns INTEGER, a result code. The typical value is 0x0000, indicating a successful read. 

Arguments:  

connHndl 

byVal connHndl AS INTEGER 

This is the connection handle as returned in the on-connect event for the connection on which the remote 

GATT server can be accessed. This is returned in the EVBLEMSG event message with msgId == 0 and 

msgCtx is the connection handle. 

attrHndl 
byVal attrHndl AS INTEGER 

The handle for the attribute that is to be written to. 

attrData$ 
byRef attrData$ AS STRING 

The attribute data to write. 

Example: 

// Example :: BleGATTcWrite.sb 



https://www.lairdconnect.com/ 248 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

// 

//Remote server has 3 prim services with 16 bit uuid. First service has one 

//characteristic whose value attribute is at handle 3 and has read/write props 

// 

// Server created using BleGATTcTblWrite.sub invoked in _OpenMcp.scr 

// using Nordic Usb Dongle PC10000 

 

DIM rc,at$,conHndl,uHndl,atHndl 

 

 

//============================================================================== 

// Initialise and instantiate service, characteristic, start adverts 

//============================================================================== 

FUNCTION OnStartup() 

    DIM rc, adRpt$, addr$, scRpt$   

    rc=BleAdvRptInit(adRpt$, 2, 0, 10) 

    IF rc==0 THEN : rc=BleScanRptInit(scRpt$) : ENDIF 

    IF rc==0 THEN : rc=BleAdvRptsCommit(adRpt$,scRpt$) : ENDIF 

    IF rc==0 THEN : rc=BleAdvertStart(0,addr$,50,0,0) : ENDIF 

    //open the GATT client with default notify/indicate ring buffer size 

    IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF 

ENDFUNC rc 

 

//============================================================================== 

// Close connections so that we can run another app without problems 

//============================================================================== 

SUB CloseConnections() 

    rc=BleDisconnect(conHndl) 

    rc=BleAdvertStop() 

ENDSUB 

 

//============================================================================== 

// Ble event handler 

//============================================================================== 

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx) 

    DIM uHndA 

    conHndl=nCtx 



https://www.lairdconnect.com/ 249 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

    IF nMsgID==1 THEN 

        PRINT "\n\n- Disconnected" 

        EXITFUNC 0 

    ELSEIF nMsgID==0 THEN 

        PRINT "\n- Connected, so write to attibute handle 3" 

        atHndl = 3 

        at$="\01\02\03\04" 

        rc=BleGattcWrite(conHndl,atHndl,at$) 

        IF rc==0 THEN 

            WAITEVENT 

        ENDIF 

        PRINT "\nwrite to attibute handle 300 which does not exist" 

        atHndl = 300 

        rc=BleGattcWrite(conHndl,atHndl,at$) 

        IF rc==0 THEN 

            WAITEVENT 

        ENDIF 

        CloseConnections() 

    ENDIF 

ENDFUNC 1 

 

'//============================================================================== 

'//============================================================================== 

function HandlerAttrWrite(cHndl,aHndl,nSts) as integer 

    dim nOfst,nAhndl,at$ 

    print "\nEVATTRWRITE " 

    print " cHndl=";cHndl 

    print " attrHndl=";aHndl 

    print " status=";integer.h' nSts 

    if nSts == 0 then 

        print "\nAttribute write OK" 

    else 

        print "\nFailed to write attribute" 

    endif 

endfunc 0 

 

//============================================================================== 

// Main() equivalent 

//============================================================================== 



https://www.lairdconnect.com/ 250 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

ONEVENT  EVBLEMSG           CALL HndlrBleMsg 

OnEvent  EVATTRWRITE        call HandlerAttrWrite 

 

IF OnStartup()==0 THEN 

    PRINT "\nAdvertising, and GATT Client is open\n" 

ELSE 

    PRINT "\nFailure OnStartup" 

ENDIF 

 

WAITEVENT 

PRINT "\nExiting..." 

Expected Output: 

Advertising, and GATT Client is open 

 

- Connected, so read attibute handle 3 

EVATTRWRITE  cHndl=2687 attrHndl=3 status=00000000 

Attribute write OK 

Write to attibute handle 300 which does not exist 

EVATTRWRITE  cHndl=2687 attrHndl=300 status=00000101 

Failed to write attribute 

 

- Disconnected 

Exiting... 

 

FUNCTION 

If the handle for an attribute is known, then this function is used to write into an attribute at offset 0 when no acknowledgment 
response is expected. The signal that the command has actually been transmitted and that the remote link layer has 
acknowledged is by the EVNOTIFYBUF event. 

Note:  The acknowledgement received for the BleGattcWrite() command is from the higher level GATT layer. Do not 

confuse this with the link layer ACK .  

 

All packets are acknowledged at link layer level. If a packet fails to get through, then that condition manifests as a 

connection drop due to the link supervision timeout. 

Given that the transmission and link layer ACK of this write operation is indicated in an event message, a handler must be 
registered for the EVNOTIBUF event. 

Depending on the connection interval, the write to the attribute may take many hundreds of milliseconds. While this is in 
progress, it is safe to do other non-GATT-related operations such as servicing sensors and displays or any of the onboard 
peripherals. 

BLEGATTCWRITECMD (connHndl, attrHndl, attrData$) 

The following is a typical pseudo code for writing to an attribute which results in the EVNOTIFYBUF event: 

Register a handler for the EVNOTIFYBUF event message 

 

On EVNOTIFYBUF event message 

 Can now send another write command 



https://www.lairdconnect.com/ 251 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

Call BleGattcWriteCmd() 

If BleGattcWrite() ok then Wait for EVNOTIFYBUF  

 

Returns INTEGER, a result code. The typical value is 0x0000, indicating a successful read. 

Arguments: 

connHndl 

byVal connHndl AS INTEGER 

This is the connection handle as returned in the on-connect event for the connection on which the 

remote GATT Server can be accessed. This is returned in the EVBLEMSG event message with 

msgId == 0 and msgCtx is the connection handle. 

attrHndl 
byVal attrHndl AS INTEGER 

The handle for the attribute that is to be written to. 

attrData$ 
byRef attrData$ AS STRING 

The attribute data to write. 

Example: 

// Example :: BleGATTcWriteCmd.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

// 

//Remote server has 3 prim services with 16 bit uuid. First service has one 

//characteristic whose value attribute is at handle 3 and has read/write props 

// 

// Server created using BleGATTcTblWriteCmd.sub invoked in _OpenMcp.scr 

// using Nordic Usb Dongle PC10000 

 

DIM rc,at$,conHndl,uHndl,atHndl 

 

//============================================================================== 

// Initialise and instantiate service, characteristic, start adverts 

//============================================================================== 

FUNCTION OnStartup() 

    DIM rc, adRpt$, addr$, scRpt$   

    rc=BleAdvRptInit(adRpt$, 2, 0, 10) 

    IF rc==0 THEN : rc=BleScanRptInit(scRpt$) : ENDIF 

    IF rc==0 THEN : rc=BleAdvRptsCommit(adRpt$,scRpt$) : ENDIF 

    IF rc==0 THEN : rc=BleAdvertStart(0,addr$,50,0,0) : ENDIF 

    //open the GATT client with default notify/indicate ring buffer size 

    IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF 

ENDFUNC rc 

 

//============================================================================== 



https://www.lairdconnect.com/ 252 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

// Close connections so that we can run another app without problems 

//============================================================================== 

SUB CloseConnections() 

    rc=BleDisconnect(conHndl) 

    rc=BleAdvertStop() 

ENDSUB 

 

//============================================================================== 

// Ble event handler 

//============================================================================== 

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx) 

    DIM uHndA 

    conHndl=nCtx 

    IF nMsgID==1 THEN 

        PRINT "\n\n- Disconnected" 

        EXITFUNC 0 

    ELSEIF nMsgID==0 THEN 

        PRINT "\n- Connected, so write to attribute handle 3" 

        atHndl = 3 

        at$="\01\02\03\04" 

        rc=BleGattcWriteCmd(conHndl,atHndl,at$) 

        IF rc==0 THEN 

            WAITEVENT 

        ENDIF 

        PRINT "\n- write again to attribute handle 3" 

        atHndl = 3 

        at$="\05\06\07\08" 

        rc=BleGattcWriteCmd(conHndl,atHndl,at$) 

        IF rc==0 THEN 

            WAITEVENT 

        ENDIF 

        PRINT "\n- write again to attribute handle 3" 

        atHndl = 3 

        at$="\09\0A\0B\0C" 

        rc=BleGattcWriteCmd(conHndl,atHndl,at$) 

        IF rc==0 THEN 

            WAITEVENT 

        ENDIF 

        PRINT "\nwrite to attribute handle 300 which does not exist" 



https://www.lairdconnect.com/ 253 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

        atHndl = 300 

        rc=BleGattcWriteCmd(conHndl,atHndl,at$) 

        IF rc==0 THEN 

            PRINT "\nEven when the attribute does not exist an event will occur" 

            WAITEVENT 

        ENDIF 

        CloseConnections() 

    ENDIF 

ENDFUNC 1 

 

'//============================================================================== 

'//============================================================================== 

function HandlerNotifyBuf() as integer 

  print "\nEVNOTIFYBUF Event" 

endfunc 0  '//need to progress the WAITEVENT  

 

//============================================================================== 

// Main() equivalent 

//============================================================================== 

ONEVENT  EVBLEMSG           CALL HndlrBleMsg 

OnEvent  EVNOTIFYBUF        call HandlerNotifyBuf 

 

IF OnStartup()==0 THEN 

    PRINT "\nAdvertising, and GATT Client is open\n" 

ELSE 

    PRINT "\nFailure OnStartup" 

ENDIF 

 

WAITEVENT 

PRINT "\nExiting..." 

Expected Output: 

Advertising, and GATT Client is open 

 

- Connected, so write to attribute handle 3 

EVNOTIFYBUF Event 

- write again to attribute handle 3 

EVNOTIFYBUF Event 

- write again to attribute handle 3 

EVNOTIFYBUF Event 

write to attribute handle 300 which does not exist 

Even when the attribute does not exist an event will occur 

EVNOTIFYBUF Event 

 



https://www.lairdconnect.com/ 254 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

- Disconnected 

Exiting... 

 

FUNCTION 

The Write Prepare and Write Execute functions are used to perform the Long Write procedure. Long Writes are used when the 
value handle is known, but the length of the characteristic value is longer than can be sent in a single Write Request message. 

BleGattcWritePrepare requests that the GATT server prepares to write the attribute value. This function can be used multiple 
times as long as a BleGattcWriteExec function is used at the end to perform the full Long Write. 

BLEGATTCWRITEPREPARE (connHndl, attrHndl, offset, attrData$) 

 

Returns INTEGER, a result code. The typical value is 0x0000, indicating a successful read. 

Arguments: 

connHndl 

byVal connHndl AS INTEGER 

This is the connection handle as returned in the on-connect event for the connection on which the 

remote GATT Server can be accessed. This is returned in the EVBLEMSG event message with 

msgId == 0 and msgCtx is the connection handle. 

attrHndl 
byVal attrHndl AS INTEGER 

The handle for the attribute that is to be written to. 

offset 
byVal attrHndl AS INTEGER 

This is the offset at which the data in the attribute is to be written. 

attrData$ 
byRef attrData$ AS STRING 

The attribute data to write. 

 

FUNCTION 

The BleGattcWriteExecute function is used by the GATT client to request the server to write or cancel the write of all the 
values that have been prepare with the BleGattcWritePrepare function. It is used as the final step in a long write operation. 

BLEGATTCWRITEEXEC (connHndl, Flags) 

 

Returns INTEGER, a result code. The typical value is 0x0000, indicating a successful read. 

Arguments: 

connHndl 

byVal connHndl AS INTEGER 

This is the connection handle as returned in the on-connect event for the connection on which the 

remote GATT Server can be accessed. This is returned in the EVBLEMSG event message with 

msgId == 0 and msgCtx is the connection handle. 

Flags 

byVal Flags AS INTEGER 

 

0 Cancel all prepared writes 

1 Immediately write all pending prepared values 
 

 

FUNCTION 

A GATT server has the ability to notify or indicate the value attribute of a characteristic when enabled via the Client 
Characeristic Configuration Descriptor (CCCD). This means data arrives from a GATT server at any time and must be 
managed so that it can synchronised with the smartBASIC runtime engine. 



https://www.lairdconnect.com/ 255 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

Data arriving via a notification does not require GATT acknowledgements, however indications require them. This GATT client 
manager saves data arriving via a notification in the same ring buffer for later extraction using the command 
BleGattcNotifyRead(); for indications, an automatic GATT acknowledgement is sent when the data is saved in the ring buffer. 
This acknowledgment happens even if the data is discarded because the ring buffer is full. If the data must not be 
acknowledged when it is discarded on a full buffer, set the flags parameter in the BleGattcOpen() function where the GATT 
client manager is opened. 

In the case when an ACK is NOT sent on data discard, the GATT server is throttled and no further data is notified or indicated 
by it until BleGattNotifyRead() is called to extract data from the ring buffer to create space and it triggers a delayed 
acknowledgement. 

When the GATT client manager is opened using BleGattcOpen(), it is possible to specify the size of the ring buffer. If a value 
of 0 is supplied, then a default size is created. SYSINFO(2019) in a smartBASIC application or the interactive mode command 
AT I 2019 returns the default size. Likewise SYSINFO(2020) or the command AT I 2020 returns the maximum size. 

Data that arrives via notifications or indications get stored in the ring buffer. At the same time, a EVATTRNOTIFY event is 
thrown to the smartBASIC runtime engine. This is an event, in the same way an incoming UART receive character generates 
an event; that is, no data payload is attached to the event. 

BLEGATTCNOTIFYREAD (connHndl, attrHndl, attrData$, discardCount) 

The following is a typical pseudo code for handling and accessing notification/indication data: 

Register a handler for the EVATTRNOTIFY event message 

 

On EVATTRNOTIFY event  

    BleGattcNotifyRead()  //to actually get the data  

    Process the data 

 

Enable notifications and/or indications via CCCD descriptors 

 

Returns INTEGER, a result code. The typical value is 0x0000, indicating data was successful read. 

Arguments: 

connHndl 
byRef connHndl AS INTEGER 

On exit, this is the connection handle of the GATT server that sent the notification or indication. 

attrHndl 
byRef attrHndl AS INTEGER 

On exit, this is the handle of the characteristic value attribute in the notification or indication. 

attrData$ 

byRef attrData$ AS STRING 

On exit, this is the data of the characteristic value attribute in the notification or indication. It is 

always from offset 0 of the source attribute. 

discardedCount 

byRef discardedCount AS INTEGER 

On exit, this should contain 0. It signifies the total number of notifications or indications that got 

discared because the ring buffer in the GATT client manager was full. 

If non-zero values are encountered, it is recommended that the ring buffer size be increased 

by using BleGattcClose() when the GATT client was opened using BleGattcOpen(). 

Example: 

// Example :: BleGATTcNotifyRead.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

// 

// Charactersitic at handle 15 has notify   (16==cccd) 

// Charactersitic at handle 18 has indicate (19==cccd) 

 

DIM rc,at$,conHndl,uHndl,atHndl 

 

//============================================================================== 

// Initialise and instantiate service, characteristic, start adverts 



https://www.lairdconnect.com/ 256 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

//============================================================================== 

FUNCTION OnStartup() 

    DIM rc, adRpt$, addr$, scRpt$   

  rc=BleAdvRptInit(adRpt$, 2, 0, 10) 

  IF rc==0 THEN : rc=BleScanRptInit(scRpt$) : ENDIF 

    IF rc==0 THEN : rc=BleAdvRptsCommit(adRpt$,scRpt$) : ENDIF 

    IF rc==0 THEN : rc=BleAdvertStart(0,addr$,50,0,0) : ENDIF 

  //open the gatt client with default notify/indicate ring buffer size 

  IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF 

ENDFUNC rc 

 

 

//============================================================================== 

// Close connections so that we can run another app without problems 

//============================================================================== 

SUB CloseConnections() 

    rc=BleDisconnect(conHndl) 

    rc=BleAdvertStop() 

ENDSUB 

 

 

//============================================================================== 

// Ble event handler 

//============================================================================== 

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx) 

    conHndl=nCtx 

    IF nMsgID==1 THEN 

        PRINT "\n\n- Disconnected" 

        EXITFUNC 0 

    ELSEIF nMsgID==0 THEN 

        PRINT "\n- Connected, so enable notification for char with cccd at 16" 

    atHndl = 16 

    at$="\01\00" 

    rc=BleGattcWrite(conHndl,atHndl,at$) 

    IF rc==0 THEN 

        WAITEVENT 

    ENDIF 

        PRINT "\n- enable indication for char with cccd at 19" 

    atHndl = 19 

    at$="\02\00" 

    rc=BleGattcWrite(conHndl,atHndl,at$) 

    IF rc==0 THEN 

        WAITEVENT 

    ENDIF 

    ENDIF 

ENDFUNC 1 

 

'//============================================================================== 

'//============================================================================== 

function HandlerAttrWrite(cHndl,aHndl,nSts) as integer 

    dim nOfst,nAhndl,at$ 

    print "\nEVATTRWRITE " 

    print " cHndl=";cHndl 

    print " attrHndl=";aHndl 

    print " status=";integer.h' nSts 

  if nSts == 0 then 

      print "\nAttribute write OK" 

  else 

      print "\nFailed to write attribute" 

  endif 

endfunc 0 

 



https://www.lairdconnect.com/ 257 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

'//============================================================================== 

'// Thrown when AT+CFG 213 = 0 

'//============================================================================== 

function HandlerAttrNotify() as integer 

  dim chndl,aHndl,att$,dscd 

    print "\nEVATTRNOTIFY Event \n" 

  rc=BleGattcNotifyRead(cHndl,aHndl,att$,dscd) 

  print "\n  BleGattcNotifyRead()" 

  if rc==0 then 

    print " Connection Handle=";cHndl 

    print " Characteristic Handle=";aHndl 

    print " Data=";StrHexize$(att$) 

    print " Discarded=";dscd 

  else 

    print " failed with ";integer.h' rc 

  endif 

endfunc 1 

 

'//============================================================================== 

'// Thrown when AT+CFG 213 = 1 

'//============================================================================== 

function HandlerAttrNotifyEx(BYVAL hConn, BYVAL hChar, BYVAL nType, BYVAL nLen, BYVAL 

Data$) as integer 

     

    print "\nEVATTRNOTIFYEX Event :: " 

    if nType == 1 then 

        print "Notification\n" 

    elseif nType == 2 then 

        print "Indication\n" 

    endif 

 

    print " Connection Handle=";hConn 

    print " Characteristic Handle=";hChar 

    print " Data=";Data$ 

endfunc 1 

 

//============================================================================== 

// Main() equivalent 

//============================================================================== 

ONEVENT  EVBLEMSG           CALL HndlrBleMsg 

OnEvent  EVATTRWRITE        call HandlerAttrWrite 

OnEvent  EVATTRNOTIFY       call HandlerAttrNotify   // Thrown when AT+CFG 213 = 0 

OnEvent  EVATTRNOTIFYEX     call HandlerAttrNotifyEx // Thrown when AT+CFG 213 = 1 

 

IF OnStartup()==0 THEN 

    PRINT "\nAdvertising, and Gatt Client is open\n" 

ELSE 

    PRINT "\nFailure OnStartup" 

ENDIF 

 

WAITEVENT 

PRINT "\nExiting..." 

 

Expected Output: 

Advertising, and GATT Client is open 

 

- Connected, so enable notification for char with cccd at 16 

EVATTRWRITE  cHndl=877 attrHndl=16 status=00000000 

Attribute write OK 

- enable indication for char with cccd at 19 

EVATTRWRITE  cHndl=877 attrHndl=19 status=00000000 



https://www.lairdconnect.com/ 258 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

Attribute write OK 

EVATTRNOTIFY Event 

  BleGATTcNotifyRead() cHndl=877 attrHndl=15 data=BAADC0DE discarded=0 

EVATTRNOTIFY Event 

  BleGATTcNotifyRead() cHndl=877 attrHndl=18 data=DEADBEEF discarded=0 

EVATTRNOTIFY Event 

  BleGATTcNotifyRead() cHndl=877 attrHndl=15 data=BAADC0DE discarded=0 

EVATTRNOTIFY Event 

  BleGATTcNotifyRead() cHndl=877 attrHndl=18 data=DEADBEEF discarded=0 

 

Data for characteristics are stored in value attributes, arrays of bytes. Multibyte Characteristic Descriptors content is stored 
similarly. Those bytes are manipulated in smartBASIC applications using STRING variables.  

The Bluetooth specification stipulates that multibyte data entities are stored in little endian format and so all data manipulation 
is done similarly. Little endian means that a multibyte data entity is stored so that lowest significant byte is positioned at the 
lowest memory address and likewise, when transported, the lowest byte is on the wire first. 

This section describes all the encoding functions which allow those strings to be written in smaller bytewise subfields in a more 
efficient manner compared to the generic STRXXXX functions that are made available in smartBASIC. 

Note: CCCD and SCCD descriptors are special cases; they have two bytes which are treated as 16-bit integers. This is 

reflected in smartBASIC applications so that INTEGER variables are used to manipulate those values instead of 

STRINGS. 

 

FUNCTION 

This function overwrites a single byte in a string at a specified offset. If the string is not long enough, then it is extended with 
the new extended block uninitialized and then the byte specified is overwritten. 

If the nIndex is such that the new string length exceeds the maximum attribute length, this function fails. The maximum 
attribute length can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth specification allows a length 
between 1 and 512. 

BLEENCODE8 (attr$, nData, nIndex) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments: 

attr$ 
byRef attr$  AS STRING 

This argument is the string that is written to an attribute. 

nData 
byVal nData  AS INTEGER 

The least significant byte of this integer is saved. The rest is ignored. 

nIndex 

byVal nIndex  AS INTEGER 

This is the zero-based index into the string attr$ where the new data fragment is written to. If the string attr$ 

is not long enough to fit the index plus the length of the fragment, it is extended. If the extended length 

exceeds the maximum allowable length of an attribute (see SYSINFO(2013)), this function fails. 

Example: 

// Example :: BleEncode8.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 DIM rc 

 DIM attr$ 

 

 attr$="Laird" 



https://www.lairdconnect.com/ 259 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

 PRINT "\nattr$=";attr$ 

 

 //Remember: - 4 bytes are used to store an integer on the BL654 

 //write 'C' to index 2 -- '111' will be ignored 

 rc=BleEncode8(attr$,0x11143,2) 

 //write 'A' to index 0  

 rc=BleEncode8(attr$,0x41,0) 

 //write 'B' to index 1 

 rc=BleEncode8(attr$,0x42,1) 

 //write 'D' to index 3  

 rc=BleEncode8(attr$,0x44,3) 

 //write 'y' to index 7 -- attr$ will be extended 

 rc=BleEncode8(attr$,0x67, 7)  

 PRINT "\nattr$ now = ";attr$ 

Expected Output: 

attr$=Laird 

attr$ now = ABCDd\00\00g 

 

FUNCTION 

This function overwrites two bytes in a string at a specified offset. If the string is not long enough, then it is extended with the 
new extended block uninitialized and then the bytes specified are overwritten.  

If the nIndex is such that the new string length exceeds the maximum attribute length, this function fails. The maximum 
attribute length can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth specification allows a length 
between 1 and 512. 

BLEENCODE16 (attr$, nData, nIndex) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments: 

attr$ 
byRef attr$  AS STRING 

This argument is the string that is written to an attribute.  

nData 
byVal nData  AS INTEGER 

The two least significant bytes of this integer is saved. The rest is ignored. 

nIndex 

byVal nIndex  AS INTEGER 

This is the zero based index into the string attr$ where the new fragment of data is written. If the 

string attr$ is not long enough to accommodate the index plus the length of the fragment, it is 

extended. If the extended length exceeds the maximum allowable length of an attribute (see 

SYSINFO(2013)), this function fails. 

Example: 

// Example :: BleEncode16.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 



https://www.lairdconnect.com/ 260 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 DIM rc, attr$ 

 attr$="Laird" 

 PRINT "\nattr$=";attr$ 

 

 //write 'CD' to index 2  

 rc=BleEncode16(attr$,0x4443,2) 

 //write 'AB' to index 0 - '2222' will be ignored 

 rc=BleEncode16(attr$,0x22224241,0) 

 //write 'EF' to index 3  

 rc=BleEncode16(attr$,0x4645,4) 

 

 PRINT "\nattr$ now = ";attr$ 

Expected Output: 

attr$=Laird 

attr$ now = ABCDEF 

 

FUNCTION 

This function overwrites three bytes in a string at a specified offset. If the string is not long enough, then it is extended with the 
new extended block uninitialized and then the bytes specified are overwritten. 

If the nIndex is such that the new string length exceeds the maximum attribute length, this function fails. The maximum 
attribute length can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth specification allows a length 
between 1 and 512. 

BLEENCODE24 (attr$, nData, nIndex) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments: 

attr$ 
byRef attr$  AS STRING 

This argument is the string that is written to an attribute. 

nData 
byVal nData  AS INTEGER 

The three least significant bytes of this integer is saved. The rest is ignored. 

nIndex 

byVal nIndex  AS INTEGER 

This is the zero based index into the string attr$ where the new fragment of data is written. If the string 

attr$ is not long enough to accommodate the index plus the length of the fragment,  it is extended. If the 

extended length exceeds the maximum allowable length of an attribute (see SYSINFO(2013)), this 

function fails. 

Example: 

// Example :: BleEncode24.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 DIM rc 

 DIM attr$ : attr$="Laird" 

 

 //write 'BCD' to index 1  



https://www.lairdconnect.com/ 261 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 rc=BleEncode24(attr$,0x444342,1) 

 //write 'A' to index 0  

 rc=BleEncode8(attr$,0x41,0) 

 //write 'EF'to index 4  

 rc=BleEncode16(attr$,0x4645,4) 

 

 PRINT "attr$=";attr$ 

Expected Output: 

attr$=ABCDEF 

 

FUNCTION 

This function overwrites four bytes in a string at a specified offset. If the string is not long enough, then it is extended with the 
new extended block uninitialized and then the bytes specified are overwritten. 

If the nIndex is such that the new string length exceeds the maximum attribute length, this function fails. The maximum 
attribute length can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth specification allows a length 
between 1 and 512. 

BLEENCODE32(attr$,nData, nIndex) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments: 

attr$ 
byRef attr$  AS STRING 

This argument is the string that is written to an attribute. 

nData 
byVal nData  AS INTEGER 

The four bytes of this integer is saved. The rest is ignored. 

nIndex 

byVal nIndex  AS INTEGER 

This is the zero based index into the string attr$ where the new fragment of data is written. If the 

string attr$ is not long enough to accommodate the index plus the length of the fragment, it is 

extended. If the extended length exceeds the maximum allowable length of an attribute (see 

SYSINFO(2013)), this function fails. 

Example: 

// Example :: BleEncode32.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 DIM rc 

 DIM attr$ : attr$="Laird" 

 

 //write 'BCDE' to index 1  

 rc=BleEncode32(attr$,0x45444342,1) 

 //write 'A' to index 0 

 rc=BleEncode8(attr$,0x41,0) 

 

 PRINT "attr$=";attr$    



https://www.lairdconnect.com/ 262 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

Expected Output: 

attr$=ABCDE 

 

FUNCTION 

This function overwrites four bytes in a string at a specified offset. If the string is not long enough, it is extended with the new 
extended block uninitialized and then the byte specified is overwritten. 

If the nIndex is such that the new string length exceeds the maximum attribute length, this function fails. The maximum 
attribute length can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth specification allows a length 
between 1 and 512. 

BLEENCODEFLOAT (attr$, nMatissa, nExponent, nIndex) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments: 

attr$ 
byRef attr$  AS STRING 

This argument is the string that is written to an attribute. 

nMatissa 

byVal nMantissa  AS INTEGER 

This value must be in the range -8388600 to +8388600 or the function fails. The data is written in little 

endian so that the least significant byte is at the lower memory address.  

Note:  The range is not +/- 2048 because after encoding the following 2 byte values have special 

meaning: 

0x007FFFFF NaN (Not a Number) 

0x00800000 NRes (Not at this resolution) 

0x007FFFFE + INFINITY 

0x00800002 - INFINITY 

0x00800001 Reserved for future use 
 

nExponent 
byVal nExponent  AS INTEGER 

This value must be in the range -128 to 127 or the function fails. 

nIndex 

byVal nIndex  AS INTEGER 

This is the zero based index into the string attr$ where the new fragment of data is written. If the string 

attr$ is not long enough to accommodate the index plus the length of the fragment, it is extended. If the 

extended length exceeds the maximum allowable length of an attribute (see SYSINFO(2013)), this 

function fails. 

Example: 

// Example :: BleEncodeFloat.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 DIM rc 

 DIM attr$ : attr$="" 

 

 //write 1234567 x 10^-54 as FLOAT to index 2 

 PRINT BleEncodeFLOAT(attr$,123456,-54,0) 

 

 //write 1234567 x 10^1000 as FLOAT to index 2 and it will fail 

 //because the exponent is too large, it has to be < 127 



https://www.lairdconnect.com/ 263 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 IF BleEncodeFLOAT(attr$,1234567,1000,2)!=0 THEN 

   PRINT "\nFailed to encode to FLOAT" 

 ENDIF 

 

 //write 10000000 x 10^0 as FLOAT to index 2 and it will fail 

 //because the mantissa is too large, it has to be < 8388600 

 IF BleEncodeFLOAT(attr$,10000000,0,2)!=0 THEN 

   PRINT "\nFailed to encode to FLOAT" 

 ENDIF 

Expected Output: 

0 

Failed to encode to FLOAT 

Failed to encode to FLOAT 

 

FUNCTION 

This function overwrites two bytes in a string at a specified offset as short 16-bit float value. If the string is not long enough, it is 
extended with the extended block uninitialized. Then the bytes are overwritten. 

If the nIndex is such that the new string length exceeds the maximum attribute length, this function fails. The maximum 
attribute length can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth specification allows a length 
between 1 and 512. 

BLEENCODESFLOATEX (attr$, nData, nIndex) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments: 

attr$ 
byRef attr$  AS STRING 

This argument is the string that is written to an attribute 

nData 

byVal nData  AS INTEGER 

The 32 bit value is converted into a 2-byte IEEE-11073 16-bit SFLOAT consisting of a 12-bit signed 

mantissa and a 4-bit signed exponent. This means a signed 32-bit value always fits in such a FLOAT 

enitity, but there is a loss in significance to 12 from 32. 

nIndex 

byVal nIndex  AS INTEGER 

This is the zero-based index into the string attr$ where the new fragment of data is written. If the string 

attr$ is not long enough to accommodate the index plus the length of the fragment, it is extended. If the 

new length exceeds the maximum allowable length of an attribute (see SYSINFO(2013)), this function 

fails. 

Example: 

// Example :: BleEncodeSFloatEx.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 DIM rc, mantissa, exp 

 DIM attr$ : attr$="" 

 



https://www.lairdconnect.com/ 264 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 //write 2,147,483,647 as SFLOAT to index 0 

 rc=BleEncodeSFloatEX(attr$,2147483647,0) 

 rc=BleDecodeSFloat(attr$,mantissa,exp,0) 

 PRINT "\nThe number stored is ";mantissa;" x 10^";exp 

 

Expected Output: 

The number stored is 214 x 10^7 

 

FUNCTION 

This function overwrites two bytes in a string at a specified offset as short 16-bit float value. If the string is not long enough, it is 
extended with the new block uninitialized. Then the byte specified is overwritten. 

If the nIndex is such that the new string length exceeds the maximum attribute length, this function fails. The maximum 
attribute length can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth specification allows a length 
between 1 and 512. 

BLEENCODESFLOAT (attr$, nMatissa, nExponent, nIndex) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments: 

attr$ 
byRef attr$  AS STRING 

This argument is the string that is written to an attribute. 

nMatissa 

byVal nMantissa  AS INTEGER 

This must be in the range -2046 to +2046 or the function fails. The data is written in little endian so the 

least significant byte is at the lower memory address. 

Note:  The range is not +/- 2048 because after encoding, the following 2-byte values have special 

meaning: 

0x007FF NaN (Not a Number) 

0x00800 NRes (Not at this resolution) 

0x007FE + INFINITY 

0x00802 - INFINITY 

0x00801 Reserved for future use 
 

nExponent 
byVal nExponent  AS INTEGER 

This value must be in the range -8 to 7 or the function fails. 

nIndex 

byVal nIndex  AS INTEGER 

This is the zero based index into the string attr$ where the new fragment of data is written. If the string 

attr$ is not long enough to accommodate the index plus the length of the fragment, it is extended. If the 

new length exceeds the maximum allowable length of an attribute (see SYSINFO(2013)), this function 

fails. 

Example: 

// Example :: BleEncodeSFloat.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 DIM rc 



https://www.lairdconnect.com/ 265 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 DIM attr$ : attr$="" 

 

 SUB Encode(BYVAL mantissa, BYVAL exp) 

     IF BleEncodeSFloat(attr$,mantissa,exp,2)!=0 THEN 

         PRINT "\nFailed to encode to SFLOAT" 

     ELSE 

         PRINT "\nSuccess" 

     ENDIF 

 ENDSUB 

     

 Encode(1234,-4)     //1234 x 10^-4 

 Encode(1234,10)     //1234 x 10^10 will fail because exponent too large 

 Encode(10000,0)     //10000 x 10^0 will fail because mantissa too large  

Expected Output: 

Success 

Failed to encode to SFLOAT 

Failed to encode to SFLOAT 

 

FUNCTION 

This function overwrites a 7-byte string into the string at a specified offset. If the string is not long enough, it is extended with 
the new extended block uninitialized and then the byte specified is overwritten. 

The 7-byte string consists of a byte each for century, year, month, day, hour, minute and second. If (year * month) is zero, it is 
taken as “not noted” year and all the other fields are set zero (not noted). 

For example, 5 May 2013 10:31:24 is represented as \14\0D\05\05\0A\1F\18. 

If the nIndex is such that the new string length exceeds the maximum attribute length, this function fails. The maximum length 
of an attribute as implemented can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth specification 
allows a length between 1 and 512. 

Note: When the attr$ string variable is updated, the two byte year field is converted into a 16-bit integer. Hence \14\0D 

gets converted to \DD\07 

BLEENCODETIMESTAMP (attr$, timestamp$, nIndex) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments: 

attr$ 
byRef attr$  AS STRING 

This argument is the string that is written to an attribute. 

timestamp$ 

byRef timestamp$  AS STRING 

This is a 7-byte string as described above. For example 5 May 2013 10:31:24 is entered 

\14\0D\05\05\0A\1F\18. 

nIndex 

byVal nIndex  AS INTEGER 

This is the zero based index into the string attr$ where the new fragment of data is written. If the string attr$ 

is not long enough to accommodate the index plus the length of the fragment it is extended. If the new 

length exceeds the maximum allowable length of an attribute (see SYSINFO(2013)), this function fails. 



https://www.lairdconnect.com/ 266 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

Example: 

// Example :: BleEncodeTimestamp.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 DIM rc, ts$ 

 DIM attr$ : attr$="" 

 

 //write the timestamp <5 May 2013 10:31:24> 

 ts$="\14\0D\05\05\0A\1F\18" 

 PRINT BleEncodeTimestamp(attr$,ts$,0) 

Expected Output: 

0 

 

FUNCTION 

This function overwrites a substring at a specified offset with data from another substring of a string. If the destination string is 
not long enough, it is extended with the new block uninitialized. Then the byte is overwritten. 

If the nIndex is such that the new string length exceeds the maximum attribute length, this function fails. The maximum length 
of an attribute as implemented can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth specification 
allows a length between 1 and 512. 

BleEncodeSTRING (attr$, nIndex1 str$, nIndex2, nLen) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments: 

attr$ 
byRef attr$  AS STRING 

This argument is the string is written to an attribute 

nIndex1 

byVal nIndex1  AS INTEGER 

This is the zero based index into the string attr$ where the new fragment of data is written  If the string 

attr$ is not long enough to accommodate the index plus the length of the fragment it is extended. If the 

new length exceeds the maximum allowable length of an attribute (see SYSINFO(2013)), this function 

fails. 

str$ 
byRef str$  AS STRING 

This contains the source data which is qualified by the nIndex2 and nLen arguments that follow. 

nIndex2 

byVal nIndex2  AS INTEGER 

This is the zero based index into the string str$ from which data is copied. No data is copied if this is 

negative or greater than the string. 

nLen 

byVal nLen  AS INTEGER 

This specifies the number of bytes from offset nIndex2 to be copied into the destination string. It is clipped 

to the number of bytes left to copy after the index. 

Example: 

// Example :: BleEncodeString.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 DIM rc, attr$, ts$ : ts$="Hello World" 

 //write "Wor" from "Hello World" to the attribute at index 2 

 rc=BleEncodeString(attr$,2,ts$,6,3) 

 PRINT attr$ 



https://www.lairdconnect.com/ 267 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

Expected Output: 

\00\00Wor 

 

FUNCTION 

This function overwrites some bits of a string at a specified bit offset with data from an integer which is treated as a bit array of 
length 32. If the destination string is not long enough, it is extended with the new extended block uninitialized. Then the bits 
specified are overwritten. 

If the nIndex is such that the new string length exceeds the maximum attribute length, this function fails. The maximum length 
of an attribute as implemented can be obtained using the function SYSINFO(n) where n is 2013. The Bluetooth specification 
allows a length between 1 and 512; hence the (nDstIdx + nBitLen) cannot be greater than the maximum attribute length times 
eight. 

BleEncodeBITS (attr$, nDstIdx, srcBitArr , nSrcIdx, nBitLen) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments: 

attr$ 
byRef attr$  AS STRING 

This is the string written to an attribute. It is treated as a bit array. 

nDstIdx 

byVal nDstIdx  AS INTEGER 

This is the zero based bit index into the string attr$, treated as a bit array, where the new fragment of 

data bits is written. If the string attr$ is not long enough to accommodate the index plus the length of the 

fragment it is extended. If the new length exceeds the maximum allowable length of an attribute (see 

SYSINFO(2013)),  this function fails. 

srcBitArr 
byVal srcBitArr  AS INTEGER 

This contains the source data bits which is qualified by the nSrcIdx and nBitLen arguments that follow. 

nSrcIdx 

byVal nSrcIdx AS INTEGER 

This is the zero-based bit index into the bit array contained in srcBitArr from where the data bits is 

copied. No data is copied if this index is negative or greater than 32. 

nBitLen 

byVal nBitLen  AS INTEGER 

This specifies the number of bits from offset nSrcIdx to be copied into the destination bit array 

represented by the string attr$. It is clipped to the number of bits left to copy after the index nSrcIdx. 

Example: 

// Example :: BleEncodeBits.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 DIM attr$, rc, bA: bA=b'1110100001111  

 rc=BleEncodeBits(attr$,20,bA,7,5) : PRINT attr$ //copy 5 bits from index 7 to attr$ 

Expected Output: 

\00\00\A0\01 

 

Data in a characteristic is stored in a value attribute, a byte array. Multibyte characteristic descriptors content is stored 
similarly. Those bytes are manipulated in smartBASIC applications using STRING variables.  

Attibute data is stored in little endian format. 

This section describes decoding functions that allow attribute strings to be read from smaller bytewise subfields more 
efficiently than the generic STRXXXX functions that are made available in smart BASIC. 



https://www.lairdconnect.com/ 268 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

Note:  CCCD and SCCD descriptors are special cases as they are defined as having two bytes which are treated as 16-

bit integers mapped to INTEGER variables in smartBASIC.  

 

FUNCTION 

This function reads a single byte in a string at a specified offset into a 32-bit integer variable with sign extension. If the offset 
points beyond the end of the string, then this function fails and returns zero.  

BLEDECODES8 (attr$, nData, nIndex) 

Returns 
INTEGER, the number of bytes extracted from the attribute string. Can be less than the size expected if the 

nIndex parameter is positioned towards the end of the string. 

Arguments: 

attr$ 
byRef attr$  AS STRING 

This references the attribute string from which the function reads. 

nData 
byRef nData  AS INTEGER 

This references an integer to be updated with the 8-bit data from attr$, after sign extension. 

nIndex 

byVal nIndex  AS INTEGER 

This is the zero based index into the string attr$ from which the data is read. If the string attr$ is not long 

enough to accommodate the index plus the number of bytes to read, this function fails. 

Example: 

// Example :: BleDecodeS8.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 DIM chrHandle,v1,svcHandle,rc 

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc) 

 DIM attr$ : attr$="\00\01\02\03\04\85\86\87\88\89" 

 DIM uuid : uuid = 0x1853 

 

 //create random service just for this example 

 rc=BleServiceNew(1, BleHandleUuid16(uuid), svcHandle) 

 

 //create char and commit as part of service commited above 

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0) 

 rc=BleCharCommit(svcHandle,attr$,chrHandle) 

 rc=BleServiceCommit(svcHandle) 

 

 rc=BleCharValueRead(chrHandle,attr$) 

 

 //read signed byte from index 2 

 rc=BleDecodeS8(attr$,v1,2) 

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1 



https://www.lairdconnect.com/ 269 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 PRINT "\ndata in Decimal = "; v1;"\n" 

 

 //read signed byte from index 6 - two's complement of -122 

 rc=BleDecodeS8(attr$,v1,6) 

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1 

 PRINT "\ndata in Decimal = "; v1;"\n" 

Expected Output: 

data in Hex = 0x00000002 

data in Decimal = 2 

 

data in Hex = 0xFFFFFF86 

data in Decimal = -122 

 

FUNCTION 

This function reads a single byte in a string at a specified offset into a 32-bit integer variable without sign extension. If the 
offset points beyond the end of the string, this function fails.  

BLEDECODEU8 (attr$, nData, nIndex) 

Returns 
INTEGER, the number of bytes extracted from the attribute string. Can be less than the size expected if 

the nIndex parameter is positioned towards the end of the string. 

Arguments: 

attr$ 
byRef attr$  AS STRING 

This references the attribute string from which the function reads. 

nData 
byRef nData  AS INTEGER 

This references an integer to be updated with the 8-bit data from attr$, without sign extension. 

nIndex 

byVal nIndex  AS INTEGER 

This is the zero based index into the string attr$ from which data is read. If the string attr$ is not long 

enough to accommodate the index plus the number of bytes to read, this function fails. 

Example: 

// Example :: BleDecodeU8.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 DIM chrHandle,v1,svcHandle,rc 

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc) 

 DIM attr$ : attr$="\00\01\02\03\04\85\86\87\88\89" 

 DIM uuid : uuid = 0x1853 

 

 rc=BleServiceNew(1, BleHandleUuid16(uuid), svcHandle) 

 

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0) 

 rc=BleCharCommit(svcHandle,attr$,chrHandle) 



https://www.lairdconnect.com/ 270 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

 rc=BleServiceCommit(svcHandle) 

 

 rc=BleCharValueRead(chrHandle,attr$) 

 

 //read unsigned byte from index 2 

 rc=BleDecodeU8(attr$,v1,2) 

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1 

 PRINT "\ndata in Decimal = "; v1;"\n" 

 

 //read unsigned byte from index 6 

 rc=BleDecodeU8(attr$,v1,6) 

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1 

 PRINT "\ndata in Decimal = "; v1;"\n" 

Expected Output: 

data in Hex = 0x00000002 

data in Decimal = 2 

 

data in Hex = 0x00000086 

data in Decimal = 134 

 

FUNCTION 

This function reads two bytes in a string at a specified offset into a 32-bit integer variable with sign extension. If the offset 
points beyond the end of the string then this function fails.  

BLEDECODES16 (attr$, nData, nIndex) 

Returns 
INTEGER, the number of bytes extracted from the attribute string. Can be less than the size expected if 

the nIndex parameter is positioned towards the end of the string. 

Arguments: 

attr$ 
byRef attr$  AS STRING 

This references the attribute string from which the function reads. 

nData 
byRef nData  AS INTEGER 

This references an integer to be updated with the 2-byte data from attr$, after sign extension. 

nIndex 

byVal nIndex  AS INTEGER 

This is the zero based index into the string attr$ from which data is read.  If the string attr$ is not long 

enough to accommodate the index plus the number of bytes to read, this function fails. 

Example: 

// Example :: BleDecodeS16.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 DIM chrHandle,v1,svcHandle,rc 

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc) 

 DIM attr$ : attr$="\00\01\02\03\04\85\86\87\88\89" 



https://www.lairdconnect.com/ 271 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 DIM uuid : uuid = 0x1853 

 

 rc=BleServiceNew(1, BleHandleUuid16(uuid), svcHandle) 

 

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0) 

 rc=BleCharCommit(svcHandle,attr$,chrHandle) 

 

 rc=BleServiceCommit(svcHandle) 

 

 rc=BleCharValueRead(chrHandle,attr$) 

 

 //read 2 signed bytes from index 2 

 rc=BleDecodeS16(attr$,v1,2) 

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1 

 PRINT "\ndata in Decimal = "; v1;"\n" 

 

 //read 2 signed bytes from index 6 

 rc=BleDecodeS16(attr$,v1,6) 

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1 

 PRINT "\ndata in Decimal = "; v1;"\n" 

Expected Output: 

data in Hex = 0x00000302 

data in Decimal = 770 

 

data in Hex = 0xFFFF8786 

data in Decimal = -30842 

 

This function reads two bytes from a string at a specified offset into a 32-bit integer variable without sign extension. If the 
offset points beyond the end of the string, then this function fails.  

BLEDECODEU16 (attr$, nData, nIndex) 

Returns INTEGER, the number of bytes extracted from the attribute string. Can be less than the size expected if 

the nIndex parameter is positioned towards the end of the string. 

Arguments: 

attr$ 
byRef attr$  AS STRING 

This references the attribute string from which the function reads. 

nData 
byRef nData  AS INTEGER 

This references an integer to be updated with the 2-byte data from attr$, without sign extension. 

nIndex 

byVal nIndex  AS INTEGER 

This is the zero based index into the string attr$ from which data is read.  If the string attr$ is not long 

enough to accommodate the index plus the number of bytes to read, this function fails. 



https://www.lairdconnect.com/ 272 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

Example: 

// Example :: BleDecodeU16.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 DIM chrHandle,v1,svcHandle,rc 

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc) 

 DIM attr$ : attr$="\00\01\02\03\04\85\86\87\88\89" 

 DIM uuid : uuid = 0x1853 

 

 rc=BleServiceNew(1, BleHandleUuid16(uuid), svcHandle) 

 

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0) 

 rc=BleCharCommit(svcHandle,attr$,chrHandle) 

 

 rc=BleServiceCommit(svcHandle) 

 

 rc=BleCharValueRead(chrHandle,attr$) 

 

 //read 2 unsigned bytes from index 2 

 rc=BleDecodeU16(attr$,v1,2) 

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1 

 PRINT "\ndata in Decimal = "; v1;"\n" 

 

 //read 2 unsigned bytes from index 6 

 rc=BleDecodeU16(attr$,v1,6) 

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1 

 PRINT "\ndata in Decimal = "; v1;"\n" 

Expected Output: 

data in Hex = 0x00000302 

data in Decimal = 770 

 

data in Hex = 0x00008786 

data in Decimal = 34694 

 

FUNCTION 

This function reads three bytes in a string at a specified offset into a 32-bit integer variable with sign extension. If the offset 
points beyond the end of the string, this function fails.  

BLEDECODES24 (attr$, nData, nIndex) 

Returns INTEGER, the number of bytes extracted from the attribute string. Can be less than the size expected if 

the nIndex parameter is positioned towards the end of the string. 

Arguments: 



https://www.lairdconnect.com/ 273 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

attr$ 
byRef attr$  AS STRING 

This references the attribute string from which the function reads. 

nData 
byRef nData  AS INTEGER 

This references an integer to be updated with the 3-byte data from attr$, with sign extension. 

nIndex 

byVal nIndex  AS INTEGER 

This is the zero based index into the string attr$ from which data is read. If the string attr$ is not long 

enough to accommodate the index plus the number of bytes to read, this function fails. 

Example: 

// Example :: BleDecodeS24.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 DIM chrHandle,v1,svcHandle,rc 

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc) 

 DIM attr$ : attr$="\00\01\02\03\04\85\86\87\88\89" 

 DIM uuid : uuid = 0x1853 

 

 rc=BleServiceNew(1, BleHandleUuid16(uuid), svcHandle) 

 

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0) 

 rc=BleCharCommit(svcHandle,attr$,chrHandle) 

 

 rc=BleServiceCommit(svcHandle) 

 

 rc=BleCharValueRead(chrHandle,attr$) 

 

 //read 3 signed bytes from index 2 

 rc=BleDecodeS24(attr$,v1,2) 

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1 

 PRINT "\ndata in Decimal = "; v1;"\n" 

 

 //read 3 signed bytes from index 6 

 rc=BleDecodeS24(attr$,v1,6) 

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1 

 PRINT "\ndata in Decimal = "; v1;"\n" 

Expected Output: 

data in Hex = 0x00040302 

data in Decimal = 262914 

 

data in Hex = 0xFF888786 

data in Decimal = -7829626 



https://www.lairdconnect.com/ 274 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

FUNCTION 

This function reads three bytes from a string at a specified offset into a 32-bit integer variable without sign extension. If the 
offset points beyond the end of the string, then this function fails.  

BLEDECODEU24 (attr$, nData, nIndex) 

Returns INTEGER, the number of bytes extracted from the attribute string. Can be less than the size expected if 

the nIndex parameter is positioned towards the end of the string. 

Arguments: 

attr$ 
byRef attr$  AS STRING 

This references the attribute string from which the function reads. 

nData 
byRef nData  AS INTEGER 

This references an integer to be updated with the 3-byte data from attr$, without sign extension. 

nIndex 

byVal nIndex  AS INTEGER 

This is the zero based index into the string attr$ from which data is read. If the string attr$ is not long 

enough to accommodate the index plus the number of bytes to read, this function fails. 

Example: 

// Example :: BleDecodeU24.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 DIM chrHandle,v1,svcHandle,rc 

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc) 

 DIM attr$ : attr$="\00\01\02\03\04\85\86\87\88\89" 

 DIM uuid : uuid = 0x1853 

 

 rc=BleServiceNew(1, BleHandleUuid16(uuid), svcHandle) 

 

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0) 

 rc=BleCharCommit(svcHandle,attr$,chrHandle) 

 

 rc=BleServiceCommit(svcHandle) 

 

 rc=BleCharValueRead(chrHandle,attr$) 

 

 //read 3 unsigned bytes from index 2 

 rc=BleDecodeU24(attr$,v1,2) 

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1 

 PRINT "\ndata in Decimal = "; v1;"\n" 

 

 //read 3 unsigned bytes from index 6 



https://www.lairdconnect.com/ 275 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 rc=BleDecodeU24(attr$,v1,6) 

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1 

 PRINT "\ndata in Decimal = "; v1;"\n" 

Expected Output: 

data in Hex = 0x00040302 

data in Decimal = 262914 

 

data in Hex = 0x00888786 

data in Decimal = 8947590 

 

FUNCTION 

This function reads four bytes in a string at a specified offset into a 32-bit integer variable. If the offset points beyond the end of 
the string, this function fails.  

BLEDECODE32 (attr$, nData, nIndex) 

Returns INTEGER, the number of bytes extracted from the attribute string. Can be less than the size expected if the 

nIndex parameter is positioned towards the end of the string. 

Arguments: 

attr$ 
byRef attr$  AS STRING 

This references the attribute string from which the function reads. 

nData 
byRef nData  AS INTEGER 

This references an integer to be updated with the 3-byte data from attr$, after sign extension. 

nIndex 

byVal nIndex  AS INTEGER 

This is the zero based index into the string attr$ from which data is read. If the string attr$ is not long 

enough to accommodate the index plus the number of bytes to read, this function fails. 



https://www.lairdconnect.com/ 276 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

Example: 

// Example :: BleDecode32.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 DIM chrHandle,v1,svcHandle,rc 

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc) 

 DIM attr$ : attr$="\00\01\02\03\04\85\86\87\88\89" 

 DIM uuid : uuid = 0x1853 

 

 rc=BleServiceNew(1, BleHandleUuid16(uuid), svcHandle) 

 

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0) 

 rc=BleCharCommit(svcHandle,attr$,chrHandle) 

 

 rc=BleServiceCommit(svcHandle) 

 

 rc=BleCharValueRead(chrHandle,attr$) 

 

 //read 4 signed bytes from index 2 

 rc=BleDecode32(attr$,v1,2) 

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1 

 PRINT "\ndata in Decimal = "; v1;"\n" 

 

 //read 4 signed bytes from index 6 

 rc=BleDecode32(attr$,v1,6) 

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1 

 PRINT "\ndata in Decimal = "; v1;"\n" 

Expected Output: 

data in Hex = 0x85040302 

data in Decimal = -2063334654 

 

data in Hex = 0x89888786 

data in Decimal = -1987541114 



https://www.lairdconnect.com/ 277 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

FUNCTION 

This function reads four bytes in a string at a specified offset into a couple of 32-bit integer variables. The decoding results in 
two variables, the 24-bit signed mantissa and the 8-bit signed exponent. If the offset points beyond the end of the string, this 
function fails.  

BLEDECODEFLOAT (attr$, nMatissa, nExponent, nIndex) 

Returns INTEGER, the number of bytes extracted from the attribute string. Can be less than the size expected if 

the nIndex parameter is positioned towards the end of the string. 

Arguments: 

attr$ 
byRef attr$  AS STRING 

This references the attribute string from which the function reads. 

nMantissa 

byRef nMantissa  AS INTEGER 

This is updated with the 24 bit mantissa from the 4-byte object. 

If nExponent is 0, you must check for the following special values: 

0x007FFFFF NaN (Not a Number) 

0x00800000 NRes (Not at this resolution) 

0x007FFFFE + INFINITY 

0x00800002 - INFINITY 

0x00800001 Reserved for future use 
 

nExponent 
byRef nExponent  AS INTEGER 

This is  updated with the 8-bit mantissa. If it is zero, check nMantissa for special cases as stated above. 

nIndex 

byVal nIndex  AS INTEGER 

This is the zero based index into the string attr$ from which data is read. If the string attr$ is not long 

enough to accommodate the index plus the number of bytes to read, this function fails. 

Example: 

// Example :: BleDecodeFloat.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 DIM chrHandle,v1,svcHandle,rc, mantissa, exp 

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc) 

 DIM attr$ : attr$="\00\01\02\03\04\85\86\87\88\89" 

 DIM uuid : uuid = 0x1853 

 

 rc=BleServiceNew(1, BleHandleUuid16(uuid), svcHandle) 

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0) 

 rc=BleCharCommit(svcHandle,attr$,chrHandle) 

 

 rc=BleServiceCommit(svcHandle) 

 

 rc=BleCharValueRead(chrHandle,attr$) 



https://www.lairdconnect.com/ 278 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

 //read 4 bytes FLOAT from index 2 in the string 

 rc=BleDecodeFloat(attr$,mantissa,exp,2) 

 PRINT "\nThe number read is ";mantissa;" x 10^";exp 

 

 //read 4 bytes FLOAT from index 6 in the string 

 rc=BleDecodeFloat(attr$,mantissa,exp,6) 

 PRINT "\nThe number read is ";mantissa;"x 10^";exp 

Expected Output:  

The number read is 262914*10^-123 

The number read is -7829626*10^-119 

 

FUNCTION 

This function reads two bytes in a string at a specified offset into a couple of 32-bit integer variables. The decoding results in 
two variables, the 12-bit signed mantissa and the 4-bit signed exponent. If the offset points beyond the end of the string then 
this function fails.  

BLEDECODESFLOAT (attr$, nMantissa, nExponent, nIndex) 

Returns INTEGER, the number of bytes extracted from the attribute string. Can be less than the size expected if 

the nIndex parameter is positioned towards the end of the string. 

Arguments: 

attr$ 
byRef attr$  AS STRING 

This references the attribute string from which the function reads. 

nMantissa 

byRef nMantissa  AS INTEGER 

This is updated with the 12-bit mantissa from the two byte object. 

If the nExponent is 0, you must check for the following special values: 

0x007FFFFF NaN (Not a Number) 

0x00800000 NRes (Not at this resolution) 

0x007FFFFE + INFINITY 

0x00800002 - INFINITY 

0x00800001 Reserved for future use 
 

nExponent 

byRef nExponent  AS INTEGER 

This is updated with the 4-bit mantissa. If it is zero, check the nMantissa for special cases as stated 

above. 

nIndex 

byVal nIndex  AS INTEGER 

This is the zero based index into the string attr$ from which data is read. If the string attr$ is not long 

enough to accommodate the index plus the number of bytes to read, this function fails. 

Example: 

// Example :: BleDecodeSFloat.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 DIM chrHandle,v1,svcHandle,rc, mantissa, exp 

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc) 

 DIM attr$ : attr$="\00\01\02\03\04\85\86\87\88\89" 



https://www.lairdconnect.com/ 279 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 DIM uuid : uuid = 0x1853 

 

 rc=BleServiceNew(1, BleHandleUuid16(uuid), svcHandle) 

 

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0) 

 rc=BleCharCommit(svcHandle,attr$,chrHandle) 

 

 rc=BleServiceCommit(svcHandle) 

 

 rc=BleCharValueRead(chrHandle,attr$) 

 

 //read 2 bytes FLOAT from index 2 in the string 

 rc=BleDecodeSFloat(attr$,mantissa,exp,2) 

 PRINT "\nThe number read is ";mantissa;" x 10^";exp 

 

 //read 2 bytes FLOAT from index 6 in the string 

 rc=BleDecodeSFloat(attr$,mantissa,exp,6) 

 PRINT "\nThe number read is ";mantissa;"x 10^";exp 

Expected Output: 

The number read is 770 x 10^0 

The number read is 1926x 10^-8 

 

FUNCTION 

This function reads seven bytes from string an offset into an attribute string. If the offset plus seven bytes points beyond the 
end of the string then this function fails.  

The seven byte string consists of a byte each for century, year, month, day, hour, minute and second. If (year * month) is zero, 
it is taken as “not noted” year and all the other fields are set zero (not noted). 

For example: 5 May 2013 10:31:24 is represented in the source as  \DD\07\05\05\0A\1F\18 and the year is be translated into a 
century and year so that the destination string is \14\0D\05\05\0A\1F\18. 

BLEDECODETIMESTAMP (attr$, timestamp$, nIndex) 

Returns INTEGER, the number of bytes extracted from the attribute string. Can be less than the size expected if 

the nIndex parameter is positioned towards the end of the string. 

Arguments: 

attr$ 
byRef attr$  AS STRING 

This references the attribute string from which the function reads. 

timestamp$ 

byRef timestamp$  AS STRING 

On exit this is an exact 7-byte string as described above.  

For example: 5 May 2013 10:31:24 is stored as \14\0D\05\05\0A\1F\18 

nIndex 

byVal nIndex  AS INTEGER 

This is the zero based index into the string attr$ from which data is read. If the string attr$ is not long 

enough to accommodate the index plus the number of bytes to read, this function fails. 

Example: 



https://www.lairdconnect.com/ 280 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

// Example :: BleDecodeTimestamp.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 DIM chrHandle,v1,svcHandle,rc, ts$ 

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc) 

 //5th May 2013, 10:31:24 

 DIM attr$ : attr$="\00\01\02\DD\07\05\05\0A\1F\18" 

 DIM uuid : uuid = 0x1853 

 

 rc=BleServiceNew(1, BleHandleUuid16(uuid), svcHandle) 

 

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0) 

 rc=BleCharCommit(svcHandle,attr$,chrHandle) 

 

 rc=BleServiceCommit(svcHandle) 

 

 rc=BleCharValueRead(chrHandle,attr$) 

 

 //read 7 byte timestamp from the index 3 in the string 

 rc=BleDecodeTimestamp(attr$,ts$,3) 

 PRINT "\nTimestamp = "; StrHexize$(ts$) 

Expected Output: 

Timestamp = 140D05050A1F18 

 

FUNCTION 

This function reads a maximum number of bytes from an attribute string at a specified offset into a destination string. Because 
the output string can handle truncated bit blocks, this function does not fail. 

BLEDECODESTRING (attr$, nIndex, dst$, nMaxBytes) 

Returns INTEGER, the number of bytes extracted from the attribute string. Can be less than the size expected if 

the nIndex parameter is positioned towards the end of the string. 

Arguments: 

attr$ 
byRef attr$  AS STRING 

This references the attribute string from which the function reads. 

nIndex 
byVal nIndex  AS INTEGER 

This is the zero based index into string attr$ from which data is read. 

dst$ 

byRef dst$  AS STRING 

This argument is a reference to a string that is updated with up to nMaxBytes of data from the index 

specified. A shorter string is returned if there are not enough bytes beyond the index. 



https://www.lairdconnect.com/ 281 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

nMaxBytes 
byVal nMaxBytes  AS INTEGER 

This specifies the maximum number of bytes to read from attr$. 

Example: 

// Example :: BleDecodeString.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 DIM chrHandle,v1,svcHandle,rc, ts$,decStr$ 

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc) 

 //"ABCDEFGHIJ" 

 DIM attr$ : attr$="41\42\43\44\45\46\47\48\49\4A" 

 DIM uuid : uuid = 0x1853 

 

 rc=BleServiceNew(1, BleHandleUuid16(uuid), svcHandle) 

 

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0) 

 rc=BleCharCommit(svcHandle,attr$,chrHandle) 

 

 rc=BleServiceCommit(svcHandle) 

 

 rc=BleCharValueRead(chrHandle,attr$) 

 

 //read max 4 bytes from index 3 in the string 

 rc=BleDecodeSTRING(attr$,3,decStr$,4) 

 PRINT "\nd$=";decStr$ 

 

 //read max 20 bytes from index 3 in the string - will be truncated 

 rc=BleDecodeSTRING(attr$,3,decStr$,20) 

 PRINT "\nd$=";decStr$ 

 

 //read max 4 bytes from index 14 in the string - nothing at index 14 

 rc=BleDecodeSTRING(attr$,14,decStr$,4) 

 PRINT "\nd$=";decStr$ 

Expected Output: 

d$=CDEF 

d$=CDEFGHIJ 

d$= 



https://www.lairdconnect.com/ 282 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

FUNCTION 

This function reads bits from an attribute string at a specified offset (treated as a bit array) into a destination integer object 
(treated as a bit array of fixed size of 32). This implies a maximum of 32 bits can be read. Because the output bit array can 
handle truncated bit blocks, this function does not fail. 

BLEDECODEBITS (attr$, nSrcIdx, dstBitArr, nDstIdx, nMaxBits) 

Returns INTEGER, the number of bits extracted from the attribute string. Can be less than the size expected if the 

nSrcIdx parameter is positioned towards the end of the source string or if nDstIdx will not allow more to be 

copied. 

Arguments: 

attr$ 

byRef attr$  AS STRING 

This references the attribute string from which to read, treated as a bit array. Hence a string of 10 bytes is 

an array of 80 bits. 

nSrcIdx 

byVal nSrcIdx  AS INTEGER 

This is the zero based bit index into the string attr$ from which data is read. For example, the third bit in the 

second byte is index number 10. 

dstBitArr 

byRef dstBitArr  AS INTEGER 

This argument references an integer treated as an array of 32 bits into which data is copied. Only the 

written bits are modified. 

nDstldx 
byVal nDstIdx  AS INTEGER 

This is the zero based bit index into the bit array dstBitArr to where the data is written. 

nMaxBits 

byVal nMaxBits AS INTEGER 

This argument specifies the maximum number of bits to read from attr$. Due to the destination being an 

integer variable, it cannot be greater than 32. Negative values are treated as zero. 

Example: 

// Example :: BleDecodeBits.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 DIM chrHandle,v1,svcHandle,rc, ts$,decStr$ 

 DIM ba : ba=0 

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc) 

 //"ABCDEFGHIJ" 

 DIM attr$ : attr$="41\42\43\44\45\46\47\48\49\4A" 

 DIM uuid : uuid = 0x1853 

 

 rc=BleServiceNew(1, BleHandleUuid16(uuid), svcHandle) 

 

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0) 

 rc=BleCharCommit(svcHandle,attr$,chrHandle) 

 

 rc=BleServiceCommit(svcHandle) 



https://www.lairdconnect.com/ 283 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

 rc=BleCharValueRead(chrHandle,attr$) 

 

 //read max 14 bits from index 20 in the string to index 10 

 rc=BleDecodeBITS(attr$,20,ba,10,14) 

 PRINT "\nbit array = ", INTEGER.B' ba 

 

 //read max 14 bits from index 20 in the string to index 10 

 ba=0x12345678 

 PRINT "\n\nbit array = ",INTEGER.B' ba 

 

 rc=BleDecodeBITS(attr$,14000,ba,0,14) 

 PRINT "\nbit array now = ", INTEGER.B' ba 

 //ba will not have been modified because index 14000 

 //doesn't exist in attr$ 

Expected Output: 

bit array =     00000000000100001101000000000000 

 

bit array =     00010010001101000101011001111000 

bit array now = 00010010001101000101011001111000 

 

 

This section describes all functions related to the pairing and bonding manager which manages trusted devices. The database 
stores information like the address of the trusted device along with the security keys. At the time of writing this manual a 
maximum of 16 devices can be stored in the database and the command AT I 2012 or at runtime SYSINFO(2012) returns the 
maximum number of devices that can be saved in the database 

The type of information that can be stored for a trusted device is: 

▪ The Bluetooth address of the trusted device (and it will be the non-resolvable address if the connection was originally 
established by the central device using its resolvable key – like iOS devices). 

▪ A 16 byte key, eDIV and eRAND for the long term key, called LTK. Up to 2 instances of this LTK can be stored. One 
which is supplied by the central device and the other is the one supplied by the peripheral. This means in a connection, 
the device will check which role (peripheral or central) it is connected as and pick the appropriate key for subsequent 
encryption requests.  

▪ The size of the long term key. 

▪ A flag to indictate if the LTK is authenticated – Man-In-The-Middle (MITM) protection.  

▪ A 16 byte Indentity Resolving Key (IRK). 

▪ A 16 byte Connection Signature Resolving Key (CSRK) 

 

The bonding database contains two tables of bonds where both tables have the same structure in terms of what each record 
can store and from a BLE perspective are equal in meaning.  

For the purpose of clarity both in this manual and in smartBASIC, one table is called the ‘Rolling’ table and the other is called 
‘Persistent’ table. 



https://www.lairdconnect.com/ 284 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

When a new bonding occurs the information is ALWAYS guaranteed to be saved in the ‘Rolling’ table, and if it is full, then the 
oldest ‘Rolling’ bond is automatically deleted to make space for the new one.  

The ‘Persistent’ table can only be populated by transferring a bond from the ‘Rolling’ table using the function 
BleBondingPersistKey. 

Use the function BleBondingEraseKey to delete a key and the function will look for it in both tables and when found delete it. 
There is no need to know which table it belongs to when deleting. The database manager ensures there is only one instance 
of a bond and so a device cannot occur in both. 

The total number of bonds in the ‘Rolling’ and ‘Persistent’ tables will always be less than or equal to the capacity of the 
database which is returned as explained above using AT I 2012 or SYSINFO(2012). 

The number of ‘Rolling’ or ‘Persistent’ bonds (or maximum capacity) at any time  can be obtained by calling the function 
BleBondingStats. The ‘Persistent’ total is the difference between the ‘total’ and ‘rolling’ variables returned by that routine.  

At any time, the capacity of the ‘Rolling’ table is the difference between the absolute total capacity and the number of bonds in 
the ‘Persistent’ table. See the function BleBondingStats which returns information that can be used to determine this. 

Bonds in the ‘Rolling’ table can be transferred to ‘Persistent’ unless the ‘Persist’ table is full. The capacity of the ‘Persistent’ 
table is returned by AT I 2043 or SYSINFO(2043) and at the time of writing this manual it is 12, which corresponds to 75% of 
the total capacity. 

If a bond exists and it happens to be in the ‘Persistent’ table and new bonding provides new information then the record is 
updated. 

If a bond exists and it happens to be in the ‘Rolling’ table and new bonding provides new information then the record is 
updated and in addition, the age list is updated to that the device is marked the ‘youngest’ in the age list. 

It is expected that a smartBASIC application wanting to manage trusted device will use a combination of the functions : 
BleBondMngrGetInfo, BleBondingIsTrusted, BleBondingPersistKey and BleBondingEraseKey. 

 

BLE provides for simple secure pairing with or without man-in-the-middle attack protection. To enhance security while a pairing 
is in progress the specification has provided for Out-of-Band pairing where the shared secret information is exchanged by 
means other than the Bluetooth connection. That mode of pairing is currently not exposed. 

Laird have provided an additional mechanism for bonding using the standard inbuilt simple secure pairing which is called 
Whisper Mode pairing. In this mode, when a pairing is detected to be in progress, the transmit power is automatically reduced 
so that the ‘bubble’ of influence is reduced and thus a proximity based enhanced security is achieved. 

To take advantage of this pairing mechanism, use the function BleTxPwrWhilePairing() to reduce the transmit power for the 
short duration that the pairing is in progress. 

 

The following bonding manager messages are thrown to the run-time engine using the EVBLEMSG message with the 
following msgIDs: 

MsgId Description 

10 A new bond has been successfully created 

16 The device has successfully connected to a bonded master 

17 The bonding information in the bonding database have been updated 

22 Adding the paired device and its information to the bonding database has failed 

 

FUNCTION 

This function retrieves statistics of the bonding manager which  consists of the total capacity as the return value and the rolling 
and total bonds via the arguments. By implication, the number of persistent bonds is the difference between nTotal and 
nRolling. 

BLEBONDINGSTATS (nRolling, nPersistent) 

Returns The total capacity of the database 



https://www.lairdconnect.com/ 285 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

Arguments: 

nRolling 
byREF nRolling  AS INTEGER 

On return, this integer contains the total number of bonds in the rolling database.       

nPersistent 
byREF nPersistent  AS INTEGER 

On return, this integer contains the total number of bonds in the persistent database.                      

Example: 

// Example :: BleBondingStats.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

dim rc, nRoll, nPers 

print "\n:Bonding Manager Database Statistics:" 

print "\nCapacity:  ","", BleBondingStats(nRoll, nPers) 

print "\nRolling: ","",nRoll 

print "\nPersistent: ",nPers 

Expected Output: 

:Bonding Manager Database Statistics: 

Capacity:    16 

Rolling:   2 

Persistent:   0 

BLEBONDINGSTATS is a built-in function. 

 

FUNCTION 

This function is used to make a bonding link key persistent. Its entry is moved from the rolling database to the persistent 
database so that it is never automatically overwritten. 

BLEBONDINGPERSISTKEY (bdAddr$) 

Returns INTEGER, a result code.  

The most typical value is 0x0000, indicating a successful operation. 

Arguments: 

bdAddr$ 
byREF bdAddr$  AS STRING 

Bluetooth address in big endian. Must be exactly seven bytes long. 

Example: 

// Example :: BleBondingPersistKey.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

dim rc, i, j, k, adr$, inf 

 

'//Loop through the bonding manager. Make all entries persistent 

for i=0 to BleBondingStats(j,k) 

    rc=BleBondMngrGetInfo(i,adr$,inf) 

    if rc==0 then 

        rc=BleBondingPersistKey(adr$) 



https://www.lairdconnect.com/ 286 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

        print "\n(";i;") : ";StrHexize$(adr$);" Now Persistent" 

    endif 

next 

Expected Output: 

(0) : 01F63627A60BEA Now Persistent 

(1) : 01D8CFCF14498D Now Persistent 

BLEBONDINGPERSISTKEY is a built-in function. 

 

FUNCTION 

This function is used to check if a device identified by the address is a trusted device which means it exists in the bonding 
database. 

BLEBONDINGISTRUSTED (addr$, fAsCentral, keyInfo, rollingAge, rollingCount) 

Returns INTEGER:  Is 0 if not trusted, otherwise it is the length of the long term key (LTK) 

Arguments 

addr$ 

byRef addr$  AS STRING 

This is the address of the device for which the bonding information is to be checked. 

If this a resolvable address and the device is trusted, then on exit this variable is replaced with the 

static address that was supplied at pairing time. 

fAsCentral Set to 0 if the device is to be trusted as a peripheral and non-zero if to be trusted as central.  

keyInfo 

This is a bit mask with bit meanings as follows: 

This specifies the write rights and shall have one of the following values: 

Bit 0 Set if MITM is authenticated 

Bit 1 Set if it is a rolling bond and can be automatically deleted if the database is full and a new 

bonding occurs 

Bit 2 Set if an IRK (identity resolving key) exists 

Bit 3 Set if a CSRK (connection signing resolving key) exists 

Bit 4 Set if LTK as slave exists 

Bit 5 Set if LTK as master exists 
 

rollingAge 
If the value is <= 0, this is not a rolling device. 

1 implies it is the newest bond, 2 implies it is the second newest bond, and so on. 

rollingCount 
On exit this will contain the total number of rolling bonds. This provides some context with regards to 

how old this device is compared to other bonds in the rolling group. 

Example: 

// Example :: BleBondingIsTrusted.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

DIM rc, addr$, realaddr$, Central, KeyInfo, Age, Count 

 

addr$ = "000016A4123456" 

realaddr$ = strdehexize$(addr$) 

 

print "Address: ";addr$;"\n" 

rc = BleBondingIsTrusted(realaddr$, Central, KeyInfo, Age, Count) 

print "Is Trusted: ";rc;"\n" 

 

if (rc != 0) then 

    //Output details 



https://www.lairdconnect.com/ 287 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

    if (Central == 0) then 

        print "Peripheral" 

    elseif (Central == 1) then 

        print "Central" 

    endif 

    print " device, keyinfo: ";integer.b'KeyInfo 

    print " Age: ";Age;" Count: ";count;"\n" 

endif 

Expected Output: (if bond is present) 

Address: 000016A4123456 

Is Trusted: 16 

Peripheral device, keyinfo: 00000000000000000000000000110110 Age: 1 Count: 1 

Expected Output: (if there is no bond) 

Address: 000016A4123456 

Is Trusted: 0 

BLEBONDINGISTRUSTED is a built-in function. 

 

FUNCTION 

This function is used to erase a link key from the database for the address specified. 

BLEBONDINGERASEKEY (bdAddr$) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments: 

bdAddr$      byREF bdAddr$  AS STRING 

Bluetooth address in big endian. Must be exactly seven bytes long. 

Example: 

// Example :: BleBondingEraseKey.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

dim rc, i, adr$, inf 

 

//delete link key at index 0 

rc=BleBondMngrGetInfo(0,adr$,inf)       //get the BT address 

rc=BleBondingEraseKey(adr$) 

if rc==0 then 

    print "\nLink key for device ";StrHexize$(adr$);" erased" 

else 

    print "\nError erasing link key ";integer.h'rc 

endif 

Expected Output: 



https://www.lairdconnect.com/ 288 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

Link key for device 01FA84D748D903 erased 

BLEBONDINGERASEKEY is a built-in function. 

 

FUNCTION 

This function is used to erase all bondings in the database. 

Note:  Calling this function when the connection supervision timeout is 100ms may cause a disconnection. The reason for 

this is that calling this function may prevent the radio sending ACK packets to the remote device within the 

supervision timeout. The supervision timeout is set at BleConnect or at BleSetCurConnParams. 

BLEBONDINGERASEALL () 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Example: 

// Example :: BleBondingEraseAll.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

dim rc 

 

//Erase all bondings in database 

rc=BleBondingEraseAll() 

if rc==0 then 

    print "\nBonding database cleared" 

endif 

Expected Output: 

Bonding database cleared 

BLEBONDINGERASEALL is a built-in function. 

 

FUNCTION 

This function retrieves the Bluetooth address and other information from the trusted device database via an index.  

Note:  Do not rely on a device in the database mapping to a static index. New bondings change the position in the 

database. 

BLEBONDMNGRGETINFO (nIndex, addr$, nExtraInfo) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments: 

nIndex byVal nIndex  AS INTEGER 

This is an index into the database, less than the value returned by SYSINFO(2012). 



https://www.lairdconnect.com/ 289 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

addr$ byRef addr$  AS STRING 

On exit, if nIndex points to a valid entry in the database, this variable contains a Bluetooth address exactly 

seven bytes long. The first byte identifies public or private random address. The next six bytes are the 

address. 

nExtraInfo byRef nExtraInfo  AS INTEGER 

On exit, if nIndex points to a valid entry in the database, this variable contains a composite integer value 

where the lower 16 bits are for internal use and should be treated as opaque data. Bit 17 is set if the IRK 

(Identity Resolving Key) exists for the trusted device and bit 18 is set if the CSRK (Connection Signing 

Resolving Key) exists for the trusted device. 

Example: 

// Example :: BleBondMngrGetInfo.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 #define BLE_INV_INDEX           24619 

 DIM rc, addr$, exInfo 

 rc = BleBondMngrGetInfo(0,addr$,exInfo)  //Extract info of device at index 0 

 

 IF rc==0 THEN 

     PRINT "\nBluetooth address: ";addr$ 

     PRINT "\nInfo: ";exInfo 

 ELSEIF rc==BLE_INV_INDEX   THEN 

     PRINT "\nInvalid index" 

 ENDIF 

Expected Output when valid entry present in database: 

Bluetooth address: \00\BC\B1\F3x3\AB 

Info: 97457 

Expected Output with invalid index: 

Invalid index 

 

The following is a high level overview of Bluetooth Low Energy pairing/authentication and it is encouraged that the reader 
access resources on the internet which give further details, like for example 
https://developer.bluetooth.org/TechnologyOverview/Pages/LE-Security.aspx 

Pairing is the process of exchanging security keys between two connected devices to establish trust and authenticate the 
connection between the two devices. The exchanged keys can be used to encrypt the connection to safeguard against 
passive eavesdropping. Pairing in versions 4.0 and 4.1 of the Buetooth core specification is exposed through Secure Simple 
Pairing, which is now referred to as Legacy pairing. Security is now greatly enhanced with the release of the 4.2 specification 
due to the introduction of the LE Secure Connections pairing model. In this model, Elliptic Curve Diffie-Hellman (ECDH) 
algorithm is used for the key exchange process where the two parties can compute a shared secret without exchanging it over 
the BLElink. 

This section describes routines which manage all aspects of BLE security such as IO capabilities, Passkey exchange, OOB 
data, and bonding requirements. 

https://developer.bluetooth.org/TechnologyOverview/Pages/LE-Security.aspx


https://www.lairdconnect.com/ 290 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

 

The following security manager messages are thrown to the run-time engine using the EVBLEMSG message with the 
following msgIDs: 

MsgId Description 

9 Pairing in progress and display Passkey supplied in msgCtx. 

10 A new bond has been successfully created 

11 Pairing in progress and authentication key requested. Type of key is in msgCtx. 

msgCtx is 1 for passkey_type which is a number in the range  0 to 999999 and 2 for OOB key which is a 

16 byte key. 

18 The connection has been successfully encrypted 

20 The connection has been unencrypted 

26 Authentication/pairing has failed 

27 LE Secure Connections pairing has been successfully established 

28 OOB data has been requested by the peer device during LE Secure Connections pairing 

To submit a passkey, use the function BLESECMNGRPASSKEY. 

 
This event message is thrown when the BL654 receives notifications that the peer device is performing keypresses during 
passkey entry in an LE Secure Connections pairing. This event comes with two parameters: 

▪ Connection handle 

▪ Keypress type 

Keypress Type Description 

0 Passkey entry started 

1 Passkey digit entered 

2 Passkey digit erased 

3 Passkey cleared 

4 Passkey entry completed 

See example for BleSecMngrLescKeypressNotify. 

 
This event is thrown when there is BLE pairing in progress that requires the entry/acceptance of a passkey. The event 
includes the following parameters:- 

▪ Connection handle 

▪ The passkey that is thrown by the stack, which should then be accepted or entered by the remote device.  

▪ Flags parameter that is reserved for future use. 

Example: 

//Example :: BleSecMngrPasskey.sb 

 

// Definitions 

#define BLE_EVBLEMSGID_CONNECT                          0 // nCtx = connection handle 

#define BLE_EVBLEMSGID_DISCONNECT                       1 // nCtx = connection handle 

#define BLE_EVBLEMSGID_NEW_BOND                        10 // nCtx = connection handle 

#define BLE_EVBLEMSGID_UPDATED_BOND                    17 // nCtx = connection handle 

#define BLE_EVBLEMSGID_ENCRYPTED                       18 // nCtx = connection handle 

#define BLE_EVBLEMSGID_AUTHENTICATION_FAILED           26 // nCtx = connection handle 



https://www.lairdconnect.com/ 291 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

#define BLE_EVBLEMSGID_LESC_PAIRING                    27 // nCtx = connection handle 

 

// Variable Declaration 

DIM rc, connHandle 

DIM addr$ : addr$="" 

 

//------------------------------------------------------------------------------ 

// Ble event handler 

//------------------------------------------------------------------------------ 

FUNCTION HandlerBleMsg(BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER) AS INTEGER 

    SELECT nMsgId 

        CASE BLE_EVBLEMSGID_CONNECT 

            connHandle = nCtx 

            PRINT "## Ble Connection :: Handle=";integer.h' nCtx;"\n" 

         

        CASE BLE_EVBLEMSGID_DISCONNECT 

            PRINT "## Disconnected :: Handle=";integer.h' nCtx;"\n" 

            EXITFUNC 0 

 

        CASE BLE_EVBLEMSGID_ENCRYPTED 

            PRINT "## Encrypted Connection :: Handle=";integer.h' nCtx;"\n" 

        CASE BLE_EVBLEMSGID_NEW_BOND 

            PRINT "## New Bond :: Handle=";integer.h' nCtx;"\n" 

        CASE BLE_EVBLEMSGID_LESC_PAIRING 

            PRINT "## LESC Pairing :: Handle=";integer.h' nCtx;"\n" 

        CASE   BLE_EVBLEMSGID_AUTHENTICATION_FAILED 

            PRINT "## Pairing Failed :: Handle=";integer.h' nCtx;"\n" 

        CASE ELSE 

            // Do nothing 

    ENDSELECT 

ENDFUNC 1 

 

//------------------------------------------------------------------------------ 

// Pairing attempt in progress - Passkey needs to be displayed 

//------------------------------------------------------------------------------ 

Function HandlerBlePasskey(BYVAL nConnHandle, BYVAL nPasskey, BYVAL nFlags) 

    // The following passkey should be entered by remote 

    print "## Pairing Attempt :: Handle=";integer.h' nConnHandle;"\n" 

    print "## Please enter the following passkey: ";nPasskey;"\n" 

Endfunc 1 

 

//------------------------------------------------------------------------------ 

// Enable synchronous event handlers 

//------------------------------------------------------------------------------ 

ONEVENT  EVBLEMSG       CALL HandlerBleMsg 

ONEVENT  EVBLE_PASSKEY  CALL HandlerBlePasskey 

 

// Set pairing IO capability to Display. 

// Remote pairing IO capability should be keyboard 

rc = BleSecMngrIoCap(3) 

 

// Start advertising 

IF BleAdvertStart(0,addr$,25,60000,0)==0 THEN      

    PRINT "## Adverts Started\n"                     

    PRINT "## Make a connection to the BL654\n" 

ELSE                                             

    PRINT "## Advertisement not successful\n" 

ENDIF 

 

WAITEVENT 

 

Expected Output: 



https://www.lairdconnect.com/ 292 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

## Adverts Started 

## Make a connection to the BL654 

## Ble Connection :: Handle=0001FF00 

## Pairing Attempt :: Handle=0001FF00 

## Please enter the following passkey: 242652 

## Encrypted Connection :: Handle=0001FF00 

## LESC Pairing :: Handle=0001FF00 

## New Bond :: Handle=0001FF00 

 

FUNCTION 

This function is used to set LE Secure connections to be the preferred pairing model. Both devices must support LE Secure 
Connections in order for it to be used during pairing. 

BLESECMNGRLESCPAIRINGPREF (nLescPairingPref) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful 

operation. 

Arguments:  

nLescPairingPref 

byVal nJustWorksConf  AS INTEGER.  

If set to 0, legacy pairing is used. If set to 1, LE Secure Connections with diffie-hellman 

key exchange is used as the pairing model. The default pairing model is LE Secure 

Connections pairing. 

See example for BlePair(). 

 

FUNCTION 

This routine is used to induce the module to pair with the peer and to specify whether to bond with the peer by storing pairing 
information in the bonding manager.  This function is likely to be used if a write attempt to an attribute fails with a status code 
such as 0x105. See EvAttrWrite and EvAttrRead. 

BLEPAIR (hConn, nSave) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments:  

hConn 

byRef hConn  AS INTEGER.  

This is the connection handle provided in the EVBLEMSG(0) message which informs the stack 

that a connection had been established. 

nSave 

byVal nSave  AS INTEGER 

This flag sets whether or not to bond.  

Value Description 

0 Do not store pairing information (don’t bond) 

1 Store pairing information (bond) 
 

Example: 

// Example :: BlePair.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

dim rc, pr$, hC, hDesc 

dim s$ : s$ = "\02\00"      //value to write to cccd to enable indications 



https://www.lairdconnect.com/ 293 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

//This example app was tested with a BL654 running the health thermometer sensor sample 

app which requires bonding. 

//It connects, tries to read from the temperature characteristic and then initiates a 

bonding procedure when it fails. 

 

#define GATT_SERVER_ADDRESS         "\01\F6\36\27\A6\0B\EA" 

#define AUTHENTICATION_REQUIRED     0x0105   

 

#define SERVICE_UUID                0x1809    

#define CHAR_UUID                   0x2a1c    

#define DESC_UUID                   0x2902   

 

'//------------------------------------------------------------------------------ 

'// For debugging 

'// --- rc = result code 

'// --- ln = line number          

'//------------------------------------------------------------------------------ 

Sub AssertRC(rc,ln)    

    if rc!=0 then 

        print "\nFail :";integer.h' rc;" at tag ";ln 

    endif 

EndSub 

 

'//------------------------------------------------------------------------------ 

'// This handler is called when there is a significant BLE event 

'//------------------------------------------------------------------------------ 

function HndlrBleMsg(byval nMsgId as integer, byval nCtx as integer)  

    select nMsgId 

        case 0 

            hC = nCtx 

            print "\nConnected, Finding Temp Measurement Char" 

            rc=BleGattcFindDesc(nCtx,  BleHandleUuid16(SERVICE_UUID), 0, 

BleHandleUuid16(CHAR_UUID), 0, BleHandleUuid16(DESC_UUID), 0) 

            AssertRC(rc,35) 

        case 1 

            print "\n\n --- Disconnected"                      

        case 10 

            print "\nNew bond created"            

            print "\n\nAttempting to enable indications again" 



https://www.lairdconnect.com/ 294 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

            rc=BleGattcWrite(hC, hDesc, s$) 

            AssertRC(rc,58)             

        case 11 

            print "\nPair request: Accepting" 

            rc=BleAcceptPairing(hC,1) 

            AssertRC(rc,52) 

            print "\nPairing in progress" 

        case 17    

            print "\nNew pairing/bond has replaced old key" 

        case 18 

            print "\nConnection now encrypted" 

        case else 

    endselect 

endfunc 1 

 

'//------------------------------------------------------------------------------ 

'// Called after BleGattcFindDesc returns success 

'//------------------------------------------------------------------------------ 

function HndlrFindDesc(hConn, hD)  

    if hD==0 then 

        print "\nCCCD not found" 

        exitfunc 0 

    endif 

     

    hDesc = hD 

    print "\nTemp Measurement Char CCCD Found. Attempting to enable indications" 

    rc=BleGattcWrite(hConn, hDesc, s$) 

    AssertRC(rc,58)   

endfunc 1 

 

'//------------------------------------------------------------------------------ 

'// Called after BleGattcRead returns success 

'//------------------------------------------------------------------------------ 

function HndlrAttrWriteExit(hConn, hAttr, nSts) 

endfunc 0 

 

'//------------------------------------------------------------------------------ 

'// Called after BleGattcRead returns success 

'//------------------------------------------------------------------------------ 



https://www.lairdconnect.com/ 295 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

function HndlrAttrWrite(hConn, hAttr, nSts)  

    if nSts == 0 then 

        print "\nIndications enabled" 

        print "\nDisabling indications" 

        s$ = "\00\00" 

        rc=BleGattcWrite(hC, hDesc, s$)  

        onevent evattrwrite call HndlrAttrWriteExit 

        exitfunc 1 

         

    elseif nSts == AUTHENTICATION_REQUIRED then 

        print "\n\nAuthentication required."        

        '//bond with the peer 

        rc=BlePair(hConn, 1)  

        AssertRC(rc,75)         

        print " Bonding..."          

    endif 

endfunc 1 

 

//****************************************************************************** 

// Equivalent to main() in C 

//****************************************************************************** 

rc=BleLescPairingPref(1)        //set the pairing model to be LE Secire Connections 

pairing 

rc=BleSecMngrIoCap(1)           //set io capability to Yes/No 

 

rc=BleGattcOpen(0,0) 

pr$ = GATT_SERVER_ADDRESS 

rc=BleConnect(pr$, 10000, 25, 100, 30000000) 

AssertRC(rc,91) 

 

//------------------------------------------------------------------------------ 

// Enable synchronous event handlers 

//------------------------------------------------------------------------------   

onevent evblemsg   call HndlrBleMsg 

onevent evfinddesc call HndlrFindDesc 

onevent evattrwrite call HndlrAttrWrite 

 

waitevent 

 

print "\nExiting..." 



https://www.lairdconnect.com/ 296 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

Expected Output: 

Connected, Finding Temp Measurement Char 

Temp Measurement Char CCCD Found. Attempting to enable indications 

 

Authentication required. Bonding... 

Pair request: Accepting 

Pairing in progress 

Connection now encrypted 

New bond created 

 

Attempting to enable indications again 

Indications enabled 

Disabling indications 

Exiting...  

 

FUNCTION 

This function sets the user I/O capability for subsequent pairings and is used to determine if the pairing is authenticated. This 
is described in the following whitepapers:  

https://www.Bluetooth.org/docman/handlers/DownloadDoc.ashx?doc_id=86174 
https://www.Bluetooth.org/docman/handlers/DownloadDoc.ashx?doc_id=86173 

In addition, the Security Manager Specification in the core 4.2 specification Part H provides a full description. You must be 
registered with the Bluetooth SIG (www.Bluetooth.org) to get access to all these documents. 

An authenticated pairing is deemed to be one with less than 1 in a million probability that the pairing was compromised by a 
MITM (Man-in-the-middle) security attack. 

The valid user I/O capabilities are as described below. 

BLESECMNGRIOCAP (nIoCap) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments:  

nIoCap 

byVal nIoCap AS INTEGER.  

The user I/O capability for all subsequent pairings. 

0 None; also known as Just Works (unauthenticated pairing) 

1 Display with Yes/No input capability (authenticated pairing) 

2 Keyboard Only (authenticated pairing) 

3 Display Only (authenticated pairing – if other end has input cap) 

4 Keyboard and Display (authenticated pairing) 
 

Example: 

// Example :: BleSecMngrIoCap.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 PRINT BleSecMngrIoCap(1) 

Expected Output: 

0 

See also examples for BleSecMngrPasskey() and BlePair(). 

 

FUNCTION 

https://www.bluetooth.org/docman/handlers/DownloadDoc.ashx?doc_id=86174
https://www.bluetooth.org/docman/handlers/DownloadDoc.ashx?doc_id=86173
http://www.bluetooth.org/


https://www.lairdconnect.com/ 297 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

In legacy pairing the device can choose from Just Works, Passkey Entry, and OOB as the method of pairing depending on the 
input/output capabilities of the device. With Bluetooth v4.2, LE Secure connections adds the numeric comparison method to 
the other three. This function is used to accept or decline numeric comparison pairing.  

BLEACCEPTPAIRING (nConnHandle, nAccept) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments:  

nConnHandle 
byVal nConnHandle AS INTEGER.  

The handle of the connection for which you are accepting or rejecting a pairing request. 

nAccept 
byVal nAccept AS INTEGER.  

Set to 0 to reject the numeric comparison pairing request, set to 1 to accept the pairing request.  

See example for BlePair(). 

 

FUNCTION 

This function pre-registers a static 6 digit passkey to the underlying stack during a pairing procedure in a future connection. It 
allows for a use case similar to what PIN codes provided in classic bluetooth before simple secure pairing was introduced in 
v2.1. 

Note that the pairing still uses LESC Diffie-Hellman based exchanges but the only diffrence is that instead of a random number 
this statis value is used. 

Note: Repeated pairing attempts using the same preprogrammed passkey makes pairing vulnerable to MITM attacks. 

Also see BleSecMngrPasskey() 

BLEPAIRINGSTATICPASSKEY (passKey$) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments:  

passKey$ 

byVal passKey$  AS STRING.  

The passkey to pre-register to the stack. This string shall be either empty which means use a random 

passkey (as specified in the specification) or a six character string consisting of only decimal digits ‘0’ to 

‘9’   

 

FUNCTION 

This function submits a passkey to the underlying stack during a pairing procedure when prompted by the EVBLEMSG with 
msgId set to 11. See Events and Messages. 
 
Also see BlePairingStaticPasskey() 

BLESECMNGRPASSKEY (connHandle, nPassKey) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments:  

connHandle 
byVal connHandle  AS INTEGER.  

The connection handle as received via the EVBLEMSG event with msgId set to 0. 

nPassKey 
byVal nPassKey  AS INTEGER.  

The passkey to submit to the stack. Submit a value outside the range 0 to 999999 to reject the pairing.   

Example: 



https://www.lairdconnect.com/ 298 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

// Example :: BleSecMngrPasskey.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

DIM rc, connHandle 

DIM addr$ : addr$="" 

DIM i, pin$ 

  

'// Called when data arrives through the UART - PIN 

FUNCTION HandlerUartRxPIN() 

    i = UartReadMatch(pin$,13) 

    if i !=0 then 

        pin$ = StrSplitLeft$(pin$,i-1)     

        if strcmp(pin$,"quit")==0 || strcmp(pin$,"exit")==0 then 

            rc=BleDisconnect(connHandle) 

            exitfunc 0 

     

        elseif BleSecMngrPassKey(connHandle,StrValDec(pin$))==0 then 

            print "\nPasskey: ";pin$             

            OnEvent  EVUARTRX  disable 

        endif   

        pin$="" 

    endif  

ENDFUNC 1 

 

FUNCTION HandlerBleMsg(BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER) AS INTEGER 

    SELECT nMsgId 

        CASE 0 

            connHandle = nCtx 

            PRINT "\n--- Ble Connection, ",nCtx                      

        CASE 1 

            PRINT "\n--- Disconnected ";nCtx;"\n" 

            EXITFUNC 0 

        CASE 10 

            PRINT "\n--- New bond" 

        CASE 11 

            PRINT "\n +++ Auth Key Request, type=";nCtx 

            PRINT "\nEnter the pass key and Press Enter:\n" 

            onevent evuartrx call HandlerUartRxPIN 

        CASE 17    



https://www.lairdconnect.com/ 299 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

            print "\nNew pairing/bond has replaced old key" 

        CASE ELSE             

    ENDSELECT 

ENDFUNC 1 

 

ONEVENT  EVBLEMSG  CALL HandlerBleMsg 

 

rc=BleSecMngrIoCap(2)  //Set i/o capability - Keyboard Only (authenticated pairing) 

IF BleAdvertStart(0,addr$,25,0,0)==0 THEN      

    PRINT "\nAdverts Started\n"                  

    PRINT "\nPair with the module" 

ELSE                                             

    PRINT "\n\nAdvertisement not successful" 

ENDIF 

 

WAITEVENT 

Expected Output: 

Adverts Started 

 

Pair with the module 

--- Ble Connection,  2782 

 +++ Auth Key Request, type=1 

Enter the pass key and Press Enter: 

904096 

 

Passkey: 904096 

--- New bond 

--- Disconnected 2782 

 

FUNCTION 

This function is used to enable keypress notifications so that during LE secure connections, when keys are entered during 
passkey entry pairing, notifications can be sent or received to or from the peer device therefore enhancing protection against 
man in the middle attacks. 

BLESECMNGRLESCKEYPRESSENABLE (nEnable) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments:  

nEnable 
byVal nEnable AS INTEGER.  

0 to disable keypress notifications, 1 to enable keypress notifications  

Example: 

// Example :: BleSecMngrLescKeypressNotify.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

// Enable keypress notifications 



https://www.lairdconnect.com/ 300 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

rc = BLESECMNGRLESCKEYPRESSENABLE(1) 

if rc == 0 THEN 

    PRINT "Keypress notifications enabled\n" 

Endif 

 

FUNCTION 

This function is used to send keypress notifications to the peer device  during passkey entry in LE Secure Connections pairing. 

BLESECMNGRLESCKEYPRESSNOTIFY (connHandle, nKeypressType) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments:  

connHandle 
byVal connHandle  AS INTEGER.  

This is the handle of the connection on which pairing is being perfermed  

nKeypressType 

byRef nKeypressType  AS STRING.  

This is the type of the keypress, and can be one of the following values: 

0 Passkey entry started 

1 Passkey digit entered 

2 Passkey digit erased 

3 Passkey digit cleared 

4 Passkey entry completed 
 

Example: 

// Example :: BleSecMngrLescKeypressNotify.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

// Keypress Types 

#define BLE_GAP_KP_NOT_TYPE_PASSKEY_START       0x00   // Passkey entry started. 

#define BLE_GAP_KP_NOT_TYPE_PASSKEY_DIGIT_IN    0x01   // Passkey digit entered. 

#define BLE_GAP_KP_NOT_TYPE_PASSKEY_DIGIT_OUT   0x02   // Passkey digit erased. 

#define BLE_GAP_KP_NOT_TYPE_PASSKEY_CLEAR       0x03   // Passkey cleared. 

#define BLE_GAP_KP_NOT_TYPE_PASSKEY_END         0x04   // Passkey entry completed. 

 

// Global variable 

dim rc      // Result Code 

dim ghConn  // Global connection handle 

 

//============================================================================== 

// This handler is called when data has arrived at the serial port 

//============================================================================== 

function HandlerUartRxCmd() as integer 

 

    dim StrKey$     // key entered     

     

    // Now read a single character from the UART buffer 

    rc = UartReadN(StrKey$, 1) 

 

    if (strcmp(StrKey$,"\r")==0) THEN 

        // Let the user know that we are done with keypresses, then send passkey 

        rc = BleSecMngrLescKeypressNotify(ghConn,BLE_GAP_KP_NOT_TYPE_PASSKEY_END) 

    endif 



https://www.lairdconnect.com/ 301 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

endfunc 1 

 

'//****************************************************************************** 

'// Equivalent to main() in C 

'//****************************************************************************** 

 

//------------------------------------------------------------------------------ 

// Enable synchronous event handlers 

//------------------------------------------------------------------------------ 

OnEvent  EVUARTRX                 call HandlerUartRxCmd 

 

// Enable keypress notifications 

rc = BLESECMNGRLESCKEYPRESSENABLE(1) 

// Set LE Secure Connections to be the preffered pairing model 

rc = BLESECMNGRLESCPAIRINGPREF(1) 

// Set IO capability to 2: Keyboard only 

rc = BLESECMNGRIOCAP(2) 

 

WaitEvent 

 

FUNCTION 

This function is used to set a flag to indicate to the peer during a pairing that OOB pairing is preferred. 

BLESECMNGROOBPREF(nOobPreferred) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments:  

nOobPreferred 
byVal connHandle  AS INTEGER.  

If set to 0, OOB pairing will not have preference. If set to 1, OOB pairing will be preferred. 

Example: 

// Example :: BleSecMngrOobPref.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

dim rc 

rc = BleSecMngrOobPref(1) 

IF (rc == 0) THEN 

    PRINT "OOB Pairing preference has been set." 

ENDIF 

 

Expected Output: 

OOB Pairing preference has been set. 



https://www.lairdconnect.com/ 302 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

FUNCTION 

This function submits an OOB (Out Of Band) key to the underlying stack during a legacy pairing procedure when prompted by 
the EVBLEMSG with msgId set to 11 and the key type nCtx is 2, OOB. See Events & Messages. 

BLESECMNGROOBKEY (connHandle, oobKey$) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments:  

connHandle 
byVal connHandle  AS INTEGER.  

This is the connection handle as received via the EVBLEMSG event with msgId set to 0. 

oobKey$ 

byRef oobKey$  AS STRING.  

This is the OOB key to submit to the stack. Submit a 16 byte string, or a string of a different length 

to reject the request. 

Example: 

// Example :: BleSecMngrOOBKey.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

DIM rc, connHandle 

DIM addr$ : addr$="" 

DIM oob$ : oob$ = "\11\22\33\44\55\66\77\88\99\00\aa\cc\bb\dd\ee\ff" 

 

#define OOB_KEY     2 

 

FUNCTION HandlerBleMsg(BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER) AS INTEGER 

    SELECT nMsgId 

        CASE 0 

            connHandle = nCtx 

            PRINT "\nBle Connection ",nCtx      

        CASE 1 

            PRINT "\nDisconnected ";nCtx;"\n" 

            EXITFUNC 0 

  CASE 10 

            PRINT "\n--- New bond" 

        CASE 11 

            PRINT "\n +++ Auth Key Request, type=",nCtx 

            if nCtx == OOB_KEY then 

                rc=BleSecMngrOobKey(connHandle,oob$) 

                print "\nOOB Key ";StrHexize$(oob$);" was used" 

            endif 

 

        CASE ELSE 



https://www.lairdconnect.com/ 303 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

            PRINT "\nUnknown Ble Msg"  

    ENDSELECT 

ENDFUNC 1 

 

ONEVENT  EVBLEMSG  CALL HandlerBleMsg 

 

IF BleAdvertStart(0,addr$,25,60000,0)==0 THEN      

    PRINT "\nAdverts Started\n"                  

    PRINT "\nMake a connection to the BL654" 

ELSE                                             

    PRINT "\n\nAdvertisement not successful" 

ENDIF 

 

WAITEVENT 

Expected Output: 

Adverts Started 

 

Make a connection to the BL654 

Ble Connection,  1655 

 +++ Auth Key Request, type=2 

OOB Key 11223344556677889911AACCBBDDEEFF was used 

--- New bond 

Disconnected 1655 

 

FUNCTION 

This function retrieves local OOB data from the local security manager so that it can be given to the peer device over a 
secure out-of-band link – like for example NFC or a uart interface.  

The peer device will then use this as the remote OOB data during LE Secure Connections pairing and if the peer device 
happens to be another Laird smartBASIC module that it will use function BleSecMngrLescPeerOobDataSet() to present that 
data to its security manager. 

Please note that the OOB data (hash & rand)  are regenerated everytime this function is called.  

BLESECMNGRLESCOWNOOBDATAGET (addr$  oobHash$, oobRand$) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments:  

addr$ 

byRef addr$  AS INTEGER.  

The Bluetooth address of the local device that should be used by the remote device during LE 

Secure Connections pairing 

On entry, the value is ignored and will be replaced on exit. 

oobHash$ 

byRef oobHash$  AS STRING.  

The OOB hash of the local device that should be used by the remote device during LE Secure 

Connections pairing 

On entry, the value is ignored and will be replaced on exit. 

oobRand$ byRef oobRand$  AS STRING.  



https://www.lairdconnect.com/ 304 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

The OOB randomiser of the local device that should be used by the remote device during LE 

Secure Connections pairing 

On entry, the value is ignored and will be replaced on exit. 

 

FUNCTION 

This function is used during the pairing process to present the remote OOB data, which was recevied out-of-band, to the 
pairing manager in the local security manager.  

It is presented only when the smartBASIC event EVBLEMSG is received with ID 28.  

BLESECMNGRLESCPEEROOBDATASET (addr$  oobHash$, oobRand$) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments:  

addr$ 
byRef addr$  AS INTEGER.  

The Bluetooth address of the remote device that was given out of band. 

oobHash$ 
byRef oobHash$  AS STRING.  

The OOB hash of the remote device that was given out of band. 

oobRand$ 
byRef oobRand$  AS STRING.  

The OOB randomiser of the remote device that was given out of band. 

Example: 

// Example :: BleSecMngrLescPeerOobDataSet.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 

// In this example, the OOB data is exchanged over the UART in the form 

// OOB_ADDRESS OOB_HASH OOB_RAND\r 

// e.g. 000016A4B75201 63F6E834009C368612724FBC3253DDE2 

8311CD946F30C785DD7EA83038A5221D\r 

 

 

//BLE EVENT MSG IDs 

#define BLE_EVBLEMSGID_CONNECT                          0 // msgCtx = connection handle 

#define BLE_EVBLEMSGID_DISCONNECT                       1 // msgCtx = connection handle                              

13 

#define BLE_EVBLEMSGID_ENCRYPTED                       18 // msgCtx = connection handle 

#define BLE_EVBLEMSGID_AUTHENTICATION_FAILED           26 // msgCtx = connection handle 

#define BLE_EVBLEMSGID_LESC_PAIRING                    27 // msgCtx = connection handle 

#define BLE_EVBLEMSGID_LESC_OOB_REQUEST                28 // msgCtx = connection handle 

 

//Global defines 

 

DIM rc, stRsp$ 

 

//============================================================================== 

// This subroutine is called when Out of Band LESC pairing is in progress 

//============================================================================== 

sub HandleOobReq() 

 

    DIM OobData$, OobAddr$, OobHash$, OobRand$ 

    // Get our local OOB data 

    rc = BleSecMngrLescOwnOobDataGet(OobAddr$, OobHash$, OobRand$) 

    // Hexize the data 

    OobAddr$ = StrHexize$(OobAddr$) 



https://www.lairdconnect.com/ 305 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

    OobHash$ = StrHexize$(OobHash$) 

    OobRand$ = StrHexize$(OobRand$) 

    // Construct a string of the retreived data 

    OobData$ = OobAddr$ + " " + OobHash$ + " " + OobRand$ + "\r" 

    // Finally send the OOB data over UART 

    rc = UartWrite(OobData$) 

    print "Local OOB data sent over UART\n" 
 

 

endsub 

 

//============================================================================== 

// This handler is called when there is a BLE message 

//============================================================================== 

function HandlerBleMsg(BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER) as integer 

  dim hz 

 

  select nMsgId 

  case BLE_EVBLEMSGID_CONNECT 

    print " --- Connect: (";integer.h' nCtx;")\n" 

 

  case BLE_EVBLEMSGID_DISCONNECT 

    print " --- Disconnect: (";integer.h' nCtx;")\n" 

 

  case BLE_EVBLEMSGID_ENCRYPTED 

    print " +++ Encrypted Connection: (";integer.h' nCtx;")\n" 

 

  case BLE_EVBLEMSGID_LESC_PAIRING 

    print " +++ LESC pairing: (";integer.h' nCtx;")\n" 

 

  case BLE_EVBLEMSGID_LESC_OOB_REQUEST 

    print " +++ LESC OOB Request: (";integer.h' nCtx;")\n" 

    HandleOobReq() 

 

  case   BLE_EVBLEMSGID_AUTHENTICATION_FAILED 

    print " +++ Auth Failed: (";integer.h' nCtx;"\n" 

   

  case else 

 

  endselect 

endfunc 1 

 

//============================================================================== 

// This handler is called when data has arrived at the serial port 

//============================================================================== 

function HandlerUartRx() as integer 

 

    dim nMatch 

    dim OobData$, OobAddr$, OobHash$, OobRand$ 

    // read UART data until carriage return and save it into stRsp$ 

    nMatch=UartReadMatch(stRsp$,13) 

    if nMatch!=0 then 

        // Get the hash and randomiser from the input string 

        OobData$ = strsplitleft$(stRsp$, nMatch) 

        rc = ExtractStrToken(OobData$,OobAddr$) 

        rc = ExtractStrToken(OobData$,OobHash$) 

        rc = ExtractStrToken(OobData$,OobRand$) 

 

        // Dehexize the data first 

        OobAddr$ = StrDeHexize$(OobAddr$) 

        OobHash$ = StrDeHexize$(OobHash$) 

        OobRand$ = StrDeHexize$(OobRand$) 



https://www.lairdconnect.com/ 306 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

        // Now Send the remote OOB data over the BLE link 

        rc = BleSecMngrLescPeerOobDataSet(OobAddr$, OobHash$, OobRand$) 

        if rc==0 THEN 

         print "Remote OOB data received from UART and submitted to local stack\n" 
        endif 

    endif 

  

endfunc 1 

 

//------------------------------------------------------------------------------ 

// Enable synchronous event handlers 

//------------------------------------------------------------------------------ 

OnEvent  EVBLEMSG                 call HandlerBleMsg 

OnEvent  EVUARTRX                 call HandlerUartRx 

 

 

// Initialise LE adverts 

dim addr$ 

rc = BleAdvertStart(0,addr$,100,30000,0) 

// Enable LESC pairing 

rc = BleSecMngrLescPairingPref(1) 

 

//------------------------------------------------------------------------------ 

// Wait for a synchronous event. 

// An application can have multiple <WaitEvent> statements 

//------------------------------------------------------------------------------ 

WaitEvent 

Expected Output: 

 --- Connect: (0001FF00) 

 +++ LESC OOB Request: (0001FF00) 

 Local OOB data sent over UART 

 Remote OOB data received from UART and submitted to local stack 

 +++ Encrypted Connection: (0001FF00) 

 +++ LESC pairing: (0001FF00) 

 

 

FUNCTION 

This function sets minimum and maximum long term encryption key size requirements for subsequent pairings.   

If this function is not called, default values are 7 and 16 respectively. To ship your end product to a country with an export 
restriction, reduce nMaxKeySize to an appropriate value and ensure it is not modifiable. 

BLESECMNGRKEYSIZES (nMinKeysize, nMaxKeysize) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments:  

nMinKeysiz 
byVal nMinKeysiz  AS INTEGER.  

The minimum key size. The range of this value is from 7 to 16. 

nMaxKeysize 
byVal nMaxKeysize  AS INTEGER.  

The maximum key size. The range of this value is from nMinKeysize to 16.   



https://www.lairdconnect.com/ 307 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

Example: 

// Example :: BleSecMngrKeySizes.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 PRINT BleSecMngrKeySizes(8,15) 

Expected Output: 

0 

 

FUNCTION 

This function is used to enable or disable bonding when pairing. If enabled, and if your application requires pairing, a peer 
device only needs to pair with this module once. If disabled, the device needs to pair every time it connects to the module. 

BLESECMNGRBONDREQ (nBondReq) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments:  

nBondReq 

byVal nBondReq AS INTEGER. 

0 – Disable 

1 – Enable 

Example: 

// Example :: BleSecMngrBondReq.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 IF BleSecMngrBondReq(0)==0 THEN 

     PRINT "\nBonding disabled" 

 ENDIF 

Expected Output: 

Bonding disabled 

 

FUNCTION 

This function is used to encrypt a BLE connection with a device that the module has previously bonded with (the device is 
present in the bonding manager). The function can only be issued by the central device (i.e. the device that has initiated the 
connection request). 

BLEENCRYPTCONNECTION (nConnHandle, nLtkMinSize, nMitmRequired) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments:  

nConnHandle 

byVal nConnHandle AS INTEGER.  

The handle of the connection which is obtained from an EVBLEMSG message with ID 0 

indicating that a connection had been established. 

nLtkMinSize 
byVal nLtkMinSize AS INTEGER.  

The minimum long term key size which must be in the range 7-16. 



https://www.lairdconnect.com/ 308 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

nMitmRequired 
byVal nMitmRequired AS INTEGER.  

Set to 1 if MITM protection is required, 0 if not required. 

Example: 

dim rc, pr$, hC, hDesc 

#define GATT_SERVER_ADDRESS         "\01\F6\36\27\A6\0B\EA" 

 

//This example app was tested with a BL654 running the health thermometer sensor sample 

app  

//which the module had previously bonded with. 

 

'//------------------------------------------------------------------------------ 

'// For debugging 

'// --- rc = result code 

'// --- ln = line number          

'//------------------------------------------------------------------------------ 

Sub AssertRC(rc,ln)    

    if rc!=0 then 

        print "\nFail :";integer.h' rc;" at tag ";ln 

    endif 

EndSub 

 

'//------------------------------------------------------------------------------ 

'// This handler is called when there is a significant BLE event 

'//------------------------------------------------------------------------------ 

function HndlrBleMsg(byval nMsgId as integer, byval nCtx as integer)  

    select nMsgId 

        case 0 

            hC = nCtx 

            print "\nConnected" 

            rc=BleEncryptConnection(hC, 16, 0) 

            if rc==0 then 

                print "\nEncrypting connection" 

            else 

                AssertRC(rc,28) 

            endif 

        case 1 

            print "\n\n --- Disconnected" 

             exitfunc 0 

        case 10 



https://www.lairdconnect.com/ 309 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

            print "\nNew bond created"            

             

        case 11 

            print "\nPair request: Accepting" 

            rc=BleAcceptPairing(hC,1) 

            AssertRC(rc,52) 

            print "\nPairing in progress" 

        case 17    

            print "\nNew pairing/bond has replaced old key" 

        case 18 

            print "\nConnection now encrypted" 

            rc=BleDisconnect(hC) 

        case else 

    endselect 

endfunc 1 

 

rc=BleSecMngrIoCap(0)           //set io capability to just works 

 

pr$ = GATT_SERVER_ADDRESS 

rc=BleConnect(pr$, 10000, 25, 100, 30000000) 

AssertRC(rc,91) 

 

onevent evblemsg   call HndlrBleMsg 

 

waitevent 

 

print "\nExiting..." 

Expected Output: 

Connected 

Encrypting connection 

Connection now encrypted 

 

 --- Disconnected 

Exiting... 

 

This section describes all the events and routines used to interact with a managed virtual serial port service.  

“Managed” means there is a driver consisting of transmit and receive ring buffers that isolate the BLE service from the 
smartBASIC application. This in turn provides easy to use API functions. 

Note:  The driver makes the same assumption that the driver in a PC makes: If the on-air connection equates to the serial 

cable, there is no assumption that the cable is from the same source as prior to the disconnection. This is 

analogous to the way that a PC cannot detect such in similar cases.  



https://www.lairdconnect.com/ 310 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

The module can present a serial port service in the local GATT Table consisting of two mandatory characteristics and two 
optional characteristics. One mandatory characteristic is the TX FIFO and the other is the RX FIFO, both consisting of an 
attribute taking up to 20 bytes. Of the optional characteristics, one is the ModemIn which consists of a single byte and only bit 
0 is used as a CTS type function. The other is ModemOut, also a single byte, which is notifiable only and is used to convey an 
RTS flag to the client. 

By default, (configurable via AT+CFG 112), Laird’s serial port service is exposed with UUID’s as follows: 

▪ The UUID of the service is:                       569a1101-b87f-490c-92cb-11ba5ea5167c 

▪ The UUID of the rx fifo characteristic is:   569a2001-b87f-490c-92cb-11ba5ea5167c 

▪ The UUID of the tx fifo characteristic is:   569a2000-b87f-490c-92cb-11ba5ea5167c 

▪ The UUID of the ModemIn characteristic is:   569a2003-b87f-490c-92cb-11ba5ea5167c 

▪ The UUID of the ModemOut characteristic is:  569a2002-b87f-490c-92cb-11ba5ea5167c 

Note:  Laird’s Base 128bit UUID is  569aXXXX-b87f-490c-92cb-11ba5ea5167c where XXXX is a 16 bit offset. We 

recommend, to save RAM, that you create a 128 bit UUID of your own and manage the 16 bit space accordingly, 

akin to what the Bluetooth SIG does with their 16 bit UUIDs. 

If command AT+CFG 112 1 is used to change the value of the config key 112 to 1 then Nordic’s serial port service is exposed 
with UUID’s as follows: 

▪ The UUID of the service is:                       6e400001-b5a3-f393-e0a9-e50e24dcca9e 

▪ The UUID of the rx fifo characteristic is:   6e400002-b5a3-f393-e0a9-e50e24dcca9e 

▪ The UUID of the tx fifo characteristic is:   6e400003-b5a3-f393-e0a9-e50e24dcca9e 

Note: The first byte in the UUID’s above is the most significant byte of the UUID. 

The ‘rx fifo characteristic’ is for data that comes to the module and the ‘tx fifo characteristic’ is for data that goes out from the 
module. This means a GATT Client using this service will send data by writing into the ‘rx fifo characteristic’ and will get data 
from the module via a value notification. 

The ‘rx fifo characteristic’ is defined with no authentication or encryption requirements, a maximum of 20 bytes value attribute. 
The following properties are enabled: 

▪ WRITE 

▪ WRITE_NO_RESPONSE  

The ‘tx fifo characteristic’ value attribute is with no authentication or encryption requirements, a maximum of 20 bytes value 
attribute. The following properties are enabled: 

▪ NOTIFY (The CCCD descriptor also requires no authentication/encryption) 

The ‘ModemIn characteristic’ is defined with no authentication or encryption requirements, a single byte attribute. The following 
properties are enabled: 

▪ WRITE  

▪ WRITE_NO_RESPONSE  

The ‘ModemOut characteristic’ value attribute is with no authentication or encryption requirements, a single byte attribute. The 
following properties are enabled: 

▪ NOTIFY  (The CCCD descriptor also requires no authentication/encryption) 

For ModemIn, only bit zero is used, which is set by 1 when the client can accept data and 0 when it cannot (inverse logic of 
CTS in UART functionality). Bits 1 to 7 are for future use and should be set to 0. 

For ModemOut, only bit zero is used which is set by 1 when the client can send data and 0 when it cannot (inverse logic of 
RTS in UART functionality). Bits 1 to 7 are for future use and should be set to 0.  



https://www.lairdconnect.com/ 311 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

Note:  Both flags in ModemIn and ModemOut are suggestions to the peer, just as in a UART scenario. If the peer decides 

to ignore the suggestion and data is kept flowing, the only coping mechanism is to drop new data as soon as 

internal ring buffers are full. 

Given that the outgoing data is notified to the client, the ‘tx fifo characteristic’ has a Client Configuration Characteristic 
(CCCD) which must be set to 0x0001 to allow the module to send any data waiting to be sent in the transmit ring buffer. While 
the CCCD value is not set for notifications, writes by the smart BASIC application result in data being buffered. If the buffer is 
full the appropriate write routine indicates how many bytes actually got absorbed by the driver. In the background, the transmit 
ring buffer is emptied with one or more indicate or notify messages to the client. When the last bytes from the ring buffer are 
sent, EVVSPTXEMPTY is thrown to the smart BASIC application so that it can write more data if it chooses. 

When GATT Client sends data to the module by writing into the ‘rx fifo characteristic’ the managing driver will immediately 
save the data in the receive ring buffer if there is any space. If there is no space in the ring buffer, data is discarded. After the 
ring buffer is updated, event EVVSPRX is thrown to the smart BASIC runtime engine so that an application can read and 
process the data. 

Similarly, given that ModemOut is notified to the client, the ModemOut characteristic has a Client Configuration Characteristic 
(CCCD) which must be set to 0x0001. By default, in a connection the RTS bit in ModemOut is set to 1 so that the VSP driver 
assumes there is buffer space in the peer to send data. The RTS flag is affected by the thresholds of 80 and 120 which means 
the when opening the VSP port the rxbuffer cannot be less than 128 bytes. 

It is intended that in a future release it will be possible to register a ‘custom’ service and bind that with the virtual service 
manager to allow that service to function in the managed environment. This allows the application developer to interact with 
any GATT client implementing a serial port service, whether one currently deployed or one that the Bluetooth SIG adopts. 

 

Given that VSP operation can happen in command mode the ability to configure it and save the new configuration in non-
volatile memory is available. For example, in bridge mode, the baudrate of the uart can be specified to something other than 
the default 115200. Configuration is done using the AT+CFG command and refer to the section describing that command for 
further details. The configuration id pertinent to VSP are 100 to 116 inclusive. Additionally, the device name advertised by the 
VSP service can be configured using the AT+CFGEX command, by default the VSP name is “LAIRD BL654”. 

It is also possible to configure the command mode VSP by providing a $autorun$ application which launchs after reset 
automatically. In this application the baudrate, GAP service, VSP Service and advertising can be configured and adverts 
started. Once done, given the autorun application does not have a WAITEVENT statement it falls into command mode and 
that VSP configuration will be operational. 

A sample autorun application is as follows: 

//****************************************************************************** 

// Laird (c) 2015 

// 

// This application is meant to autorun on power up and so is named apprpriately. 

// It PURPOSELY does not have a WAITEVENT statement at the end and so will exit 

// to command mode, where the VSP fucntionality will continue to operate. 

// 

// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

// When UwTerminal downloads the app it will store it as $autorun$ 

// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

// 

//****************************************************************************** 

 



https://www.lairdconnect.com/ 312 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

//****************************************************************************** 

// Debugging 

//****************************************************************************** 

#set $cmpif,0xFFFFFFFF                 //set to 0 to disable all debugging 

 

//****************************************************************************** 

// Definitions 

//****************************************************************************** 

 

//------------------------------------------------------------------------------ 

// UART config 

//------------------------------------------------------------------------------ 

#define UARTBAUD                        9600 

#define UARTBUFLENRX                    0  //default 

#define UARTBUFLENTX                    0  //default 

#define UARTOPTIONS                     "CN81H" 

 

//------------------------------------------------------------------------------ 

// GAP Service 

//------------------------------------------------------------------------------ 

//DeviceName 

#define GAPDEVNAME                      "autoVSP" 

//DeviceName Writeable in Gap Service 

#define GAPNAME_WRITEABLE               0 

//Appearance in Gap Service (see BT Spec for adopted values) 512=Custom 

#define GAPAPPEARANCE                   512 

//Minimum Connection Interval in microseconds            

#define GAPMINCONNINTus                 7500 

//Maximum Connection Interval in microseconds            

#define GAPMAXCONNINTus                 50000 

//Link Supervision Timeout in microseconds 

#define GAPLINKSUPRVSNTOUTus            2000000 

//Slave Latency 

#define GAPSLAVELATENCY                 0 

 

//------------------------------------------------------------------------------ 

// VSP Service 

//------------------------------------------------------------------------------ 



https://www.lairdconnect.com/ 313 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

#define VSPSECURITY                     1  //1=Open, 2=NO_MITM, 3=WITH_MITM 

 

#define VSPUUIDSERVICE                  "EADE1101B87f490C92CB11BA5EA5EFBE" 

#define VSPUUIDRX                          0x7001  //uses base of VSPUUIDSERVICE 

#define VSPUUIDTX                          0x7002  //uses base of VSPUUIDSERVICE 

#define VSPUUIDMDMIN                       0x7003  //uses base of VSPUUIDSERVICE 

#define VSPUUIDMDMOUT                      0x7004  //uses base of VSPUUIDSERVICE 

 

#define VSPBUFLENRX                     0  //default 

#define VSPBUFLENTX                     0  //default 

 

//------------------------------------------------------------------------------ 

// Adverts 

//------------------------------------------------------------------------------ 

#define ADVDISCOVERYFLAGS               2  //1=Limited,2=General,3=Both (0 do not define) 

#define ADVMAXDEVICENAMELEN             10 

#define ADVINTERVALms                   100 

#define ADVTIMEOUTms                    0  //0 means infinity 

#define ADVFILTERPOLICY                 0 

 

//****************************************************************************** 

// Library Import 

//****************************************************************************** 

 

//****************************************************************************** 

// Global Variable Declarations 

//****************************************************************************** 

 

//------------------------------------------------------------------------------ 

// Misc variables 

//------------------------------------------------------------------------------ 

 

dim rc                //result code 

dim hVspUuidSvc       //Contains the uuid handle of the VSP service so that it 

                      //can be used to create an AD element in adverts 

dim baud              //the configured baudrate                       

 

//****************************************************************************** 

// Function and Subroutine definitions 



https://www.lairdconnect.com/ 314 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

//****************************************************************************** 

 

//============================================================================== 

// For debugging :: will inspect the global 'rc' variable 

// --- ln = line number          

//============================================================================== 

#cmpif 0x01 : sub DbgAssertRC(ln as integer)    

#cmpif 0x01 :   if rc!=0 then 

#cmpif 0x01 :     print "\nFail :";integer.h' rc;" at tag ";ln 

#cmpif 0x01 :   endif 

#cmpif 0x01 : endsub 

 

//============================================================================== 

//============================================================================== 

sub OpenUART() 

  baud=UARTBAUD 

  rc=UartOpen(baud,UARTBUFLENTX,UARTBUFLENRX,UARTOPTIONS)   

  #cmpif 0x01 : DbgAssertRC(1050)   

endsub 

 

//============================================================================== 

// Device Name (writable/not) 

// Connection Parameters 

//============================================================================== 

sub ConfigServiceGAP() 

  dim devicename$ : devicename$= GAPDEVNAME 

  

rc=BleGapSvcInit(devicename$,GAPNAME_WRITEABLE,GAPAPPEARANCE,GAPMINCONNINTus,GAPMAXCONNINTu

s,GAPLINKSUPRVSNTOUTus,GAPSLAVELATENCY) 

  #cmpif 0x01 : DbgAssertRC(1150)   

endsub 

 

//============================================================================== 

// Security :: 1=Open, 2=NO_MITM, 3=WITH_MITM 

//============================================================================== 

sub OpenVSP(vspSec) 

  dim uuid$ 

  dim hVspUuidRx 

  dim hVspUuidTx 



https://www.lairdconnect.com/ 315 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

  dim hVspUuidMdmIn 

  dim hVspUuidMdmOut 

   

  //create the advert & scan reports 

  uuid$         = VSPUUIDSERVICE 

  uuid$         = StrDehexize$(uuid$) 

  hVspUuidSvc   = BleHandleUuid128(uuid$) 

  hVspUuidRx    = BleHandleUuidSibling(hVspUuidSvc,VSPUUIDRX) 

  hVspUuidTx    = BleHandleUuidSibling(hVspUuidSvc,VSPUUIDTX) 

  hVspUuidMdmIn = BleHandleUuidSibling(hVspUuidSvc,VSPUUIDMDMIN) 

  hVspUuidMdmOut= BleHandleUuidSibling(hVspUuidSvc,VSPUUIDMDMOUT)   

 

  vspSec        = (vspSec & 0x7)<<2 

   

  //finally open the VSP 

  

rc=BleVspOpenEx(VSPBUFLENTX,VSPBUFLENRX,vspSec,hVspUuidSvc,hVspUuidRx,hVspUuidTx,hVspUuidMd

mIn,hVspUuidMdmOut) 

  #cmpif 0x01 : DbgAssertRC(1410)   

   

endsub 

 

//============================================================================== 

//============================================================================== 

sub StartADVERTS() 

  dim advReport$ 

  dim scnReport$ 

  dim peerAdr$ : peerAdr$="" 

   

  rc=BleAdvRptInit(advReport$,ADVDISCOVERYFLAGS,GAPAPPEARANCE,ADVMAXDEVICENAMELEN) 

  #cmpif 0x01 : DbgAssertRC(1530)   

  rc=BleScanRptInit(scnReport$) 

  #cmpif 0x01 : DbgAssertRC(1550)   

  rc=BleAdvRptAddUuid128(scnReport$,hVspUuidSvc) 

  #cmpif 0x01 : DbgAssertRC(1570)   

  rc=BleAdvRptsCommit(advReport$,scnReport$) 

  #cmpif 0x01 : DbgAssertRC(1590)   

 

  //finally start the adverts 

  rc=BleAdvertStart(0,peerAdr$,ADVINTERVALms,ADVTIMEOUTms,ADVFILTERPOLICY) 



https://www.lairdconnect.com/ 316 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

  #cmpif 0x01 : DbgAssertRC(1630)   

endsub 

 

//****************************************************************************** 

// Handler definitions 

//****************************************************************************** 

 

//****************************************************************************** 

// Equivalent to main() in C 

//****************************************************************************** 

 

//------------------------------------------------------------------------------ 

//Config and open UART 

// See UARTxxx #defines above 

//------------------------------------------------------------------------------ 

OpenUART() 

 

//------------------------------------------------------------------------------ 

//Configure GAP Service 

// See GAPxxx #defines above 

//------------------------------------------------------------------------------ 

ConfigServiceGAP() 

 

//------------------------------------------------------------------------------ 

//Config and open VSP 

// See VSPxxx #defines above 

//------------------------------------------------------------------------------ 

OpenVSP(VSPSECURITY) 

 

//------------------------------------------------------------------------------ 

//Advertising 

// See ADVxxx #defines above 

//------------------------------------------------------------------------------ 

StartADVERTS() 

 

//------------------------------------------------------------------------------ 

// PURPOSELY COMMENTED OUT AS WE WANT TO FALL INTO COMMAND MODE 

//------------------------------------------------------------------------------ 

//waitevent 



https://www.lairdconnect.com/ 317 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

Just as the physical UART is used to interact with the module when it is not running a smart BASIC application, it is also 
possible to have limited interaction with the module in interactive mode. The limitation applies to NOT being able to launch 
smart BASIC applications using the AT+RUN command. If bridge mode is enabled then any incoming VSP data is 
retransmitted out via the UART. Conversely, any data arriving via the UART is transmitted out the VSP service. This latter 
functionality provides a cable replacement function. 

Selection of Command or Bridge Mode is done using the nAutorun input signal. When nAutorun is low, interactive mode is 
enabled. When it is high, and bit 8 in the config register 100 accessed by AT+CFG 100 is set, bridge mode is selected the 
defaule value of config register 100 is 0x8102 which means by default, bridge mode is enabled if SIO2 is held high and 
nAutorun is high too. 

The operation of VSP command and bridge mode is illustrated as per the diagrams on the following page (aknowledgments to 
Nicolas Mejia) . 

The main purpose of interactive mode operation is to facilitate the download of an autorun smart BASIC application. This 
allows the module to be soldered into an end product without preconfiguration and then the application can be downloaded 
over the air once the product has been pre-tested. It is the smart BASIC application that is downloaded over the air, NOT the 
firmware. Due to this principle reason for use in production, to facilitate multiple programming stations in a locality the transmit 
power is limited to -12dBm. It can be changed by changing the 109 config key using the command AT+CFG. 

The default operation of this virtual serial port service is dependent on one of the digital input lines being pulled high externally. 
Consult the hardware manual for more information on the input pin number. By default it is SIO2 on the module, but it can be 
changed by setting the config key 100 via AT+CFG.  

 



https://www.lairdconnect.com/ 318 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

You can interact with the BL654 over the air via the Virtual Serial Port Service using the Laird iOS or Android “BL6xx Serial” 
app, available free on the Apple App Store and Google Play Store respectively. 

You may download smartBASIC applications onto the BL654 Over The Air using a BT900-US/BL652/BL654 devkit and a 
smartBASIC application from GitHub. Contact your local FAE for details. 

As most of the AT commands are functional, you may obtain information such as version numbers by sending the command 
AT I 3 to the module over the air. 

Note that the module enters interactive mode only if there is no autorun application or if the autorun application exits to 
interactive mode by design. Hence in normal operation where a module is expected to have an autorun application the virtual 
serial port service will not be registered in the GATT table.  

If the application requires the virtual serial port functionality then it shall have to be registered programmatically using the 
functions that follow in subsequent subsections. These are easy to use high level functions such as 
OPEN/READ/WRITE/CLOSE. 

 

In addition to the routines for manipulating the Virtual Serial Port (VSP) service, when data arrives via the receive 
characteristic it is stored locally in an underlying ring buffer and then an event is generated.  

Similarly when the transmit buffer is emptied, events are thrown from the underlying drivers so that user smart BASIC code in 
handlers can perform user defined actions.  

The following is a list of events generated by VSP service managed code which can be handled by user code. 

EVVSPRX This event is generated when data has arrived and has been stored in the local ring buffer to be 
read using BleVSpRead(). 

EVVSPTXEMPTY This event is generated when the last byte is transmitted using the outgoing data characteristic via 
a notification or indication. 

Use the iOS BL6xx Serial app and connect to your BL654 to test this sample app. 

Example: 

// Example :: VSpEvents.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 DIM tx$,rc,x,scRpt$,adRpt$,addr$,hndl 

 

 //handler for data arrival 

 FUNCTION HandlerBleVSpRx() AS INTEGER 

     //print the data that arrived 

     DIM n,rx$ 

     n = BleVSpRead(rx$,20) 

     PRINT "\nrx=";rx$ 

 ENDFUNC 1 

 

 //handler when VSP tx buffer is empty 

 FUNCTION HandlerVSpTxEmpty() AS INTEGER 

     IF x==0 THEN 

         rc = BleVSpWrite(tx$) 

         x=1 

     ENDIF 

 ENDFUNC 1 

https://github.com/LairdCP/BL652-Applications/blob/master/Applications/%24autorun%24.VSP.UART.bridge.outgoing.sb


https://www.lairdconnect.com/ 319 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

 PRINT "\nDevice name is "; BleGetDeviceName$() 

 

 //Open the VSP 

 rc = BleVSpOpen(128,128,0,hndl) 

 //Initialise a scan report 

 rc = BleScanRptInit(scRpt$) 

 //Advertise the VSP service in the scan report so  

 //that it can be seen by the client 

 rc = BleAdvRptAddUuid128(scRpt$,hndl) 

 adRpt$="" 

 rc = BleAdvRptsCommit(adRpt$,scRpt$) 

 addr$=""  //because we are not doing a DIRECT advert 

 rc = BleAdvertStart(0,addr$,20,300000,0) 

 //Now advertising so can be connectable 

 

 ONEVENT  EVVSPRX      CALL HandlerBleVSpRx 

 ONEVENT  EVVSPTXEMPTY  CALL HandlerVSpTxEmpty 

 

 tx$="tx buffer empty" 

 PRINT "\nUse the iOS BL6xx Serial app to test this" 

 

 //wait for events and messages 

 WAITEVENT 

 

FUNCTION  

This function opens the default VSP service using the parameters specified. The service’s UUID is:    569a1101-b87f-
490c-92cb-11ba5ea5167c 

By default, ModemIn and ModemOut characteristics are registered in the GATT table with the Rx and Tx FIFO characteristics. 
To suppress Modem characteristics in the GATT table, set bit 1 in the nFlags parameter (value 2). If the virtual serial port is 
already open, this function fails. 

Note that the parameters specified in the first call to this function are sticky. After calling BleVspClose() if this function is 
recalled the parameters will be ignored and the internal state machine managing the VSP function will resume from a 
suspended state. This is because on a close, it is not possible to remove the service from the GATT table. If this is strictly 
required, perform a warm reset using RESET() and then action appropriately in the new incarnation. One way of detection a 
new incarnation could be by using NvRecordSet()/NvRecordGet() as that writes/reads to non-volatile memory. 

BLEVSPOPEN (txbuflen, rxbuflen, nFlags, svcUuid) 

Returns 

INTEGER, indicating the success of command: 

0 Opened successfully 

0x604D Already open 

0x604E Invalid Buffer Size 



https://www.lairdconnect.com/ 320 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

0x604C Cannot register Service in Gatt Table while BLE connected 
 

Exceptions 
▪ Local Stack Frame Underflow 

▪ Local Stack Frame Overflow 

Arguments 

txbuflen 

byVal  txbuflen AS INTEGER  
Set the transmit ring buffer size to this value. If set to 0, a default value is used by the 
underlying driver and use BleVspInfo(2) to determine the size. 

rxbuflen 

byVal  rxbuflen AS INTEGER  
Set the receive ring buffer size to this value. If set to 0, a default value is used by the 
underlying driver and use BleVspInfo(1) to determine the size. 

nFlags 

byVal nFlags  AS INTEGER 
This is a bit mask to customise the driver as follows: 

Bit 0 

Set to 1 to try for reliable data transfer. This uses INDICATE 
messages if allowed and if there is a choice. Some services only allow 

NOTIFY and in that case, if set to 1, it is ignored. 

This is deprecated – always set to 0 

Bit 1 Set to 1 to suppress ModemIn and ModemOut characteristics 

Bits Security Setting for accesing characteristics 
4 3 2 Bit Number 

0 0 0 Open 

0 0 1 Open 

0 1 0 ENCRYPTED_NO_MITM 

0 1 1 ENCRYPTED_WITH_MITM 

1 0 0 SIGNED_NO_MITM (reserved for future) 

1 0 1 SIGNED_WITH_MITM (reserved for future) 

1 1 0 ENCRYPTED_NO_MITM 

1 1 1 ENCRYPTED_NO_MITM 

Bit 5..31 Reserved for future use. Set to 0. 
 

svcUuid 

byRef svcUuid AS INTEGER 
On exit, this variable is updated with a handle to the service UUID which can then be 
subsequently used to advertise the service in an advert report. Given that there is no BT 
SIG adopted Serial Port Service the UUID for the service is 128 bit, so an appropriate 
Advert Data element can be added to the advert or scan report using the function 
BleAdvRptAddUuid128() which takes a handle of that type. 

Related Commands 
BLEVSPINFO, BLEVSPCLOSE, BLEVSPWRITE, BLEVSPREAD, 
BLEVSPFLUSH,BLEVSPOPENEX 

Example: 

// Example :: BleVspOpen.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 DIM scRpt$,adRpt$,addr$,vspSvcHndl 

 

 //Close VSP if already open 

 IF BleVSpInfo(0)!=0 THEN 

     BleVSpClose()     

 ENDIF 

 

 //Open VSP 

 IF BleVSpOpen(128,128,0,vspSvcHndl)==0 THEN 

     PRINT "\nVSP service opened" 



https://www.lairdconnect.com/ 321 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 ELSE 

     PRINT "\nFailed" 

 ENDIF 

Expected Output: 

VSP service opened 

 

FUNCTION  

This function opens the a managed VSP service using the parameters specified. The service’s UUID and UUIDs for the up to 
4 characteristics can all be inidividually specified. 

ModemIn and ModemOut characteristics are registered in the GATT table with the Rx and Tx FIFO characteristics if both 
UUIDMdmIn and UUIDMdmOut are not invalid (invalid handle == 0).  

Note that the parameters specified in the first call to this function are sticky. After calling BleVspClose() if this function is called 
again then the parameters will be ignored and the internal state machine managing the VSP function will resume from a 
suspended state. This is because on a close, it is not possible to remove the service from the GATT table. If this is strictly 
required, perform a warm reset using RESET() and then action appropriately in the new incarnation. One way of detection a 
new incarnation could be by using NvRecordSet()/NvRecordGet() as that writes/reads to non-volatile memory. 

BLEVSPOPENEX (txbuflen, rxbuflen, nFlags, hUuidSvc, hUuidRx, hUuidTx, hUuidMdmIn, hUuidMdmOut) 

Returns 

INTEGER, indicating the success of command: 

0 Opened successfully 

0x604D Already open 

0x604E Invalid Buffer Size 

0x604C Cannot register Service in Gatt Table while BLE connected 
 

Exceptions 
▪ Local Stack Frame Underflow 
▪ Local Stack Frame Overflow 

Arguments 

txbuflen 

byVal  txbuflen AS INTEGER  
Set the transmit ring buffer size to this value. If set to 0, a default value is used by the 
underlying driver and use BleVspInfo(2) to determine the size. 

rxbuflen 

byVal  rxbuflen AS INTEGER  
Set the receive ring buffer size to this value. If set to 0, a default value is used by the 
underlying driver and use BleVspInfo(1) to determine the size. 

nFlags 

byVal nFlags  AS INTEGER 
This is a bit mask to customise the driver as follows: 

Bit 0 

Set to 1 to try for reliable data transfer. This uses INDICATE 
messages if allowed and if there is a choice. Some services only allow 
NOTIFY and in that case, if set to 1, it is ignored. 
This is deprecated – always set to 0 

Bit 1 
This bit is ignored. See hUuidMdmIn and hUuidMdmOut instead to 
manage. 

Bits Security Setting for accesing characteristics 
4 3 2 Bit Number 
0 0 0 Open 
0 0 1 Open 
0 1 0 ENCRYPTED_NO_MITM 
0 1 1 ENCRYPTED_WITH_MITM 
1 0 0 SIGNED_NO_MITM (reserved for future) 
1 0 1 SIGNED_WITH_MITM (reserved for future) 
1 1 0 ENCRYPTED_NO_MITM 
1 1 1 ENCRYPTED_NO_MITM 

Bit 5..31 Reserved for future use. Set to 0. 
 

hUuidSvc 

byVal hUuidSvc AS INTEGER 
This is the handle for the service UUID which can then be subsequently used to advertise 
the service in an advert report. Given that there is no BT SIG adopted Serial Port Service 



https://www.lairdconnect.com/ 322 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

the UUID for the service is 128 bit, so an appropriate Advert Data element can be added to 
the advert or scan report using the function BleAdvRptAddUuid128() which takes a handle 
of that type. 

hUuidRx 
byVal hUuidRx AS INTEGER 
This is the handle for the Rx Characteristic UUID. It cannot be an invalid handle. 

hUuidTx 
byVal hUuidTx AS INTEGER 
This is the handle for the Tx Characteristic UUID. It cannot be an invalid handle. 

hUuidMdmIn 

byVal hUuidMdmIn AS INTEGER 
This is the handle for the MdmIn Characteristic UUID. Can be an invalid handle (0) and in 
that case both modem characteristic are not registered. 

uUuidMdmOut 

byVal hUuidMdmOut AS INTEGER 
This is the handle for the MdmOut Characteristic UUID. . Can be an invalid handle (0) and 
in that case both modem characteristic are not registered. 

Related Commands 
BLEVSPINFO, BLEVSPCLOSE, BLEVSPWRITE, BLEVSPREAD, BLEVSPFLUSH, 
BLEVSPOPEN 

  

//Example  

 

 DIM scRpt$,adRpt$,addr$,hUuidSvc,hUuidRx,hUuidTx,hUuidMdmIn,hUuidMdmOut,uuid$ 

 

 uuid$ = "ced9d91366924a1287d56f2764762b2a" 

 uuid$ = StrDehexize$(uuid$) 

 hUuidSvc = BleHandleUuid128(uuid$)                                       

 hUuidRx = BleHandleUuidSibling(hUuid1,0x1234) 

 hUuidTx = BleHandleUuidSibling(hUuid1,0x5678) 

 hUuidMdmIn  = BleHandleUuidSibling(hUuid1,0x9ABC) 

 hUuidMdmOut = BleHandleUuidSibling(hUuid1,0xDEF0) 

 

 //Open VSP 

 IF BleVSpOpenEx(128,128,0, hUuidSvc,hUuidRx,hUuidTx,hUuidMdmIn,hUuidMdmOut)==0 THEN 

     PRINT "\nVSP service opened with non-default UUIDs" 

 ELSE 

     PRINT "\nFailed" 

 ENDIF 

Expected Output:  

VSP service opened with non-default UUIDs 

 

SUBROUTINE  

This subroutine closes the managed virtual serial port which had been opened with BLEVSPOPEN. This routine is safe to call 
if it is already closed. When this subroutine is invoked both receive and transmit buffers are flushed. If there is data in either 
buffer when the port is closed, it will be lost. 

Note that the parameters specified in the first call of BleVspOpen() are sticky. After calling this function if BleVspOpen() or 
BleVspOpenEx() is called again then the open parameters will be ignored and the internal state machine managing the VSP 
function will resume from a suspended state. This is because on a close, it is not possible to remove the service from the 
GATT table. If this is strictly required, perform a warm reset using RESET() and then action appropriately in the new 



https://www.lairdconnect.com/ 323 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

incarnation. One way of detection a new incarnation could be by using NvRecordSet()/NvRecordGet() as that writes/reads to 
non-volatile memory. 

BLEVSPCLOSE () 

Exceptions 
▪ Local Stack Frame Underflow 

▪ Local Stack Frame Overflow 

Arguments None 

Related Commands BLEVSPINFO, BLEVSPOPEN, BLEVSPWRITE, BLEVSPREAD, BLEVSPFLUSH 

Use the iOS “BL6xx Serial” app and connect to your BL654 to test this sample app. 

Example: 

// Example :: BleVspClose.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 DIM tx$,rc,scRpt$,adRpt$,addr$,hndl 

 

 //handler when VSP tx buffer is empty 

 FUNCTION HandlerVSpTxEmpty() AS INTEGER 

     PRINT "\n\nVSP tx buffer empty" 

     BleVspClose() 

 ENDFUNC 0 

 

 PRINT "\nDevice name is "; BleGetDeviceName$() 

 

 //Open the VSP, advertise 

 rc = BleVSpOpen(128,128,0,hndl) 

 rc = BleScanRptInit(scRpt$) 

 rc = BleAdvRptAddUuid128(scRpt$,hndl) 

 adRpt$="" 

 rc = BleAdvRptsCommit(adRpt$,scRpt$) 

 addr$=""   

 rc = BleAdvertStart(0,addr$,20,300000,0) 

 

 //This message will send when connected to client 

 tx$="send this data and will close when sent" 

 rc = BleVSpWrite(tx$) 

 

 ONEVENT  EVVSPTXEMPTY  CALL HandlerVSpTxEmpty 

 

 WAITEVENT 

 

 PRINT "\nExiting..." 



https://www.lairdconnect.com/ 324 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

Expected Output: 

Device name is LAIRD BL654 

 

VSP tx buffer empty 

Exiting... 

 

FUNCTION 

This function is used to query information about the virtual serial port, such as buffer lengths, whether the port is already open 
or how many bytes are waiting in the receive buffer to be read. 

BLEVSPINFO (infoId) 

Returns INTEGER  The value associated with the type of UART information requested 

Exceptions 
▪ Local Stack Frame Underflow 
▪ Local Stack Frame Overflow 

Arguments 

infoId 

byVal  infoId  AS INTEGER 
This specifies the information type requested as follows if the port is open: 

0 0 if closed, 1 if open, 3 if open and there is a BLE connection and 7 if the 
transmit fifo characteristic CCCD has been updated by the client to enable 
notifies or indications. 

1 Receive ring buffer capacity 

2 Transmit ring buffer capacity 

3 Number of bytes waiting to be read from receive ring buffer 

4 Free space available in transmit ring buffer 

5 Tx/Rx attribute size in bytes. Valid range is 20-244, and can be configured using 
AT+CFG 212. See Data Packet Length Extension section for more information. 

 

Related Commands BLEVSPOPEN, BLEVSPCLOSE, BLEVSPWRITE, BLEVSPREAD, BLEVSPFLUSH 

Example: 

// Example :: BleVspInfo.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

DIM hndl, rc 

 

//Close VSP if it is open 

BleVSpClose()     

 

rc = BleVSpOpen(128,128,0,hndl) 

PRINT "\nVsp State: "; BleVSpInfo(0) 

PRINT "\nRx buffer capacity: "; BleVSpInfo(1) 

PRINT "\nTx buffer capacity: "; BleVSpInfo(2) 

PRINT "\nBytes waiting to be read from rx buffer: "; BleVSpInfo(3) 

PRINT "\nFree space in tx buffer: "; BleVSpInfo(4) 

PRINT "\nTx/Rx Characteristic Size: "; BleVSpInfo(5)    // Changed using AT+CFG 212 xx 

BleVspClose() 

PRINT "\nVsp State: "; BleVSpInfo(0) 

 

Expected Output: 

Vsp State: 1 

Rx buffer capacity: 128 

Tx buffer capacity: 128 

Bytes waiting to be read from rx buffer: 0 



https://www.lairdconnect.com/ 325 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

Free space in tx buffer: 128 

Tx/Rx Characteristic Size: 20 

Vsp State: 0 

 

FUNCTION 

This function is used to transmit a string of characters from the virtual serial port. 

BLEVSPWRITE (strMsg) 

Returns INTEGER  0 to N : Actual number of bytes successfully written to local transmit ring buffer. 

Exceptions 
▪ Local Stack Frame Underflow 

▪ Local Stack Frame Overflow 

Arguments 

strMsg 

byRef strMsg  AS STRING 
The array of bytes to be sent. STRLEN(strMsg) bytes are written to the local transmit ring 
buffer. If STRLEN(strMsg) and the return value are not the same, it implies that the transmit 
buffer did not have enough space to accommodate the data. 
If the return value does not match the length of the original string, use STRSHIFTLEFT function 
to drop the data from the string, so subsequent calls to this function only retry with data not 
placed in the output ring buffer. 
Another strategy is to wait for EVVSPTXEMPTY events, then resubmit data. 

Related Commands BLEVSPOPEN, BLEVSPCLOSE, BLEVSPINFO, BLEVSPREAD, BLEVSPFLUSH 

Note:   strMsg cannot be a string constant, e.g. “the cat”, but must be a string variable. If you must use a const string, first 

save it to a temp string variable and then pass it to the function. 

Use Laird Toolkit app for iOS/Android and connect to your BL654 to test this sample app. 

Example: 

// Example :: BleVSpWrite.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 

 DIM tx$,rc,scRpt$,adRpt$,addr$,hndl,cnt 

 

 //handler when VSP tx buffer is empty 

 FUNCTION HandlerVSpTxEmpty() AS INTEGER 

     cnt=cnt+1 

     IF cnt<= 2 THEN 

         tx$="then this is sent" 

         rc = BleVSpWrite(tx$)   

     ENDIF   

 

 ENDFUNC 0 

 

 rc = BleVSpOpen(128,128,0,hndl) 



https://www.lairdconnect.com/ 326 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 rc = BleScanRptInit(scRpt$) 

 rc = BleAdvRptAddUuid128(scRpt$,hndl) 

 adRpt$="" 

 rc = BleAdvRptsCommit(adRpt$,scRpt$) 

 addr$=""   

 rc = BleAdvertStart(0,addr$,20,300000,0) 

 PRINT "\nDevice name is "; BleGetDeviceName$() 

 

 cnt=1 

 tx$="send this data and " 

 rc = BleVSpWrite(tx$) 

 

 ONEVENT  EVVSPTXEMPTY  CALL HandlerVSpTxEmpty 

 

 WAITEVENT 

 

PRINT "\nExiting..." 

Expected Output: 

Device name is LAIRD BL654 

Exiting... 

 

FUNCTION 

This function is used to read the content of the receive buffer and copy it to the string variable supplied. 

BLEVSPREAD (strMsg, nMaxRead) 

Returns 
INTEGER  0 to N : The total length of the string variable. This means the caller does not 

need to call strlen() function to determine how many bytes in the string must be processed. 

Exceptions 
▪ Local Stack Frame Underflow 

▪ Local Stack Frame Overflow 

Arguments 

strMsg 
byRef strMsg  AS STRING 
The content of the receive buffer is copied to this string. 

nMaxRead 
byVal nMaxRead AS INTEGER 
The maximum number of bytes to read. 

Related Commands BLEVSPOPEN, BLEVSPCLOSE, BLEVSPINFO, BLEVSPWRITE, BLEVSPFLUSH 

Note:      strMsg cannot be a string constant, e.g. “the cat”, but must be a string variable and. If you must use a const string, 

first save it to a temp string variable and then pass it to the function 

Use the Laird Toolkit app for iOS/Android with your BL654 to test this sample app. 

Example: 



https://www.lairdconnect.com/ 327 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

// Example :: BleVSpRead.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 DIM conHndl       

 //Only 1 global variable because its value is used in more than 1 routine 

 //All other variables declared locally, inside routine that they are used in. 

 //More efficient because these local variables only exist in memory 

 //when they are being used inside their respective routines 

                 

 //============================================================================== 

 // Open VSp and start advertising 

 //============================================================================== 

 SUB OnStartup() 

     DIM rc, hndl, tx$, scRpt$, addr$, adRpt$ : adRpt$="" : addr$="" 

     rc=BleVSpOpen(128,128,0,hndl) 

     rc=BleScanRptInit(scRpt$)  

     rc=BleAdvRptAddUuid128(scRpt$,hndl) 

     rc=BleAdvRptsCommit(adRpt$,scRpt$) 

     rc=BleAdvertStart(0,addr$,20,300000,0) 

     PRINT "\nDevice name is "; BleGetDeviceName$() 

     

     tx$="\nSend me some text \nTo exit the app, just tell me\n" 

     rc = BleVSpWrite(tx$) 

 ENDSUB 

 

 //============================================================================== 

 // Close connections so that we can run another app without problems 

 //============================================================================== 

 SUB CloseConnections() 

     DIM rc 

     rc=BleDisconnect(conHndl) 

     rc=BleAdvertStop() 

     BleVspClose() 

 ENDSUB 

 

 //============================================================================== 

 //  VSP Rx buffer event handler 

 //============================================================================== 

 FUNCTION HandlerVSpRx() AS INTEGER 



https://www.lairdconnect.com/ 328 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

     DIM rc, rx$, e$ : e$="exit"  

     rc=BleVSpRead(rx$,20) 

     PRINT "\nMessage from client: ";rx$  

 

     //If user has typed exit 

     IF StrPos(rx$,e$,0) > -1 THEN 

        EXITFUNC 0 

     ENDIF 

 ENDFUNC 1 

 

 //============================================================================== 

 // BLE event handler 

 //============================================================================== 

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)  

     conHndl=nCtx 

     IF nMsgID==1 THEN 

         PRINT "\nDisconnected from client" 

         EXITFUNC 0 

     ENDIF 

 ENDFUNC 1   

     

 ONEVENT  EVVSPRX  CALL HandlerVSpRx 

 ONEVENT  EVBLEMSG CALL HndlrBleMsg 

 

 OnStartup()          //Calls first subroutine declared above 

 

 WAITEVENT 

 

 CloseConnections()  //Calls second subroutine declared above 

 PRINT "\nExiting..." 

Expected Output: 

Device name is LAIRD BL654 

Messgae from client: (Whatever data you send from your device) 

Message from client: exit 

Exiting... 



https://www.lairdconnect.com/ 329 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

SUBROUTINE 

This function creates a bridge between the managed Virtual Serial Port Service and the UART when both are open. Any data 
arriving from the VSP is automatically transferred to the UART for forward transmission. Any data arriving at the UART is sent 
over the air.  

It should be called either when data arrives at either end or when either end indicates their transmit buffer is empty. The 
following events are examples: EVVSPRX, EVUARTRX, EVVSPTXEMPTY and EVUARTTXEMPTY. 

Given that data can arrive over the UART a byte at a time, a latency timer specified by AT+CFG 116 command may be used 
to optimise the data transfer over the air. This tries to ensure that full packets are transmitted over the air. Therefore, if a single 
character arrives over UART, a latency timer is started. If it expires, that single character (or any more that arrive but less than 
20) will be forced onwards when that timer expires. 

BLEVSPUARTBRIDGE () 

Exceptions 
▪ Local Stack Frame Underflow 

▪ Local Stack Frame Overflow 

Arguments None 

Related Commands BLEVSPOPEN, BLEVSPCLOSE, BLEVSPINFO, BLEVSPWRITE, BLEVSPFLUSH 

Example: 

// Example :: BleVSpUartBridge.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 DIM conHndl 

 

 //============================================================================== 

 // Open VSp and start advertising 

 //============================================================================== 

 SUB OnStartup() 

     DIM rc, hndl, tx$, scRpt$, addr$, adRpt$  

      

     rc=BleVSpOpen(128,128,0,hndl) 

     rc=BleScanRptInit(scRpt$)  

     rc=BleAdvRptAddUuid128(scRpt$,hndl) 

     rc=BleAdvRptsCommit(adRpt$,scRpt$) 

     rc=BleAdvertStart(0,addr$,20,300000,0) 

     rc=GpioBindEvent(1,16,1)     //Channel 1, bind to low transition on GPIO pin 16 

     PRINT "\nDevice name is "; BleGetDeviceName$();"\n" 

     

     tx$="\nSend me some text. \nPress button 0 to exit\n" 

     rc = BleVSpWrite(tx$) 

 ENDSUB 

 

 //============================================================================== 



https://www.lairdconnect.com/ 330 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 // Close connections so that we can run another app without problems 

 //============================================================================== 

 SUB CloseConnections() 

     DIM rc 

     rc=BleDisconnect(conHndl) 

     rc=BleAdvertStop() 

     BleVspClose() 

 ENDSUB 

 

 //============================================================================== 

 // BLE event handler - connection handle is obtained here 

 //============================================================================== 

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)  

     conHndl=nCtx 

     IF nMsgID==1 THEN 

         PRINT "\nDisconnected from client" 

         EXITFUNC 0 

     ENDIF 

 ENDFUNC 1 

 

 //============================================================================== 

 //handler to service button 0 pressed 

 //============================================================================== 

 FUNCTION HndlrBtn0Pr() AS INTEGER  

     //just exit and stop waiting for events 

 ENDFUNC 0 

 

 //============================================================================== 

 //handler to service an rx/tx event 

 //============================================================================== 

 FUNCTION HandlerBridge() AS INTEGER 

   // transfer data between VSP and UART ring buffers 

   BleVspUartBridge() 

 ENDFUNC 1 

     

 ONEVENT  EVVSPRX            CALL HandlerBridge 

 ONEVENT  EVUARTRX           CALL HandlerBridge 

 ONEVENT  EVVSPTXEMPTY       CALL HandlerBridge 

 ONEVENT  EVUARTTXEMPTY      CALL HandlerBridge 



https://www.lairdconnect.com/ 331 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 ONEVENT  EVBLEMSG          CALL HndlrBleMsg 

 ONEVENT  EVGPIOCHAN1       CALL HndlrBtn0Pr      

 

 OnStartup() 

 

 WAITEVENT 

 

 CloseConnections()  //Calls second subroutine declared above 

 PRINT "\nExiting..." 

 

SUBROUTINE 

This subroutine flushes either or both receive and transmit ring buffers. 

This is useful when, for example, you have a character terminated messaging system and the peer sends a very long 
message, filling the input buffer. In that case, there is no more space for an incoming termination character. A flush of the 
receive buffer is the best approach to recover from that situation. 

BLEVSPFLUSH (bitMask) 

Returns ▪ None 

Arguments 

bitMask 

byVal bitMask  AS INTEGER 
Bit 0 is set to flush the Rx buffer. Bit 1 is set to flush the Tx buffer.  Set both bits to flush both 
buffers. 

Related Commands BLEVSPOPEN, BLEVSPCLOSE, BLEVSPINFO, BLEVSPWRITE, BLEVSPREAD 

Example: 

// Example :: BleVSpFlush.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 DIM conHndl       

//============================================================================== 

 // Open VSp and start advertising 

 //============================================================================== 

 SUB OnStartup() 

     DIM rc, hndl, tx$, scRpt$, addr$, adRpt$ : adRpt$="" : addr$="" 

     rc=BleVSpOpen(128,128,0,hndl) 

     rc=BleScanRptInit(scRpt$)  

     rc=BleAdvRptAddUuid128(scRpt$,hndl) 

     rc=BleAdvRptsCommit(adRpt$,scRpt$) 

     rc=BleAdvertStart(0,addr$,20,300000,0) 

     rc=GpioBindEvent(1,16,1)     //Channel 1, bind to low transition on GPIO pin 16 

     PRINT "\nDevice name is "; BleGetDeviceName$() 



https://www.lairdconnect.com/ 332 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

     

     tx$="\nSend me some text, I won't get it. \nTo exit the app press Button 0\n" 

     rc = BleVSpWrite(tx$) 

 ENDSUB 

//============================================================================== 

 // Close connections so that we can run another app without problems 

 //============================================================================== 

 SUB CloseConnections() 

     DIM rc 

     rc=BleDisconnect(conHndl) 

     rc=BleAdvertStop() 

     BleVspClose() 

     BleVspFlush(3)      //Flush both buffers 

 ENDSUB 

//============================================================================== 

 //  VSP Rx buffer event handler 

 //============================================================================== 

 FUNCTION HandlerVSpRx() AS INTEGER     

     BleVspFlush(1) 

     PRINT "\nRx buffer flushed" 

 ENDFUNC 1 

//============================================================================== 

 //handler to service button 0 pressed 

 //============================================================================== 

 FUNCTION HndlrBtn0Pr() AS INTEGER 

      //stop waiting for events and exit app 

 ENDFUNC 0 

//============================================================================== 

 // BLE event handler 

 //============================================================================== 

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)  

     conHndl=nCtx 

     IF nMsgID==1 THEN 

         PRINT "\nDisconnected from client" 

         EXITFUNC 0 

     ENDIF 

 ENDFUNC 1 

     

 ONEVENT  EVVSPRX     CALL HandlerVSpRx 



https://www.lairdconnect.com/ 333 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 ONEVENT  EVBLEMSG    CALL HndlrBleMsg 

 ONEVENT  EVGPIOCHAN1  CALL HndlrBtn0Pr  

 

 OnStartup()          //Calls first subroutine declared above 

 

 WAITEVENT 

 

 CloseConnections()  //Calls second subroutine declared above 

 PRINT "\nExiting..." 

Expected Output: 

Device name is LAIRD BL654 

Rx buffer flushed 

Rx buffer flushed 

Exiting... 

 

This section describes all the events and functions used for Data Packet Length Extension and related features to achieve 
higher throughputs.  

 

 

One of the major additions in Bluetooth v4.2 is LE Data Packet Length Extension. This feature allows the BLE packet size to 
increase from 27 to 251 bytes at the link layer, thus increasing the capacity of the data channel by approximately ten times. 
The benefits of of this include the following: 

▪ Higher Throughputs – Less time is required to transfer the same amount of data compared to Bluetooth v4.1. 

▪ Lower power consumption – Fewer transactions are required to transfer a given amount of data compared to Bluetooth 
v4.1. This reduces the time for which the radio is active. 

In order to take full advantage of packet length extension, the device should also have an ATT_MTU greater than the default 
23 bytes. 

 

The attribute Maximum Transmission Unit (ATT_MTU) is the maximum size of any packet sent betweem a GATT client and a 
GATT server. It determines the maximum amount of data that can be sent over the air for GATT operations.  

GATT Operation Attribute Size Example when ATT_MTU=23 

Read 0 to (ATT_MTU-1) The GATT client can only read 22 bytes from a GATT server’s attribute data. 

Write 0 to (ATT_MTU-3) The GATT client can only write up to 20 bytes to a GATT server attribute. 

Notification 0 to (ATT_MTU-3) The GATT server can only send notifies of data up to 20 bytes long 

Indications 0 to (ATT_MTU-3) The GATT server can only send indications of data up to 20 bytes long 

The MTU exchange is a subprocedure used by the GATT client to set the connection’s ATT_MTU to the maximum possible 
value that can be supported by both devices. This means that if the ATT_MTU is set to a value larger than the default 23 
bytes, larger amounts of data can be sent between the GATT server and the GATT client per transaction, therefore resulting in 
higher throughput. For example, when the ATT_MTU is set to 247, single read/write/notifies/indicates can be performed on 
attributes that are 244 bytes long. 



https://www.lairdconnect.com/ 334 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

 

The maximum ATT_MTU value that the BL654 supports can be set using AT+CFG 211 num. Once this value is set, the 
BL654 should be reset (e.g. via ATZ command or a UART BREAK) for the configuration to take effect. When the smartBASIC 
application is running and if the BL654 is acting as a GATT client, the function BleGattcAttributeMtuRequest should be used to 
request the ATT_MTU size to change to its maximum supported value. If the BL654 is acting as a GATT server, when it 
receives the request it automatically responds with its maximum ATT_MTU. The connection’s MTU is the minimum value 
between the client’s and server’s maximum ATT_MTU. 

ID Definition 

211 Maximum ATT_MTU in bytes 

Example: 

AT+CFG 211 247 

 

00 

 

ATZ 

 

00 

 

AT+CFG 211 ? 

 

27   0x000000F7 (247) 

 

00 

 

In order to take full advantage of the increased ATT_MTU and packet length extension, the BL654 now supports attribute data 
lengths of up to 244 bytes. The maximum attribute data length is set using AT+CFG 212 num. The default value is 20 bytes. 
Once this is set, the BL654 should be reset (e.g. via ATZ command or a UART BREAK) for the configuration to take effect. At 
runtime, the function BleAttrMetaDataEx can then be used to create characteristic values larger than 20 bytes. 

ID Definition 

212 Maximum Attribute Data Length Length 

Example: 

AT+CFG 212 244 

 

00 

 

ATZ 

 

00 

 

AT+CFG 212 ? 

 

27   0x000000F4 (244) 

 

00 

 

The  BL654 supports a packet size of 27 bytes by default, and can be configured to support packet sizes up to 251 bytes, 
which is the maximum that is allowed by the Bluetooth specification. In order to increase the packet size supported by the 



https://www.lairdconnect.com/ 335 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

device, the command AT+CFG 216 num should be called, where num should be in the range of 27-251 bytes long. For values 
less than or greater than the range, the packet length will be capped to 27 bytes or 251 bytes respectively.  

Note:  This function only sets the maximum packet length supported by the device. To actually change the packet length 

for  a connection, the function BleGattcAttributeMtuRequest() during the connection, and the packet length 

requested will be ‘ATT_MTU + 4’. For more information, refer to the example for BleGattcAttributeMtuRequest(). 

 

 

This event is thrown when the ATT_MTU of a connection is changed. It occurs after an MTU exchange procedure has been 
intiated from the GATT client. The event comes with the following parameters: 

▪ Connection handle – The handle of the connection for which the attribute MTU has changed. 

▪ Attribute MTU – The new attribute size. This is in the range of 23-247 bytes. 

For usage, see example for BleGattcAttributeMtuRequest. 

 
This event message is thrown when the connection’s data packet length changes. It is only thrown after a negotiation of the 
attribute MTU via the BleAttributeMtuRequest smartBASIC function. The event comes with the following parameters: 

▪ Connection handle – The handle of the connection for which the packet length has changed. 

▪ Maximum Tx Octets – The maximum number of bytes that the BL654 sends on this connection. The valid range is 
between 27-251 bytes. 

▪ Maximum Tx Time – The maximum time that the BL654 takes to send one byte on this connection. The valid range is 
between 328-2120 microseconds. This value cannot be controlled by the smartBASIC application and is only provided for 
informative purposes. 

▪ Maximum Rx Octets – The maximum number of bytes that the BL654 receives on this connection. The valid range is 
between 27-251 bytes. The default value is 27 bytes. 

▪ Maximum Rx Time – The maximum time that the BL654 takes to send one byte on this connection. The valid range is 
betweem 328-2120 microseconds. This value cannot be controlled by the smartBASIC application and is only provided 
for informative purposes. 

For usage, see example for BleGattcAttributeMtuRequest. 

 

This function is used by the GATT client to request a new attribute MTU from the remote GATT server. On the BL654, the 
default ATT_MTU is 23 bytes. The maximum value that the BL654 can support is 247 bytes. This can be set using the config 
key 211. 

Note:  The ATT_MTU value is set using the interactive command AT+CFG 211 num. This value is then always used 

when the BleGattcAttributeMtuRequest is called. 

BLEGATTCATTRIBUTEMTUREQUEST(nConnHandle) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments:  

nConnHandle 
byVal nEnable AS INTEGER.  

The connection handle for which the ATT_MTU should change 

 

 

// Example :: BleGattcAttributeMtuRequest.sb 

 

// IMPORTANT: before running this application, the ATT_MTU and maximum packet 



https://www.lairdconnect.com/ 336 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

// length are set using the interactive commands: 

// 

// AT+CFG 211 247 (This is to set the maximum ATT_MTU) 

// AT+CFG 216 251 (This is to set the maximum packet length) 

// ATZ            (This is to reset the device for value to take effect) 

// 

// In order to achieve an ATT_MTU larger than the default 23, the remote device  

// should also have its maximum ATT_MTU set to a value greater than 23. If the  

// remote device is a BL654, the same AT+CFG command should be used 

  

//BLE EVENT MSG IDs 

#define BLE_EVBLEMSGID_CONNECT                          0 // msgCtx = connection handle 

#define BLE_EVBLEMSGID_DISCONNECT                       1 // msgCtx = connection handle 

 

DIM rc, stRsp$, addr$ 

 

//============================================================================== 

// This handler is called when there is a BLE message 

//============================================================================== 

function HandlerBleMsg(BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER) as integer 

  dim hz 

 

  select nMsgId 

  case BLE_EVBLEMSGID_CONNECT 

    print " --- Connect: (";integer.h' nCtx;")\n" 

    // Upon connection, request a new attribute length. The value used will be that 

    // whcih was set using 'AT+CFG 211 num' before running the program 

    rc = BleGattcAttributeMtuRequest(nCtx) 

 

  case BLE_EVBLEMSGID_DISCONNECT 

    print " --- Disconnect: (";integer.h' nCtx;")\n" 

    // Upon disconnection, start advertising again 

    rc = BleAdvertStart(0,addr$,100,0,0) 

 

  case else 

 

  endselect 

endfunc 1 

 

//============================================================================== 

// This handler is called when the packet length is changed 

//============================================================================== 

function HandlerPacketLength(BYVAL hConn, BYVAL Tx_Octets, BYVAL Tx_Time, BYVAL 

Rx_Octets, BYVAL Rx_Time) 

 

    print "Packet Length Change: \n" 

    print "Handle: ";integer.h' hConn;"\n" 

    print "Tx_Octets=";Tx_Octets;" Tx_Time =";Tx_Time;"\n" 

    print "Rx_Octets=";Rx_Octets;" Rx_Time =";Rx_Time;"\n" 

 

endfunc 1 

 

//============================================================================== 

// This handler is called when there is an event that the attribute MTU has changed 

//============================================================================== 

function HandlerAttrMTU(BYVAL hCOnn AS INTEGER, BYVAL nSize AS INTEGER) 

 

    print "Attribute MTU Changed - Handle:";integer.h' hConn;" Size:";nSize;"\n" 

 

endfunc 1 

 

//------------------------------------------------------------------------------ 



https://www.lairdconnect.com/ 337 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

// Enable synchronous event handlers 

//------------------------------------------------------------------------------ 

OnEvent  EVBLEMSG                 call HandlerBleMsg 

OnEvent  EVATTRIBUTEMTU           call HandlerAttrMTU 

OnEvent  EVPACKETLENGTH           call HandlerPacketLength 

 

 

// Initialise LE routines 

rc = BleAdvertStart(0,addr$,100,0,0) 

// Open the gatt client. Specify the buffer size to be 251 to be able to receive  

// notifications up to 244 bytes long (maximum supported by BL654 when ATT_MTU = 247) 

rc = BleGattcOpen(251, 0) 

 

//------------------------------------------------------------------------------ 

// Wait for a synchronous event. 

// An application can have multiple <WaitEvent> statements 

//------------------------------------------------------------------------------ 

WAITEVENT 
 

 

Expected Output: 

AT+CFG 211 247 

 

00 

 

AT+CFG 216 251 

 

00 

 

ATZ 

 

00 

 

AT+RUN “BleGattcAttributeMtuReq” 

 

 

--- Connect: (0001FF00) 

Attribute MTU Changed - Handle:0001FF00 Size:247 

Packet Length Change:  

Handle: 0001FF00 

Tx_Octets=251 Tx_Time =2120 

Rx_Octets=251 Rx_Time =2120 

 

This function has been removed and replaced with the config key 216. To set the maximum packet length, either call ‘AT+CFG 
216 nSize’ (followed by ‘ATZ’ for the value to take effect), or at runtime calling NvCfgKeySet(216, nSize) (followed by reset(0) 
for the value to take effect.  

 

This function is used to get the preferred maximum packet length on the BL654. The actual packet length change only occurs 
when when the attribute MTU for the connection is changed via the BleGattcAttributeMtuRequest function. 

BLEMAXPACKETLENGTHSET (nSize) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments:  

nSize 
byRef nSize AS INTEGER.  

When the function is used, this value will contain the maximum packet length preferred by the device. 



https://www.lairdconnect.com/ 338 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

Example: 

// Example :: BleMaxPacketLengthSet.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

// Before running the example, issue ‘at+cfg 216 155’ followed by ‘atz’ 

dim rc, nSize 

 

// Now get the maximum packet length 

rc = BleMaxPacketLengthGet(nSize) 

PRINT "\nThe maximum packet size is ";nSize 
 

 

The maximum packet size is 155 

 

 

The LE Ping feature can be used to verify the existence of an encrypted link with the remote device. When enabled, the BL654 
sends a request to the remote device to send an encrypted packet. If a timeout occurs without the reception of a packet, an 
event is triggered on the BL654. 

 

 
This event is thrown when the ping authenticated payload timer has expired without receiving an encrypted packet. The event 
comes with the following parameter:- 

Connection Handle – The handle of the connection for which the timeout has occurred. 

For usage, see example for BlePingAuthTimeout. 

 

On an encrypted connection, this function is used to monitor the time since the last reception of an encrypted packet. If the 
timeout is exceeded without receiving a packet, then the EVBLE_PING_AUTH_TIMEOUT is triggered. This can be used to 
detect if there is something wrong with the encrypted link, and therefore if the event is received, a safe action would be to 
disconnect. 

Note:  Setting nAuthTimeOut to a value less than (2*Connection Interval) will always cause the 

EVBLE_PING_AUTH_TIMEOUT event to be triggered. The reason for this is that two connection events are 

required for a packet to be sent to the remote device and then sent back, therefore having nAuthTimeout smaller 

than (2*Connection Interval) means that the timer will always expire before the response is received from the 

remote device, causing the event to be triggered. 

BLEPINGAUTHTIMEOUT (hConnHanlde, nAuthTimeout) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments:  

nConnHandle 
byVal hConnHandle AS INTEGER.  

The connection handle for which the authenticated payload timer is to start. 

nAuthTimeout 

byVal nAuthTimeout AS INTEGER. 

The authentication timeout in microseconds. The range of this value is between 10000 and 480000 

microseconds, and is rounded up to the nearest 10000us (10ms). 

Example: 



https://www.lairdconnect.com/ 339 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

//Example :: BlePingAuthTimeout.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 

// Set BLE_PING_TIMEOUT to a value more than (2*connection interval) 

// for the feature to work. Otherwise the event will be triggered  

// because two connection events are required for a packet to be  

// sent back and forth. 

#define BLE_PING_TIMEOUT    10000 

#define BTAddr              "000016A4B75204" 

     

// Variable declaration 

DIM hndl, rc, intrvl,sprvto,slat, pingTO 

 

//------------------------------------------------------------------------------ 

// Function to handle Ble event messages 

//------------------------------------------------------------------------------ 

#define BLE_EVBLEMSGID_CONNECT                  0   //nCtx = connection handle 

#define BLE_EVBLEMSGID_DISCONNECT               1   //nCtx = connection handle 

#define BLE_EVBLEMSGID_ENCRYPTED                18  //nCtx = connection handle 

//------------------------------------------------------------------------------ 

FUNCTION HandlerBleMsg(nMsgId, nCtx) 

 

    select nMsgId 

    case BLE_EVBLEMSGID_CONNECT 

        print "## Connected!\n" 

        // Read connection interval 

        rc = BleGetCurConnParms(nCtx,intrvl,sprvto,slat) 

        print "## Connection Interval=";intrvl;"\n" 

        // Pair to the remote device 

        rc = BlePair(nCtx, 0) 

 

    case BLE_EVBLEMSGID_DISCONNECT 

        print "## Disconnected!\n" 

 

    case BLE_EVBLEMSGID_ENCRYPTED 

        print "## Encrypted Connection!\n" 

        // Start LE Ping Authenticated Timeout 

        pingTO = BLE_PING_TIMEOUT 

        rc = BlePingAuthTimeout(nCtx, pingTO) 

        if rc == 0 then 

            print "## Ping auth timeout enabled :: Timeout=";pingTO;"\n" 

        endif 

 

    case else 

    endselect 

ENDFUNC 1 

 

//------------------------------------------------------------------------------ 

// This handler is called when the LE Ping authentication has timed out 

//------------------------------------------------------------------------------ 

function  HandlerLePingTimeout(BYVAL hConn AS INTEGER) 

    print "## LE Ping Timeout : ";integer.h' hConn;"\n" 

    // Disconnect as this is not safe, check timeout is more than 2*connection interval 

    rc = BleDisconnect(hConn) 

endfunc 1 

 

//------------------------------------------------------------------------------ 

// Enable synchronous event handlers 

//------------------------------------------------------------------------------ 



https://www.lairdconnect.com/ 340 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

OnEvent  EVBLEMSG                 call HandlerBleMsg 

OnEvent  EVBLE_PING_AUTH_TIMEOUT  call HandlerLePingTimeout 

 

//Connect to remote device 

DIM addr$ 

addr$ = BTAddr 

addr$ = StrDehexize$(addr$) 

rc = BleConnect(addr$, 5000, 27000, 30000, 500000) 

 

//------------------------------------------------------------------------------ 

// Wait for a synchronous event. 

//------------------------------------------------------------------------------ 

WaitEvent 

 

 

 

 
By default, this event is not enabled and an incoming PHY change request is automatically accepted. This event is only 
enabled when the function BleConnectConfig(9, 1) is called. It is thrown when there is a request from the remote device to 
switch the PHY modulation. In the function handler for this event, the function BlePhySet should be used to respond with the 
module’s PHY preferences. The event comes with the following parameters:- 

Connection Handle – The handle of the connection for which there is a PHY modulation request. 

BlePhyTx  – The transmission PHY preference of the remote device. This will be a bitmask. Bit 0 is set for 1MPHY, Bit 1 is set 
for 2MPHY, and Bit 2 is set for coded PHY. 

BlePhyRx  – The reception PHY preference of the remote device. This will be a bitmask. Bit 0 is set for 1MPHY, Bit 1 is set for 
2MPHY, and Bit 2 is set for coded PHY. 

For usage, see example for BlePhyReq. 

 
This event is thrown when the PHY modulation of the underlying connection has been updated. The event contains the 
following parameters:- 

Connection Handle – The handle of the connection for which there is a PHY modulation has been updated. 

Status – The HCI status code of the operation. 0x00 indicates a successful command. 0x00 – 0xFF indicates that the 
command has failed. A full list of HCI status codes can be found at the end of this document. 

BlePhyTx  – The new value of the transmission PHY. 1 for 1MPHY, 2 for 2MPHY, 4 for coded PHY. 

BlePhyRx  – The new value of the transmission PHY. 1 for 1MPHY, 2 for 2MPHY, 4 for coded PHY. 

For usage, see example for BlePhyReq. 

 

This function is used to set the PHY preferences of a connection, or reply to PHY request from a remote device. When this 
command is initiated from the module, it triggers an EVBLE_PHY_REQUEST on the remote device, and if successful, 
EVBLE_PHY_UPDATED event is thrown to indicate that the PHY configuration of the connection has changed. 

Note:  For Coded PHY functionality, the bandwidth configuration should be set to HIGH. This is done through “AT+CFG 

214 1” followed by ATZ in interactive mode, or NvCfgKeySet(214,1) followed by Reset(0) during runtime. 

 This function is only used to switch the PHY settings of an existing connection (e.g. from 1MPHY to CODED PHY). 

In order to advertise, scan or connect over CODED PHY, the functions BleAdvertConfig(), BleScanConfig() and 

BleConnectConfig() should be used before BleAdvertStart(), BleScanStart() or BleConnect() is called, respectively. 



https://www.lairdconnect.com/ 341 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

BLEPHYSET (hConn, nPhyTx, nPhyRx, nOptions) 

Returns INTEGER, a result code. The most typical value is 0x0000, indicating a successful operation. 

Arguments:  

hConn 
byVal hConn AS INTEGER.  

The handle of the connection for which a PHY modulation update is taking place. 

nPhyTx 

byVal nPhyTx AS INTEGER. 

A bit field that indicates the transmission PHYs that the host prefers 

▪ Bit 0  : The host prefers to use the LE 1M transmission PHY (possibly among others). 

▪ Bit 1  : The host prefers to use the LE 2M transmission PHY (possibly among others). 

▪ Bit 2 : The host prefers to use the LE CODED transmission PHY (possibly among others). 

▪ Bit 3-7: Reserved for future use. 

nPhyRx 

byVal nPhyRx AS INTEGER. 

A bit field that indicates the reception  PHYs that the host prefers 

▪ Bit 0  : The host prefers to use the LE 1M reception PHY (possibly among others). 

▪ Bit 1  : The host prefers to use the LE 2M reception PHY (possibly among others). 

▪ Bit 2 : The host prefers to use the LE CODED transmission PHY (possibly among others). 

▪ Bit 3-7: Reserved for future use. 

nOptions 
byVal nPhyRx AS INTEGER. 

This is reserved for future use and should always be set to 0. 

 

//Example :: BlePhySet.sb 

 

// Ensure that the remote device is advertising 

 

#define BTAddr              "000016A4B75202" 

 

// Variable declaration 

DIM rc, hConn 

 

//------------------------------------------------------------------------------ 

// Function to handle Ble event messages 

//------------------------------------------------------------------------------ 

#define BLE_EVBLEMSGID_CONNECT                  0   //nCtx = connection handle 

#define BLE_EVBLEMSGID_DISCONNECT               1   //nCtx = connection handle 

//------------------------------------------------------------------------------ 

FUNCTION HandlerBleMsg(nMsgId, nCtx) 

 

    select nMsgId 

    case BLE_EVBLEMSGID_CONNECT 

        print "## Connected!\n" 

        // Upon connection, request a change to 2MPHY 

        hConn = nCtx 

        dim nPhyTx : nPhyTx = 2 

        dim nPhyRx : nPhyRx = 2 

        dim nOptions : nOptions = 0 

        rc = BlePhySet(hConn, nPhyTx, nPhyRx, nOptions) 

 

    case BLE_EVBLEMSGID_DISCONNECT 

        print "## Disconnected!\n" 

 

    case else 

    endselect 

ENDFUNC 1 

 

//------------------------------------------------------------------------------ 

// This handler is called when there is a connection attempt timeout 

//------------------------------------------------------------------------------ 



https://www.lairdconnect.com/ 342 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

function HandlerBleConnTimOut() as integer 

  print "## Connection attempt stopped via timeout\n" 

endfunc 1 

 

//------------------------------------------------------------------------------ 

// This handler is called when remote is requesting a switch to a different PHY 

//------------------------------------------------------------------------------ 

function  HandlerPhyRequest(BYVAL hConn, BYVAL PhyTx, BYVAL PhyRx) 

    print "## BLE PHY REQUEST: \n" 

    print "Handle: ";integer.h' hConn;"\n" 

    print "PhyTx=";PhyTx;" PhyRx =";PhyRx;"\n" 

endfunc 1 

 

//------------------------------------------------------------------------------ 

// This handler is called when the BLE PHY is updated 

//------------------------------------------------------------------------------ 

function  HandlerPhyUpdated(BYVAL hConn, BYVAL nStatus, BYVAL PhyTx, BYVAL PhyRx) 

    print "## BLE PHY CHANGED: \n" 

    print "Handle: ";integer.h' hConn;"\n" 

    print "Status: ";integer.h' nStatus;"\n" 

    print "PhyTx=";PhyTx;" PhyRx =";PhyRx;"\n" 

endfunc 1 

 

//------------------------------------------------------------------------------ 

// Enable synchronous event handlers 

//------------------------------------------------------------------------------ 

OnEvent  EVBLEMSG                 call HandlerBleMsg 

OnEvent  EVBLE_CONN_TIMEOUT       call HandlerBleConnTimOut 

OnEvent  EVBLE_PHY_REQUEST        call HandlerPhyRequest 

OnEvent  EVBLE_PHY_UPDATED        call HandlerPhyUpdated 

 

//Connect to remote device 

DIM addr$ 

addr$ = BTAddr 

addr$ = StrDehexize$(addr$) 

 

// Change default configuration so that EVBLE_PHY_REQUEST is thrown 

rc = BleConnectConfig(9, 1) 

 

rc = BleConnect(addr$, 30000, 27000, 30000, 500000) 

 

//------------------------------------------------------------------------------ 

// Wait for a synchronous event. 

//------------------------------------------------------------------------------ 

WaitEvent 

 

Expected Output: 

## Connected! 

## BLE PHY CHANGED:  

Handle: 0001FF00 

Status: 00000000 

PhyTx=2 PhyRx =2 

 



https://www.lairdconnect.com/ 343 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 
This chapter describes non BLE-related extension routines that are not part of the core smartBASIC language. 

 

This chapter provides details of all the smartBASIC functions and subroutines that expose the NFC functionality and also the 
events that are generated when in operation. 

 

This section describes all the events and routines used to interact with the NFC peripheral on the BL654 which is a passive 
device which means it is not possible to establish NFC communications between two BL654 devices. In any NFC 
communications, one device shall be an Active device.  

On the BL654 the NFC is exposed as a Tag Type 2 Passive interface which means it can only offer tags to be read from an 
Active NFC reader (for example, a smartphone or an Arduino based shield). 

The NFC Forum has agreed on four tag types and a good definition of those NFC Tag Types is provided at 
http://www.nfc.cc/technology/nfc-tag-types which is reproduced as follows: 

▪ Type 1 – Type 1 Tag is based on ISO/IEC 14443A. This tag type is read and re-write capable. The memory of the tags 
can be write protected. Memory size can be between 96 bytes and 2 Kbytes. Communication Speed with the tag is 106 
kbit/sec. Example: Innovision Topaz 

▪ Type 2 – Type 2 Tag is based on ISO/IEC 14443A. This tag type is read and re-write capable. The memory of the tags 
can be write protected. Memory size can be between 48 bytes and 2 Kbytes. Communication Speed with the tag is 106 
kbit/sec. Example: NXP Mifare Ultralight, NXP Mifare Ultralight 

▪ Type 3 – Type 3 Tag is based on the Japanese Industrial Standard (JIS) X 6319-4. This tag type is pre-configured at 
manufacture to be either read and re-writable, or read-only. Memory size can be up to 1 Mbyte. Communication Speed 
with the tag is 212 kbit/sec. Example: Sony Felica 

▪ Type 4 – Type 4 is fully compatible with the ISO/IEC 14443 (A \& B) standard series. This tag type is pre-configured at 
manufacture to be either read and re-writable, or read-only. Memory size can be up to 32 KBytes; For the communication 
with tags APDUs according to ISO 7816-4 can be used. Communication speed with the tag is 106 kbit/sec. Example: 
NXP DESfire, NXP SmartMX with JCOP.) 
 
Mifare Classic is not an NFC forum compliant tag, although reading and writing of the tag is supported by most of the 
NFC devices as they ship with an NXP chip. The specifications for the tag types are available for free from the NFC-
Forum website. 

The following is a high level overview of NFC communications and it is encouraged that the reader access resources on the 
internet which give further details, like for example http://www.nfc.cc/technology/nfc/. 

▪ The NFC physical layer is a half-duplex, bi-directional pipe with a typical datarate of 106kbps and can be 212 or 424 
kbps. (The BL654 only provides a 106kbps datarate) 

▪ The data is carried on a 13.56MHz carrier wave which is provided by one of the active devices in the peer to peer link. The signalling 
in the carrier is done using load modulation. “The term load modulation describes the influence of load changes on the initiators 
carrier field’s amplitude”  
<credit: http://www.nfc.cc/technology/nfc/>   

▪ There is Active mode and Passive mode. At least one device (the initiator) has to be an active device which provides the 
13.56MHz carrier wave. 

▪ The data layer for Tags consists of NDEF messages. NDEF = NFC Data Exchange Format. 
Each NDEF message consists of one or more NDEF records. 
Each NDEF record consists of a well defined variable length header and a payload which can be anything and the NFC 
forum does not specify any format. 

▪ An NDEF Record header consists of a payload length, a Type field and an optional ID Field. 
The Type field is used to qualify the payload so that the recipient can interpret it appropriately. 
The optional ID field is typically used to give a ‘name’ to the record which allows other records in the message to link to. 

▪ NFC provides for three types of communications over the physical channel and they are; Reader/Writer mode, Card 
Emulation mode and Peer-To-Peer mode. In the context of BL654, only reader/writer mode functionality is made 

http://www.nfc.cc/technology/nfc-tag-types
http://www.nfc.cc/technology/nfc/
http://www.nfc.cc/technology/nfc/


https://www.lairdconnect.com/ 344 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

available and initially only passive Tags Type 2 which means Tags can be read but not written. 
Future enhancments to the BL654 firmware may provide Tag Type 4 (which can be read or written) but that is dependent 
on the chipset vendor providing an appropriate stack. 

The Tag Type 2 functionality exposed in the BL654 is nicely illustrated by the following diagram, for which Laird acknowledges 
Nordic Semiconductor, the chipset vendor.  

In the diagram the Polling device is an active device like an NFC enabled smartPhone or an Arduino with an Adafruit NFC 
shield. 

 
Figure 9: Simplified overview of how NFC can be used 

 

NDEF is the acronym for “NFC Data Exchange Format” 

NDEF Messages, in the context of Tags of any type, are simply an array of 1 or more NDEF Records. 

A Tag of any type is simply an NDEF message. 

Each NDEF record consists of a header and a payload both being variable length and the length of the payload in each 
record can be up to 2^32 bytes long. 

The header consists of: 

Byte 0 : A bit mask which contains a 3 bit TNF (Type Name Format) and 5 other single bit fields. One of which specifies if the 
Payload length field is 1 or 4 bytes and another which specifies if the ID field in the header is present. The rest of the bits are 
used to specify if the record is the first, last or an in-between record in the overall NDEF message. 

Byte 1 – Specifies the length of the Type field in the header which can be up to 255 bytes 

Next Byte (or next 4 Bytes) – The payload length. 

Next Byte – The ID Length (if the ID bit in the first byte is set)  

Next N bytes – Where N is specified by Byte 1 is the the Type field 

Next N Bytes – Where N is specified by the ‘ID length’ field and only if the ID bit in Byte 0 is set, used for the ID. 

For full details please refer to the NFC Forum technical specification titled NFC Data Exchange Foramt (NDEF) and there are 
various resources online which have good explanations. 

 

The API presented in this section was tested using an Arduino Uno (www.arduino.cc/en/Main/ArduinoBoardUno) fitted with an 
Adafruit ‘PN532 RFID/NFC Shield’ (www.adafruit.com/products/789) and an Arduino application which is also available as-is 
without warranty and it can be freely modified called NfcCli.ino. 

It is assumed that the reader is familiar with how to use an Arduino especially how to load apps into a target board. Please 
refer to online resources if not. 

The Arduino application presents a uart based command line interface and currently has three commands : 

http://www.arduino.cc/en/Main/ArduinoBoardUno
http://www.adafruit.com/products/789


https://www.lairdconnect.com/ 345 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

▪ open\r – This opens the NFC interface 

▪ scan\r – This forces a scan for tags and will timeout after about 5 seconds. If a tag is read, then it is interpreted and 
displayed in textual manner 

▪ close\r – This closes the NFC interface 

The command set allows for keeping the Arduino NFC antenna constantly in contact with the module’s antenna and then 
allows the field to be enabled or disabled. 

 

The following example application, for which the source available, shows how to create an NDEF message for a Tag which 
has two text records where the Type is “T.” 

//****************************************************************************** 

// Example App File : nfc1.text.tag.sb 

// 

// This application commits an NDEF message with two text tag of type 'T' with  

// a "Hello World" and "Welcome" message. Which can be read with an Arduino +  

// Adafruit NFC shield running an arduino app written by Laird which is availble 

// on request. 

// 

//****************************************************************************** 

 

//****************************************************************************** 

// Definitions 

//****************************************************************************** 

#define INVALID_NDEF_HANDLE     0xFFFFFFFF 

 

//****************************************************************************** 

// Register Error Handler as early as possible 

//****************************************************************************** 

sub HandlerOnErr() 

  print "\n OnErr - ";GetLastError();"\n" 

endsub 

onerror next HandlerOnErr 

 

//****************************************************************************** 

// Debugging resource as early as possible 

//****************************************************************************** 

 

//============================================================================== 

//============================================================================== 

sub AssertResCode(byval rc as integer,byval tag as integer) 

  if rc!=0 then 

    print "\nFailed with ";integer.h' rc;" at tag ";tag 

  endif 

endsub 

 

//****************************************************************************** 

// Global Variable Declarations 

//****************************************************************************** 

 

dim rc 

dim nfcHandle       //returned by NfcOpoen 

dim ndefHandle      //returned by NfcNdefMsgNew 

 

dim type$  

dim id$ 

dim engLang$ 

dim payload$ 

dim records,memTotal,memUsed 

 



https://www.lairdconnect.com/ 346 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

//****************************************************************************** 

// Initialisse Global Variable 

//****************************************************************************** 

 

type$="T" : id$=""  

engLang$=" en" 

rc=strsetchr(engLang$,strlen(engLang$),0) //prepend the language code length + UTF type 

 

//****************************************************************************** 

// Function and Subroutine definitions 

//****************************************************************************** 

 

 

//****************************************************************************** 

// Handler definitions 

//****************************************************************************** 

 

//============================================================================== 

// This handler is called when data has arrived at the serial port 

#define NFC_MSGIN_NFCFIELDOFF               (2) 

#define NFC_MSGIN_NFCFIELDON                (3) 

#define NFC_MSGIN_NFCTAGREAD                (7) 

//============================================================================== 

function HandlerNfc(msgid) as integer 

  print "\nEVNFC " 

  select(msgid) 

  case NFC_MSGIN_NFCFIELDOFF 

    print "FIELD OFF" 

  case NFC_MSGIN_NFCFIELDON 

    print "FIELD ON" 

  case NFC_MSGIN_NFCTAGREAD 

    print "TAG READ" 

  case else 

  endselect 

endfunc 1 

 

//****************************************************************************** 

//****************************************************************************** 

// Equivalent to main() in C 

//****************************************************************************** 

 

//------------------------------------------------------------------------------ 

// Enable synchronous event handlers 

//------------------------------------------------------------------------------ 

OnEvent  EVNFC  call HandlerNfc 

 

//------------------------------------------------------------------------------ 

// Initialise and then wait for events 

//------------------------------------------------------------------------------ 

 

//Enable NFC hardware interface, it already is, so will succeed 

rc=NfcHardwareState(0,1) 

AssertResCode(rc,20000) 

 

//Open NFC and return the handle 

rc=NfcOpen(0,"\00",nfcHandle) 

AssertResCode(rc,20005) 

 

//Create a new NDEF message object that has a maximum size of 16 bytes 

rc=NfcNdefMsgNew(32,ndefHandle) 

AssertResCode(rc,20010) 

 



https://www.lairdconnect.com/ 347 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

//Oops, buffer will be too small do delete and create a new one 

rc=NfcNdefMsgDelete(ndefHandle) 

AssertResCode(rc,20012) 

 

//Create a new NDEF message object that has a maximum size of 128 bytes 

rc=NfcNdefMsgNew(128,ndefHandle) 

AssertResCode(rc,20014) 

 

//Add a NDEF Record of type "T" and message "My World" in english language code 

payload$="My World" 

rc=NfcNdefRecAddGeneric(ndefHandle,1,type$,id$,engLang$,INVALID_NDEF_HANDLE,payload$) 

AssertResCode(rc,20020) 

 

//Oops, changed my mind about message so reset the ndef buffer 

rc=NfcNdefMsgReset(ndefHandle) 

AssertResCode(rc,20022) 

 

//Add a NDEF Record of type "T" and message "Hello World" in english language code 

payload$="Hello World" 

rc=NfcNdefRecAddGeneric(ndefHandle,1,type$,id$,engLang$,INVALID_NDEF_HANDLE,payload$) 

AssertResCode(rc,20024) 

 

//Add a NDEF Record of type "T" and message "Welcome" in english language code 

payload$="Welcome" 

rc=NfcNdefRecAddGeneric(ndefHandle,1,type$,id$,engLang$,INVALID_NDEF_HANDLE,payload$) 

AssertResCode(rc,20040) 

 

//Inspect the status of the ndef message object 

rc=NfcNdefMsgGetInfo(ndefHandle,records,memTotal,memUsed) 

if rc==0 then 

  print "\nNDEF Info: Records=";records;" TotalMem=";memTotal;" UsedMem=";memUsed 

endif 

 

//Commit the NDEF message to the stack 

rc=NfcNdefMsgCommit(nfcHandle,ndefHandle) 

AssertResCode(rc,20060) 

 

//Enable field Sense 

rc=NfcFieldSense(nfcHandle,1) 

AssertResCode(rc,20080) 

 

//------------------------------------------------------------------------------ 

// Wait for an event. 

//------------------------------------------------------------------------------ 

WaitEvent 

The output from the Arduino reader is as follows: 

open 

 

OK 

scan 

 

++ NDEF MESSAGE ++ 

NFC Forum Type 2 

UID: 5F 59 28 A2 AB C6 79 

 

Contains (2) NDEF Records. 

 

NDEF Record 1 (Payload Length=: 14 (0xE)) 

  TNF: 1 

  Type: T 



https://www.lairdconnect.com/ 348 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

  03656E48656C6C6F20576F726C64      .enHello World 

 

NDEF Record 2 (Payload Length=: 10 (0xA)) 

  TNF: 1 

  Type: T 

  03656E57656C636F6D65              .enWelcome 

 

-- NDEF MESSAGE -- 

OK 

 

The following example application, for which the source available, shows how to create an NDEF message for a Tag which 
has a single record defined as a ‘Simplified Tag Format for a Single Bluetooth Carrier Record’ as specified in the Bluetooth 
SIG specification “Bluetooth Secure Simple Pairing Using NFC” dated 2014-01-09. 

 

//****************************************************************************** 

// Example App File : nfc2.text.ble.connection.handover.sb 

// 

// This application commits an NDEF message with a "Simplified Tag Format for a 

// single Bluetooth Carrier Record" which will result in a connection and a just 

// works pairing from an android device like Nexus 7 tablet. 

// 

// It have only been tested against a Nexus 7 (newest model) 

// 

//****************************************************************************** 

 

//****************************************************************************** 

// Definitions 

//****************************************************************************** 

#define INVALID_NDEF_HANDLE     0xFFFFFFFF 

 

//****************************************************************************** 

// Register Error Handler as early as possible 

//****************************************************************************** 

sub HandlerOnErr() 

  print "\n OnErr - ";GetLastError();"\n" 

endsub 

onerror next HandlerOnErr 

 

//****************************************************************************** 

// Debugging resource as early as possible 

//****************************************************************************** 

 

//============================================================================== 

//============================================================================== 

sub AssertResCode(byval rc as integer,byval tag as integer) 

  if rc!=0 then 

    print "\nFailed with ";integer.h' rc;" at tag ";tag 

  endif 

endsub 

 

//****************************************************************************** 

// Global Variable Declarations 

//****************************************************************************** 

 

dim rc 

dim nfcHandle       //returned by NfcOpoen 

dim ndefHandle      //returned by NfcNdefMsgNew 

 

dim payload$ 

dim records,memTotal,memUsed 



https://www.lairdconnect.com/ 349 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

dim maxdevname : maxdevname = 12 

dim appearance : appearance = 0x512 

dim flags : flags = 0x2 

dim role : role=2 

dim oobKey$ : oobKey$=""  //no TK  

dim devname$ : devname$="LAIRD BL654" 

dim advRpt$, scnRpt$ 

dim peerAd$ : peerAd$="" 

dim hConn : hConn=0xFFFFFFFF 

 

//****************************************************************************** 

// Function and Subroutine definitions 

//****************************************************************************** 

 

 

//****************************************************************************** 

// Handler definitions 

//****************************************************************************** 

 

//============================================================================== 

// This handler is called when data has arrived at the serial port 

#define NFC_MSGIN_NFCFIELDOFF               (2) 

#define NFC_MSGIN_NFCFIELDON                (3) 

#define NFC_MSGIN_NFCTAGREAD                (7) 

//============================================================================== 

function HandlerNfc(msgid) as integer 

  print "\nEVNFC " 

  select(msgid) 

  case NFC_MSGIN_NFCFIELDOFF 

    print "FIELD OFF" 

  case NFC_MSGIN_NFCFIELDON 

    print "FIELD ON" 

  case NFC_MSGIN_NFCTAGREAD 

    print "TAG READ" 

  case else 

  endselect 

endfunc 1 

 

//============================================================================== 

// This handler is called when there is a BLE message 

//------------------------------------------------------------------------------ 

#define BLE_EVBLEMSGID_CONNECT         0 

#define BLE_EVBLEMSGID_NEW_BOND       10 

#define BLE_EVBLEMSGID_ENCRYPTED      18 

//============================================================================== 

function HandlerBleMsg(BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER) as integer 

   

  select nMsgId 

  case BLE_EVBLEMSGID_CONNECT 

    hConn=nCtx 

    print "\n +++ Connect: (";integer.h' hConn;")" 

     

  case BLE_EVBLEMSGID_NEW_BOND 

    print "\n +++ New Bond" 

    //Disable field Sense 

    rc=NfcFieldSense(nfcHandle,0) 

    AssertResCode(rc,20080) 

    print "\n --- NFC Field OFF" 

 

  case BLE_EVBLEMSGID_ENCRYPTED 

    print "\n +++ Encrypted Connection" 

 



https://www.lairdconnect.com/ 350 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

  case else 

  endselect 

endfunc 1 

 

//============================================================================== 

// This handler is called when there is a EVDISCON message 

#define ADVTYPE     0 //ADV_IND 

#define ADVINTVTL   100 //andvert interval in milliseconds 

#define ADVTOUT     0 //no timoeut 

//============================================================================== 

function HandlerDisconnect(BYVAL nConnH AS INTEGER, BYVAL nReas AS INTEGER) as integer 

  print "\n +++ Disconnect: (";integer.h' nConnH;") reason=";nReas 

   

  rc=BleAdvertStart(ADVTYPE,peerAd$,ADVINTVTL,ADVTOUT,0) 

  AssertResCode(rc,10000) 

   

endfunc 1 

 

//****************************************************************************** 

//****************************************************************************** 

// Equivalent to main() in C 

//****************************************************************************** 

 

//------------------------------------------------------------------------------ 

// Enable synchronous event handlers 

//------------------------------------------------------------------------------ 

OnEvent  EVNFC      call HandlerNfc 

OnEvent  EVBLEMSG   call HandlerBleMsg 

OnEvent  EVDISCON   call HandlerDisconnect 

 

//------------------------------------------------------------------------------ 

// Initialise and then wait for events 

//------------------------------------------------------------------------------ 

 

//Open NFC and return the handle 

rc=NfcOpen(0,"\00",nfcHandle) 

AssertResCode(rc,20005) 

 

//Create a new NDEF message object that has a maximum size of 128 bytes 

rc=NfcNdefMsgNew(128,ndefHandle) 

AssertResCode(rc,20014) 

 

//Add "Simplified Tag Format for a single Bluetooth Carrier" Record 

rc=NfcNdefRecAddLeOob(ndefHandle,maxdevname,appearance,role,flags,oobKey$) 

AssertResCode(rc,20020) 

 

//Inspect the status of the ndef message object 

rc=NfcNdefMsgGetInfo(ndefHandle,records,memTotal,memUsed) 

if rc==0 then 

  print "\n *** NDEF Info: Records=";records;" TotalMem=";memTotal;" UsedMem=";memUsed 

endif 

 

//Commit the NDEF message to the stack 

rc=NfcNdefMsgCommit(nfcHandle,ndefHandle) 

AssertResCode(rc,20060) 

 

//Initialise the GAP service 

rc=BleGapSvcInit(devname$,0,appearance,7500,100000,2000000,0) 

AssertResCode(rc,20100) 

 

//Initialise adverts and commit 

rc=BleAdvRptInit(advRpt$,flags,appearance,maxdevname) 



https://www.lairdconnect.com/ 351 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

AssertResCode(rc,20200) 

rc=BleScanRptInit(scnRpt$) 

AssertResCode(rc,20210) 

rc=BleAdvRptsCommit(advRpt$,scnRpt$) 

AssertResCode(rc,20220) 

 

//Start Adverts 

rc=BleAdvertStart(ADVTYPE,peerAd$,ADVINTVTL,ADVTOUT,0) 

AssertResCode(rc,20300) 

print "\n --- Adverts ON" 

 

//Enable field Sense 

rc=NfcFieldSense(nfcHandle,1) 

AssertResCode(rc,20400) 

print "\n --- NFC Field ON" 

 

//------------------------------------------------------------------------------ 

// Wait for an event. 

//------------------------------------------------------------------------------ 

WaitEvent 

The output from the Arduino reader is as follows: 

open 

 

OK 

scan 

 

++ NDEF MESSAGE ++ 

NFC Forum Type 2 

UID: 5F 59 28 A2 AB C6 79 

 

Contains (1) NDEF Record. 

 

NDEF Record 1 (Payload Length=: 32 (0x20)) 

  TNF: 2 

  Type: application/vnd.bluetooth.le.oob 

  021C02081B83160BA416000003191205  ................ 

  0201060C094C4149524420424C363532  .....LAIRD BL654 

 

-- NDEF MESSAGE -- 

OK 

Where the payload 021C02…. 363532 is an array of BLE Advert Data Elements which have format Len:Tag:Data. For 
example 021C02  implies an AD element of length 2 and tag 1C and since 1C means ‘LE Role’ it corresponds to the value 2 
that was passed in the variable ‘role’ in the function call NfcNdefRecAddLeOob() in the sample app 2 above. 

 

When the module is in deep sleep, it is possible to wake it up when an NFC field energises it’s antenna when an active reader 
comes into the zone. 

By default this does not happen; it only wakes up if the field sense is switched on via NfcFieldSense(). To do that, a ‘dummy’ 
tag needs to be commited. The following sequence is necessary to enable this feature: 

1. NfcOpen() 

2. NfcNdefMsgNew() 

3. NfcNdefRecAddLeOob()  or  NfcNdefRecAddGeneric() 

4. NfcNdefMsgCommit() 

5. NfcFieldSense() 

6. SystemStateSet(0) 



https://www.lairdconnect.com/ 352 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

Once SystemStateSet() is processed, the module enters deep sleep unless the reader is already energising the NFC field 
which will prevent deep sleep to persist. 

Please note that when the system wakes up, it is assumed that in a normal deployed scenario there will be an $autorun$ 
application so after reset your application will automatically restart. In your application you could call SYSINFO(2001) which 
will tell you what was the reason for waking up from reset. If you logically AND the result with the value 0x80000 and you end 
up with 0x80000, then it implies the wakeup was due to Wake-On-NFC. 

 IF (SYSINFO(2001) & 0x80000)==0x80000 THEN 

  PRINT “We woke up because of NFC” 

 ENDIF 

 

In addition to the routines for manipulating the NFC interface, when an active reader generates a carrier field around the 
module’s antenna and FIELD-ON event is generated, and conversely when the carrier field collapses because the active 
device moves away, a FIELD-OFF event is generated. When the Tag exposed by the module is actually read, then a TAG-
READ event is generated. 

The following is a list of events generated by the NFC manager which can be handled by user code. 

EVNFC This is an event message with one INTEGER payload which identifies the event that happened as 
follows: 
  2 FIELD OFF (reader carrier has collapsed) 
  3 FIELD ON  (reader carrier is active) 
  7 TAG READ (reader has finished reading the commited NDEF message) 

 

FUNCTION  

This function is used to enable or disable the NFC hardware on the device. 

Note:  On the BL654 the 2 pins used for the NFC antenna are multifunction so that they are either for NFC or plain GPIO. 

However, this is set via a non-volatile configuration register in a special region of the onchip flash. These pins are 

by default set for NFC functionality and have appropriate protection from over energisation from an active field. 

Given this is a flash register, once the NFC functionality is disabled using this function, it can only be reactivated by 

reloading the entire firmware using the JLINK interface. It is not possible to reset this register when firmware is 

uploaded using the UART interface. 

NFCHARDWARESTATE (interfaceNum, newState) 

Returns 

INTEGER, indicating the success of command: 

0 Opened successfully 

0x5A00 Invalid interface number 

0x5A06 Enable Fail 
 

Exceptions 
▪ Local Stack Frame Underflow 

▪ Local Stack Frame Overflow 

Arguments 

interfaceNum 

byVal  interfaceNum AS INTEGER  
For platforms that have multiple NFC interfaces, this identifies the interface to enable or 
disable and for platforms with only one interface specify 0 for this argument 

newState 
byVal newState  AS INTEGER 
Set to 0 to disable NFC functionality. Non-zero to enable.  

Related Commands NFCFIELDSENSE, NFCCLOSE, NFCNDEFMSGCOMMIT 

Example: 

//See subsection ‘Sample Application 1’ 



https://www.lairdconnect.com/ 353 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

FUNCTION  

This function opens the NFC interface identified by the ‘interfaceNum’ parameter, configure it as specified in the ‘config$’ 
future extensible string parameter and will return a handle which is used in appropriate subsequent NFC related function calls. 

The ‘interfaceNum’ parameter exists as in future other smartBASIC based can potentially have multiple physical NFC 
interfaces. 

NFCOPEN (interfaceNum, config$, nfcHandle) 

Returns 

INTEGER, indicating the success of command: 

0 Opened successfully 

0x5A00 Invalid interface number 

0x5A04 NFC hardware not available 
 

Exceptions 
▪ Local Stack Frame Underflow 

▪ Local Stack Frame Overflow 

Arguments 

interfaceNum 

byVal  interfaceNum AS INTEGER  
For platforms that have multiple NFC interfaces, this identifies the interface to open and for 
platforms with only one interface specify 0 for this argument 

config$ 

byVal  config$ AS STRING  
This is an extensible argument with 0 or more bytes which is used to configure the NFC 
interface as follows: 
Byte  Value  Description 
0       0         Tag Type 2 Functionality 

A 0 value specifies default functionality, and more bytes will be allocated as needed to 
define appropriate new functionality  

nfcHandle 

byRef nfcHandle  AS INTEGER 
If the function fails, then on exit this parameter is set to INVALID_HANDLE (which is 
0xFFFFFFFF), and if successful a valid handle to be used in susbsequent appropriate NFC 
related function calls. 

Related Commands NFCFIELDSENSE, NFCCLOSE, NFCNDEFMSGCOMMIT 

Example: 

//See subsections ‘Sample Application 1’ and ‘Sample Application 2’ 

 

SUBROUTINE  

This function closes the NFC interface identified by the ‘nfcHandle’ parameter and on exit the handle will be set to 
0xFFFFFFFF so that it cannot be mistakenly used. 

NFCCLOSE (nfcHandle) 

Returns None 

Exceptions 
▪ Local Stack Frame Underflow 

▪ Local Stack Frame Overflow 

Arguments 

nfcHandle 
byRef nfcHandle  AS INTEGER 
If the function is successful then on exit this variable will be set to 0xFFFFFFFF 

Related Commands NFCFIELDSENSE, NFCOPEN, NFCNDEFMSGCOMMIT 



https://www.lairdconnect.com/ 354 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

Example: 

//See subsection ‘Sample Application 2’ 

 

FUNCTION  

This function is used when the device is in passive mode to enable or disable field sensing so that an active device can 
communicate with it. 

NFCFIELDSENSE (nfcHandle, fNewState) 

Returns 

INTEGER, indicating the success of command: 

0 Opened successfully 

0x020C Invalid handle 

0x5A03 NFC interface is not open 

       0x5AEx   An underlying stack related error 
 

Exceptions 
▪ Local Stack Frame Underflow 

▪ Local Stack Frame Overflow 

Arguments 

nfcHandle 
byVal nfcHandle  AS INTEGER 
This is the handle returned by a prior call of NfcOpen() 

fNewState 
byVal  fNewState AS INTEGER  
Specify 0 to disable field sensing and non-zero to enable it 

Related Commands NFCOPEN, NFCCLOSE, NFCNDEFMSGCOMMIT 

Example: 

//See subsections ‘Sample Application 1’ and ‘Sample Application 2’ 

 

FUNCTION  

An NDEF record can be as long as 4.2 billion bytes and since an NDEF message is an array of NDEF records the whole 
message can theoretically be multiples of 4.2 billion bytes. 

In practice most tags only have a limited amount of memory (typically less than 32K). Most messages are less than a kilobyte  
in the context of the smartBASIC based device. 

All the NDEF messages that will be created using the API exposed in this device will not be of the same length, but the 
memory must be persistent so that it can be delivered to a reader when required. 

Therefore, this smartBASIC implementation, requires that the creation of an NDEF message starts with dynamically allocated 
memory which can be released as and when required. 

This function is used to create a dynamic buffer in RAM. This buffer is of the minimum length specified by the ‘maxMSgLen’ 
parameter and is associated with a ‘ndefHandle’ for which a valid handle value is returned if the memory requested was 
successfully acquired from the underlying memory manager. There is also an absolute limit on this implementation with 
regards to maximum amount of memory that can be allocated and that value can be obtained via AT I 2052 command or from 
within a running app using SYSINFO(2052). 

The ‘ndefHandle’ is subsequently used for various API calls to make up the full message by writing single records at a time. 

Note that NDEF records are added to this buffer using variious NfcNdefRecAddXXXX() functions and at any time the function 
NfcNdefMsgGetInfo() can be used to see how big the buffer is and how much of that is used. 

NFCNDEFMSGNEW (maxMsgLen, ndefHandle) 

Returns INTEGER, indicating the success of command: 



https://www.lairdconnect.com/ 355 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

0 Opened successfully 

0x5A09 Invalid max memory required 

0x5A0A 
Memory could not be acquired  
SYSINFO(2052) returns max len allowed in this system 

      0x5A0B         
No spare handles as available 
SYSINFO(2051) returns max ndef handles in this system 

 

Exceptions 
▪ Local Stack Frame Underflow 

▪ Local Stack Frame Overflow 

Arguments 

maxMsgLen 

byVal  maxMsgLen AS INTEGER  
This specifies the maximum expected length of the NDEF message that will be stored in the 
memory acquired. If, while adding a record, it does not fit, use NfcNdefMsgDelete() function 
to release that memory and call this function again with a larger value and try again. 

ndefHandle 

byRef ndefHandle  AS INTEGER 
If the function fails, then on exit this parameter is set to INVALID_HANDLE (which is 
0xFFFFFFFF), and if successful a valid handle to be used in susbsequent appropriate 
NDEF related function calls. 

Related Commands 
NFCNDEFMSGCOMMIT, NFCNDEFDELETE, NFCDEFMSGGETINFO, 
NFCNDEFMSGRESET,NFCNDEFRECADDLEOOB,NFCNDEFRECADDGENERIC 

Example: 

//See subsections ‘Sample Application 1’ and ‘Sample Application 2’ 

 

FUNCTION  

This function is used to release the memory block associated with an ndefHandle that was aquired using NfcNdefMsgNew(). 

NFCNDEFMSGDELETE (ndefHandle) 

Returns 

INTEGER, indicating the success of command: 

0 Opened successfully 

0x5A20 
Cannot be deleted as it has been commited and locked to the 
stack using NfcNdefMsgCommit() 

0x5A0C The handle is not valid 
 

Exceptions 
▪ Local Stack Frame Underflow 

▪ Local Stack Frame Overflow 

Arguments 

ndefHandle 
byVal ndefHandle  AS INTEGER 
The handle of the memory block that was acquired using NfcNdefMsgNew 

Related Commands 
NFCNDEFMSGCOMMIT, NFCNDEFNEW, NFCDEFMSGGETINFO, 
NFCNDEFMSGRESET,NFCNDEFRECADDLEOOB,NFCNDEFRECADDGENERIC 

Example: 

//See subsections ‘Sample Application 1’  

 

FUNCTION  

After an NDEF message memory buffer has been acquired using NfcNdefMsgNew(), call this function to see how much of the 
memory is used after adding records. 

This function is particularly useful during the smartBASIC app development as it allows the optimisation of memory usage after 
all testing has been done to then reduce the size of the buffer for final deployment. 



https://www.lairdconnect.com/ 356 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

NFCNDEFMSGGETINFO (ndefHandle, records, memTotal, memUsed) 

Returns 

INTEGER, indicating the success of command: 

0 Opened successfully 

0x5A0C The handle is not valid 
 

Exceptions 
▪ Local Stack Frame Underflow 

▪ Local Stack Frame Overflow 

Arguments 

ndefHandle 
byRef ndefHandle  AS INTEGER 
The handle of the memory block that was acquired using NfcNdefMsgNew. 

records 

byRef  records AS INTEGER  
If the ndefHandle is valid, then on exit this will be updated with the number of records 
currently added to the message. 

memTotal 

byRef MemTotal  AS INTEGER 
If the ndefHandle is valid, then on exit this will be updated with the total memory allcocated 
for this message (value that was specified in NfcNdefMsgNew()) when the handle was 
acquired. 

memUsed 

byRef MemUsed  AS INTEGER 
If the ndefHandle is valid, then on exit this will be updated with the memory that has been 
used in the buffer. For deployed systems, you want this to be as close to memTotal as 
possible to optimise memory usage. 

Related Commands 
NFCNDEFMSGCOMMIT, NFCNDEFDELETE, NFCDEFMSGNEW, 
NFCNDEFMSGRESET,NFCNDEFRECADDLEOOB,NFCNDEFRECADDGENERIC 

Example: 

//See subsections ‘Sample Application 1’ and ‘Sample Application 2’ 

 

FUNCTION  

After an ndef message has been used, this function can be used to reset the record count and memory used to 0 so that a 
new message with new records can be created without releasing the memory. It eliminates a heap free and malloc and so 
helps mitigate heap fragmentation. 

NFCNDEFMSGRESET (ndefHandle) 

Returns 

INTEGER, indicating the success of command: 

0 Opened successfully 

0x5A20 
Cannot be deleted as it has been commited and locked to the 
stack using NfcNdefMsgCommit() 

0x5A0C The handle is not valid 
 

Exceptions 
▪ Local Stack Frame Underflow 

▪ Local Stack Frame Overflow 

Arguments 

ndefHandle 
byVal ndefHandle  AS INTEGER 
The handle of the memory block that was acquired using NfcNdefMsgNew 

Related Commands 
NFCNDEFMSGCOMMIT, NFCNDEFNEW, NFCDEFMSGGETINFO, 
NFCNDEFMSGDELETE,NFCNDEFRECADDLEOOB,NFCNDEFRECADDGENERIC 

Example: 

//See subsections ‘Sample Application 1’  



https://www.lairdconnect.com/ 357 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

FUNCTION  

This function is used to add an NDEF record to a NDEF Message. 

After an NDEF message memory buffer has been acquired using NfcNdefMsgNew(), call this function to add a ‘Simplified Tag 
Format for a Single Bluetooth Carrier Record’ as specified in the Bluetooth SIG specification “Bluetooth Secure Simple Pairing 
Using NFC” dated 2014-01-09. 

This tag is a single record in the NDEF message and will contain the following BLE AD elements (same format as in BLE 
adverts). 

▪ LE Bluetooth Local Device Address 

▪ LE Role 

▪ Appearance 

▪ Local Name 

▪ (Optional) Security Manager TK Value 

Please note that due to the inclusion of the local device address LE Privacy should not be enabled otherwise the NFC record 
will soon contain a stale address and so the smartphone/tablet will not be able to make a connection and pair. 

Note:  The Local Device Address and Local Name is not provided in this function call as the underlying service routine will 

obtain both information from the stack. With regards to the Local Name, only the maximum characters you want to 

add to the record need be specified. Depending on the actual device name registered with the stack using 

BleGapSvcInit() function the appropriate AD element tag will be automatically used. 

Warning: 
This function adds an NDEF record as per the specification mentioned above and publishes it as a Type 2 
tag. You will not be able to interact with it using any iOS devices even when the iOS device (like the iPhone 
6S) has NFC which is only used for Apple Pay. With Android, you will see inconsistent behaviour between 
different brands and OS versions. Hence any testing you perform is best done using something like an 
Arduino Uno and an Adafruit NFC Shield as shown above in the context of the two sample apps. 

If you wish to experiment, use the function NfcNdefRecAddGeneric() which will allow you to create NDEF 
records of any type and payload. 

NFCNDEFRECADDLEOOB (ndefHandle, maxDevName, appearance, role, flags, oobKey$) 

Returns 

INTEGER, indicating the success of command: 

0 Opened successfully 

      0x5A0C The handle is not valid 

       0x5A13 Invalid Device Name Length 

       0x5A14 Invalid Appearance (has to be 0 .. 0xFFFF) 

       0x5A15 Invalid Role 

       0x5A16 Invalid OobKey (must be 0 or 16 bytes long) 

       0x5A17 Invalid Flags value 

       0x5A11 Inconsistent records in message (lengths don’t make sense) 

       0x5AEC Not enough space in msg buffer 
 

Exceptions 
▪ Local Stack Frame Underflow 

▪ Local Stack Frame Overflow 

Arguments 

ndefHandle 
byRef ndefHandle  AS INTEGER 
The handle of the memory block that was acquired using NfcNdefMsgNew. 

maxDevName 

byVal  maxDevName AS INTEGER  
This specifies the maximum length of the device name to be added to the record. The 
appropriate AD type tag will automatically used if the length is shorter than the actuall name 
registered using BleGapSvcInit(). 



https://www.lairdconnect.com/ 358 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

appearance 

byVal appearance  AS INTEGER 
To be consistent, this should be the same ‘appearance’ that was provided when 
BleGapSvcInit() was called. This value can be used by the phone/tablet to present an icon 
after it reads the NFC tag. 

role 

byVal role  AS INTEGER 
This is the BLE role that this device prefers and the value to specify is as follows: 
    0    Only Peripheral Supported 
    1     Only Central Supported 
    2    Both, Peripheral Preferred 
    3    Both, Central Preferred 

flags 

byVal flags  AS INTEGER 
This should be the same flags value as was supplied in the most recent call of the function 
BleAdvRptInit(). 

 

Reproduced from BleAdvRptInit() .. 

Specifies the flags AD bits where bit 0 is set for limited discoverability and bit 1 is set for 
general discoverability. Bit 2 will be forced to 1 and bits 3 & 4 will be forced to 0. Bits 3 to 7 
are reserved for future use by the BT SIG and must be set to 0. 

oobkey$ 

byRef oobKey$  AS STRING 
If this string is empty then then Security Manager TK Value AD element is not added to the 
record. If it is exactly 16 bytes long then it will be added. 

Related Commands 
NFCNDEFMSGCOMMIT, NFCNDEFDELETE, NFCDEFMSGNEW, 
NFCNDEFMSGRESET, NFCNDEFRECADDGENERIC, NFCNDEFMSGGETINFO 

Example: 

//See subsection ‘Sample Application 2’ 

 

FUNCTION  

This function is used to add an NDEF record to a NDEF Message. 

 After an NDEF message memory buffer has been acquired using NfcNdefMsgNew(), call this function to add any record of 
your choice where you can specify the Type, ID and Payload.  

The payload can even be another NDEF message, which means you can create records where the payload is an embedded 
NDEF record. That schema has been seen in few implementations. This is why the payload is specified using a prepend string 
parameter ‘payload0$’, followed by a ndef handle ‘ndefHandlePayload’, and lastly a postpend string parameter ‘payload1$’. 

It is perfectly valid for any two out of <payload0$, ndefHandlePayload, payload1$> to be empty strings or an invalid handle. 

NFCNDEFRECADDGENERIC (ndefHandle, tnf, type$, id$, payload0$, ndefHandlePayload, payload1$) 

Returns 

INTEGER, indicating the success of command: 

0 Opened successfully 

     0x5A0C Either ndefHandle or ndefHandlePayload is not valid 

       0x5A18 Invalid TNF value 

       0x5A12 ndefHandlePayload is valid but is empty 

       0x5A11 Inconsistent records in message (lengths don’t make sense) 

       0x5A21 type$ is empty 

       0x5A22 type$ is too big 

       0x5A23 id$ is too big 

       0x5AEC Not enough space in message buffer 
 

Exceptions 
▪ Local Stack Frame Underflow 

▪ Local Stack Frame Overflow 

Arguments 



https://www.lairdconnect.com/ 359 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

ndefHandle 
byRef ndefHandle  AS INTEGER 
The handle of the memory block that was acquired using NfcNdefMsgNew. 

tnf 

byVal  tnf AS INTEGER  
This can only be in the range 0 to 7 as it needs to fit in the 3 bit field of the first byte of the 
record. 

type$ 

byRef type$  AS STRING 
This is string that has to be between 1 and 255 bytes long and specifies the content of the 
Type field in the record header. 

id$ 

byRef id$  AS STRING 
This is string that has to be between 0 and 255 bytes long and specifies the content of the 
ID field in the record header. If the string is empty, then the ID field, which is optional, is not 
added to the record header. 

Payload0$ 
byRef payload0$  AS STRING 
This is string can be empty. If not it is added to the payload of the record. 

ndefHandlePayload 

byVal ndefHandlePayload  AS INTEGER 
This can be 0xFFFFFFFF which is designated as an invalid handle and in that is ignored. If 
it is not 0xFFFFFFFF and not a valid handle then this routine will exit with an error. 
If a valid handle, but the message buffer is empty then routine will exit with an error. 

Finally if the message is not empty, then it is copied in its entirety to this record (including 
the header, not just the payload in that message) 
This allows a nested mechanism and as deep as the number of ndef message handles 
that can be created. 
Note that once, the content of this embedded message is copied, this embedded handle 
message can be reset to create yet another message for embedding. 

Payload1$ 
byRef payload1$  AS STRING 
This is string can be empty. If not it is added to the payload of the record 

Related Commands 
NFCNDEFMSGCOMMIT, NFCNDEFDELETE, NFCDEFMSGNEW, 
NFCNDEFMSGRESET, NFCNDEFRECADDLEOOB, NFCNDEFMSGGETINFO 

Example: 

//See subsections ‘Sample Application 1’  

 

FUNCTION  

After a message has been created and records added, it needs to be commited so that it can be served as a tag for an active 
reader to access. 

This function is used to do that and if successfully commited, then the ndefHandle is locked and cannot be deleted or reset 
using the NfcNdefMsgDelete() or NfcNdefMsgReset() function respectively. 

When the tag is read, an EVNFC message is thrown with context NFC_READ. 

NFCNDEFMSGCOMMIT (nfcHandle, ndefHandle) 

Returns 

INTEGER, indicating the success of command: 

0 Opened successfully 

0x5A0C The handle is not valid 
 

Exceptions 
▪ Local Stack Frame Underflow 

▪ Local Stack Frame Overflow 

Arguments 

ndefHandle 
byRef  ndefHandle  AS INTEGER 
The handle that was returned by NfcOpen(). 

ndefHandle 
byRef  ndefHandle  AS INTEGER 
The handle of the memory block that was acquired using NfcNdefMsgNew. 



https://www.lairdconnect.com/ 360 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

Related Commands 
NFCNDEFDELETE, NFCDEFMSGNEW, NFCNDEFMSGGETINFO, 
NFCNDEFMSGRESET,NFCNDEFRECADDLEOOB,NFCNDEFRECADDGENERIC 

Example: 

//See subsections ‘Sample Application 1’ and ‘Sample Application 2’ 

 

 

FUNCTION 

This function is used to alter the power state of the module as per the input parameter. 

SYSTEMSTATESET (nNewState) 

Returns INTEGER, a result code. The typical value is 0x0000, indicating a successful operation. 

Arguments 

nNewState byVal nNewState  AS INTEGER 
 
New state of the module as follows: 
0 System OFF (Deep Sleep Mode) 

Note:  You may also enter this state when UART is open and a BREAK condition is 

asserted. Deasserting BREAK makes the module resume through reset i.e. 

power cycle. 

Example: 

// Example :: SystemStateSet.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 //Put the module into deep sleep 

 PRINT "\n"; SystemStateSet(0)  

 

 

smartBASIC language provides high level API for accessing the flash, if both of these requirements are met:- 

1. The external serial (SPI) flash must be connected to BL654 SIO_17 (SFLASH_CS), SIO_21 (SFLASH_MISO), 
SIO_19 (SFLASH_CLK), and SIO_20 (SFLASH_MOSI) 

2.  The external flash connected must be one of the two:- 

• 4 Mbit Macronix MX25R4035F  

• 8 Mbit Macronix MX25R8035F 

The smartBASIC Flash routines can then be used for fast access using open/read/write API functions as described in the 
following sections. 

Note:  By default the BL654 devkit contains an optional SPI Flash (4 Mbit Macronix MX25R4035F) which can be used to 

demonstrate the Flash routines. However, the SPI flash is not connected. To connect the optional flash, solder 

bridges SB4, SB5, SB6, SB7, SB10, SB11 must be individually shorted. 



https://www.lairdconnect.com/ 361 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

This function is used to open access to the flash memory in raw mode. It returns the total size of the memory accessible and 
the sector size.  

FLASHOPEN (totalSize, sectorSize) 

Returns 
INTEGER, a result code. The most typical value is 0x0000, indicating a successful 
operation. 

Arguments 

totalSize   
byRef totalSize  AS INTEGER 
The total memory in bytes available (will be 0 if flash is not detected). 

sectorSize 
byRef sectorSize AS INTEGER 
The sector sizes in this block on memory in bytes. 

Example: 

//Example :: FlashOpen.sb 

DIM rc, nTotalSize, nSectorSize 

//open the flash memory in raw mode 

rc = FlashOpen(nTotalSize,nSectorSize) 
IF rc == 0 THEN 

    PRINT "\nOpened flash successfully" 

    PRINT "\nTotal Size=";nTotalSize;"  Sector Size=";nSectorSize 

ENDIF 

Expected Output: 

Opened flash successfully 

Total Size=524288  Sector Size=4096 

00 

 

This function is used to read from the flash exposed by a previous FlashOpen() call. The number of actual bytes s returned – 
which is the same as strlen(data$) and will be less than or equal to nReadLen. 

FLASHREAD (nOffset, nReadLen, data$) 

Returns Will return the length of data$ on exit. 

Arguments 

nOffset   
byVal nOffset  AS INTEGER 
The offset to read from. 

nReadLen 
byVal nReadLen AS INTEGER 
The number of bytes to read (the maximum allowed value is 1024 bytes). 

Data$ 
byRef data$ AS INTEGER 
The data will be read into this string. 

Example: 

//Example :: FlashRead.sb 

DIM rc, nTotalSize, nSectorSize, nOffset, nReadLen, data$ 

//open the flash memory in raw mode 

rc = FlashOpen(nTotalSize,nSectorSize) 

IF rc == 0 THEN 

    PRINT "\nOpened flash successfully" 

ENDIF 

data$ = "" 

nOffset = 4088 : nReadLen = 4 

rc = FlashRead(nOffset,nReadLen,data$) 

PRINT "\nRead flash data: " 

PRINT "\ndata=";StrHexize$(data$);" nReadLen=";nReadLen 



https://www.lairdconnect.com/ 362 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

Expected Output: 

Opened flash successfully 

Read flash data:  

data=FFFFFFFF nReadLen=4 

00 

 

This function is used to write to the bank of flash previously exposed by FlashOpen(). Please note that if the new data results 
in a bit reversal from 0 to 1 then the write will fail. A bit reversal from 0 to 1 can only be achieved by erasin a full sector using 
the function FlashErase(). 

FLASHWRITE (nOffset, data$, nExitInfo) 

Returns 

INTEGER, a result code. The most typical value is 0x0000, indicating a successful 
operation. 

If FDV_VERIFY_FAIL is returned, then nExitInfo is equal to the offset that does not verify. 

Arguments 

nOffset   
byVal nOffset  AS INTEGER 
The offset to write to. 

Data$ 
byRef data$ AS INTEGER 
The data will be written from this string 

nExitInfo  

byVal nExitInfo  AS INTEGER 
If the return value is not 0x0000 (indicating success), then nExitInfo will contain further 
information about the reason of unsuccessful operation. 

Example: 

//Example :: FlashWrite.sb 

DIM rc, nTotalSize, nSectorSize, nOffset, nReadLen, data$, nExitInfo 

//open the flash memory in raw mode 

rc = FlashOpen(nTotalSize,nSectorSize) 

IF rc == 0 THEN 

    PRINT "\nOpened flash successfully" 

ENDIF 

// Write some data 

nOffset = 4088 : data$ = "ABCD" 

rc = FlashWrite(nOffset,data$,nExitInfo) 

IF rc == 0 THEN 

    PRINT "\nWrote data to the flash successfully" 

ENDIF 

// clear the data$ variable before reading 

data$ = "" 

nOffset = 4088 : nReadLen = 4 

rc = FlashRead(nOffset,nReadLen,data$) 

PRINT "\nRead flash data: " 

PRINT "\ndata=";data$;" nReadLen=";nReadLen 

Expected Output: 

Opened flash successfully 

Wrote data to the flash successfully 

Read flash data:  

data=ABCD nReadLen=4 

00 



https://www.lairdconnect.com/ 363 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

This function is used to erase a sector in the bank specified. The sector size in the block will have been returned in the 
FlashOpen function. 

FLASHERASE (nOffset) 

Returns 
INTEGER, a result code. The most typical value is 0x0000, indicating a successful 
operation. 

Arguments 

nOffset   
byVal nOffset  AS INTEGER 
The offset in the sector with the block to erase. Any offset in that sector will suffice. 

Example: 

//Example :: FlashErase.sb 

DIM rc, nOffset, nTotalSize, nSectorSize 

//open the flash memory in raw mode 

rc = FlashOpen(nTotalSize,nSectorSize) 

IF rc == 0 THEN 

    PRINT "\nOpened flash successfully" 

ENDIF 

// Erase flash at offset 4088 

nOffset = 4088 

rc = FlashErase(nOffset) 

IF rc == 0 THEN 

    PRINT "\nFlash erased successfully" 

ENDIF 

 Expected Output: 

Opened flash successfully 

Total Size=524288  Sector Size=4096 

00 

 

This subroutine is used to close access to a block of flash in raw mode. 

FLASHCLOSE() 

Returns Not acceptable as it is a subroutine 

Arguments: None 

Example: 

//Example :: FlashClose.sb 

DIM rc, nTotalSize, nSectorSize 

//open the flash memory in raw mode 

rc = FlashOpen(nTotalSize,nSectorSize) 

IF rc == 0 THEN 

    PRINT "\nOpened flash successfully" 

ENDIF 

// Close access to the flash 

FlashClose() 

PRINT "\nClosed flash" 

Expected Output: 

Opened flash successfully 

Closed flash 

00 



https://www.lairdconnect.com/ 364 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

 

This functions is used to generate public/private keypair based on the algorithm (ECC type) provided.  

ECCGENERATEPUBPRVKEYS (nEccType, privKey$, pubKey$) 

Returns 

INTEGER, a result code. The most typical values are:- 

0x0000 – Keys created successfully 

0x5907 – CRYPTO_ECC_TYPE_UNKNOWN (Unknown ECC type) 

0x0201 – MALLOC_FAIL (not enough memory to return the keys) 

Arguments 

nEccType 

byVal nEccTypeAS INTEGER 
The ECC type to be used when calculating and generating the shared key. Possible 
values:- 

0x10000 : Algorithm Curve 25519 (used in Eddystone EID) 

privKey$ 
byRef privKey$ AS STRING 
On exit, will contain the generated private key, size as appropriate for algorithm 

pubKey$ 
byRef pubKey$ AS STRING 
On exit, will contain the generated public key, size as appropriate for algorithm 

See example for EccCalcSharedSecret(). 

 

This function is used to create a shared scalar value which will have the same value when the remote performs an equivalent 
calculation with its own local private key and this side’s public key. 

Essentially, calling EccGeneratePubPrvKeys() twice to create two sets of private and public keys and then calling 
EccPubSharedSecret() twice with the private from one and public from the other will generate the same sharedSecret$. 

ECCCALCSHAREDSECRET (nEccType, privKey$, pubKey$, sharedSecret$) 

Returns 

INTEGER, a result code. The most typical values are:- 

0x0000 – Keys created successfully 

0x5907 – CRYPTO_ECC_TYPE_UNKNOWN (Unknown ECC type) 

0x0201 – MALLOC_FAIL (not enough memory to return the keys) 

Arguments 

nEccType 

byVal nEccTypeAS INTEGER 
The ECC type to be used when generating the public/private keypair. Possible values:- 

0x10000 : Algorithm Curve 25519 (used in Eddystone EID) 

privKey$ 
byRef privKey$ AS STRING 
On entry contains the local private key, untouched on exit 

pubKey$ 
byRef pubKey$ AS STRING 
On entry contains the remote public key, untouched on exit 

sharedSecret$ 
byRef sharedSecret$ AS STRING 

On exit will contain the shared secret key 

// Example :: EccCalcSharedSecret.sb 

 

// Note: In real world scenarios, two devices generate their private/public 

// key pair separately, then exchange the public key. Using the remote's  

// public key and the own private key, the shared secret is generated, therefore 

// ending with the same shared secret without exposing material that could be used to  

// by a third party to decrypt in a reasonable amount of time. 

// For simplicity, this example shows this process performed on one device only 



https://www.lairdconnect.com/ 365 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

dim rc, EccType : EccType = 0x10000 

dim prvKey_A$, pubKey_A$, Secret_A$ 

dim prvKey_B$, pubKey_B$, Secret_B$ 

 

// Generate first Public/Private keypair 

rc = EccGeneratePubPrvKeys(EccType, prvKey_A$, pubKey_A$) 

if rc == 0 then 

    PRINT "\rPrv Key A: "; strhexize$(prvKey_A$) 

    PRINT "\rPub Key A: "; strhexize$(pubKey_A$) 

endif 

 

// Generate second Public/Private keypair 

rc = EccGeneratePubPrvKeys(EccType, prvKey_B$, pubKey_B$) 

if rc == 0 then 

    PRINT "\rPrv Key B: "; strhexize$(prvKey_B$) 

    PRINT "\rPub Key B: "; strhexize$(pubKey_B$) 

endif 

 

// Compute first shared secret using private key A and public key B 

rc = EccCalcSharedSecret(EccType, prvKey_A$, pubKey_B$, Secret_A$) 

if rc == 0 then 

    PRINT "\rShared Secret 1: "; strhexize$(Secret_A$) 

endif 

 

// Compute second shared secret using private key B and public key A 

rc = EccCalcSharedSecret(EccType, prvKey_B$, pubKey_A$, Secret_B$) 

if rc == 0 then 

    PRINT "\rShared Secret 2: "; strhexize$(Secret_B$) 

endif 

 

// Compare keys to check if they are the same 

If StrCmp(Secret_A$, Secret_B$)==0 then 

    PRINT "\rThe generated shared secret keys are identical" 

else 

    PRINT "\rThe generated shared secret keys do not match" 

Endif 

 

Expected Output: 

Prv Key A: 3A803352CFBBE969C28952C9950706A7F807C3B3974B65FEFD69C15A258C56EF 

Pub Key A: 92F2589A0B08F0A1ADBC42F38FFB3093823257607C5DC0F4AF9DDEFE85E34030 

Prv Key B: 10C9D43736EC510DE317732EF1C057954EB11FBD7800B1C6D827E63FB2657B5F 

Pub Key B: 91FADCE2BD6E2FE7DF7F3251B2879753753D8F7F7D85978E2F0743DB3AE20577 

Shared Secret 1: 3666BE535446B3E8A99970982EB2CE79C2501312CE2D30872DDB540A46453D23 

Shared Secret 2: 3666BE535446B3E8A99970982EB2CE79C2501312CE2D30872DDB540A46453D23 

The generated shared keys are identical 

 

This function is used to generate a HMAC-SHA256 authenticated hash of the content of data$ using the key supplied which 
can be from 0 to 64 bytes in length. 

ECCHMACSHA256 (key$, data$, hmacOut$) 

Returns 

INTEGER, a result code. The most typical values are:- 

0x0000 – Keys created successfully 

0x0201 – MALLOC_FAIL (not enough memory to return the keys) 

Arguments 

Key$ 
byRef key$ AS STRING 
On entry contains a key from 0 to 64 bytes long and untouched on exit 



https://www.lairdconnect.com/ 366 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

data$ 
byRef data$ AS STRING 
On entry contains the data to be hashed and untouched on exit 

hmacOut$ 
byRef hmacOut$ AS STRING 
On exit will contain the hmac output, use strlen() to determine length 

 

//Example :: EccHmacSha256.sb 

 

dim rc, key$ 

dim data_A$, hmacOut_A$ 

dim data_B$, hmacOut_B$ 

 

key$ = "KEY" 

data_A$ = "AAAAB" 

data_B$ = "AAAAA" 

 

// Generate the HMAC-SHA256 for the first data 

rc = EccHmacSha256(key$, data_A$, hmacOut_A$) 

if rc == 0 then 

    PRINT "\rHMAC of data_A: "; strhexize$(hmacOut_A$) 

endif 

 

// Generate the HMAC-SHA256 for the second data 

rc = EccHmacSha256(key$, data_B$, hmacOut_B$) 

if rc == 0 then 

    PRINT "\rHMAC of data_A: "; strhexize$(hmacOut_B$) 

endif 

 

// Compare the HMAC-SHA256 outputs 

if StrCmp(hmacOut_A$, hmacOut_B$) == 0 then 

    PRINT "\rData A matches Data B" 

else 

    PRINT "\rData A does not match Data B" 

endif 

Expected Output:  

HMAC of data_A: 7DB831431B6B7CDACE411C9F51CCC550EF1C20FB0812A24B7BBE12AE4332BB20 

HMAC of data_A: 7DBF238349A98AB446AB8B4596E12E3729653ADA1E1A4B9ADA57C507E2021034 

Data A does not match Data B 

 

FUNCTION 

This function calculates a hash of data 

HASHGENERATE (nType, data$, hash$) 

Returns 

INTEGER   

Results in 0x0000 if the hash is created successfully. Otherwise an appropriate resultcode 
is returned which conveys the reason it failed. ALWAYS check this. 

Arguments 

nType 

BYRVAL nType AS INTEGER 

The type of hash 

    0x00000000  : (Reserved for future use - chain to most recent) 

    0x00010100  : SHA256 

    0xFFFFFFFF : (Reserved for future use - Finalize) 

data$ 
BYREF data$  AS STRING 

Contains the string data to generate the hash on 



https://www.lairdconnect.com/ 367 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

Hash$ 
BYREF hash$ AS STRING 

On exit will contain the hash 

 

 

 

FUNCTION 

This function starts a watchdog timer with nResetTimeout in seconds. If the timer is not reset within nResetTimeout seconds, 
the module will reset. 

Returns 

INTEGER, a result code and the most typical values are following:- 

0x0000 := Success 

0x5262 := An invalid time has been provided (i.e. the value is outside the range) 

0x5263:= The watchdog timer is already running 

Arguments 

nResetTimeout   
byVal nResetTimeout  AS INTEGER 
The reset timeout in seconds. Valid range is between 0-131072. 

 

//Example :: WdtStart 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

DIM rc, nTimeout 

nTimeout = 60 

// Start a timer for 60 seconds 

rc = WdtStart(nTimeout) 

if rc == 0 then 

    PRINT "Watchdog Timer started\n" 

else 

    PRINT "Failed to start Watchdog Timer\n" 

endif 

 

WaitEvent 

 

Expected Output: 

Watchdog Timer started 

 

 

FUNCTION 

This function resets the watchdog timer. WdtStart should be called before this function can be used. 

Returns Will return a resultcode and the most typical value is 0x0000 indicating success. 

Arguments                         None 

//Example :: WdtReset 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

DIM rc, nTimeout 

nTimeout = 60 

// Start a  watchdog timer for 60 seconds 

rc = WdtStart(nTimeout) 

 



https://www.lairdconnect.com/ 368 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

// Start a recurring normal timer to reset the watchdog timer every 55 seconds 

Timerstart(1, 55000, 1) 

 

Function HandlerTimer1() 

    rc = WdtReset() 

    if rc == 0 then 

        print "Watchdog timer reset successfully\n" 

    endif 

Endfunc 1 

 

OnEvent EVTMR1 CALL HandlerTimer1 

 

WaitEvent 

Expected Output: 

Watchdog timer reset successfully 

 

FUNCTION 

This function starts a watchdog timer with nResetTimeout in seconds. If the timer is not reset within nResetTimeout seconds, 
the module will reset. 

Returns 

Will return the following value:- 
0 := Not Running 
1 := Running 

Arguments                        None 

 

//Example :: WdtIsRunning 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

DIM rc, nTimeout 

nTimeout = 60 

// Start a timer for 60 seconds 

rc = WdtStart(nTimeout) 

 

rc = WdtIsRunning() 

if rc == 1 then 

    PRINT "Watchdog is running\n" 

else 

    PRINT "Watchdog is not running\n" 

endif 

 

WaitEvent 

Expected Output: 

Watchdog is running 

 



https://www.lairdconnect.com/ 369 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

FUNCTION 

This function is used to read the power supply voltage and the value will be returned in millivolts. 

Note:  Due to the nrf52840’s ADC accuracy, this value has a +/-3% error. 

READPWRSUPPLYMV () 

Returns INTEGER, the power supply voltage in millivolts. 

Arguments None 

Example: 

// Example :: ReadPwrSupplyMv.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 //read and print the supply voltage 

 PRINT "\nSupply voltage is "; ReadPwrSupplyMv();"mV"    

Expected Output: 

Supply voltage is 3343mV 

 

FUNCTION 

This function sets a supply voltage threshold. If the supply voltage drops below this then the BLE_EVMSG event is thrown into 
the run time engine with a MSG ID of BLE_EVBLEMSGID_POWER_FAILURE_WARNING (19) and the context data will be 
the current voltage in millivolts. 

Please note that when the power supply rises above this value and then drops again, the power fail warning event will 
NOT be thrown again, unless this function is called explicitly again in the event handler. 

In addition, if the event is enabled by calling this function AND the supply voltage is still below the threshold then all 
flash write and erase operations will fail silently (for example, like pairing [with bonding] will fail to retain the keys). 
Likewise NvRecordSet (and all other operations that involve writing to flash memory) will silently fail and nothing will 
be written. 

 

MsgId      Description 

19 The supply voltage has dropped below the value specified as the argument to this function in the most 

recent call. The context data is the current reading of the supply voltage in millivolts 

SETPWRSUPPLYTHRESHMV (nThreshMv) 

Returns 
INTEGER, 0 if the threshold is successfully set, 0x6605 if the value cannot be 
implemented. 

Arguments 

nThreshMv byVal nThresMv  AS INTEGER 

The BLE_EVMSG event is thrown to the engine if the supply voltage drops below this 

value. Valid values are 2100, 2300, 2500 and 2700. 

If 0 is supplied then low supply voltage notification is disabled which implies flash 

operation is no longer affected.  

Example: 



https://www.lairdconnect.com/ 370 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

// Example :: SetPwrSupplyThreshMv.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

 DIM rc 

 DIM mv 

 

 //============================================================================== 

 // Handler for generic BLE messages 

 //============================================================================== 

 FUNCTION HandlerBleMsg(BYVAL nMsgId, BYVAL nCtx) AS INTEGER 

     SELECT nMsgId 

         CASE 19 

             PRINT "\n --- Power Fail Warning ",nCtx 

             //mv=ReadPwrSupplyMv() 

             PRINT "\n --- Supply voltage is "; ReadPwrSupplyMv();"mV" 

         CASE ELSE 

             //ignore this message 

      ENDSELECT 

 ENDFUNC 1 

 

 //============================================================================== 

 // Handler to service button 0 pressed 

 //============================================================================== 

 FUNCTION HndlrBtn0Pr() AS INTEGER 

     //just exit and stop waiting for events 

 ENDFUNC 0 

 

 ONEVENT  EVBLEMSG   CALL HandlerBleMsg 

 ONEVENT  EVGPIOCHAN1 CALL HndlrBtn0Pr      

 

 rc=GpioBindEvent(1,16,1)     //Channel 1, bind to low transition on GPIO pin 16 

 PRINT "\nSupply voltage is "; ReadPwrSupplyMv();"mV\n" 

 mv=2700 

 rc=SetPwrSupplyThreshMv(mv)  

 

 PRINT "\nWaiting for power supply to fall below ";mv;"mV" 

 

 //wait for events and messages 

 WAITEVENT 

 

 PRINT "\nExiting..." 



https://www.lairdconnect.com/ 371 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

Expected Output: 

Supply voltage is 3343mV 

 

Waiting for power supply to fall below 2700mV 

Exiting… 

 

FUNCTION 

This function is used to calculate the CRC16 value of a given string. 

Returns 
INTEGER, a result code. The most typical value is 0x0000, indicating a successful 
operation. 

Arguments 

nType   

byVal nType  AS INTEGER 
The type of CRC16 checksum to generate 

0 – Nordic CRC16 

Other - Invalid 

Data$ 
byRef Data$ AS STRING 
This variable should contain the string data to perform a checksum on  

nCRC 

byRef nCRC AS STRING 
Set to a variable to contain the previous checksum value and will contain an updated 
checksum when complete. Set to 0xffff before starting 

Example: 

// Example :: CRC16.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

DIM rc 

DIM nType : nType = 0 

DIM Data$ : Data$ = "RandomData" 

DIM nCRC16 : nCRC16 = 0 

 

rc = CRC16Generate(nType, Data$, nCRC16) 

IF rc == 0 THEN 

    PRINT "\nThe computed CRC16 value is ";nCRC16 

ELSE 

    PRINT "\nFailed to generate CRC16 value" 

ENDIF 

 

 

FUNCTION 

This function is used to calculate the CRC32 value of a given string. 

Returns 
INTEGER, a result code. The most typical value is 0x0000, indicating a successful 
operation. 

Arguments 

nType   

byVal nType  AS INTEGER 
The type of CRC32 checksum to generate. Possible values are:- 

0 – Nordic CRC32 

Other - Invalid 

Data$ 
byRef Data$ AS STRING 
This variable should contain the string data to perform a checksum on  



https://www.lairdconnect.com/ 372 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

nCRC 

byRef nCRC AS STRING 
Set to a variable to contain the previous checksum value and will contain an updated 
checksum when complete. Set to 0xffff before starting 

Example: 

// Example :: CRC32.sb 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

DIM rc 

DIM nType : nType = 0 

DIM Data$ : Data$ = "RandomData" 

DIM nCRC32 : nCRC32 = 0 

 

rc = CRC32Generate(nType, Data$, nCRC32) 

IF rc == 0 THEN 

    PRINT "\nThe computed CRC32 value is ";nCRC32 

ELSE 

    PRINT "\nFailed to generate CRC32 value" 

ENDIF 

 

FUNCTON 

This function is used to enable external circuitry to be supplied from the VDD pin and set the external output/supply voltage 
value. This command is only in effect while operating in high voltage mode and can only be performed once. If the command is 
successful the module will be reset. If the value must be overwritten then a full flash erase and firmware reprogram is required. 
This can be done by following the Upgrading BL654 Firmware via JTAG or Upgrading BL654 Firmware via UART application 
notes. 

SETREGOUT0() 

Returns INTEGER, 0 if successful, 0x1011 if value has already been set and can not be re-written.  

Arguments  

nValue 

ByVal nValue AS INTEGER 

Index of output voltage table. Accepted values are: 

0 – 1.8V 

1 – 2.1V 

2 – 2.4V 

3 – 2.7V 

4 – 3.0V 

5 – 3.3V 

Example: 

// Example: regout0 

// https://github.com/LairdCP/BL654-Applications/tree/master/UserGuideExamples 

 

DIM rc 

DIM mv 

DIM regOutIndex 

DIM tm 

 

mv = ReadPwrSupplyMv() 

PRINT "\n\nSupply voltage is ";mv;"mV\n" 

 

regOutIndex = GetRegout0() 

PRINT "\nRegout0 index is ";regOutIndex;"\n" 

 

while (uartinfo(5) > 0) 

    //Wait for the UART transmit buffer to empty before SetRegout0 resets unit 

endwhile 



https://www.lairdconnect.com/ 373 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

PRINT "\nSetting Regout0 index to 2 (2.4V)\n" 

rc = SetRegout0(2) 

PRINT "\nSetRegout0 returned ";rc;"\n" 

Note:  The last line will not appear on the console if SetRegout0() is successful as this function requires a module reset to 

work. 

Expected Output: 

Supply voltage is 1803mV 

 

Regout0 index is 7 

 

Setting Regout0 index to 2 (2.4V) 

 

00 

 

FUNCTION 

This function is used to read the value of the REGOUT0 register. 

Note:  A return value of 7 means this register has not been written and can safely be given a new value. 

GetREGOUT0() 

Returns 

INTEGER, value of REGOUT0 register. Value is index for table: 

0 – 1.8V 

1 – 2.1V 

2 – 2.4V 

3 – 2.7V 

4 – 3.0V 

5 – 3.3V 
7 – Unwritten (defaults at 1.8v) 

Arguments None 

Example: 

See example for SetREGOUT0. 



https://www.lairdconnect.com/ 374 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 
smartBASIC is designed to be event driven, which makes it suitable for embedded platforms where it is normal to wait for 
something to happen and then respond. 

The event handling is done synchronously, meaning the smartBASIC runtime engine has to process a WAITEVENT statement 
for any events or messages to be processed. This guarantees that smartBASIC never needs the complexity of locking 
variables and objects. 

The subsystems which generate events and messages relevant to the routines described in this guide are as follows: 

▪ BLE events and messages as described here. 

▪ Generic Characteristics events and messages as described here. 

 

 

There are some operations and events that provide a single byte Bluetooth HCI result code (such as the EVDISCON 
message). The meaning of the result code is as per the list reproduced from the Bluetooth Specifications below. No guarantee 
is supplied as to its accuracy. Consult the specification for more. 

Result codes in grey are not relevant to Bluetooth Low Energy operation. 

BT_HCI_STATUS_CODE_SUCCESS                             0x00 

BT_HCI_STATUS_CODE_UNKNOWN_BTLE_COMMAND                0x01 

BT_HCI_STATUS_CODE_UNKNOWN_CONNECTION_IDENTIFIER       0x02 

BT_HCI_HARDWARE_FAILURE                                0x03 

BT_HCI_PAGE_TIMEOUT                                    0x04 

BT_HCI_AUTHENTICATION_FAILURE                          0x05 

BT_HCI_STATUS_CODE_PIN_OR_LINKKEY_MISSING              0x06 

BT_HCI_MEMORY_CAPACITY_EXCEEDED                        0x07 

BT_HCI_CONNECTION_TIMEOUT                              0x08 

BT_HCI_CONNECTION_LIMIT_EXCEEDED                       0x09 

BT_HCI_SYNC_CONN_LIMI_TO_A_DEVICE_EXCEEDED             0x0A 

BT_HCI_ACL_COONECTION_ALREADY_EXISTS                   0x0B 

BT_HCI_STATUS_CODE_COMMAND_DISALLOWED                  0x0C 

BT_HCI_CONN_REJECTED_DUE_TO_LIMITED_RESOURCES          0x0D 

BT_HCI_CONN_REJECTED_DUE_TO_SECURITY_REASONS           0x0E 

BT_HCI_BT_HCI_CONN_REJECTED_DUE_TO_BD_ADDR             0x0F 

BT_HCI_CONN_ACCEPT_TIMEOUT_EXCEEDED                    0x10 

BT_HCI_UNSUPPORTED_FEATURE_ONPARM_VALUE                0x11 

BT_HCI_STATUS_CODE_INVALID_BTLE_COMMAND_PARAMETERS     0x12 

BT_HCI_REMOTE_USER_TERMINATED_CONNECTION               0x13 

BT_HCI_REMOTE_DEV_TERMINATION_DUE_TO_LOW_RESOURCES     0x14 

BT_HCI_REMOTE_DEV_TERMINATION_DUE_TO_POWER_OFF         0x15 

BT_HCI_LOCAL_HOST_TERMINATED_CONNECTION                0x16 

BT_HCI_REPEATED_ATTEMPTS                               0x17 



https://www.lairdconnect.com/ 375 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

BT_HCI_PAIRING_NOTALLOWED                              0x18 

BT_HCI_LMP_PDU                                         0x19 

BT_HCI_UNSUPPORTED_REMOTE_FEATURE                      0x1A 

BT_HCI_SCO_OFFSET_REJECTED                             0x1B 

BT_HCI_SCO_INTERVAL_REJECTED                           0x1C 

BT_HCI_SCO_AIR_MODE_REJECTED                           0x1D 

BT_HCI_STATUS_CODE_INVALID_LMP_PARAMETERS              0x1E 

BT_HCI_STATUS_CODE_UNSPECIFIED_ERROR                   0x1F 

BT_HCI_UNSUPPORTED_LMP_PARM_VALUE                      0x20 

BT_HCI_ROLE_CHANGE_NOT_ALLOWED                         0x21 

BT_HCI_STATUS_CODE_LMP_RESPONSE_TIMEOUT                0x22 

BT_HCI_LMP_ERROR_TRANSACTION_COLLISION                 0x23 

BT_HCI_STATUS_CODE_LMP_PDU_NOT_ALLOWED                 0x24 

BT_HCI_ENCRYPTION_MODE_NOT_ALLOWED                     0x25 

BT_HCI_LINK_KEY_CAN_NOT_BE_CHANGED                     0x26 

BT_HCI_REQUESTED_QOS_NOT_SUPPORTED                     0x27 

BT_HCI_INSTANT_PASSED                                  0x28 

BT_HCI_PAIRING_WITH_UNIT_KEY_UNSUPPORTED               0x29 

BT_HCI_DIFFERENT_TRANSACTION_COLLISION                 0x2A 

BT_HCI_QOS_UNACCEPTABLE_PARAMETER                      0x2C 

BT_HCI_QOS_REJECTED                                    0x2D 

BT_HCI_CHANNEL_CLASSIFICATION_UNSUPPORTED              0x2E 

BT_HCI_INSUFFICIENT_SECURITY                           0x2F 

BT_HCI_PARAMETER_OUT_OF_MANDATORY_RANGE                0x30 

BT_HCI_ROLE_SWITCH_PENDING                             0x32 

BT_HCI_RESERVED_SLOT_VIOLATION                         0x34 

BT_HCI_ROLE_SWITCH_FAILED                              0x35 

BT_HCI_EXTENDED_INQUIRY_RESP_TOO_LARGE                 0x36 

BT_HCI_SSP_NOT_SUPPORTED_BY_HOST                       0x37 

BT_HCI_HOST_BUSY_PAIRING                               0x38 

BT_HCI_CONN_REJ_DUETO_NO_SUITABLE_CHN_FOUND            0x39 

BT_HCI_CONTROLLER_BUSY                                 0x3A 

BT_HCI_CONN_INTERVAL_UNACCEPTABLE                      0x3B 

BT_HCI_DIRECTED_ADVERTISER_TIMEOUT                     0x3C 

BT_HCI_CONN_TERMINATED_DUE_TO_MIC_FAILURE              0x3D 

BT_HCI_CONN_FAILED_TO_BE_ESTABLISHED                   0x3E 



https://www.lairdconnect.com/ 376 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

 

The following are required acknowledgements to address our use of open source code on the BL654 to implement AES 
encryption. Laird’s implementation includes the following files: aes.c and aes.h. 

Copyright (c) 1998-2008, Brian Gladman, Worcester, UK. All rights reserved. 

 

The redistribution and use of this software (with or without changes) is allowed without the payment of fees or royalties 
providing the following: 

▪ Source code distributions include the above copyright notice, this list of conditions and the following disclaimer; 

▪ Binary distributions include the above copyright notice, this list of conditions and the following disclaimer in their 
documentation; 

▪ The name of the copyright holder is not used to endorse products built using this software without specific written 
permission. 

 

This software is provided 'as is' with no explicit or implied warranties in respect of its properties, including, but not limited to, 
correctness and/or fitness for purpose. 

 

Issue 09/09/2006 

This is an AES implementation that uses only 8-bit byte operations on the cipher state (there are options to use 32-bit types if 
available). 

The combination of mix columns and byte substitution used here is based on that developed by Karl Malbrain. His contribution 
is acknowledged. 

 

The following are required acknowledgements to address our use of open source code on the BL654 to implement Elliptic-
Curve Diffie Hellman cryptography . Laird’s implementation includes the following files: uECC.c and uECC.h. 

Copyright (c) 2014, Kenneth MacKay 

 

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following 
conditions are met: 

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following 
disclaimer in the documentation and/or other materials provided with the distribution. 

 

 

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR 
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND 
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR 
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR 
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY 
OF SUCH DAMAGE. 
  



https://www.lairdconnect.com/ 377 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

 

Arduino Based NFC Reader .......................................... 343 

ASSERTBL654 ............................................................... 72 

AT + MAC........................................................................ 22 

AT I.................................................................................. 16 

AT I or ATI or ATIX .......................................................... 16 

AT&F ............................................................................... 23 

AT+BLX ........................................................................... 22 

AT+BTD .......................................................................... 21 

AT+CFG .................................................................... 17, 21 

AUXClose ........................................................................ 33 

AUXCloseEx ................................................................... 33 

AUXFlush ........................................................................ 36 

AUXGetCTS .................................................................... 37 

AUXInfo ........................................................................... 34 

AUXRead ........................................................................ 35 

AUXReadMatch .............................................................. 36 

AUXReadN ...................................................................... 35 

AUXWrite ........................................................................ 34 

BleAcceptParing ............................................................ 295 

BleAdvertConfig ............................................................ 117 

BleAdvertStart ............................... 113, 125, 126, 127, 129 

BleAdvertStop ............................................................... 116 

BleAdvRptAddUuid128 .................................................. 121 

BleAdvRptAddUuid16............................................ 119, 131 

BleAdvRptAppendAD .................................... 119, 122, 130 

BleAdvRptGetSpace ............................................. 119, 132 

BleAdvRptInit ................................................................ 117 

BleAdvRptsCommit ....................................................... 122 

BleAttrMetadataEx ........................................................ 190 

BleAuthorizeChar .......................................................... 212 

BleAuthorizeDesc .......................................................... 212 

BleBondingEraseAll....................................................... 287 

BleBondingEraseKey .................................................... 286 

BleBondingIsTrusted ..................................................... 285 

BleBondingPersistKey ................................................... 284 

BleBondingStats ............................................................ 283 

BleBondMngrGetInfo ..................................................... 287 

BleChannelMap ............................................................. 112 

BleCharCommit ............................................................. 199 

BleCharDescAdd ........................................................... 198 

BleCharDescPrstnFrmt ................................................. 195 

BleCharDescRead......................................................... 209 

BleCharDescUserDesc ................................................. 194 

BleCharNew .................................................................. 193 

BleCharValueIndicate.................................................... 207 

BleCharValueNotify ....................................................... 205 

BleCharValueRead........................................................ 201 

BleCharValueWrite ................................................ 204, 205 

BleConfigDcDc ...................................................... 111, 112 

BleConnect .................................................... 130, 148, 151 

BleConnectCancel ........................................................ 151 

BleConnectConfig ......................................................... 153 

BleConnMngrUpdCfg .................................................... 159 

BleConnRssiStart .......................................................... 163 

BleConnRssiStop .......................................................... 165 

BleDecode32................................................................. 274 

BleDecodeBITS............................................................. 281 

BleDecodeFLOAT ......................................................... 276 

BleDecodeS16 .............................................................. 269 

BleDecodeS24 .............................................................. 271 

BleDecodeS8 ................................................................ 267 

BleDecodeSFLOAT ....................................................... 277 

BleDecodeSTRING ....................................................... 279 

BleDecodeTIMESTAMP ................................................ 278 

BLEDECODEU16 ......................................................... 270 

BleDecodeU24 .............................................................. 273 

BleDecodeU8 ................................................................ 268 

BleDiscCharFirst ........................................................... 225 

BleDiscCharNext ........................................................... 225 

BleDiscDescFirst ........................................................... 229 

BleDiscDescNext .......................................................... 229 

BleDisconnect ............................................................... 155 

BleDiscServiceFirst ....................................................... 221 

BleDiscServiceNext ....................................................... 221 

BleEncode16 ................................................................. 258 

BleEncode24 ................................................................. 259 

BleEncode32 ................................................................. 260 

BleEncode8 ................................................................... 257 

BleEncodeBITS ............................................................. 266 

BleEncodeFLOAT ......................................................... 261 

BleEncodeSFLOAT ....................................................... 263 

BleEncodeSFLOATEX .................................................. 262 

BleEncodeSTRING ....................................................... 265 

BleEncodeTIMESTAMP ................................................ 264 

BleEncryptConnection ................................................... 306 

BleGapSvcInit ............................................................... 179 

BleGattcAttributeMtuRequest ........................................ 334 

BleGattcClose ............................................................... 221 

BleGattcFindChar .......................................................... 234 

BleGattcFindDesc ......................................................... 238 

BleGattcNotifyRead ....................................................... 253 

BleGattcOpen................................................................ 220 

BleGattcRead ................................................................ 242 

BleGattcReadData ........................................................ 242 

BleGattcWrite ................................................................ 246 

BleGattcWriteCmd ................................................ 249, 253 

BleGetADbyIndex .......................................................... 143 

BleGetADbyTag ............................................................ 145 

BleGetAddrFromConnHandle ....................................... 161 

BleGetConnHandleFromAddr ....................................... 159 



https://www.lairdconnect.com/ 378 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

BleGetCurConnParms ................................................... 158 

BleGetDeviceName ....................................................... 180 

BleHandleUuid128 ........................................................ 184 

BleHandleUuid16 .......................................................... 183 

BleHandleUuidSibling.................................................... 185 

BlePair ........................................................................... 291 

BleScanAbort ................................................................ 134 

BleScanConfig .............................................................. 138 

BleScanFlush ................................................................ 137 

BleScanGetAdvReport .................................................. 140 

BLESCANGETADVREPORT ....................................... 142 

BleScanGetPagerAddr .................................................. 147 

BleScanRptInit .............................................................. 118 

BleScanStart ......................................................... 128, 133 

BleScanStop ................................................................. 135 

BleSecMngrBondReq .................................................... 306 

BleSecMngrIoCap ......................................................... 295 

BleSecMngrKeySizes .................................................... 305 

BleSecMngrLescKeypressEnable ................................. 298 

BleSecMngrLescKeypressNotify ................................... 299 

BleSecMngrLescOwnOobDataGet ................................ 302 

BleSecMngrLescPairingPref ......................................... 291 

BleSecMngrLescPeerOobDataSet ................................ 303 

BleSecMngrOOBKey ............................................. 300, 301 

BleSecMngrPasskey ..................................................... 296 

BleServiceChangedNtfy ................................................ 213 

BleServiceCommit ......................................................... 188 

BleServiceNew .............................................................. 186 

BleSetAddressTypeEx .................................................... 74 

BleSetCurConnParms ................................................... 156 

BleSvcAddIncludeSvc ................................................... 188 

BleSvcRegDevInfo ........................................................ 181 

BleTxPowerSet ............................................................. 108 

BleTxPwrWhilePairing ................................................... 109 

BleVSpClose ................................................................. 321 

BleVSpFlush ................................................................. 330 

BleVSpInfo .................................................................... 323 

BleVSpOpen ................................................................. 318 

BleVSpOpenEx ............................................................. 320 

BleVSpRead .................................................................. 325 

BleVSpUartBridge ......................................................... 328 

BleVSpWrite .................................................................. 324 

BleWhitelistAddAddr...................................................... 171 

BleWhitelistAddIndex .................................................... 172 

BleWhitelistClear ........................................................... 171 

BleWhitelistCreate ......................................................... 165 

BleWhitelistDestroy ....................................................... 170 

BleWhitelistInfo ............................................................. 172 

BleWhitelistSetFilter ...................................................... 171 

Bonding Functions......................................................... 282 

Bonding Table Types: Rolling & Persist ........................ 282 

Command & Bridge Mode Operation ............................ 316 

ERASEFILESYSTEM ...................................................... 72 

EVATTRIBUTEMTU ...................................................... 334 

EVATTRNOTIFY ........................................................... 219 

EVATTRREAD .............................................................. 218 

EVATTRWRITE ............................................................ 219 

EVAUTHCCCD ............................................................... 96 

EVAUTHDESC.............................................................. 100 

EVAUTHSCCD ............................................................... 98 

EVAUTHVAL ............................................................. 93, 94 

EVBLE_ADV_REPORT .................................................. 77 

EVBLE_ADV_TIMEOUT ................................................. 76 

EVBLE_CONN_TIMEOUT .............................................. 77 

EVBLE_FAST_PAGED ................................................... 77 

EVBLE_SCAN_TIMEOUT .............................................. 77 

EVBLEMSG .................................................................... 77 

EVBLEMSG .................................................................. 289 

EVCHARCCCD ............................................................... 83 

EVCHARDESC ............................................................... 91 

EVCHARHVC.................................................................. 83 

EVCHARSCCD ............................................................... 86 

EVCHARVAL .................................................................. 81 

EVCONNRSSI .............................................. 102, 107, 108 

EVDISCCHAR............................................................... 216 

EVDISCDESC ............................................................... 217 

EVDISCON ............................................................. 80, 289 

EVDISCPRIMSVC ........................................................ 216 

EVFINDCHAR ............................................................... 217 

EVFINDDESC ............................................................... 218 

EVGATTCTOUT ........................................................... 215 

EVLESCKEYPRESS ..................................................... 289 

EVNOTIFYBUF ............................................................. 102 

EVNOTIFYBUF ............................................................. 219 

EVPACKETLENGTH .................................................... 334 

EVVSPRX ..................................................................... 102 

EVVSPTXEMPTY ......................................................... 102 

GpioAssignEvent ............................................................. 69 

GpioBindEvent ................................................................ 69 

GpioConfigPwm .............................................................. 64 

GpioRead ........................................................................ 67 

GpioSetFunc ................................................................... 60 

GpioSetFuncEx ............................................................... 62 

GpioUnAssignEvent ........................................................ 72 

GPIOUNBINDEVENT ..................................................... 72 

GpioWrite ........................................................................ 68 

NDEF Messages ........................................................... 343 

NfcClose ....................................................................... 352 

NfcFieldSense ............................................................... 353 

NfcHardwareState ......................................................... 351 

NfcNdefMsgCommit ...................................................... 358 

NfcNdefMsgDelete ........................................................ 354 

NfcNdefMsgGetInfo ....................................................... 354 

NfcNdefMsgNew ........................................................... 353 

NfcNdefMsgReset ......................................................... 355 

NfcNdefRecAddGeneric ................................................ 357 



https://www.lairdconnect.com/ 379 

© Copyright 2020 Laird. All Rights Reserved 

Americas: +1-800-492-2320 

Europe: +44-1628-858-940 

Hong Kong: +852 2923 0610 

 

 

NfcNdefRecAddLeOob .................................................. 356 

NfcOpen ........................................................................ 352 

QSPIActiveConfigGet ...................................................... 50 

QSPIClose ...................................................................... 47 

QSPIConfigGet ............................................................... 49 

QSPIConfigSet ................................................................ 47 

QSPICustomCommand ................................................... 53 

QSPIDPMSet .................................................................. 56 

QSPIErase ...................................................................... 52 

QSPIInfo .......................................................................... 55 

QSPIIsBusy ..................................................................... 56 

QSPIIsDPM ..................................................................... 57 

QSPIMemorySize ............................................................ 55 

QSPIRead ....................................................................... 52 

QSPIReset ...................................................................... 57 

QSPISetPowerMode ....................................................... 55 

QSPIWrite ....................................................................... 51 

ReadPwrSupplyMv ................................................ 368, 370 

SetPwrSupplyThreshMv ................................................ 368 

SpiSlaveClose ................................................................. 40 

SpiSlaveConfig................................................................ 39 

SpiSlaveOpen ................................................................. 40 

SpiSlaveRxBufferRead ................................................... 42 

SpiSlaveTxBufferWrite .................................................... 41 

SYSINFO ........................................................................ 24 

SYSINFO$ ...................................................................... 27 

SYSTEMSTATESET ..................................................... 359 

UART Events .................................................................. 30 

UartOpen ........................................................................ 29 

VSP (Virtual Serial Port) Events .................................... 317 

VSP Configuration ......................................................... 310 

Wake-On-NFC .............................................................. 350 

Whisper Mode Pairing ................................................... 283 

 


	1 Introduction
	1.1 Differences Between BL654 and BL654PA
	1.2 What Does a BLE Module Contain?

	2 Module Configuration
	3 Error Codes
	3.1 Error Code Lookup
	3.2 Error Code Viewer
	3.3 Error Code Updates

	4 Interactive Mode Commands
	4.1.1 AT I or ATI or ATIX
	4.1.2 AT+CFG
	4.1.3 AT+CFGEX
	4.1.4 AT+BTD *
	4.1.5 AT + MAC  “12 hex digit mac address”
	4.1.6 AT+BLX
	4.1.7 AT&F
	4.1.8 AT+PROTECT
	4.1.9 AT+REGOUT0

	5 Core Language Built-in Routines
	5.1 Information Routines
	5.1.1 SYSINFO
	5.1.2 SYSINFO$

	5.2 UART Interface
	5.2.1 UartOpen
	5.2.2 UartSetRTS
	5.2.3 UartBREAK

	5.3 Auxiliary UART (Universal Asynchronous Receive Transmit)
	5.3.1 Auxilliary UART Events
	5.3.2 AUXOpen
	5.3.3 AUXClose
	5.3.4 AUXCloseEx
	5.3.5 AUXInfo
	5.3.6 AUXWrite
	5.3.7 AUXRead
	5.3.8 AUXReadN
	5.3.9 AUXReadMatch
	5.3.10 AUXFlush
	5.3.11 AUXGetCTS
	5.3.12 AUXSetRTS
	5.3.13 AUXBreak

	5.4 I2C – Two Wire Interface (TWI)
	5.5 SPI Interface
	5.6 SPI Slave Interface
	5.6.1 Events and Messages
	5.6.1.1 EVSPISLAVETXRX
	5.6.1.2 EVSPISLAVERXBUFFERFULL
	5.6.1.3 EVSPISLAVETXBUFFEREMPTY

	5.6.2 SpiSlaveConfig
	5.6.3 SpiSlaveOpen
	5.6.4 SpiSlaveClose
	5.6.5 SpiSlaveTxBufferWrite
	5.6.6 SpiSlaveRxBufferRead

	5.7 QSPI
	5.7.1 Events and Messages
	5.7.1.1 EVQSPIERASED

	5.7.2 QSPIOpen
	5.7.3 QSPIClose
	5.7.4 QSPIConfigSet
	5.7.5 QSPIConfigGet
	5.7.6 QSPIActiveConfigGet
	5.7.7 QSPIWrite
	5.7.8 QSPIRead
	5.7.9 QSPIErase
	5.7.10 QSPICustomCommand
	5.7.11 QSPISetPowerMode
	5.7.12 QSPIInfo
	5.7.13 QSPIMemorySize
	5.7.14 QSPIIsBusy
	5.7.15 QSPIDPMSet
	5.7.16 QSPIIsDPM
	5.7.17 QSPIReset

	5.8 Input/Output Interface Routines
	5.8.1 Events and Messages
	5.8.2 GpioSetFunc
	5.8.3 GpioSetFuncEx
	5.8.4 GpioConfigPwm
	5.8.5 GpioRead
	5.8.6 GpioWrite
	5.8.7 GpioBindEvent/GpioAssignEvent
	5.8.8 GpioUnbindEvent/GpioUnAssignEvent

	5.9 Miscellaneous Routines
	5.9.1 ASSERTBL654
	5.9.2 ERASEFILESYSTEM


	6 BLE Extensions Built-in Routines
	6.1 LE Privacy
	6.1.1 BleSetAddressTypeEx

	6.2 Events and Messages
	6.2.1 EVBLE_ADV_TIMEOUT
	6.2.2 EVBLE_CONN_TIMEOUT
	6.2.3 EVBLE_ADV_REPORT
	6.2.4 EVBLE_FAST_PAGED
	6.2.5 EVBLE_SCAN_TIMEOUT
	6.2.6 EVBLEMSG
	6.2.7 EVDISCON
	6.2.8 EVCHARVAL
	6.2.9 EVCHARVALUE
	6.2.10 EVCHARHVC
	6.2.11 EVCHARCCCD
	6.2.12 EVCHARSCCD
	6.2.13 EVCHARDESC
	6.2.14 EVAUTHVAL
	6.2.15 EVAUTHVALEX
	6.2.16 EVAUTHCCCD
	6.2.17 EVAUTHSCCD
	6.2.18 EVAUTHDESC
	6.2.19 EVVSPRX
	6.2.20 EVVSPTXEMPTY
	6.2.21 EVCONNRSSI
	6.2.22 EVNOTIFYBUF
	6.2.23 EVCONNPARAMREQ
	6.2.24 EVBLE_EXTADVDROPPED
	6.2.25 EVBLE_EXTADVNOMEM
	6.2.26 EVBLE_SCAN_ABORTED
	6.2.27 EVBLE_EXTADV_END
	6.2.28 EVBLE_EXTADV_RPT
	6.2.29 EVBLE_EXTSCN_RPT
	6.2.30 EVBLE_EXTADV_RPT_INCOMPLETE

	6.3 Miscellaneous Functions
	6.3.1 BleTxPowerSet
	6.3.2 BleTxPwrWhilePairing
	6.3.3 BleConfigHfClock
	6.3.4 BleConfigDcDc
	6.3.5 BleChannelMap

	6.4 Advertising Functions
	6.4.1 BleAdvertStart
	6.4.2 BleAdvertStop
	6.4.3 BleAdvertConfig
	6.4.4 BleAdvRptInit
	6.4.5 BleScanRptInit
	6.4.6 BleAdvRptGetSpace
	6.4.7 BleExtAdvRptGetSpace
	6.4.8 BleAdvRptAddUuid16
	6.4.9 BleAdvRptAddUuid128
	6.4.10 BleAdvRptAppendAD
	6.4.11 BleExtAdvRptAppendAD
	6.4.12 BleAdvRptsCommit

	6.5 Extended Adverts Functions
	6.5.1 BleAdvSetCreate
	6.5.2 BleAdvSetNewData
	6.5.3 BleAdvSetStart
	6.5.4 BleAdvSetStop
	6.5.5 BleScanStartEx
	6.5.6 BleExtRptMetadata
	6.5.7 BleConnectExtended
	6.5.8 BleExtAdvRptAppendAD
	6.5.9 BleExtAdvRptAddUuid16
	6.5.10 BleExtAdvRptAddUuid128
	6.5.11 BleExtAdvRptGetSpace

	6.6 Scanning Functions
	6.6.1 BleScanStart
	6.6.2 BleScanStartEx
	6.6.3 BleScanAbort
	6.6.4 BleScanStop
	6.6.5 BleScanFlush
	6.6.6 BleScanConfig
	6.6.7 BleScanGetAdvReport
	6.6.8 BleScanGetAdvReportEx
	6.6.9 BleGetADbyIndex
	6.6.10 BleGetADbyTag
	6.6.11 BleScanGetPagerAddr

	6.7 Connection Functions
	6.7.1 Events and Messages
	6.7.2 BleConnect
	6.7.3 BleConnectExtended
	6.7.4 BleConnectCancel
	6.7.5 BleConnectConfig
	6.7.6 BleDisconnect
	6.7.7 BleSetCurConnParms
	6.7.8 BleGetCurConnParms
	6.7.9 BleConnMngrUpdCfg
	6.7.10 BleGetConnHandleFromAddr
	6.7.11 BleGetAddrFromConnHandle
	6.7.12 BleConnRssiStart
	6.7.13 BleConnRssiStop

	6.8 Whitelist Management Functions
	6.8.1 BleWhitelistCreate
	6.8.2 BleWhitelistDestroy
	6.8.3 BleWhitelistClear
	6.8.4 BleWhitelistSetFilter
	6.8.5 BleWhitelistAddAddr
	6.8.6 BleWhitelistAddIndex
	6.8.7 BleWhitelistInfo

	6.9 GATT Server Functions
	6.9.1 Events and Messages
	6.9.2 BleGapSvcInit
	6.9.3 BleGetDeviceName$
	6.9.4 BleSvcRegDevInfo
	6.9.5 BleHandleUuid16
	6.9.6 BleHandleUuid128
	6.9.7 BleHandleUuidSibling
	6.9.8 BleServiceNew
	6.9.9 BleServiceCommit
	6.9.10 BleSvcAddIncludeSvc
	6.9.11 BleAttrMetadataEx
	6.9.12 BleCharNew
	6.9.13 BleCharDescUserDesc
	6.9.14 BleCharDescPrstnFrmt
	6.9.15 BleCharDescAdd
	6.9.16 BleCharCommit
	6.9.17 BleCharValueRead
	6.9.18 BleCharValueWrite
	6.9.19 BleCharValueWriteEx
	6.9.20 BleCharValueNotify
	6.9.21 BleCharValueIndicate
	6.9.22 BleCharDescRead
	6.9.23 BleAuthorizeChar
	6.9.24 BleAuthorizeDesc
	6.9.25 BleServiceChangedNtfy

	6.10 GATT Client Functions
	6.10.1 Events and Messages
	6.10.1.1 EVGATTCTOUT
	6.10.1.2 EVDISCPRIMSVC
	6.10.1.3 EVDISCCHAR
	6.10.1.4 EVDISCDESC
	6.10.1.5 EVFINDCHAR
	6.10.1.6 EVFINDDESC
	6.10.1.7 EVATTRREAD
	6.10.1.8 EVATTRWRITE
	6.10.1.9 EVNOTIFYBUF
	6.10.1.10 EVATTRNOTIFY
	6.10.1.11 EVATTRNOTIFYEX

	6.10.2 BleGattcOpen
	6.10.3 BleGattcClose
	6.10.4 BleDiscServiceFirst / BleDiscServiceNext
	6.10.5 BleDiscCharFirst / BleDiscCharNext
	6.10.6 BleDiscDescFirst /BleDiscDescNext
	6.10.7 BleGattcFindChar
	6.10.8 BleGattcFindDesc
	6.10.9 BleGattcRead/BleGattcReadData
	6.10.10 BleGattcWrite
	6.10.11 BleGattcWriteCmd
	6.10.12 BleGattcWritePrepare
	6.10.13 BleGattcWriteExec
	6.10.14 BleGattcNotifyRead

	6.11 Attribute Encoding Functions
	6.11.1 BleEncode8
	6.11.2 BleEncode16
	6.11.3 BleEncode24
	6.11.4 BleEncode32
	6.11.5 BleEncodeFLOAT
	6.11.6 BleEncodeSFLOATEX
	6.11.7 BleEncodeSFLOAT
	6.11.8 BleEncodeTIMESTAMP
	6.11.9 BleEncodeSTRING
	6.11.10 BleEncodeBITS

	6.12 Attribute Decoding Functions
	6.12.1 BleDecodeS8
	6.12.2 BleDecodeU8
	6.12.3 BleDecodeS16
	6.12.4 BleDecodeU16
	6.12.5 BleDecodeS24
	6.12.6 BleDecodeU24
	6.12.7 BleDecode32
	6.12.8 BleDecodeFLOAT
	6.12.9 BleDecodeSFLOAT
	6.12.10 BleDecodeTIMESTAMP
	6.12.11 BleDecodeSTRING
	6.12.12 BleDecodeBITS

	6.13 Bonding and Bonding Database Functions
	6.13.1 Bonding Functions
	6.13.2 Bonding Table Types: Rolling & Persist
	6.13.3 Whisper Mode Pairing
	6.13.3.1 Events and Messages

	6.13.4 BleBondingStats
	6.13.5 BleBondingPersistKey
	6.13.6 BleBondingIsTrusted
	6.13.7 BleBondingEraseKey
	6.13.8 BleBondingEraseAll
	6.13.9 BleBondMngrGetInfo

	6.14 Security Manager Functions
	6.14.1 Events and Messages
	6.14.1.1 EVBLEMSG
	6.14.1.2 EVLESCKEYPRESS
	6.14.1.3 EVBLE_PASSKEY

	6.14.2 BleSecMngrLescPairingPref
	6.14.3 BlePair
	6.14.4 BleSecMngrIoCap
	6.14.5 BleAcceptPairing
	6.14.6 BlePairingStaticPasskey
	6.14.7 BleSecMngrPasskey
	6.14.8 BleSecMngrLescKeypressEnable
	6.14.9 BleSecMngrLescKeypressNotify
	6.14.10 BleSecMngrOOBPref
	6.14.11 BleSecMngrOOBKey (Legacy Pairing)
	6.14.12 BleSecMngrLescOwnOobDataGet
	6.14.13 BleSecMngrLescPeerOobDataSet
	6.14.14 BleSecMngrKeySizes
	6.14.15 BleSecMngrBondReq
	6.14.16 BleEncryptConnection

	6.15 Virtual Serial Port Service – Managed
	6.15.1 VSP Configuration
	6.15.2 Command and Bridge Mode Operation
	6.15.3 VSP (Virtual Serial Port) Events
	6.15.4 BleVSpOpen
	6.15.5 BleVSpOpenEx
	6.15.6 BleVSpClose
	6.15.7 BleVSpInfo
	6.15.8 BleVSpWrite
	6.15.9 BleVSpRead
	6.15.10 BleVSpUartBridge
	6.15.11 BleVSpFlush

	6.16 Data Packet Length Extension
	6.16.1 Overview
	6.16.1.1 Data Packet Length Extension
	6.16.1.2 ATT_MTU

	6.16.2 CFG Keys Configuration
	6.16.2.1 Maximum ATT_MTU
	6.16.2.2 Maximum Attribute Data Length
	6.16.2.3 Maximum Packet Length

	6.16.3 Events and Messages
	6.16.3.1 EVATTRIBUTEMTU
	6.16.3.2 EVPACKETLENGTH

	6.16.4 BleGattcAttributeMtuRequest
	6.16.5 BleMaxPacketLengthSet
	6.16.6 BleMaxPacketLengthGet

	6.17 LE Ping
	6.17.1 Overview
	6.17.2 Events and Messages
	6.17.2.1 EVBLE_PING_AUTH_TIMEOUT

	6.17.3 BlePingAuthTimeout

	6.18 LE 2M PHY and CODED PHY
	6.18.1 Events and Messages
	6.18.1.1 EVBLE_PHY_REQUEST
	6.18.1.2 EVBLE_PHY_UPDATED

	6.18.2 BlePhySet


	7 Other Extension Built-in Routines
	7.1 Near Field Communications (NFC)
	7.1.1 Overview
	7.1.2 NDEF Messages
	7.1.3 Arduino Based NFC Reader
	7.1.4 Sample Application 1
	7.1.5 Sample Application 2
	7.1.6 Wake-On-NFC
	7.1.7 Events and Messages
	7.1.8 NfcHardwareState
	7.1.9 NfcOpen
	7.1.10 NfcClose
	7.1.11 NfcFieldSense
	7.1.12 NfcNdefMsgNew
	7.1.13 NfcNdefMsgDelete
	7.1.14 NfcNdefMsgGetInfo
	7.1.15 NfcNdefMsgReset
	7.1.16 NfcNdefRecAddLeOob
	7.1.17 NfcNdefRecAddGeneric
	7.1.18 NfcNdefMsgCommit

	7.2 System Configuration Routines
	7.2.1 SystemStateSet

	7.3 Flash Routines
	7.3.1 Overview
	7.3.2 FlashOpen
	7.3.3 FlashRead
	7.3.4 FlashWrite
	7.3.5 FlashErase
	7.3.6 FlashClose

	7.4 Cryptographic Routines
	7.4.1 EccGeneratePubPrvKeys
	7.4.2 EccCalcSharedSecret
	7.4.3 EccHmacSha256
	7.4.4 HashGenerate

	7.5 Watchdog Timer
	7.5.1 WdtStart
	7.5.2 WdtReset
	7.5.3 WdtIsRunning

	Miscellaneous Routines
	7.5.4 ReadPwrSupplyMv
	7.5.5 SetPwrSupplyThreshMv
	7.5.5.1 Events & Messages

	7.5.6 CRC16Generate
	7.5.7 CRC32Generate
	7.5.8 SetREGOUT0
	7.5.9 GetREGOUT0


	8 Events and Messages
	9 Miscellaneous
	9.1 Bluetooth Result Codes

	10 Acknowledgements
	10.1 AES Encryption
	10.1.1 License Terms
	10.1.2 Disclaimer

	10.2 Micro-ECC
	10.2.1 License Terms
	10.2.2 Disclaimer


	11 INDEX

