

https://www.ezurio.com/ 1

© Copyright 2025 Ezurio
All Rights Reserved

Bootloader UART Protocol
Application Note

Bootloader UART Protocol
BL6xx
Application Note v2.0

1 Module Bootloader Protocol
This document describes the protocol used to interact with the bootloader in a Laid BL6xx series module.

The flash-based module is delivered by Ezurio with bootloader firmware able to upload program application software into its flash memory.

Note: This protocol is derived from a bootloader protocol in an Atmel AT91 microcontroller. The content of this document was copied and
modified from an Atmel document – Flash Memory Upload Protocol (July 2000).

2 Protocol Overview
This protocol is used for uploading content to the flash memory inside a module. Enter the bootloader from the application by using the command
“AT+FUP”

All multi-byte fields are little-endien.

Note: The Ezurio BL6xx bootloader is designed to be used for the loading of smartBASIC firmware. Other firmware images are not supported.

3 Protocol Requirements
Full duplex communication between transmitter and receiver.

Asynchronous bi-directional full duplex serial link, 8 data bits, no parity, 1 stop bit at 115200 baudrate

Each transmitted data block contains a checksum, which enables the receiver to verify the integrity of the transmitted data.

• The transmitter calculates the checksum and inserts this at the end of the block,
• The receiver calculates the checksum of the received data and compares it to the received checksum.

Specific characters are defined by the protocol. This protocol is implemented by the following functions:

Character Code Signification Source

<SYNC> 0x80 Synchronization Host

<ATS> ‘b’ Acknowledge to synchronization Module

<ACK> ‘a’ Acknowledge Module /host

<NACK> ‘n’ Non acknowledge Module /host

<ERASE> ‘e’ Erase Host

<WRITE> ‘w’ Write Host

<READ> ‘r’ Read Host

<DATA> ‘d’ Data Module /host

<VERIFY> ‘v’ Verify Host

<ERROR> ‘f’ Error Module

<PLATFORM> ‘p’ Platform Host

<VERSION> ‘V’ Version Host

https://www.ezurio.com/ 2

© Copyright 2025 Ezurio
All Rights Reserved

Bootloader UART Protocol
Application Note

Note: The code for the specific characters in the second column are the ASCII values for character so for example ‘b’ is 0x62 and ‘p’ is 0x70
etc.

4 Protocol Procedures
All procedures described in this section are Ezurio defined.

4.1 Synchronization and Platform Check Procedure
This procedure allows the bootloader to synchronize with the host and shall be the first packets a host sends to the bootloader in the sequence
shown in the messages sequence diagram below.

The host system sends a synchronization command and the boot software shall send an <ATS> packet, following which <ACL>s are exchanged
and then finally the <PLATFORM> packet is sent by the host and only an <ACK> response from the bootloader will allow further communication. If
an <ERROR> is received from the module then it implies that the platform check failed and the firmware upgrade cannot proceed.

Figure 1: Synchronization and platform check procedure

https://www.ezurio.com/ 3

© Copyright 2025 Ezurio
All Rights Reserved

Bootloader UART Protocol
Application Note

4.2 Data programming Procedure
When the interface is synchronized the data programming can begin. This procedure requires several steps as the following message sequence
diagram.

Figure 2: Data programming procedure

4.3 Verification Procedures
There are two ways for checking the Flash: the first is the use of the <VERIFY> command and the second is the use of the <READ> command.

Figure 3: Verify procedure

Figure 4: Verify procedure by read

5 List of Commands
The bootloader uses a binary protocol and each packet has a predetermined fixed length apart from the data packet identified by a ‘d’ character
whose length will have been specified by a preceding ‘w’ or ‘r’ command packet in their one-byte LEN field.

5.1 Command Synchronization: SYNC

Sent by the host after the power up to synchronize the interface at the right baud rate.

Offset Size (bytes) Name Value Content

00h 1 <SYNC> 0x80 Command code

https://www.ezurio.com/ 4

© Copyright 2025 Ezurio
All Rights Reserved

Bootloader UART Protocol
Application Note

5.2 Command Answer to Synchronization: ATS

Sent by the module after the synchronization procedure. The ATS frame consists of global boot software information. Only the Version field is
relevant the rest shall be ignored as they are don’t care.

Offset Size (bytes) Name Value Content

00 1 <ATS> ‘b’ Command code

01 1 Chip 0x01 Ignore

02 2 Manufacturer 0x001F Ignore

04 2 Flash 0x00C0 Ignore

06 1 Major Version 0xHH Bootloader Major version

07 1 Minor Version 0xHH Bootlaoder Minot version

08 2 CD 0x00 Ignore

10 4 ADDR 0x00001000 Ignore

https://www.ezurio.com/ 5

© Copyright 2025 Ezurio
All Rights Reserved

Bootloader UART Protocol
Application Note

5.3 Command Acknowledgement: ACK and NAK

Command acknowledgement consists of transmitting the <ACK> command code when the command has been executed.

For the <DATA> command, the acknowledgement is transmitted if the integrity of receive buffer is verified. This integrity is checked by comparing
the calculated checksum to the receive checksum. Otherwise, the <NAK> command is transmitted.

Offset Size (bytes) Name Value Content

00 1 <ACK> ‘a’ Command code

Offset Size (bytes) Name Value Content

00 1 <NACK> ‘n’ Command code

5.4 Platform Check: PLATFORM

This will result in ACK response if platform ID is correct. Setting the correct platform ID is required to erase or write flash.

Offset Size (bytes) Name Value Content

00 1 <PLATFORM> ‘p’ Command code

01 4 Platform ID Unique ID

5.5 Version Info: VERSION

This will result in a six-character response consisting of “Vn.nnn” where n is a digit from 0 to 9

Offset Size (bytes) Name Value Content

00 1 <VERSION> ‘V’ Command code

5.6 Sector Erasing: ERASE

Sector erasing command consists of erasing a sector of the flash at the specific address.

Offset Size (bytes) Name Value Content

00 1 <ERASE> ‘e’ Command code

01 4 SECT Address Sector erase

5.7 Data Writing: WRITE

This command consists of sending the write address to the boot loader.

Offset Size (bytes) Name Value Content

00 1 <WRITE> ‘w’ Command code

01 4 ADDR Start address to write

05 1 LEN Next Blocks Data length

5.8 Data Reading: READ

This command consists of sending the read address and the block length to the boot loader.

Offset Size (bytes) Name Value Content

00 1 <READ> ‘r’ Command code

01 4 ADDR Start address to read

05 1 LEN Next Blocks Data length

https://www.ezurio.com/ 6

© Copyright 2025 Ezurio
All Rights Reserved

Bootloader UART Protocol
Application Note

5.9 Data Block: DATA

This block is used to transfer data from host to MODULE and from MODULE to the host and immediately follows a WRITE or READ packet and as
such the number of bytes in this packet is as per the LEN field in the preceding WRITE or READ packet.

5.10 Memory Verification: VERIFY

Memory verification consists of receiving a start address, a size and a checksum and comparing it to the checksum calculated in memory. The
checksum is a 32-bit sum, which is calculated by adding all bytes from BASE to BASE+SIZE-1 of the memory space and is used as a check. Fail
checksum verification causes <NACK>.

Offset Size (bytes) Name Value Content

00 1 <VERIFY> ‘v’ Command code

01 4 ADDR Start address to verify

05 4 LNG Size of code to verify

09 4 CHK Checksum
See 6 Checksum Algoritm for source code for the

checksum calculation

5.11 Error notification: Error
Sent by the MODULE to notify an error.

Offset Size (bytes) Name Value Content

00 1 <ERROR> ‘f’ Command code

01 1 Error Error code

Error Code

Hex value Content

1 Flash write error

2 Flash read error

3 Flash erase sector error

4 Unrecognized command

Offset Size (bytes) Name Value Content

00 1 <DATA> ‘d’ Command code

01 LEN value D0..Dn Data LEN defined in R/W

02+LEN 1 1-byte checksum This is the least significant byte of the same checksum
calculated in the Verify packet described in section 5.10

https://www.ezurio.com/ 7

© Copyright 2025 Ezurio
All Rights Reserved

Bootloader UART Protocol
Application Note

6 Checksum Algoritm
The Data Block and Memory Verification packets have a checksum component and the source code for that calculation is as follows:

unsigned long CalcChecksum(

 unsigned char *pData,

 unsigned int nBlockLenBytes

)

{

 unsigned long nCheckSum=0;

 while(nBlockLenBytes--)

 {

 nCheckSum += *pData++;

 }

 return nCheckSum;

}

7 Revision History
Version Date Notes Contributor Approver

1.0 12 June 2018 Initial Release Mahendra Tailor Chris Cole

1.3 24 Mar 2020 • Added comment that multi-byte fields are little-
endien.

• Corrected Typo in section 5.9 where the LEN field
was incorrectly stated as starting on offset 2. It is
at offset 1

Mahendra Tailor Jonathan Kaye

1.4 26 Mar 2021 Added note about the BL6xx bootloader being for
smartBASIC firmware.

Kieran Mackey Jonathan Kaye

1.5 13 Jul 2021 Fixed value error in Command Synchronization: SYNC
section

Damien Fourcade Jonathan Kaye

1.6 16 Aug 2021 Fixed a few section references Damien Fourcade Dave Drogowski

2.0 27 Feb 2025 Ezurio rebranding Sue White Dave Drogowski

Ezurio’s products are subject to standard Terms & Conditions.

https://www.lairdconnect.com/legal/sales-terms-conditions

