

Datasheet

SSD50NBT

Version 3.0

Revision History

Version	Date	Notes		Contributor	Approver
1.0	27 Mar 2016	Initial Version		Andrew Chen	Andrew Chen
1.1	09 May 2016	Fixed module size error; updated OS support		Jay White	Jay White
1.2	30 June 2016	Changed document name from	m HIG to Datasheet	Andrew Chen	Andrew Chen
		Updated current consumption	n numbers for MIMO; removed Single		
		Stream(SISO) references			
1.3	07 Sept 2016	Updated EU Declaration of Co	nformity	Sue White	Sue White
1.4	03 Nov 2016	Updated Tx power numbers to	the following:	Andrew Chen	Andrew Chen
		6 Mbps	18 dBm (63 mW)		
		54 Mbps	15 dBm (32 mW)		
		6 Mbps	16 dBm (40 mW)		
		54 Mbps	15 dBm (32 mW)		
		6.5 MDPS (MCSU;H12U) 65 Mbps (MCS7·HT20)	18 dBm (63 mW) 1/1 dBm (25 mW)		
		(MCS0.HT40)	15 dBm (32 mW)		
		(MCS7: HT40)	12 dBm (16 mW)		
		(
		6.5 Mbps (MCS0;HT20)	16 dBm (40 mW)		
		65 Mbps (MCS7;HT20)	13 dBm (20 mW)		
		(MCS0;HT40)	15 dBm (32 mW)		
		(MCS7; HT40)	12 dBm (16 mW)		
1.5	08 Nov 2016	Updated to add section numbers.		Sue White	Sue White
1.6	09 Dec 2014	Removed <i>Preliminary</i> reference	es	Jay White	Jay White
1.7	06 Feb 2017	Added Packaging section		Andrew Chen	Andrew Chen
1.8	07 Feb 2017	Removed duplicate section re: Reflow		Andrew Chen	Andrew Chen
1.9	10 Mar 2017	Updated 5 GHz frequency ban	ds and operating channels info.	Kris Sidle	Kris Sidle
1.10	03 Apr 2017	Removed M2US50NBT referen	nces	Andrew Chen	Andrew Chen
1.11	1 May 2017	OS Support		Jay White	Jay White
1.12	15 June 2017	Updated EU DoC with new REE	Ostandards	Tom Smith	Tom Smith
1.13	18 Aug 2017	Removed 802.11r references		Jay White	Jay White
1.14	01 May 2018	Updated product photo		Maggie Teng	Maggie Teng
		Updated Industry Canada stat	ement		
		Updated to new Laird template	e		
1.15	06 Mar 2019	Updated logos and URLs		Sue White	Sue White
1.16	10 Jan 2020	Added Channel 144 to the FCC channels		Maggie Teng	Maggie Teng
1.17	04 Sept 2020	Updated EU regulatory section with new standards		Ryan Urness	Ryan Urness
1.18	21 Oct 2020	Updated regulatory information		Ryan Urness	Ryan Urness
2.0	21 Feb 2021	Move all detailed regulatory information to separate document		Jonathan Kaye	Jonathan Kaye
3.0	2 May 2025	Ezurio Rebranding and update MSL from 3 to 4		Dave Drogowski	Jonathan Kaye

Contents

http	s://ww	ww.ezurio.com/ 3	© Copyright 2025 Ezurio
1	6.4	Storage Condition and Baking Information	
I	0.0 16 Z		
1	0.Z		
1	0.1 6.2		
10	Paci		
16	15.3. Doci	5.5 Precautions for USe	
	15.3	 Gautions when kemoving the SP from the Platform for KMA Drace tight for Los 	
	15.5	5.1 Solutions When Remarking the SIR from the Righterm for RMA	
1	5.3	Surface Mount Conditions	
1	5.2	Baking Conditions	
	15.1.	I.3 Temporary Storage Requirements after Opening	
	15.1.	1.2 Atter Opening the Dry Packing	
	15.1.	1.1 Prior to Opening the Dry Packing	
1	5.1	Required Storage Conditions	
15	Rec	commended Storage, Handling, Baking, and Reflow Profile	
14	RF L	Layout Design Guidelines	
13	Mec	chanical Specifications	
12	Boo	ot Strap Options for Wi-Fi Interface	
1	1.1	Integration Considerations	
11	Pin [Definitions	
10	SDIC	O Timing Requirements	
9	Blue	etooth Radio Characteristics	
8	8.5	WLAN Transmitter Characteristics	21
8	3.4	WLAN Radio Receiver Characteristics	
8	8.3	DC Electrical Characteristics	
8	8.2	Recommended Operating Conditions	
8	8.1	Absolute Maximum Ratings	
8	Elec	ctrical Characteristics	
7	Bloc	ck Diagram	16
6	Blue	etooth Functional Description	15
5	5.1	Overview	
5	WLA	AN Functional Description	12
4	Spe	ecifications	7
3	SSD	D50NBT Features Summary	6
2	2.1	General Description	5
2	Intro	oduction	5
1	Sco	ope	5

SSD50NBT

Datasheet

17	Regulatory	. 36
18	Ordering Information	. 36
19	Additional Information	. 37

1 Scope

This document describes key hardware aspects of the Ezurio SSD50NBT system in package (SIP) modules providing SDIO interface for WLAN connection and UART/PCM for Bluetooth[®] connection. This document is intended to assist device manufacturers and related parties with the integration of this radio into their host devices. Data in this document is drawn from a number of sources and includes information found in the Qualcomm Atheros (QCA) QCA6004 and Cambridge Silicon Radio Ltd. (CSR) CSR8811 A08 data sheets issued in July 2011, along with other documents provided from QCA and CSR.

Note that the information in this document is subject to change. Please refer to the SSD50NBT product page for the most recent documentation.

2 Introduction

2.1 General Description

The SSD50NBT SIP module is an integrated, small form factor 2x2 MIMO 802.11 a/b/g/n WLAN plus *Bluetooth* 4.0 dual mode device that is optimized for low-power mobile devices. The integration of all WLAN and *Bluetooth* functionality in a single package supports low cost and simple implementation along with flexibility for platform-specific customization.

This device is pre-calibrated and integrates the complete transmit/receive RF paths including baluns, mobile phone coexistence band pass filter, diplexer, switches, power amplifier, low noise amplifier, and reference crystal oscillator.

The SSD50NBT device supports Bluetooth 2.1 + EDR and Bluetooth 4.0 (Bluetooth Low Energy or BLE). The device's low power consumption radio architecture and proprietary power save technologies allow for extended battery life.

In addition, its dual 802.11 and Bluetooth radio includes full digital MAC and baseband engines that handle all 802.11 CCK/OFDM[®] 2.4/5GHz, and Bluetooth basic rate and EDR baseband and protocol processing.

Dual embedded low-power CPU cores minimize host loading and maximize flexibility to support customer specific use cases.

The Bluetooth[®] word mark and logos are registered trademarks owned by Bluetooth SIG, Inc. and any use of such marks by Ezurio is under license. Other trademarks and trade names are those of their respective owners.

3 SSD50NBT Features Summary

The Ezurio SSD50NBT device features are described in Table 1.

Table 1: SSD50NBT features

Feature	Description			
Radio Front End	Integrates the complete transmit/receive RF paths including baluns, coexistence band pass filter, diplexer, switches, power amplifier, low noise amplifier, and reference crystal oscillator.			
Enhanced WLAN/BT Coexistence Algorithms	 Enhanced important use cases including: PCM/I2S digital audio interface BT stereo audio (A2DP) BT data transfer profiles (such as OPP and FTP) BT2.1+EDR BT-LE Flexible radio architecture ensures simple customization for future use cases. 			
Power Management	 Uses power-saving techniques including: Gating clocks to idle or inactive blocks Fast start and settling circuits to reduce Tx power Active duty cycles CPU frequency scaling 			
Pre-Calibration	RF system tested and calibrated in production.			
Internal Sleep Clock	Integrated on-chip low power sleep clock to regulate internal timing.			
Multiple Interface Support	 SDIO 2.0 (50 MHz, 4-bit and 1-bit) WLAN HS-UART for Bluetooth HCI (compatible with any upper layer Bluetooth stack) 			
Advanced 802.11n	 Half Guard Interval and Frame Aggregation for high throughput Space Time Block Coding (STBC) Rx for improved downlink robustness over range Low Density Parity Check (LDPC) for improved uplink and downlink robustness over range 			
Reference Frequency	 Incorporates a 26 MHz reference frequency source in package Sleep regulated and gated to enable the internal crystal to be powered down when the device is in sleep mode BT shares the clock from the Wi-Fi chip Wi-Fi cappot be turned off or in reset when rupping BT 			
Advanced WLAN	 Includes the following advanced WLAN features: IEEE 802.11e QoS, Wi-Fi Alliance WMM Power Save, and 802.11n power saving compliance AES, AES-CCMP, TKIP engines for faster data encryption Cisco CCXv4 ASD, WPS support Standard WEP/WPA/WPA2 for personal and enterprise environments support WWR, 802.11d, 802.11h support Wi-Fi Direct (Peer-to-Peer) RTT for indoor positioning Statistics and events for monitoring Self-managed power state handling Self-contained beacon processing Shared authentication Ad-hoc power save Multiple PMK ID support Simulated UAPSD T-Spec support Production flow diagnostics 3-wire scheme for Wi-Fi and BT coexistence. 			
Host Offloading (WLAN)	Integrates extensive hardware signal processing and an embedded on-chip CPU to offload complete 11n MAC/BB/PHY processing to minimize host processor loading and support application specific customization.			

- High-speed UART port (up to 4 Mbps)
- HFP v1.6 wide-band speech supported on-chip
- On-chip encoding of SBC and aptX[®] codecs for A2DP music streaming
- PCM/I2S digital audio interface
- Support for IEEE 802.11 coexistence
- The flexible RAM/ROM based architecture enables custom or future profiles to be easily added.

4 Specifications

Physical Interface 64-pin LGA package Wi-Fi Interface 1-bit or 4-bit Secure Digital I/O Bluetooth Interface Host Controller Interface (HCI) using High Speed UART Main Chip Wi-Fi: Cambridge Silicon Radio Ltd. (CSR) CSR811 A08 Input Voltage 3.3 VOC (3.20V min to 3.46V max) Requirements 3.3 VOC 55% or 1.8 VDC = 5% I/O Signaling Voltage 3.3 VOC 55% or 1.8 VDC = 5% Average Current MMO Consumption, VDDO = 802.11a (with BT in standby) gi 8 dBm 6 Mbps Transmit: 900 mA power setting) Reset: 0.13 mA 802.11b (with BT in standby) @ 18 dBm 1Mbps Wiff and BT reset are asserted. Reset: 0.13 mA 802.11b (with BT in standby) @ 18 dBm Mbps Transmit: 710 mA Receive: 250 mA Reset: 0.13 mA 802.11g (with BT in standby) @ 18 dBm 6 Mbps Transmit: 710 mA Receive: 250 mA Reset: 0.13 mA 802.11b (with BT in standby) @ 14 dBm MCS7 Transmit: 460 mA Receive: 250 mA Reset: 0.13 mA 802.211n (5.4-bit) (with BT in standby) @ 14 dBm MCS7 Transmit: 20 mA Reset:	Feature	Description
Wi-Filnterface 1-bit of -4-bit Secure Digital I/O Bluetooth Interface Host Controller Interface (HCI) using High Speed UART Main Chip Wi-Fil: Qualcomm Atheros OCA6004 BT: Cambridge Silicon Radio Ltd. (CSR) CSR8811 A08 Input Voltage 3.3 VDC (3.20V min to 3.46V max) Requirements MMO VO Signaling Voltage 3.3 VDC = 5% or 1.8 VDC = 5% Average Current MMO Consumption, VDDIO = 913 dBm 6 Mops Transmit: 900 mA Receive: 260 mA Reset: 0.13 mA 802.110 (with BT in standby) e13 dBm 6 Mops Transmit: 680 mA Receive: 250 mA Receive: 250 mA Receive: 250 mA Reset: 0.13 mA 802.110 (with BT in standby) @ 14 dBm MCS7 Transmit: 460 mA Receive: 250 mA Reset: 0.13 mA	Physical Interface	64-pin LGA package
Bluetooth Interface Host Controller Interface (HCI) using High Speed UART Main Chip Wi-Fi: Qualcomm Atheros QCA6004 BT: Cambridge Silicon Radio Ltd. (CSR) CSR8811 A08 Input Voltage 3.3 VDC (3.20V min to 3.46V max) Requirements MIMO I/O Signaling Voltage 3.3 VDC ± 5% or 1.8 VDC ± 5% Average Current Consumption, VDDIO = 3.3 volts MIMO Receive: 260 mA Receive: 260 mA Receive: 260 mA Reset: 0.13 mA 802.11b (with BT in standby) © 18 dBm fo Mbps Transmit: 900 mA Receive: 250 mA Reset: 0.13 mA 802.11b (with BT in standby) @ 18 dBm fo Mbps Transmit: 680 mA Receive: 250 mA Reset: 0.13 mA 802.11b (with BT in standby) @ 18 dBm fo Mbps Transmit: 680 mA Reset: 0.13 mA 802.11b (with BT in standby) @ 18 dBm fo Mbps Transmit: 600 mA Reset: 0.13 mA 802.11b (C 4 GHz) (with BT in standby) @ 14 dBm MCS7 Transmit: 460 mA Receive: 250 mA Reset: 0.13 mA 802.11n (C 4-GHz) (with BT in standby) @ 14 dBm MCS7 Transmit: 460 mA Receive: 250 mA Reset: 0.13 mA 802.11n (C 4-GHz) (with BT in standby) @ 14 dBm MCS7 Transmit: 460 mA Receive: 250 mA Reset: 0.13 mA<	Wi-Fi Interface	1-bit or 4-bit Secure Digital I/O
Main Chip Wi-Fi: Qualcomm Atheros OCA6004 BT: Cambridge Silicon Radio Ltd. (CSR) CSR8811 A08 Input Voltage 3.3 VDC (3.20V min to 3.46V max) Requirements 3.3 VDC ± 5% or 1.8 VDC ± 5% //O Signaling Voltage 3.3 VDC ± 5% or 1.8 VDC ± 5% Average Current Consumption, VDDIO = 3.3 volts Ø102 til (with BT in standby) Ø114 (with BT in standby) Ø2.11a (with BT in standby) Ø12 til (with BT in standby) Ø3 volts Ø18 dBm 6 Mbps Transmit: 900 mA Reset: 0.13 mA Rote: Reset refers to the radio are in reset, both Wiff and BT reset are asserted. Reset: 0.13 mA Ø2.11b (with BT in standby) @ 18 dBm 1 Mbps Transmit: 680 mA Reset:: 250 mA Reset: 0.13 mA 802.11g (with BT in standby) @ 18 dBm 6 Mbps Transmit: 700 mA Reset: 0.13 mA 802.110 (with BT in standby) @ 14 dBm MCS7 Transmit: 460 mA Receive: 250 mA Reset:: 0.13 mA 802.11n (5 CH2) (with BT in standby) @ 14 dBm MCS7 Transmit: 460 mA Receive: 250 mA Reset:: 0.13 mA 802.11n (5 CH2) (with BT in standby) Ø1 dBm MCS7 Transmit: 460 mA Receive: 250 mA Reset: 0.13 mA 802.11n (5 CH2) (with BT in standby) @ 14 dBm MCS7 Transmit: 460 mA Receive: 250 mA Reset: 0.13 mA 802.11n (5	Bluetooth Interface	Host Controller Interface (HCI) using High Speed UART
BT: Cambridge Silicon Radio Ltd. (CSR) CSR8811 A08 Input Voltage Requirements 3.3 VDC (3.20V min to 3.46V max) VO Signaling Voltage 3.3 VDC ± 5% or 1.8 VDC ± 5% Average Current Consumption, VDD0 = 802.11a (with BT in standby) 3.3 vDts @ 18 dBm 6 Mbps (At maximum transmit) @ 18 dBm 6 Mbps Transmit: 900 mA Reset: 0.13 mA 802.11a (with BT in standby) @ 18 dBm 1 Mbps <i>radio are in reset, both</i> <i>radio are in reset, both</i> <i>radio are in reset, both</i> <i>radio are in reset, both</i> <i>ratio are in reset, both</i> <i>Receive: 250</i> mA Reset: 0.13 mA 802.11g (with BT in standby) @ 18 dBm 6 Mbps Transmit: 680 mA Receive: 250 mA Reset: 0.13 mA 802.11g (with BT in standby) @ 18 dBm 6 Mbps Transmit: 640 mA Receive: 250 mA Reset: 0.13 mA 802.11n (2.4 GH2) (with BT in standby) @ 18 dBm 6 Mbps Transmit: 400 mA Receive: 250 mA Reset: 0.13 mA 802.11n (2.4 GH2) (with BT in standby) @ 14 dBm MCS7 Transmit: 400 mA Receive: 250mA Reset: 0.13 mA 802.11n (5 GH2) (with BT in standby) @ 14 dBm MCS3 Transmit: 720 mA	Main Chip	Wi-Fi: Qualcomm Atheros QCA6004
Input Voltage Requirements 3.3 VDC (3.20V min to 3.46V max) I/O Signaling Voltage 3.3 VDC ± 5% or 1.8 VDC ± 5% Average Current 802.116 (with BT in standby) 3.3 volts 09 18 dBm 6 Mbps Character State Reset: 0.13 mA Power setting) Reset: 0.13 mA Reset: 0.13 mA 802.116 (with BT in standby) Basserted. Reset: 0.13 mA Box II (with BT in standby) 0.8 dBm 1 Mbps Transmit: 680 mA Reset: 0.13 mA Box II (with BT in standby) 0.8 dBm 1 Mbps Transmit: 680 mA Reset: 0.13 mA Box II (with BT in standby) 0.8 dBm 6 Mbps Transmit: 680 mA Reset: 0.13 mA Box II (with BT in standby) 0.8 dBm 6 Mbps Transmit: 70 mA Reset: 0.13 mA Box II (with BT in standby) 0.8 dBm 6 Mbps Transmit: 450 mA Reset: 0.13 mA Box II (with BT in standby) 0.8 dBm 6 Mbps Transmit: 450 mA Reset: 0.13 mA Box II (with BT in standby) 0.1 dBm MCS7 Transmit: 450 mA Reset: 0.13 mA Box II (with BT in st	·	BT: Cambridge Silicon Radio Ltd. (CSR) CSR8811 A08
I/O Signaling Voltage 3.3 VDC ± 5% or 1.8 VDC ± 5% Average Current MIMO Consumption, VDDIO = 3.3 volts 3.3 volts @ 18 dbm 6 Mbps (At maximum transmit power setting) Transmit: 900 mA Roceive: 260 mA Reset: 0.13 mA 802.11b (with BT in standby) @ 18 dbm 1 Mbps Transmit: 680 mA Reset: 0.13 mA 802.11g (with BT in standby) @ 18 dbm 6 Mbps Transmit: 710 mA Receive: 250 mA Reset: 0.13 mA 802.11g (with BT in standby) @ 18 dbm 6 Mbps Transmit: 710 mA Receive: 250 mA Reset: 0.13 mA 802.11g (with BT in standby) @ 14 dBm MCS7 Transmit: 710 mA Receive: 250 mA Reset: 0.13 mA 802.11n (2.4 GHz) (with BT in standby) @ 14 dBm MCS7 Transmit: 460 mA Receive: 250 mA Reset: 0.13 mA 802.11n (2.4 GHz) (with BT in standby) @ 14 dBm MCS7 Transmit: 460 mA Receive: 250 mA Reset: 0.13 mA 802.11n (5 GHz) (with BT in standby) @ 14 dBm MCS7 Transmit: 20 mA Reset: 0.13 mA 802.11n (5 GHz) (with BT in standby) @ 14 dBm MCS7 Transmit: 720 mA <td>Input Voltage Requirements</td> <td>3.3 VDC (3.20V min to 3.46V max)</td>	Input Voltage Requirements	3.3 VDC (3.20V min to 3.46V max)
Average CurrentMIMOConsumption, VDDIO =802 11a (with BT in standby)3.3 volts018 BBm 6 Mbps(At maximum transmitTransmit: 900 mApower setting)Receive: 260 mARote: Reset refers to the radic are in reset, both Wiff and BT reset are asserted.Reset: 0.13 mA802.11b (with BT in standby) @ 18 dBm 1 Mbps802.11b (with BT in standby)Receive: 250 mAReceive: 250 mA802.11g (with BT in standby) @ 18 dBm 6 Mbps802.11g (with BT in standby)802.11g (with BT in standby) @ 18 dBm 6 Mbps802.11g (with BT in standby)9 B dBm 6 MbpsTransmit: 710 mA802.11g (with BT in standby) @ 18 dBm 6 Mbps802.11g (with BT in standby)9 Transmit: 710 mA802.11n (2.4 CHz) (with BT in standby) @ 14 dBm MCS79 Transmit: 460 mA802.11n (2.4 CHz) (with BT in standby)9 I 4 dBm MCS7Transmit: 20 mA9 Reset: 0.13 mA802.11n (2.4 CHz) (with BT in standby)9 I 4 dBm MCS7Transmit: 20 mA9 Reset: 0.13 mA802.11n (2.4 CHz) (with BT in standby)9 I 4 dBm MCS7Transmit: 20 mA9 Reset: 0.13 mA802.11n (2.4 CHZ) (with BT in standby)9 I 4 dBm MCS7Transmit: 20 mA9 Reset: 0.13 mA802.11n (3.4 CHZ) (with BT in standby)9 I 4 dBm MCS7Transmit: 20 mA9 Reset: 0.13 mA80.11m (3.4 CHZ)9 Reset: 0.13 mA80.11m (3.4 CHZ)9 Reset: 0.13 mA80.11m (3.5 mA9 Reset: 0.13 mA80.11m (3.5 mA9 Reset: 0.13 mA80.11m (3.5 mA9 Rese	I/O Signaling Voltage	3.3 VDC ± 5% or 1.8 VDC ± 5%
Note: Reset refers to the radio are in reset, both Wifi and BT reset are asserted.Reset: 0.13 mA 802.11b (with BT in standby) (@ 18 dBm 1 Mbps Transmit: 680 mA Receive: 250 mA Reset: 0.13 mA 802.11g (with BT in standby) (@ 18 dBm 6 Mbps Transmit: 710 mA Receive: 250 mA Reset: 0.13 mA 802.11n (2.4 GHz) (with BT in standby) @ 14 dBm MCS7 Transmit: 460 mA Reset: 0.13 mA 802.11n (2.4 GHz) (with BT in standby) @ 14 dBm MCS7 Transmit: 460 mA Reset: 0.13 mA 802.11n (5 GHz) (with BT in standby) (@ 14 dBm MCS7 Transmit: 720 mA Reset: 0.13 mA 802.11n (5 GHz) (with BT in standby) (@ 14 dBm MCS7 Transmit: 720 mA Reset: 0.13 mA B02.11n (5 GHz) (with BT in standby) (@ 14 dBm MCS7 Transmit: 720 mA Reset: 0.13 mA B02.11n (5 GHz) (with BT in standby) (@ 14 dBm MCS7	Average Current Consumption, VDDIO = 3.3 volts (At maximum transmit power setting)	MIMO 802.11a (with BT in standby) @ 18 dBm 6 Mbps Transmit: 900 mA Receive: 260 mA
Receive 70 ma	Note: Reset refers to the radio are in reset, both Wifi and BT reset are asserted.	Receive: 260 mA Reset: 0.13 mA 802.11b (with BT in standby) @ 18 dBm 1 Mbps Transmit: 680 mA Receive: 250 mA Reset: 0.13 mA 802.11g (with BT in standby) @ 18 dBm 6 Mbps Transmit: 710 mA Receive: 250 mA Reset: 0.13 mA 802.11n (2.4 GHz) (with BT in standby) @ 14 dBm MCS7 Transmit: 460 mA Receive: 250mA Reset: 0.13 mA 802.11n (5 GHz) (with BT in standby) @ 14 dBm MCS7 Transmit: 720 mA Receive: 260 mA Reset: 0.13 mA Bluetooth (with Wi-Fi in standby) Transmit: 85 mA
		Receive: 70 mA

ezurio

Description

Feature

		 -	

Operating Temperature	-30° to 85°C (-22° to 185°F)
Operating Humidity	10 to 90% (non-condensing)
Storage Temperature	-40° to 85°C (-40° to 185°F)
Storage Humidity	10 to 90% (non-condensing)
Maximum Electrostatic Discharge	Conductive 4KV; Air coupled 8KV
Size	15 mm (length) x 15 mm (width) x 2.5 mm (thickness)
Weight	1.20 g
Mounting	Please see the mounting and handling guide.
Wi-Fi Media	Direct Sequence-Spread Spectrum (DSSS)
	Complementary Code Keying (CCK)
	Orthogonal Frequency Divisional Multiplexing (OFDM)
Bluetooth Media	Frequency Hopping Spread Spectrum (FHSS)
Wi-Fi Media Access Protocol	Carrier sense multiple access with collision avoidance (CSMA/CA)
Network Architecture Types	Infrastructure and ad-hoc
Wi-Fi Standards	IEEE 802.11a, 802.11b, 802.11d, 802.11e, 802.11g, 802.11h, 802.11i, 802.11n
Bluetooth Standards	Bluetooth version 2.1 with Enhanced Data Rate
	<i>Bluetooth</i> 4.0 (Bluetooth Low Energy or BLE)
Wi-Fi Data Rates	11a (OFDM) 6, 9, 12, 18, 24, 36, 48, 54 Mbps
Supported	802.11b (DSSS, CCK) 1, 2, 5.5, 11 Mbps
	802.11g (OFDM) 6, 9, 12, 18, 24, 36, 48, 54 Mbps
	802.11n (OFDM, MCS 0-15)
	Full Guard Interval: 6.5, 13.0, 19.5, 26.0, 39.0, 52.0, 58.5, 55.0, 15.0, 26.0, 39.0, 52.0, 78.0, 104.0, 117.0 Mbps
	Short Guard Interval: 1.2, 14.4, 21.7, 29.9, 45.5, 57.8, 65.0, 72.2, 14.4, 28.9, 45.5, 57.8, 86.7, 115.6, 150.0, 144.4 Mbps
Modulation	BPSK @ 1, 6,9, 6.5, 7.2,13 and 14.4 Mbps
	QPSK @ 2, 12, 18, 13, 14.4, 19.5, 21.7, 26, 28.9, 39, 43.3 Mbps
	CCK @ 5.5 and 11 Mbps
	16-QAM @ 24, 36,26, 29.9,39,43.3,52,57.8,78,86.7 Mbps
	64-QAM @ 48,54,52, 57.8, 58.5, 65,72.2,104.0,115.6,117.0,130.0,144.4 Mbps
802.11n Spatial Streams	2 (2x2 MIMO)
Bluetooth Data Rates Supported	1, 2, 3 Mbps
Bluetooth Modulation	GFSK@1Mbps
	Pi/4-DQPSK@ 2 Mbps
	8-DPSK@ 3 Mbps
Regulatory Domain	FCC
Support	EU
	ISED Canada
	MIC (Japan)
	KC (KOREA)

ę urio

Datasheet

Feature	Description				
2.4 GHz Frequency Bands	EU: 2.4 GHz to 2.483 GHz				
· ,	FCC: 2.4 GHz to 2.473 GHz				
	MIC: 2.4 GHz to 2.495 GHz				
	KC: 2.4 GHz to 2.483 GHz				
2.4 GHz Operating	EU: 13 (3 non-overlapping)				
Channels	FCC: 11 (3 non-overlapping)				
(VVI-FI)	MIC: 14 (4 non-overlapping)				
	KC: 13 (3 non-overlapping)				
5 GHz Frequency Bands	EU 5.15 GHz to 5.35 GHz (Ch 36/40/44/48/52/56/60/64) 5.47 GHz to 5.725 GHz (Ch 100/104/108/112/116/120/124/128/132/136/140) FCC 5.15 GHz to 5.35 GHz (Ch 36/40/44/48/52/56/60/64) 5.47 GHz to 5.725 GHz (Ch 100/104/108/112/116/120/124/128/132/136/140/144) 5.725 GHz to 5.825 GHz (Ch 149/153/157/161/165) MIC (Japan) 5.15 GHz to 5.35 GHz (Ch 36/40/44/48/52/56/60/64) 5.47 GHz to 5.725 GHz (Ch 100/104/108/112/116/120/124/128/132/136/140) KC 5.15 GHz to 5.35 GHz (Ch 36/40/44/48/52/56/60/64) 5.47 GHz to 5.725 GHz (Ch 100/104/108/112/116/120/124)				
5 GHz Operating	ELI:19 pop-overlapping)	MIC: 19 pop-overlapping			
Channels (Wi-Fi)	FCC: 24 non-overlapping	KC: 19 non-overlapping			
Transmit Power	802.11a (UNII-1, UNII-2A, UNII-2C) or CH 36 – CH 140				
	6 Mbps	18 dBm (63 mW)			
Note: Transmit power on	54 Mbps	15 dBm (32 mW)			
each channel varies	802.11a (UNII-3) or CH 148 - CH 165				
country regulations. All	6 Mbps	16 dBm (40 mW)			
values for lowest data	54 Mbps	15 dBm (32 mW)			
rate is nominal, +/-2 dBm.	802.11b				
<i>Others are +/-2.5 dBm.</i>	1 Mbps	18 dBm (63 mW)			
Note	11 Mbps	18 dBm (63 mW)			
HT40 – 40 Mhz-wide	802.11a				
channels	6 Mbps	18 dBm (63 mW)			
HT20 – 20 MHz-wide	54 Mbns	15 dBm (32 mW)			
Channels	802 11n (2.4 GHz)				
	65 Mbps(MCS0)	18 dBm (63 mW)			
	65 Mbps (MCS7)	14 dBm (25 mW)			
		18 dPm (63 m)/()			
		14 ubin (25 mW)			
	(MCS7: HT40)	12 dBm (16 mW)			
		.= -= ()			

ezurio

Datasheet

Feature Description				
	802.11n (5 GHz) (U	INII-3) or CH 148	- CH 165	
	6.5 Mbps (MCS0;	HT20)	16 dBm (40 mW)	
	65 Mbps (MCS7;H	HT20)	13 dBm (20 mW)	
	(MCS0;HT40)		15 dBm (32 mW)	
	(MCS7; HT40)		12 dBm (16 mW)	
	Bluetooth			
	1 Mbps		6 dBm (4 mW)	
	2 Mbps		6 dBm (4 mW)	
	3 Mbps		3 dBm (2 mW)	
Typical Receiver Sensitivity	802.11a:			
	6 Mbps	-93 dBm		
<i>Note:</i> All values nominal,	54 Mbps	-75 dBm (Pl	R <= 10%)	
	802.11b:			
	1 Mbps	-95 dBm		
	11 Mbps	-88 dBm (Pl	ER < = 10%)	
	802.11g:			
	6 Mbps	-92 dBm		
	54 Mbps	-75 dBm (Pl	R <= 10%)	
	802.11n (2.4 GHz)		
	MCS0 Mbps	-92 dBm		
	MCS7 Mbps	-72 dBm		
	802.11n (5 GHz)			
	MCS0 Mbps	-93 dBm		
	MCS7 Mbps	-72 dBm		
	Bluetooth:			
	1 Mbps	-84 dBm	(1DH1)	
	3 Mbps	-76 dBm	(3DH5)	
	BLE	-87 dBm		
Operating Systems	Linux 2.6.x, 3.x.x, 4	.0.x kernel		
Supported	Android 4.1.2 (Jelly	bean) and forw	ard	

ezurio

Feature	Description				
Security	Standards				
	Wireless Equivalent Privacy (WEP) Wi-Fi Protected Access (WPA)				
	IEEE 802.11i (WPA2)				
	Encryption				
	Wireless Equivalent Privacy (WEP, RC4 Algorithm))			
	Temporal Key Integrity Protocol (TKIP, RC4 Algorit	thm)			
	Advanced Encryption Standard (AES, Rijndael Alg	orithm)			
	Encryption Key Provisioning				
	Static (40-bit and 128-bit lengths)				
	Pre-Shared (PSK)				
	Dynamic				
	802.1X Extensible Authentication Protocol Types				
	EAP-FAST PEAP-MSCHAPv2				
	EAP-TLS PEAP-TLS				
	EAP-TTLS LEAP				
	PEAP-GIC				
Compliance	EU Regulatory				
	EN 300 328	62311:2008			
	EN 301 489-1	EN 50665:2017			
	EN 301 489-17	EN 50385:2017			
	EN 301 893	EU 2015/863 (RoHS 3)			
	FCC Regulatory	ISED Canada			
	47 CFR FCC Part 15.247	ICES-003			
	47 CFR FCC Part 15.407	ANSI C63.4:2014			
	47 CFR FCC Part 2.1091	RSS-102			
	FCC Part 15 Subpart B Class B	RSS-247			
Certifications	Wi-Fi Alliance				
	802.11a, 802.11b, 802.11g , 802.11n	Wi Fi			
	WPA Enterprise	CERTIFIED			
	WPA2 Enterprise				
Warranty	Three Year Warranty				
Warranty	Three Year Warranty All specifications are subject to change	without notice			

5 WLAN Functional Description

5.1 Overview

The SSD50NBT WLAN block is based on the Qualcomm-Atheros AR6004 802.11a/b/g/n chipset. It is optimized for low power embedded applications and is configured to operate in dual-band, two-stream (2x2 MIMO) mode. Its functionality includes:

- Improved throughput on the link due to frame aggregation, RIFS (reduced inter-frame spacing), and half guard intervals.
- Support for STBC (Space Time Block Codes) and LDPC (Low Density Parity Check) codes.
- Improved 11n performance due to features such as 11n frame aggregation (A-MPDU and A-MSDU) and low-overhead host-assisted buffering (RX A-MSDU and RX A-MPDU). These techniques can improve performance and efficiency of applications involving large bulk data transfers such as file transfers or high-resolution video streaming.

Other functionality are listed in the following table (Table 3).

Table 3: WLAN functi	ions
Feature	Description
Reset Control	WLAN_PWD_L and BT_PWD_L pins must be asserted low to reset Wi-Fi and <i>Bluetooth</i> . After these signals are de-asserted, the radio waits for host communication. Until then, all modules except the host interface are held in reset.
	Once the host has initiated communication, the radio turns on its crystal and then the PLL. After all clocks are stable and running, the block resets are automatically de-asserted.
	Note : Because it derives its clock from WLAN, the <i>Bluetooth</i> function should be powered down/reset whenever WLAN is reset.
Reset Sequence	After a COLD_RESET event, the SSD50NBT enters the HOST_OFF state and awaits communication from the host. From that point, the typical COLD_RESET sequence is shown below:
	When the host is ready to use the radio, it initiates communication via the SDIO.
	The radio enters the WAKEUP state and then the ON state. Embedded software configures the radio functions and interfaces. When the radio is ready to receive commands from the host, it sets an internal function ready bit.
	The host reads the ready bit and sends function commands to the radio.
	The embedded CPU may continue to be held in reset under some circumstances until its reset is cleared by an external pin or when the host clears a register.

Feature Description

Power Transition

Integrated power management and control functions and low power operation for maximum battery life across all operational states by:

Gating clocks for logic when not needed

Shutting down unneeded high speed clock sources

Reducing voltage levels to specific blocks in some states

See Figure 1.

Figure 1: Power state transition

Hardware Power The SSD50NBT hardware has five top-level hardware power states managed by the RTC block. States State Description CHIP_PWD_L pin assertion immediately brings the chip to the OFF state. OFF • Sleep clock is disabled. No state is preserved. ٠ WLAN is turned off. The *Bluetooth* clock is off but should also be powered down HOST_OFF through BT_PWD_L. Only the host interface is powered on. The rest of the chip is power gated (off). The host instructs the SSD50NBT to transition to WAKEUP by writing a register in the host interface domain. The embedded CPU and WLAN do not retain state (separate entry) SLEEP Only the sleep clock is operating. ٠ The crystal or oscillator is disabled. Any wakeup events force a transition from this state to the WAKEUP state. All internal states are maintained. WAKEUP The system transitions from sleep states to ON. . The high frequency clock is gated off as the crystal or oscillator is brought up and the • PLL is enabled. WAKEUP duration is programmable. . The high speed clock is operational and sent to each block enabled by the clock ON ٠

control register.

SSD50NBT Datasheet

ezi	rio

Feature	Description
	• Lower level clock gating is implemented at the block level, including the CPU, which can be gated off using the WAITI instruction while the System is on.
	 No CPU, host, and WLAN activities transition to sleep states. WLAN must be initialized prior to <i>Bluetooth</i> initialization and use.
Sleep State Management	Sleep state minimizes power consumption while saving system states. In sleep state, all high speed clocks are gated off and the external reference clock source is powered off.
	The system remains in sleep state until a WAKEUP event causes the system to enter WAKEUP state, waits for the reference clock source to stabilize, and then un-gates all enabled clock trees. The embedded CPU wakes up only when an interrupt arrives, which may have also generated the system WAKEUP event.
System Clocking (RTC Block)	The SSD50NBT has an RTC block which controls the clocks and power going to other internal modules. Its inputs consist of sleep requests from these modules and its outputs consists of clock enable and power signals which are used to gate the clocks going to these modules. The RTC block also manages resets going to other modules with the device. The SSD50NBT's clocking is grouped into two types: high-speed and low-speed.
	High Speed Clocking
	The reference 26 MHz clock source inside the SSD50NBT drives the PLL and RF synthesizer of Wi-Fi and <i>Bluetooth</i> . To minimize power consumption, the reference clock source is powered off in SLEEP, HOST_OFF, and OFF states.
	Low Speed Clocking
	On Wi-Fi operation, the SSD50NBT does not need an external sleep clock source. Instead, an internal ring oscillator is used to generate a low frequency sleep clock. It is also used to run the state machines and counters related to low power states. The SSD50NBT has an internal calibration module which produces a 32.768 KHz output with minimal variation. For this, it uses the reference clock source as the golden clock. As a result, the calibration module adjusts for process and temperature variations in the ring oscillator when the system is in ON state.
	The <i>Bluetooth</i> section shares the clock from the Wi-Fi chip. It is not able to get into deep sleep mode without 32KHz present at pin-24. Without get into deep sleep mode, it consumes 3.3 mA at VDD_BT supply. In order to have the <i>Bluetooth</i> device get into deep sleep mode, a 32.768 KHz slow clock is a must on pin-24. When 32.768 KHz is present on pin-24, the <i>Bluetooth</i> chip can go into deep sleep mode with 0.08 mA current consume on VDD_BT supply.
	Interface Clock
	The host interface clock represents another clock domain for the SSD50NBT. This clock comes from the SDIO and is independent from the other internal clocks. It drives the host interface logic as well as certain registers which can be accessed by the host in HOST_OFF and SLEEP states.
MAC/BB/RF Block	The SSD50NBT Wireless MAC consists of five major blocks:
	 Host interface unit (HIU) for bridging to the AHB for bulk data accesses and APB for register accesses Ten queue control units (QCU) for transferring Tx data Ten DCF control units (DCU) for managing channel access Protocol control unit (PCU) for interfacing to baseband DMA receive unit (DRU) for transferring RxX data
Baseband Block	The SSD50NBT baseband module (BB) is the physical layer controller for the 802.11b/g/n air interface. It is responsible for modulating data packets in the transmit direction and detecting and demodulating data packets in the receive direction. It has a direct control interface to the radio to enable hardware to dynamically adjust analog gains and modes.
Clock Sharing	Clock sharing is implemented on the SSD50NBT. The <i>Bluetooth</i> chip (CSR8811) receives a reference clock from the Wi-Fi chip (QCA6004). When Wi-Fi is in power off/reset state, <i>Bluetooth</i> is also off. 32.768KHz slow clock is needed for BT to get into deep sleep mode.

6 Bluetooth Functional Description

The SSD50NBT Bluetooth (BT) block is based on CSR8811A08 and described in the following table (Table 4).

Table 4: Bluetooth functions

Feature	Description
HCI-UART Interface	The UART Interface is a standard high-speed UART interface. It operates up to 4 Mbps, supporting <i>Bluetooth</i> HCI UART interface.
PCM or I2S Interface	Continuous PCM encoded audio data transmission and reception over Bluetooth.
	 Processor overhead reduction through hardware support for continual transmission and reception of PCM data.
	• A bidirectional digital audio interface that routes directly into the baseband layer of the firmware. It does not pass through the HCl protocol layer.
	Hardware on CSR8811 for sending data to and from a SCO connection.
	• Up to three SCO connections on the PCM interface at any one time.
	 PCM interface master, generating PCM_SYNC and PCM_CLK.
	 PCM interface slave, accepting externally generated PCM_SYNC and PCM_CLK.
	Various clock formats including:
	 *Long Frame Sync *Short Frame Sync
	GCI timing environments
	 13-bit or 16-bit linear, 8-bit µ-law or A-law companded sample formats.
	Receives and transmits on any selection of three of the first four slots following PCM_SYNC.
	• The PCM configuration options are enabled by setting SKEY_PCM_CONFIG32.
CPU and Memory	The CSR8811 uses a 16-bit RISC MCU for low power consumption and efficient use of memory. The MCU, interrupt controller, and event timer run the <i>Bluetooth</i> software stack and control the <i>Bluetooth</i> radio and host interfaces.
	56 KB of on-chip RAM is provided to support the RISC MCU and is shared between the ring buffers used to hold voice/data for each active connection and the general-purpose memory required by the <i>Bluetooth</i> stack.
	5 Mb of Internal ROM memory is available on the CSR8811. This memory is provided for system firmware, storing CSR8811 settings and program code.
Build-in Standard WLAN Coexistence	The SSD50NBT supports internally the standard WLAN coexistence interface through the WLAN_ACTIVE, BT_PRIORITY, and BT_ACTIVE pins.
Reference Clock	The BT block is configured for 26 MHz reference clock frequency. The clock source is provided to BT internally from the WLAN block on demand from BT_CLK_REQ.
	Note: The WLAN block must be initialized prior before BT clock sharing is enabled.
BT Low Energy	The SSD50NBT supports Low Energy specification which allows for connection to devices with single mode LE function (such as a watch, sensor, and HID). The implementation is optimized for coexistence with WLAN.
Reset	The pin BT_PWD_L resets and powers down the BT block.
	Holding the BT_PWD_L pin at GND turns off the entire BT block; all state information is lost. To ensure a full reset, the reset signal should be asserted for a period greater than 5 milliseconds.
Radio	The <i>Bluetooth</i> radio shares the single antenna port with the WLAN through an internal 3-way RF switch. The SSD50NBT implements WLAN/BT coexistence internally.
	VDDIO is to set the I/O voltage internally with either 1.8 V or 3.3 V to ensure same voltage level for the internal Wi-Fi and BT coexistence signal. Refer to the reference design specifications for details.
BT wake up Host	PIO-3 is reserved for BT to wake host from deep sleep mode.
SDIO_IOVDD	WLAN host IO (SDIO) power supply input 1.8V or 3.3V.

7 Block Diagram

Note: Refer to the Specifications table for the Wi-Fi transmitter frequencies.

8 Electrical Characteristics

8.1 Absolute Maximum Ratings

Table 5 summarizes the absolute maximum ratings and Table 6 lists the recommended operating conditions for the SSD50NBT. Absolute maximum ratings are those values beyond which damage to the device can occur. Functional operation under these conditions, or at any other condition beyond those indicated in the operational sections of this document, is not recommended.

Note: Maximum rating for signals follows the supply domain of the signals.

Table 5: Absolute maximum ratings			
Symbol (Domain)	Parameter	Max Rating	Unit
SDIO_IOVDD	WLAN host SDIO interface I/O supply	-0.3 to 4.0	V
VDDIO (Wi-Fi and BT)	WLAN and BT I/O configuration power supply	-0.3 to 4.0	V
VDD33; VDD33_FEM	External 3.3V power supply	-0.3 to 4.0	V
BT_VDD	BT Power core supply	3.6	V
VDD12_USB, DVDD12, AVDD12	WLAN 1.2V power supply	-0.3 to 1.32	V
Storage	Storage Temperature	-40 to +85	°C
ANT1; ANT2	Maximum RF input (reference to 50-Ω input)	+10	dBm
ESD	Electrostatic discharge tolerance	2000	V

8.2 Recommended Operating Conditions

Table 6: Recommended Operating Conditions

Symbol (Domain)	Parameter	Min	Тур	Max	Unit
SDIO_IOVDD	WLAN host interface I/O supply	1.71/3.2	1.8/3.3	1.89/3.46	V
VDDIO (Wi-Fi and BT)	WLAN and BT GPIO I/O power supply	1.71/3.2	1.8/3.3	1.89/3.46	V
VDD33	External 3.3V power supply	3.2	3.30	3.46	V
BT_VDD	BT core supply	3.2	3.30	3.46	V
VDD12_USB, DVDD12, AVDD12	WLAN 1.2V power supply	1.20	1.26	1.32	V
T-ambient	Ambient temperature	-30	25	85	°C

8.3 DC Electrical Characteristics

Table 7 and Table 8 list the general DC electrical characteristics over recommended operating conditions (unless otherwise specified).

Table 7: General DC electrical characteristics (For 3.3V I/O operation)

Symbol	Parameter		Conditions	Min	Тур	Max	Unit
VIH	High Level Inpu	ıt Voltage		0.7 x VDD			V
VIL	Low Level Inpu	t Voltage				0.3 x VDD	V
IIL Input Leaka Curre	Input Leakage	Without Pull-up or Pull-down	0V < VIN < VDD 0V < VOUT < VDD	0		-3	nA
	Current	With Pull-up	0 V < VIN < VDD 0V < VOUT < VDD	16		48	μΑ
		With Pull-down	0V < VIN < VDD 0V < VOUT < VDD	-14		-47	μΑ
VOH	High Level Out	put Voltage	IOH = -4mA	0.9 x VDD			V
			IOH = -12mA	0.9 × VDD			V
VOL	Low Level Outp	out Voltage	IOH = 4mA			0.1 x VDD	V
			IOH = 12mA			0.1 x VDD	V

Table 8: General DC electrical characteristics (For 1.8V I/O operation)

Symbol	Parameter		Conditions	Min	Тур	Max	Unit
VIH	High Level Inp	out Voltage		0.7 x VDD			V
VIL	Low Level Inp	out Voltage				0.3 x VDD	V
IIL Input Leakage Current	Input Leakage	Without Pull-up or Pull-down	0V < VIN < VDD 0V < VOUT < VDD	0		-3	nA
	Current	With Pull-up	0V < VIN < VDD 0V < VOUT < VDD	3.5		13	μΑ
		With Pull-down	0V < VIN < VDD 0V < VOUT < VDD	-6.2		-23	μΑ
VOH	VOH High Level Output Voltage		IOH = -4mA	0.9 × VDD			V
			IOH = -12mA	0.9 x VDD			V
VOL	Low Level Ou	tput Voltage	IOH = 4mA			0.1 x VDD	V
			IOH = 12mA			0.1 x VDD	V

Figure 2: Power On/Off timing

Figure 3: Wi-Fi and BT reset timing

Table 9: Timing Diagram Definitions

Timing	Description	Min	Unit
Та	Time between 3.3V (VDD33/BT_VDD/VDD_FEM/VDD_USB) and VDDIO/SDIO_IOVDD supplies	0	µsec
Tb	Time between VDDIO/SDIO_IOVDD supplies valid and WLAN_PWD_L negation.		µsec
	Note: There are 10K ohm internal Pull-up on SD_D0, SD_D1 and SD_D3.	5	
Тс	Time between VDDIO/SDIO_IOVDD supplies valid and	5	msec
	BT_PWD_L negation		
Td	Time between WLAN_PWD_L assertion and VDDIO/SDIO_IOVDD invalid or time between BT_PWD_L negation and VDDIO/SDIO_IOVDD invalid.	0	µsec
Те	Time between VDDIO/SDIO_IOVDD invalid and 3.3V (VDD33/BT_VDD/VDD_FEM/VDD_USB) invalid.	No requ	uirement
Tf	Time of WLAN_PWD_L assertion during reset or power down period. Both 3.3V (VDD33/BT_VDD/VDD_FEM/VDD_USB) and VDDIO/SDIO_IOVDD should keep ON.	5	µsec
Тg	Time of BT_PWD_L assertion during reset or power down period. Both 3.3V (VDD33/BT_VDD/VDD_FEM/VDD_USB) and VDDIO/SDIO_IOVDD should keep ON.	5	msec

Important:The SSD50NBT requires SDIO interface lines SD_CMD, SD_D1, and SD_D2 to be high prior to negation of WLAN_PWD_L.
Designs should drive these lines high or, if necessary, add external pull-ups to insure proper SDIO configuration on WLAN
boot-up. Failure to pull these lines high results in non-functional SDIO interface. These are boot-mode strapping options
interpreted by the WLAN CPU on power-on. There is 10K ohm pull high resistor already implemented on SD_D0, SD_D1, and
SD_D3. No external pull-up is required for those three lines.

We suggest that Tb and Tf timing is greater than 5µsec but no longer than 100 msec.

8.4 WLAN Radio Receiver Characteristics

Table 10 and Table 11 summarize the WLAN SSD50NBT receiver characteristics.

Table 10: WLAN receiver characteristics for 2.4 GHz signal chain operation

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Frx	Receive input frequency range		2.412		2.484	GHz
Srf	Sensitivity					
	CCK, 1 Mbps	See Note ³		-95		dBm
	CCK, 11 Mbps			-88		
	OFDM, 6 Mbps	_		-92		
	OFDM, 54 Mbps			-75		
	HT20, MCS0			-92		
	HT20, MCS7			-72		
Radj	Adjacent channel rejection					
	OFDM, 6 Mbps	See Note ⁴		32		dB
	OFDM, 54 Mbps		16			
	HT20, MCS0			31		
	HT20, MCS7			14		

³Performance data are measured under signal chain operation.

⁴Performance data are measured under signal chain operation.

Table 11: WLAN Receiver Characteristics for 5 GHz Dual Chain Operation

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Frx	Receive input frequency range		5.15		5.825	GHz
Srf	Sensitivity					
	OFDM, 6 Mbps	See Note⁵		-93		dBm
	OFDM, 54 Mbps			-75		
	HT20, MCS0	_		-93		
	HT20, MCS7			-72		
	HT40, MCS0	_		-87		
	HT40, MCS7			-67		
Radj	Adjacent channel rejection					
	OFDM, 6 Mbps	See Note ⁶		22		dB
	OFDM, 54 Mbps		9			
	HT20, MCS0	_		20		
	HT20, MCS7			19		

⁵Performance data are measured under dual chain operation.

⁶Performance data are measured under dual chain operation.

8.5 WLAN Transmitter Characteristics

Table 12: WLAN transmitter characteristics for 2.4 GHz per chain operation

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Ftx	Transmit output frequency range		2.412		2.484	GHz
Pout	Output power	See Note ⁷				
	11b mask compliant	1Mbps		18		
	11g mask compliant	6Mbps		18		
	11g EVM compliant	54Mbps		15		dBm
	11n HT20 mask compliant	MCS0		18		
	11n HT20 EVM compliant	MCS7		14		
	11n HT20 EVM compliant	MCS15		14		
ATx	Transmit power accuracy at 18 dBm	-	-	+ 2.0		dB

Freq.	Mode/Rate (Mbps)	Output Power Per Chain (dBm)	Typical Current Consumption Single Chain (mA) ⁸	Max. Current Consumption Single Chain (mA) ⁸
2412MHz	1 Mbps	18dBm	420	560
	54 Mbps	15dBm	350	450
	HT20 MCS7	14dBm	340	420
2442MHz	1 Mbps	18dBm	420	560
	54 Mbps	15dBm	350	450
	HT20 MCS7	14dBm	340	420
2472MHz	1 Mbps	18dBm	420	560
	54 Mbps	15dBm	350	450
	HT20 MCS7	14dBm	340	420

Table 13: WLAN transmitter characteristics for 5 GHz per chain operation

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Ftx	Transmit output frequency range		5.15		5.925	GHz
Pout	Output power	See Note ³				
	11a mask compliant	6Mbps		18		dBm
	11a EVM compliant	54Mbps		15		
	11n HT20 mask compliant	MCS0		18		
	11n HT20 EVM compliant	MCS7		14		
	11n HT20 EVM compliant	MCS15		14		
	11n HT40 mask compliant	MCS0		15		
	11n HT40 EVM compliant	MCS7		12		
	11n HT40 EVM compliant	MCS15		12		
ATx	Transmit power accuracy at 18 dBm	-	-	+ 2.0		dB

Freq.	Mode/Rate [Mbps]	Output Power Per Chain [dBm]	Typical Current Consumption Single Chain (mA) ⁸	Max. Current Consumption Single Chain (mA) [®]
5180MHz	54 Mbps	15 dBm	490	590
	HT20 MCS7	14 dBm	450	560
	HT40 MCS7	12 dBm	470	540
5500MHz	54 Mbps	15 dBm	490	590
	HT20 MCS7	14 dBm	450	560
	HT40 MCS7	12 dBm	470	540
5825MHz	54 Mbps	15 dBm	490	590
	HT20 MCS7	14 dBm	450	560
	HT40 MCS7	12 dBm	470	540

⁷Performance data are measured under Single chain operation.

Note: Final TX power values on each channels are limited by the regulatory certification test limit.

Note: 2.4 GHz does not support HT40 operation, only 5 GHz support HT40 operation.

9 Bluetooth Radio Characteristics

Table 14 through Table 15 describe the basic rate transmitter performance, enhanced data transmitter performance, basic rate receiver performance, enhanced rate receiver performance, and current consumption conditions at 25°C.

Table 14: Basic rate transmitter performance temperature at 25°C (3.3V)

Test Parameter	Min	Тур	Max	BT Spec.	Unit
Maximum RF Output Power	2	6	_	-6 to +10	dBm
Frequency Range	2.4	_	2.4835	$2.4 \le f \le 2.4835$	GHz
20 dB Bandwidth	_	925	_	≤ 1000	KHz
Adjacent Channel TX Power F = F0 + 2 MHz	_	-36	_	≤ -20	dBm
Adjacent Channel TX Power F = F0 +3 MHz	_	-42	_	≤ -40	dBm
Δf1avg Maximum Modulation	140	165	175	140 < ∆f1avg < 175	KHz
Δf2max Minimum Modulation	_	135	_	≥ 115	KHz
Δf2avg/Δf1avg	_	0.9	_	≥ 0.80	_

ezurio

SSD50NBT

Datasheet

Test Parameter	Min	Тур	Max	BT Spec.	Unit
Initial Carrier Frequency	_	5	—	≤±75	KHz
Drift Rate	_	5	—	≤ 20	KHz/50 µs
Drift (DH1 packet)	—	6	—	≤25	KHz
Drift (DH5 packet)	—	7	—	≤ 40	KHz

Table 15: Enhanced data rate transmitter performance 25°C (3.3V) Image: Comparison of the second second

Test Parameter		Min	Тур	Max	BT Spec.	Unit
Relative Transmit Power		-1	3	6	-4 to +1	dBm
Max Carrier Frequency Stability Iwol	π/4 DQPSK	-	1	-	≤ ±10	KHz
	8 DPSK	-	1	_		
Max Carrier Frequency Stability Iwil	π/4 DQPSK	-	1	_	≤ ±75	KHz
	8 DPSK	_	1	_		
Max Carrier Frequency Stability Iw0+wil	π/4 DQPSK	-	2	-	≤ ±75	KHz
	8 DPSK	_	1.5	_		
RMS DEVM	π/4 DQPSK	-	6	_	≤ 20	%
	8 DPSK	-	6	_	≤13	%
Peak DEVM	π/4 DQPSK	-	16	_	≤ 35	%
	8 DPSK	-	15	_	≤ 25	%
99% DEVM	π/4 DQPSK	_	12	-	≤ 30	%
	8 DPSK	_	12	_	≤ 20	%
EDR Differential Phase Encoding		_	99	_	≥ 99	%
Adjacent Channel Power	F≥ ± 3MHz	_	-60	_	< -40	dBm
	$F = \pm 2MHz$	_	-28	_	≤ -20	dBm
	$F = \pm 1MHz$	_	-32		≤ -26	dB

Table 16: Basic rate receiver performance at 3.3V

Test Parameter		Min	Тур	Max	BT Spec.	Unit
Sensitivity	BER ≤ 0.1%	_	-84	-78	≤ -70	dBm
Maximum Input	BER ≤ 0.1%	-20	-10	_	≥ -20	dBm
Carrier-to-Interferer Ratio (C/I)	Co-Channel	—	_	11	11	
	Adjacent Channel (± 1 MHz)	_	-4/-2	0	0	dB
	Second Adjacent Channel (± 2 MHz)	_	-35/-28	-30	-30	dB
	Third Adjacent Channel (± 3 MHz)	_	-42	-40	-40	dB
Maximum Level of Intermodulation Ir	-39	-30	-	≥ -39	dBm	

Datasheet

Table 17: Enhanced data rate receiver performance 3.3V

Test Parameter		Min	Тур	Max	Bluetooth Specification	Unit
Sensitivity (BER ≤0.01%)	8 DPSK	_	-76	-71	≤ -70	dBm
Maximum Input (BER ≤0.1%)	π/4 DQPSK	-20	_	—	≥ -20	dBm
	8 DPSK	-20	-	_	≥ -20	dBm
Co-Channel C/I (BER ≤0.1%)	π/4 DQPSK	_	10	13	≤ ±13	dB
	8 DPSK	-	18	20	≤ ±20	dB
Adjacent Channel C/I (BER≤ 0.1%)	π/4 DQPSK	-	-9/-6	0	≤ 0	dB
	8 DPSK	-	-3/0	5	≤5	dB
Second Adjacent Channel C/I (BER ≤ 0.1%)	π/4 DQPSK	_	-42/-28	-30	≤ -30	dB
	8 DPSK	-	-28/-22	-25	≤ -25	dB
Third Adjacent Channel C/I (BER ≤ 0.1%)	π/4 DQPSK	_	-45	-40	≤ -40	dB
	8 DPSK	_	-39	-33	≤ -33	dB

10 SDIO Timing Requirements

The following figure (Figure 4) and table (Table 18) display SDIO default mode timing.

Figure 4: SDIO default mode timing

Note: Timing is based on $CL \le 40 \text{ pF}$ load on CMD and Data.

Table 18: SDIO timing requirements

Symbol	Parameter	Min.	Тур.	Max.	Unit
fPP	Frequency – Data Transfer mode	0	-	50	MHz
tWL	Clock low time	7	-	-	ns
tWH	Clock high time	7	-	-	ns
tTLH	Clock rise time	-	-	10	ns
tTHL	Clock low time	-	-	10	ns
	Inputs: CMD, DAT (refere	nced to CLK)			

Datasheet

Symbol	Parameter	Min.	Тур.	Max.	Unit				
tISU	Input setup time	6	-	-	ns				
tlH	Input hold time	2	-	-	ns				
Outputs: CMD, DAT (referenced to CLK)									
tODLY	Output delay time – Data Transfer mode	0	-	14	ns				

11 Pin Definitions

Pin #	Name	Туре	Voltage Reference	Description	If Not Used
1	GND	-	-	Ground	GND
2	GND	-	-	Ground	GND
3	WIFI_RFKILL	I, PU	SDIO_IOVDD	Reserved for RF disable (RF Kill) feature. Active Low.	N/C
	(GPIO-10)			Note: The current does not support it.	
				# See Boot strap configuration.	
4	XPABIAS51	0	VDDIO	Control signal for external 5GHz power amplifier Chain 1.	N/C
5	GND	-	-	Ground	GND
6	VDD33_FEM	Power	-	3.3V Power for FEM	3.3V
7	VDD33_FEM	Power	-	3.3V Power for FEM	3.3V
8	GND	-	-	Ground	GND
9	GND	-	-	Ground	GND
10	GND	-	-	Ground	GND
11	ANT_1 (Wi-Fi)	A_IO	-	WLAN antenna port	50 Ωload
				(Chain 1)	
12	GND	-	-	Ground	GND
13	XPABIAS20	0	VDDIO	Control signal for external 2GHz power amplifier Chain 0.	N/C
14	BT_PCM_SYNC	I/O, PD	VDDIO	PCM interface synchronization control, input for slave, output for master, weak internal pull-down. High on reset, low after reset.	N/C
15	BT_PCM_BCLK	I/O, PD	VDDIO	PCM interface bit clock, input for slave, output for master, weak internal pull-down. High on reset, low after reset.	N/C
16	BT_PCM_IN	I, PD	VDDIO	PCM synchronous input, weak internal pull-down.	N/C
17	BT_PCM_OUT	O, PD	VDDIO	PCM synchronous output, weak internal pull-down.	N/C
18	XPABIAS50	0	VDDIO	Control signal for external 5GHz power amplifier Chain 1.	N/C
19	GND	-	-	Ground	GND
20	ANT_0	A_IO	-	WLAN/BT antenna port	50 Ωload
	(Wi-Fi and BT)			(Chain 0)	
21	GND	-	-	Ground	GND
22	BT_PWD_L	I, PD	VDDIO	BT chip power-down control. Driving this pin active low to power down or to reset the BT chip. Has internal strong pull-down. Note: Should be low for at least 5 ms for chip reset.	10K PU

SSD50NBT

Datasheet

Pin #	Name	Туре	Voltage Reference	Description	If Not Used
23	NC	-			N/C
24	CLK_32K	I	VDDIO	External 32.768KHz input for BT chip.	Must be
				It is must for BT chip to get deep sleep mode.	used
25	BT_VDD	Power	-	BT core power supply input 3.3V	3.3V
26	GND	-	-	Ground	GND
27	BT_UART_RXD	I, PU	VDDIO	Bluetooth UART Serial Input	N/C
28	BT_UART_TXD	O, PU	VDDIO	Bluetooth UART Serial Output	N/C
29	BT_UART_CTS	I, PU	VDDIO	Clear-to-send signal for the Bluetooth UART interface, active low.	N/C
30	BT_UART_RTS	O, PU	VDDIO	Request-to-send signal for the Bluetooth UART interface, active low.	N/C
31	BT_WAKEUP_HOST	0	VDDIO	When BT wakes up from its deep sleep state, it sends an H pulse signal out to Host. Normally, it is Low state. Note: The current software does not support it	N/C
32	GND	-	_	Ground	GND
33	VDDIO	Power	_	1.8 or 3.3V I/O power configuration.	
				This is the reference voltage for all I/O signalling pins; it	1.8V
				accepts 1.8V or 3.3V from the host.	or
					3.3V
34	GND	-	-	Ground	GND
35	SDIO_CLK	I	VDDIO	SDIO Clock	N/C
36	GND	-	-	Ground	GND
37	SDIO_DATA_0	I/O	SDIO_IOVDD	SDIO Data 0, internal 10K pulled-up.	N/C
38	SDIO_DATA_1	I/O	SDIO_IOVDD	SDIO Data 1, internal 10K pulled-up.	N/C
39	SDIO_DATA_2	I/O	SDIO_IOVDD	SDIO Data 2.	
				# See Boot strap configuration.	
40	SDIO_DATA_3	1/0	SDIO_IOVDD	SDIO Data 3, internal 10K pulled-up.	N/C
41	SD_CMD	1/0	SDIO_IOVDD	SDIO Command signal,	
40		Dowor		# See Boot strap configuration.	1 0\/
42	3010_10100	FOWEI	-	1.8V or 3.3V	or
					3.3V
43	AVDD_12	Power	-	WLAN internal analogy 1.2V input fed from switching regulator or external 1.2V DC supply	1.2V
44	DVDD_12	Power	-	WLAN internal analogy 1.2V input fed from switching regulator or external 1.2V DC supply	1.2V
45	VDD12_USB	Power	-	USB interface 1.2V input fed from switching regulator or external 1.2V DC supply.	1.2V
				Note: When Wi-Fi run at USB interface, external 1.2V (400mA max) is required.	
46	VDD33_USB	Power	-	USB interface 3.3V input.	3.3V
				Connect to 3.3V	
47	VDD12_PMU	Power	-	On-Chip 1.2V switching regulator output.	10uF
		output			

SSD50NBT

Datasheet

•
A N

Pin #	Name	Туре	Voltage Reference	Description	If Not Used
				A 10uF 6.3V LOW ESR cap is must to connect to this pin as close as possible.	
48	Reserved	I/O	-	Reserved pin. Please leave open.	N/C
49	Reserved	I/O	-	Reserved pin. Please leave open.	N/C
50	GND	-	-	Ground	GND
51	WLAN_PWD_L	I, PD	SDIO_IOVDD	WLAN Power down, active low, external 10K pull up is required.	10K, PU
				(0= power down, 1=WLAN awake)	
				Negation samples boot strap pin for SDIO interface mode	
52	WLAN_TDO	-	SDIO_IOVDD	Pull High for SDIO	
				# See Boot strap configuration.	
53	AR6004_GPIO38	I/O	VDDIO	Reserved for LTE coexistence;	N/C
				Reserved for WiFi LED indicator, Active High. (Not support Now)	
54	LTE_COEX3	-	VDDIO	Reserved for LTE coexistence	N/C
55	LTE_ACTIVE	-	VDDIO -	Reserved for LTE coexistence	N/C
56	LTE_FRAME_SYNC	-	VDDIO -	Reserved for LTE coexistence	N/C
57	VDD33	Power	-	3.3V Power	3.3V
58	VDD33	Power	-	3.3V Power	3.3V
59	GND	-	-	Ground	GND
60	WAKE_ON_WLAN	O, PD	SDIO_IOVDD	Reserved for Wake-ON-Wireless	10K,PU
				(WOW) LAN, WLAN output signal to wake up host,	
				active Low and need external 10K pull up.	
C1				Note: The current software does not support it.	N/C
61	DEBUG_UART_TXD	0	5010_10000	# See Boot strap configuration.	N/C
62	WCN_PRIORITY	-	-	Reserved for LTE coexistence	N/C
63	GND	-	-	Ground	GND
64	XPABIAS21	0	VDDIO	Control signal for external 2GHz power amplifier Chain 1.	N/C
65-80	GND	-	_	Thermal Ground Pad	GND
				(Important for RF performance and thermal dissipation; please flow the reference design)	

11.1 Integration Considerations

The following Wi-Fi information should be taken into consideration when integrating the SSD50NBT:

- When WLAN is communicating via the SDIO bus, the internal switch regulator (1.2V out) can be used to power the SSD50NBT itself. Pin-47 (VDD12_PMU) of the SSD50NBT is the internal PMU output pin that generates 1.2V to provide to AVDD12 (pin-43), DVDD12 (pin-44), and AVDD12_USB (pin-45).
- When WLAN is communicating via the USB bus, an external 1.2 V (maximum rating 400 mA) is needed for to AVDD12 (pin-43), DVDD12 (pin-44), and AVDD12_USB (pin-45). This is due to insufficient power from internal PMU.
- No matter if WLAN is running at SDIO or USB bus, a 10uF, 6.3V low ESR capacitor is always needed directly on **pin-47** (VDD12_PMU) as close as possible to the pin.

12 Boot Strap Options for Wi-Fi Interface

SSD50NBT provides SDIO interface for WLAN connection. It is configured per the following table (Table 19).

Table 19: Wi-Fi interface configuration table

Pin No.	Pin Name	-	SDIO 2.0	.0 Note
41	SD_CMD		Н	-
39	SDIO_DATA_2		Н	-
38	SDIO_DATA_1		Н	10K Ω Pull High to Avoid Booting into test mode.
				Note: It is implemented inside the SSD50NBT. No external pull "H" is needed.
3	GPIO_10		L	10K Ω Pull "L" to Avoid leakage.
61	DEBUG_UART_	TXD	N/C	No connection at SDIO bus.
52	WLAN_TDO		Н	10K Ω Pull "H" to Avoid leakage. Only SDIO
DEBUG_UAR WLAN_TDO GPIO10 SD_D2 SD_CMD	R16	 R14 10K R15 R13 NOPOP 10K 	SDIO K R10 10K R11 NOPOP	R8 10K R9 NOPOP

Figure 5: Setting when using SDIO interface

13 Mechanical Specifications

Module dimensions of SSD50NBT are 15 x 15 x 2.5 mm. Detail drawings are shown in Figure 6.

SIDE VIEW

Figure 6: Module dimension of SSD50NBT

Note: The Wi-Fi MAC address is located on the product label. The BT MAC address is always numerically subsequent to the Wi-Fi MAC address. Therefore, the BT MAC address is the Wi-Fi MAC address plus one.

Recommend minimal via size and placement for grounding and thermal dissipation. Please double the ground via number when using laser via on HID process. More ground via and the use of 1-oz copper is recommended in our design to get better thermal dissipation.

Note: When soldering, the stencil thickness should be ≥ 0.1 mm.

14 RF Layout Design Guidelines

The following is a list of RF layout design guidelines and recommendation when installing a Ezurio radio into your device.

- Do not run antenna cables directly above or directly below the radio.
- Do not place any parts or run any high speed digital lines below the radio.
- If there are other radios or transmitters located on the device (such as a *Bluetooth* radio), place the devices as far apart from each other as possible. Also, make sure there is at least 25 dB isolation between the Bluetooth antenna and the Wi-Fi antenna.
- Ensure that there is the maximum allowable spacing separating the antenna connectors on the Ezurio radio from the antenna. In addition, do not place antennas directly above or directly below the radio.
- Ezurio recommends the use of a double-shielded cable for the connection between the radio and the antenna elements.
- Be sure to put the capacitor on the power pin as close as possible to reduce the radiation issue.
- Use proper electro-static-discharge (ESD) procedures when installing the Ezurio radio module.
- In order to get maximum throughput when operate at MIMO 2x2, two antennas with at least 25 dB isolation is recommended.
- To avoid negatively impacting Tx power and receiver sensitivity, do not cover the antennas with metallic objects or components.

15 Recommended Storage, Handling, Baking, and Reflow Profile

15.1 Required Storage Conditions

15.1.1 Prior to Opening the Dry Packing

The following are required storage conditions *prior* to opening the dry packing:

- Normal temperature: 5~40°C
- Normal humidity: 80% (Relative humidity) or less
- Storage period: One year or less

Note: Humidity means Relative Humidity.

15.1.2 After Opening the Dry Packing

The following are required storage conditions *after* opening the dry packing (to prevent moisture absorption):

- Storage conditions for one-time soldering:
 - Temperature: 5~25°C
 - Humidity: 60% or less
 - Period: 48 hours or less after opening
- Storage conditions for two-time soldering

Storage conditions following opening and prior to performing the 1st reflow:

- Temperature: 5~25°C
- Humidity: 60% or less
- Period: 48 hours or less after opening

Storage conditions following completion of the 1st reflow and prior to performing the 2nd reflow

- Temperature: 5~25°C
- Humidity: 60% or less
- Period: 48 hours or less after completion of the 1st reflow

15.1.3 Temporary Storage Requirements after Opening

The following are temporary storage requirements after opening:

- Only re-store the devices once prior to soldering.
- Use a dry box or place desiccant (with a blue humidity indicator) with the devices and perform dry packing again using heat-sealing.

The following indicate the required storage period, temperature, and humidity for this temporary storage:

Storage temperature and humidity

*** - External atmosphere temperature and humidity of the dry packing

Storage period

- X1+X2 Refer to After Opening the Dry Packing storage requirements.
- Y Two weeks or less.

15.2 Baking Conditions

Baking conditions and processes for the SSD50NBT follow the J-STD-033 standard which includes the following:

- The calculated shelf life in a sealed bag is 12 months at <40°C and <80% relative humidity.
- Once the packaging is opened, the SiP must be mounted (per MSL4/Moisture Sensitivity Level 4) within 72 hours at <30 °C and <60% relative humidity.
- If the SiP is not mounted within 72 hours or if, when the dry pack is opened, the humidity indicator card displays >10% humidity, then the product must be baked for 48 hours at 125 °C (±5 °C).

15.3 Surface Mount Conditions

The following soldering conditions are recommended to ensure device quality.

15.3.1 Soldering

Note: When soldering, the stencil thickness should be ≥ 0.1 mm.

Convection reflow or IR/Convection reflow (one-time soldering or two-time soldering in air or nitrogen environment)

- Measuring point IC package surface
- Temperature profile:

Ramp-up : 40 - 130 deg. Less than 2.5 deg./sec Pre heat : 130 - 180 deg. 60 - 120 sec , 180 deg. MAX Ramp-up : 180 - 220 deg. Less than 3 deg./sec Peak Temperature : MAX 250 deg.

225 deg. ~ 250 deg. , 30 ~ 50 sec

Ramp-down : Less than 3 deg./sec

Figure 8: Temperature profile

15.3.2 Cautions When Removing the SIP from the Platform for RMA

- Bake the platform before removing the SIP from the platform. Reference baking conditions.
- Remove the SIP by using a hot air gun. This process should be carried out by a skilled technician.

Suggestion conditions:

- One-side component platform:
 - Set the hot plate at 280 °C.
 - Put the platform on the hot plate for 8~10 seconds.
 - Remove the SIP from platform.

Two-side components platform:

- Use two hot air guns
- On the bottom side, use a pre-heated nozzle (temperature setting of 200~250°C) at a suitable distance from the platform PCB.
- On the top side, apply a remove nozzle (temperature setting of 330 °C). Heat the SIP until it can be removed from platform PCB.

Remove the residue solder under the bottom side of SIP.

(Not accepted for RMA)

(Accepted for RMA analysis)

SIP with residue solder on the bottom

SIP without residue solder on the bottom

Remove and clean the residue flux if needed.

15.3.3 Precautions for Use

- Opening/handing/removing must be done on an anti-ESD treated workbench. All workers must also have undergone anti-ESD treatment.
- The devices should be mounted within one year of the date of delivery.

https://www.ezurio.com/

16 Packaging Information

16.1 Inner Carton

Figure 9: Inner carton

Notes:

- Each packing tray contains 96 products.
- Five packing trays (each with 96 products) are stacked with an empty packing tray on top. The stack is wrapped with strapping tape.
- The moisture-proof inner carton contains a total of 480 products (five trays).
- The MSL label, Lot label, and Identification tag are stuck on the moisture-proof carton.

16.2 Carton Box

Notes:

- The carton box holds five inner cartons (480 products in each carton).
- The carton box contains 2400 products.
- The Identification tag is stuck on the specified location of the inner carton and carton box.

Figure 10: Carton box

16.3 Labels

16.3.1 MSL Label

This product is classified as MSL4 devices.

Figure 11: MSL label

16.4 Storage Condition and Baking Information

This product should be stored in a controlled temperature and humidity conditions according to Moisture Sensitivity Level (MSL) 4.

- The calculated shelf life in a sealed bag is 12 months at <40°C and <80% relative humidity.
- Once the packaging is opened, the SiP must be mounted (per MSL4/Moisture Sensitivity Level 4) within 72 hours at <30 °C and <60% relative humidity.
- If the SiP is not mounted within 72 hours or if, when the dry pack is opened, the humidity indicator card displays >10% humidity, then the product must be baked for 48 hours at 125 °C (±5 °C).

17 Regulatory

Note: For complete regulatory information, refer to the SSD50NBT Regulatory Information document which is also available from the SSD50NBT product page.

The SSD50NBT holds current certifications in the following countries:

Country/Region	Regulatory ID
USA (FCC)	SQG-SSD50NBT
EU	N/A
Canada (ISED)	3147A-SSD50NBT

18 Ordering Information

Part Number	Description
SSD50NBT	2X2 802.11 a/b/g/n with BT4.0 dual mode module.

19 Additional Information

Please contact your local sales representative or our support team for further assistance:

Headquarters	Ezurio 50 S. Main St. Suite 1100 Akron, OH 44308 USA
Website	http://www.ezurio.com
Technical Support	http://www.ezurio.com/resources/support
Sales Contact	http://www.ezurio.com/contact

Note: Information contained in this document is subject to change.

Ezurio's products are subject to standard Terms & Conditions.

© Copyright 2025 Ezurio All Rights Reserved. Any information furnished by Ezurio and its agents is believed to be accurate but cannot be guaranteed. All specifications are subject to change without notice. Responsibility for the use and application of Ezurio materials or products rests with the end user since Ezurio and its agents cannot be aware of all potential uses. Ezurio makes no warranties as to non-infringement nor as to the fitness, merchantability, or sustainability of any Ezurio materials or products for any specific or general uses. Ezurio or any of its affiliates or agents shall not be liable for incidental or consequential damages of any kind. All Ezurio products are sold pursuant to the Ezurio are sold pursuant to the Ezurio and form time to time, a copy of which will be furnished upon request. Nothing herein provides a license under any Ezurio or any third-party intellectual property right. Ezurio and its associated logos are trademarks owned by Ezurio and/or its affiliates.