FCC C2PC Test Report

FCC ID : SQG-MSD45N
Equipment : 45 Series Pluggable module
Model No. : MSD45N
Brand Name : Laird Technologies
Applicant : Laird Technologies
Address : 11160 Thompson Ave. / Lenexa, Kansas / 66219 / USA
Received Date : Jul. 29, 2015
Tested Date : Jul. 31 ~ Aug. 17, 2015

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Approved & Reviewed by:

[Signature]
Gary Chang / Manager
Table of Contents

1 GENERAL DESCRIPTION ... 5
 1.1 Information.. 5
 1.2 Local Support Equipment List .. 7
 1.3 Test Setup Chart .. 7
 1.4 The Equipment List ... 8
 1.5 Testing Applied Standards ... 9
 1.6 Measurement Uncertainty ... 9

2 TEST CONFIGURATION ... 10
 2.1 Testing Condition .. 10
 2.2 The Worst Test Modes and Channel Details ... 10

3 TRANSMITTER TEST RESULTS .. 11
 3.1 Conducted Emissions .. 11
 3.2 Emission Bandwidth ... 14
 3.3 RF Output Power ... 16
 3.4 Peak Power Spectral Density .. 17
 3.5 Transmitter Radiated and Band Edge Emissions ... 19
 3.6 Frequency Stability ... 78

4 TEST LABORATORY INFORMATION .. 80
Release Record

<table>
<thead>
<tr>
<th>Report No.</th>
<th>Version</th>
<th>Description</th>
<th>Issued Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>FR371704-01AI</td>
<td>Rev. 01</td>
<td>Initial issue</td>
<td>Sep. 04, 2015</td>
</tr>
</tbody>
</table>
Summary of Test Results

<table>
<thead>
<tr>
<th>FCC Rules</th>
<th>Test Items</th>
<th>Measured</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.207</td>
<td>Conducted Emissions</td>
<td>[dBuV]: 0.480MHz 30.46 (Margin -15.88dB) - AV</td>
<td>Pass</td>
</tr>
<tr>
<td>15.407(b)(4)</td>
<td>Radiated Emissions</td>
<td>[dBuV/m at 3m]: 5725.00MHz 77.19 (Margin -1.01dB) - PK</td>
<td>Pass</td>
</tr>
<tr>
<td>15.209</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.407(a)(5)</td>
<td>Emission Bandwidth</td>
<td>Meet the requirement of limit</td>
<td>Pass</td>
</tr>
<tr>
<td>15.407(a)(3)</td>
<td>RF Output Power</td>
<td>Max Power [dBm]: 18.62</td>
<td>Pass</td>
</tr>
<tr>
<td>15.407(a)(3)</td>
<td>Peak Power Spectral Density</td>
<td>Meet the requirement of limit</td>
<td>Pass</td>
</tr>
<tr>
<td>15.407(e)</td>
<td>6dB Bandwidth</td>
<td>Meet the requirement of limit</td>
<td>Pass</td>
</tr>
<tr>
<td>15.407(g)</td>
<td>Frequency Stability</td>
<td>Meet the requirement of limit</td>
<td>Pass</td>
</tr>
<tr>
<td>15.203</td>
<td>Antenna Requirement</td>
<td>Meet the requirement of limit</td>
<td>Pass</td>
</tr>
</tbody>
</table>
1 General Description

1.1 Information

This report is prepared for FCC class II permissive change.

This report is issued as a supplementary report to original ICC report no. FR371704AI. The modification is concerned with following:

- Complying with New U-NII rule requirement.
- Additional Dipole antennas.

Therefore, all tests had been re-tested and presented in the following sections.

1.1.1 Specification of the Equipment under Test (EUT)

<table>
<thead>
<tr>
<th>Frequency Range (MHz)</th>
<th>IEEE Std. 802.11</th>
<th>RF General Information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ch. Freq. (MHz)</td>
<td>Channel Number</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transmit Chains (N_{TX})</td>
</tr>
<tr>
<td>5725-5850</td>
<td>a</td>
<td>5745-5825</td>
</tr>
<tr>
<td>5725-5850</td>
<td>n (HT20)</td>
<td>5745-5825</td>
</tr>
</tbody>
</table>

Note 1: RF output power specifies that Maximum Conducted Output Power.
Note 2: 802.11a/n uses a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM modulation.
Note 3: 802.11n supports HT20 only.

1.1.2 Antenna Details (The additional antennas were marked in boldface.)

<table>
<thead>
<tr>
<th>Ant. No.</th>
<th>Brand / Model</th>
<th>Type</th>
<th>Connector</th>
<th>Operating Frequencies (MHz) / Antenna Gain (dBi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MAG.LAYERS EDA-1513-25GR2-B2-CY</td>
<td>Dipole</td>
<td>SMA Jack Reverse</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>MAG.LAYERS PCA-4606-2G4C1-A13-CY</td>
<td>Dipole</td>
<td>UFL</td>
<td>2.21</td>
</tr>
<tr>
<td>3</td>
<td>Larid NanoBlade-IP04</td>
<td>Dipole</td>
<td>UFL</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>Larid MAF95310 Mini NanoBlade</td>
<td>Dipole</td>
<td>UFL</td>
<td>2.79</td>
</tr>
<tr>
<td></td>
<td>Flex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Larid NanoBlue-IP04</td>
<td>Dipole</td>
<td>UFL</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>Ethertronics WLAN_1000146</td>
<td>PIFA</td>
<td>UFL</td>
<td>2.5</td>
</tr>
<tr>
<td>7</td>
<td>SAA MG7018-41-000-R</td>
<td>Dipole</td>
<td>UFL</td>
<td>1.87</td>
</tr>
<tr>
<td>8</td>
<td>SAA MG7324-41-000-R</td>
<td>Dipole</td>
<td>UFL</td>
<td>1.32</td>
</tr>
</tbody>
</table>
1.1.3 Power Supply Type of Equipment under Test (EUT)

| Power Supply Type | 3.3Vdc from host |

1.1.4 Accessories

N/A

1.1.5 Channel List

<table>
<thead>
<tr>
<th>Channel</th>
<th>Frequency(MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>149</td>
<td>5745</td>
</tr>
<tr>
<td>153</td>
<td>5765</td>
</tr>
<tr>
<td>157</td>
<td>5785</td>
</tr>
<tr>
<td>161</td>
<td>5805</td>
</tr>
<tr>
<td>165</td>
<td>5825</td>
</tr>
</tbody>
</table>

1.1.6 Test Tool and Duty Cycle

<table>
<thead>
<tr>
<th>Test Tool</th>
<th>Duty Cycle and Duty Factor</th>
<th>ART V0.2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mode</td>
<td>Duty cycle (%)</td>
</tr>
<tr>
<td></td>
<td>11a</td>
<td>99.30%</td>
</tr>
<tr>
<td></td>
<td>HT20</td>
<td>99.62%</td>
</tr>
</tbody>
</table>

1.1.7 Power Setting

<table>
<thead>
<tr>
<th>Modulation Mode</th>
<th>Test Frequency (MHz)</th>
<th>Power Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>11a</td>
<td>5745</td>
<td>18</td>
</tr>
<tr>
<td>11a</td>
<td>5785</td>
<td>20.5</td>
</tr>
<tr>
<td>11a</td>
<td>5825</td>
<td>22</td>
</tr>
<tr>
<td>HT20</td>
<td>5745</td>
<td>18</td>
</tr>
<tr>
<td>HT20</td>
<td>5785</td>
<td>21</td>
</tr>
<tr>
<td>HT20</td>
<td>5825</td>
<td>21</td>
</tr>
</tbody>
</table>
1.2 Local Support Equipment List

<table>
<thead>
<tr>
<th>No.</th>
<th>Equipment</th>
<th>Brand</th>
<th>Model</th>
<th>FCC ID</th>
<th>Signal cable / Length (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Notebook</td>
<td>DELL</td>
<td>Latitude E6430</td>
<td>F2JB4X1</td>
<td>---</td>
</tr>
</tbody>
</table>

1.3 Test Setup Chart

![Test Setup Diagram](image-url)
1.4 The Equipment List

<table>
<thead>
<tr>
<th>Test Item</th>
<th>Conducted Emission</th>
<th>Radiated Emission</th>
<th>RF Conducted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Site</td>
<td>Conduction room 1 / (CO01-WS)</td>
<td>966 chamber 2 / (03CH02-WS)</td>
<td>(TH01-WS)</td>
</tr>
<tr>
<td>Instrument</td>
<td>Manufacturer</td>
<td>Model No.</td>
<td>Serial No.</td>
</tr>
<tr>
<td>Instrument</td>
<td>Manufacturer</td>
<td>Model No.</td>
<td>Serial No.</td>
</tr>
<tr>
<td>Horn Antenna 18G-40G</td>
<td>SCHWARZBECK</td>
<td>BBHA 9170</td>
<td>BBHA 9170517</td>
</tr>
<tr>
<td>Measurement Software</td>
<td>AUDIX</td>
<td>e3</td>
<td>6.120210g</td>
</tr>
</tbody>
</table>
| **Notes**: Calibration Interval of instruments listed above is one year.

Report No.: FR371704-01AI
Page: 8 of 80
Report Version: Rev. 01
1.5 Testing Applied Standards

According to the specification of EUT, the EUT must comply with following standards and KDB documents.

47 CFR FCC Part 15.407
ANSI C63.10-2013
FCC KDB 789033 D02 General UNII Test Procedures New Rules v01
FCC KDB 644545 D03 Guidance for IEEE 802 11ac New Rules v01
FCC KDB 412172 D01 Determining ERP and EIRP v01r01

1.6 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

<table>
<thead>
<tr>
<th>Measurement Uncertainty</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>Bandwidth</td>
<td>±34.134 Hz</td>
</tr>
<tr>
<td>Conducted power</td>
<td>±0.808 dB</td>
</tr>
<tr>
<td>Frequency error</td>
<td>±34.134 Hz</td>
</tr>
<tr>
<td>Power density</td>
<td>±0.463 dB</td>
</tr>
<tr>
<td>Conducted emission</td>
<td>±2.670 dB</td>
</tr>
<tr>
<td>AC conducted emission</td>
<td>±2.92 dB</td>
</tr>
<tr>
<td>Radiated emission ≤ 1GHz</td>
<td>±3.62 dB</td>
</tr>
<tr>
<td>Radiated emission > 1GHz</td>
<td>±5.6 dB</td>
</tr>
<tr>
<td>Time</td>
<td>±0.1%</td>
</tr>
<tr>
<td>Temperature</td>
<td>±0.6 °C</td>
</tr>
</tbody>
</table>
2 Test Configuration

2.1 Testing Condition

<table>
<thead>
<tr>
<th>Test Item</th>
<th>Test Site</th>
<th>Ambient Condition</th>
<th>Tested By</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Conduction</td>
<td>CO01-WS</td>
<td>22°C / 65%</td>
<td>Kevin Ma</td>
</tr>
<tr>
<td>Radiated Emissions</td>
<td>03CH02-WS</td>
<td>21-25°C / 56-65%</td>
<td>Anderson Hung</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Aska Huang</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Morgan Chen</td>
</tr>
<tr>
<td>RF Conducted</td>
<td>TH01-WS</td>
<td>22°C / 63%</td>
<td>Felix Sung</td>
</tr>
</tbody>
</table>

- FCC site registration No.: 657002
- IC site registration No.: 10807A-2

2.2 The Worst Test Modes and Channel Details

<table>
<thead>
<tr>
<th>Test item</th>
<th>For Frequency band 5725-5850 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Modulation Mode</td>
</tr>
<tr>
<td>Conducted Emissions</td>
<td>11a</td>
</tr>
<tr>
<td>Radiated Emissions ≤1GHz</td>
<td>11a</td>
</tr>
<tr>
<td>Radiated Emissions >1GHz</td>
<td>11a</td>
</tr>
<tr>
<td></td>
<td>HT20</td>
</tr>
<tr>
<td>RF Output Power</td>
<td>11a</td>
</tr>
<tr>
<td>Emission Bandwidth</td>
<td></td>
</tr>
<tr>
<td>6dB bandwidth</td>
<td>HT20</td>
</tr>
<tr>
<td>Peak Power Spectral Density</td>
<td></td>
</tr>
<tr>
<td>Frequency Stability</td>
<td>Un-modulation</td>
</tr>
</tbody>
</table>

NOTE:
1. 3 types antenna are used for this device.
2. For original antennas, the highest gain antenna of each type is selected to perform related test item as below test configuration.
3. For additional antennas, the highest gain antenna is selected to perform all test items as configuration 4.
4. Test configurations are listed as below:
 1) Configuration 1: Dipole antenna with 2 dBi gain (Antenna No.1), Y-plane.
 2) Configuration 2: PCB Dipole antenna with 4 dBi gain (Antenna No.3), Y-plane
 3) Configuration 3: PIFA antenna with 3.5 dBi gain (Antenna No.6), Y-plane
 4) Configuration 4: Dipole antenna with 2.24 dBi gain (Antenna No.8), Y-plane
3 Transmitter Test Results
3.1 Conducted Emissions
3.1.1 Limit of Conducted Emissions

<table>
<thead>
<tr>
<th>Frequency Emission (MHz)</th>
<th>Quasi-Peak</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15-0.5</td>
<td>66 - 56 *</td>
<td>56 - 46 *</td>
</tr>
<tr>
<td>0.5-5</td>
<td>56</td>
<td>46</td>
</tr>
<tr>
<td>5-30</td>
<td>60</td>
<td>50</td>
</tr>
</tbody>
</table>

Note 1: * Decreases with the logarithm of the frequency.

3.1.2 Test Procedures
1. The device is placed on a test table, raised 80 cm above the reference ground plane. The vertical conducting plane is located 40 cm to the rear of the device.
2. The device is connected to line impedance stabilization network (LISN) and other accessories are connected to other LISN. Measured levels of AC power line conducted emission are across the 50 Ω LISN port.
3. AC conducted emission measurements is made over frequency range from 150 kHz to 30 MHz.
4. This measurement was performed with AC 120V / 60Hz.

3.1.3 Test Setup

Note: 1. Support units were connected to second LISN.
2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes.
Test Result of Conducted Emissions

<table>
<thead>
<tr>
<th>Modulation</th>
<th>11a</th>
<th>Test Freq. (MHz)</th>
<th>5825</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Phase</td>
<td>Line</td>
<td>Test Configuration</td>
<td>4</td>
</tr>
</tbody>
</table>

Table

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Level (dBuV)</th>
<th>Limit (dBuV)</th>
<th>Over Limit (dB)</th>
<th>Read (dBuV)</th>
<th>LISN cable (dB)</th>
<th>Level factor (dB)</th>
<th>Loss (dB)</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.150</td>
<td>0.150</td>
<td>37.83</td>
<td>36.00</td>
<td>18.17</td>
<td>37.68</td>
<td>0.07</td>
<td>0.08</td>
<td>Average</td>
</tr>
<tr>
<td>0.150</td>
<td>0.150</td>
<td>47.86</td>
<td>66.00</td>
<td>18.14</td>
<td>47.71</td>
<td>0.07</td>
<td>0.08</td>
<td>QP</td>
</tr>
<tr>
<td>0.204</td>
<td>0.204</td>
<td>31.66</td>
<td>53.45</td>
<td>21.59</td>
<td>31.70</td>
<td>0.07</td>
<td>0.09</td>
<td>Average</td>
</tr>
<tr>
<td>0.204</td>
<td>0.204</td>
<td>40.99</td>
<td>63.45</td>
<td>22.53</td>
<td>40.74</td>
<td>0.07</td>
<td>0.09</td>
<td>QP</td>
</tr>
<tr>
<td>0.356</td>
<td>0.356</td>
<td>30.12</td>
<td>48.83</td>
<td>18.71</td>
<td>25.94</td>
<td>0.07</td>
<td>0.11</td>
<td>Average</td>
</tr>
<tr>
<td>0.356</td>
<td>0.356</td>
<td>37.73</td>
<td>58.83</td>
<td>21.08</td>
<td>37.57</td>
<td>0.07</td>
<td>0.11</td>
<td>QP</td>
</tr>
<tr>
<td>0.480</td>
<td>0.480</td>
<td>39.46</td>
<td>46.24</td>
<td>18.90</td>
<td>39.27</td>
<td>0.07</td>
<td>0.12</td>
<td>Average</td>
</tr>
<tr>
<td>0.480</td>
<td>0.480</td>
<td>39.20</td>
<td>56.24</td>
<td>16.44</td>
<td>35.71</td>
<td>0.07</td>
<td>0.12</td>
<td>QP</td>
</tr>
<tr>
<td>1.904</td>
<td>1.904</td>
<td>21.84</td>
<td>46.00</td>
<td>24.16</td>
<td>21.51</td>
<td>0.10</td>
<td>0.23</td>
<td>Average</td>
</tr>
<tr>
<td>1.904</td>
<td>1.904</td>
<td>32.65</td>
<td>56.00</td>
<td>23.35</td>
<td>32.32</td>
<td>0.10</td>
<td>0.23</td>
<td>QP</td>
</tr>
<tr>
<td>5.757</td>
<td>5.757</td>
<td>19.25</td>
<td>50.00</td>
<td>30.75</td>
<td>18.74</td>
<td>0.21</td>
<td>0.30</td>
<td>Average</td>
</tr>
<tr>
<td>5.757</td>
<td>5.757</td>
<td>26.87</td>
<td>60.00</td>
<td>33.13</td>
<td>26.36</td>
<td>0.21</td>
<td>0.30</td>
<td>QP</td>
</tr>
</tbody>
</table>

Note 1: Level (dBuV) = Read Level (dBuV) + LISN Factor (dB) + Cable Loss (dB).

Note 2: Over Limit (dB) = Level (dBuV) – Limit Line (dBuV).
<table>
<thead>
<tr>
<th>Modulation</th>
<th>11a</th>
<th>Test Freq. (MHz)</th>
<th>5825</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Phase</td>
<td>Neutral</td>
<td>Test Configuration</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Level (dBuV)</th>
<th>Limit (dBuV)</th>
<th>Over Limit (dB)</th>
<th>Read Level (dBuV)</th>
<th>LISN Factor (dB)</th>
<th>Cable Loss (dB)</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.150</td>
<td>0.150</td>
<td>56.00</td>
<td>-18.88</td>
<td>36.97</td>
<td>0.07</td>
<td>0.08</td>
<td>Average</td>
</tr>
<tr>
<td>2.40</td>
<td>0.150</td>
<td>66.00</td>
<td>-18.52</td>
<td>47.33</td>
<td>0.07</td>
<td>0.08</td>
<td>Average</td>
</tr>
<tr>
<td>3.00</td>
<td>0.207</td>
<td>53.31</td>
<td>-19.97</td>
<td>33.10</td>
<td>0.07</td>
<td>0.09</td>
<td>Average</td>
</tr>
<tr>
<td>4.00</td>
<td>0.207</td>
<td>63.31</td>
<td>-21.64</td>
<td>41.51</td>
<td>0.07</td>
<td>0.09</td>
<td>Average</td>
</tr>
<tr>
<td>5.00</td>
<td>0.283</td>
<td>50.72</td>
<td>-23.84</td>
<td>26.86</td>
<td>0.07</td>
<td>0.10</td>
<td>Average</td>
</tr>
<tr>
<td>6.00</td>
<td>0.283</td>
<td>60.72</td>
<td>-23.02</td>
<td>35.59</td>
<td>0.07</td>
<td>0.10</td>
<td>Average</td>
</tr>
<tr>
<td>7.00</td>
<td>0.483</td>
<td>66.29</td>
<td>-22.15</td>
<td>33.95</td>
<td>0.07</td>
<td>0.12</td>
<td>Average</td>
</tr>
<tr>
<td>8.00</td>
<td>0.483</td>
<td>56.29</td>
<td>-21.27</td>
<td>34.93</td>
<td>0.07</td>
<td>0.12</td>
<td>Average</td>
</tr>
<tr>
<td>9.00</td>
<td>1.019</td>
<td>46.00</td>
<td>-23.68</td>
<td>19.99</td>
<td>0.10</td>
<td>0.23</td>
<td>Average</td>
</tr>
<tr>
<td>10.00</td>
<td>1.819</td>
<td>58.00</td>
<td>-24.96</td>
<td>33.04</td>
<td>0.10</td>
<td>0.28</td>
<td>Average</td>
</tr>
<tr>
<td>11.00</td>
<td>9.451</td>
<td>50.00</td>
<td>-23.72</td>
<td>26.78</td>
<td>0.22</td>
<td>0.30</td>
<td>Average</td>
</tr>
<tr>
<td>12.00</td>
<td>9.451</td>
<td>60.00</td>
<td>-27.88</td>
<td>31.12</td>
<td>0.22</td>
<td>0.30</td>
<td>Average</td>
</tr>
</tbody>
</table>

Note 1: Level (dBuV) = Read Level (dBuV) + LISN Factor (dB) + Cable Loss (dB).
Note 2: Over Limit (dB) = Level (dBuV) – Limit Line (dBuV).
3.2 Emission Bandwidth

3.2.1 Limit of Emission Bandwidth
The minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

3.2.2 Test Procedures

Occupied Bandwidth
1. Set RBW = 1 % to 5 % of the OBW
2. Set VBW ≥ 3 RBW
3. Sample detection and single sweep mode shall be used
4. Use the 99 % power bandwidth function of the instrument

6dB Bandwidth
1. Set RBW = 100 kHz, video bandwidth = 300 kHz
2. Detector = Peak, Trace mode = max hold, Sweep = auto couple, Allow the trace to stabilize
3. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission

3.2.3 Test Setup
3.2.4 Test Result of Emission Bandwidth

<table>
<thead>
<tr>
<th>Mode</th>
<th>N<sub>TX</sub></th>
<th>Freq. (MHz)</th>
<th>OBW Bandwidth (MHz)</th>
<th>6dB Bandwidth (MHz)</th>
<th>6dB BW Limit (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chain 0</td>
<td>Chain 1</td>
<td>Chain 2</td>
</tr>
<tr>
<td>11a</td>
<td>1</td>
<td>5745</td>
<td>16.77</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>11a</td>
<td>1</td>
<td>5785</td>
<td>17.17</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>11a</td>
<td>1</td>
<td>5825</td>
<td>18.09</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>HT20</td>
<td>1</td>
<td>5745</td>
<td>17.78</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>HT20</td>
<td>1</td>
<td>5785</td>
<td>18.26</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>HT20</td>
<td>1</td>
<td>5825</td>
<td>18.09</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Worst Plot of 99% Bandwidth

![Worst Plot of 99% Bandwidth](image1)

Worst Plot of 6dB Bandwidth

![Worst Plot of 6dB Bandwidth](image2)
3.3 RF Output Power

3.3.1 Limit of RF Output Power

The maximum conducted output power over the frequency band of operation shall not exceed 1 W.

3.3.2 Test Procedures

- Method PM-G (Measurement using a gated RF average power meter)
 - Measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.

3.3.3 Test Setup

![Test Setup Diagram]

3.3.4 Test Result of Maximum Conducted Output Power

<table>
<thead>
<tr>
<th>Mode</th>
<th>N_{TX}</th>
<th>Freq. (MHz)</th>
<th>Conducted Power (dBm)</th>
<th>Total Power (mW)</th>
<th>Total Power (dBm)</th>
<th>Limit (dBm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chain 0</td>
<td>Chain 1</td>
<td>Chain 2</td>
<td>Chain 3</td>
</tr>
<tr>
<td>11a</td>
<td>1</td>
<td>5745</td>
<td>15.89</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>11a</td>
<td>1</td>
<td>5785</td>
<td>18.45</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>11a</td>
<td>1</td>
<td>5825</td>
<td>18.62</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>HT20</td>
<td>1</td>
<td>5745</td>
<td>15.78</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>HT20</td>
<td>1</td>
<td>5785</td>
<td>18.58</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>HT20</td>
<td>1</td>
<td>5825</td>
<td>17.75</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
3.4 Peak Power Spectral Density

3.4.1 Limit of Peak Power Spectral Density

The maximum power spectral density shall not exceed 30 dBm in any 500 kHz band.

3.4.2 Test Procedures

☐ Method SA-1

1. Set RBW = 500 kHz, VBW = 2 MHz, Sweep time = auto, Detector = RMS.
2. Trace average 100 traces.
3. Use the peak marker function to determine the maximum amplitude level.

☐ Method SA-2 Alternative

1. Set RBW = 500 kHz, VBW = 2 MHz, Detector = RMS.
2. Set sweep time ≥ 10 * (number of points in sweep) * (total on/off period of the transmitted signal).
3. Perform a single sweep.
4. Use the peak marker function to determine the maximum amplitude level.
5. Add 10 log(1/x), where x is the duty cycle.

3.4.3 Test Setup
3.4.4 Test Result of Peak Power Spectral Density

<table>
<thead>
<tr>
<th>Modulation Mode</th>
<th>N_{tx}</th>
<th>Freq. (MHz)</th>
<th>PPSD w/o D.F. (dBm/500kHz)</th>
<th>PPSD Limit (dBm/500kHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11a</td>
<td>1</td>
<td>5745</td>
<td>1.26</td>
<td>30.00</td>
</tr>
<tr>
<td>11a</td>
<td>1</td>
<td>5785</td>
<td>4.72</td>
<td>30.00</td>
</tr>
<tr>
<td>11a</td>
<td>1</td>
<td>5825</td>
<td>5.37</td>
<td>30.00</td>
</tr>
<tr>
<td>HT20</td>
<td>1</td>
<td>5745</td>
<td>1.47</td>
<td>30.00</td>
</tr>
<tr>
<td>HT20</td>
<td>1</td>
<td>5785</td>
<td>4.54</td>
<td>30.00</td>
</tr>
<tr>
<td>HT20</td>
<td>1</td>
<td>5825</td>
<td>4.87</td>
<td>30.00</td>
</tr>
</tbody>
</table>

Note: D.F is duty factor.

Worst Plot

![Worst Plot Image]
3.5 Transmitter Radiated and Band Edge Emissions

3.5.1 Limit of Transmitter Radiated and Band Edge Emissions

<table>
<thead>
<tr>
<th>Restricted Band Emissions Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Range (MHz)</td>
</tr>
<tr>
<td>0.009~0.490</td>
</tr>
<tr>
<td>0.490~1.705</td>
</tr>
<tr>
<td>1.705~30.0</td>
</tr>
<tr>
<td>30~88</td>
</tr>
<tr>
<td>88~216</td>
</tr>
<tr>
<td>216~960</td>
</tr>
<tr>
<td>Above 960</td>
</tr>
</tbody>
</table>

Note 1:
Quasi-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit.

Note 2:
Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below. Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

<table>
<thead>
<tr>
<th>Un-restricted band emissions above 1GHz Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Band</td>
</tr>
<tr>
<td>5.15 - 5.25 GHz</td>
</tr>
<tr>
<td>5.25 - 5.35 GHz</td>
</tr>
<tr>
<td>5.47 - 5.725 GHz</td>
</tr>
<tr>
<td>5.725 - 5.850 GHz</td>
</tr>
</tbody>
</table>

Note 1: Measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).
3.5.2 Test Procedures

1. Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at test table. For emissions testing at or below 1 GHz, the table height is 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height is 1.5 m.

2. Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.

3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.

Note:
1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
2. RBW=1MHz, VBW=3MHz and Peak detector is for peak measured value of radiated emission above 1GHz.
3. RBW=1MHz, VBW=1/T and Peak detector is for average measured value of radiated emission above 1GHz.
3.5.3 Test Setup

Radiated Emissions below 1 GHz

![Diagram of Radiated Emissions below 1 GHz](image1)

Radiated Emissions above 1 GHz

![Diagram of Radiated Emissions above 1 GHz](image2)
3.5.4 Transmitter Radiated Unwanted Emissions (Below 1GHz)

<table>
<thead>
<tr>
<th>Modulation</th>
<th>11a</th>
<th>Test Freq. (MHz)</th>
<th>5825</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polarization</td>
<td>Horizontal</td>
<td>Test Configuration</td>
<td>1</td>
</tr>
</tbody>
</table>

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)
 *Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.
Modulation: 11a
Test Freq. (MHz): 5825
Polarization: Vertical
Test Configuration: 1

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)
*Factor includes antenna factor, cable loss and amplifier gain
Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).
Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.
<table>
<thead>
<tr>
<th>Modulation</th>
<th>11a</th>
<th>Test Freq. (MHz)</th>
<th>5825</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polarization</td>
<td>Horizontal</td>
<td>Test Configuration</td>
<td>2</td>
</tr>
</tbody>
</table>

![Graph showing emissions levels across frequency bands.](image)

<table>
<thead>
<tr>
<th>Freq.</th>
<th>Emission Level (dBµV/m)</th>
<th>Margin (dB)</th>
<th>SA Reading (dBµV/m)</th>
<th>Factor</th>
<th>Remark</th>
<th>ANT High</th>
<th>Table cm</th>
<th>Turn deg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>147.37</td>
<td>-11.50</td>
<td>43.50</td>
<td>49.04</td>
<td>-17.04</td>
<td>Peak</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>2</td>
<td>236.61</td>
<td>-13.32</td>
<td>46.00</td>
<td>50.96</td>
<td>-18.28</td>
<td>Peak</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>3</td>
<td>585.81</td>
<td>-12.04</td>
<td>43.79</td>
<td>-9.83</td>
<td>-5.93</td>
<td>Peak</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>4</td>
<td>697.36</td>
<td>-7.08</td>
<td>47.20</td>
<td>-8.28</td>
<td>-4.93</td>
<td>Peak</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>5</td>
<td>798.24</td>
<td>-7.73</td>
<td>45.20</td>
<td>-6.93</td>
<td>-5.93</td>
<td>Peak</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>6</td>
<td>953.44</td>
<td>-7.65</td>
<td>43.10</td>
<td>-4.75</td>
<td>-5.93</td>
<td>Peak</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Note 1: Emission Level (dBµV/m) = SA Reading (dBµV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBµV/m) – Limit (dBµV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.
<table>
<thead>
<tr>
<th>Modulation</th>
<th>11a</th>
<th>Test Freq. (MHz)</th>
<th>5825</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polarization</td>
<td>Vertical</td>
<td>Test Configuration</td>
<td>2</td>
</tr>
</tbody>
</table>

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)
*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

<table>
<thead>
<tr>
<th>Freq. (MHz)</th>
<th>Emission Level</th>
<th>Limit (dBuV/m)</th>
<th>Margin</th>
<th>SA Reading</th>
<th>Factor</th>
<th>Remark</th>
<th>ANT</th>
<th>Turn</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>187.14</td>
<td>37.28</td>
<td>43.50</td>
<td>-6.22</td>
<td>56.41</td>
<td>-19.13</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>2</td>
<td>211.39</td>
<td>41.44</td>
<td>43.50</td>
<td>-2.06</td>
<td>60.84</td>
<td>-19.40</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>3</td>
<td>236.61</td>
<td>41.88</td>
<td>46.00</td>
<td>-4.12</td>
<td>68.16</td>
<td>-18.28</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>4</td>
<td>261.83</td>
<td>41.25</td>
<td>46.00</td>
<td>-4.75</td>
<td>58.72</td>
<td>-17.47</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>5</td>
<td>286.08</td>
<td>38.38</td>
<td>46.00</td>
<td>-7.62</td>
<td>54.93</td>
<td>-16.55</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>6</td>
<td>311.30</td>
<td>34.76</td>
<td>46.00</td>
<td>-11.24</td>
<td>50.59</td>
<td>-15.83</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

FCC CLASS B
<table>
<thead>
<tr>
<th>Modulation</th>
<th>11a</th>
<th>Test Freq. (MHz)</th>
<th>5825</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polarization</td>
<td>Horizontal</td>
<td>Test Configuration</td>
<td>3</td>
</tr>
</tbody>
</table>

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)
*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).
Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.
<table>
<thead>
<tr>
<th>Modulation</th>
<th>11a</th>
<th>Test Freq. (MHz)</th>
<th>5825</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polarization</td>
<td>Vertical</td>
<td>Test Configuration</td>
<td>3</td>
</tr>
</tbody>
</table>

Graph:

- The graph shows the level (dBuV/m) against frequency (MHz).
- The FCC CLASS B limit is indicated.

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Emission Level (dBuV/m)</th>
<th>Margin (dB)</th>
<th>SA Reading (dBuV/m)</th>
<th>Factor (dB)</th>
<th>Remark</th>
<th>ANT Height (cm)</th>
<th>Table Turn (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>31.94</td>
<td>-11.01</td>
<td>46.74</td>
<td>-17.75</td>
<td>Peak</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>2</td>
<td>140.58</td>
<td>-7.17</td>
<td>53.74</td>
<td>-17.41</td>
<td>Peak</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>3</td>
<td>211.39</td>
<td>-10.97</td>
<td>51.93</td>
<td>-19.40</td>
<td>Peak</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>4</td>
<td>236.61</td>
<td>-13.21</td>
<td>51.87</td>
<td>-18.28</td>
<td>Peak</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>5</td>
<td>798.24</td>
<td>-5.32</td>
<td>47.61</td>
<td>-6.93</td>
<td>Peak</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>6</td>
<td>940.83</td>
<td>-4.87</td>
<td>45.97</td>
<td>-4.84</td>
<td>Peak</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Notes:

1. Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)
 *Factor includes antenna factor, cable loss and amplifier gain
2. Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).
3. All spurious emissions below 30MHz are more than 20 dB below the limit.
Modulation 11a
Test Freq. (MHz) 5825
Polarization Horizontal
Test Configuration 4

![Graph with frequency levels and labels](image)

<table>
<thead>
<tr>
<th>Freq. (MHz)</th>
<th>Emission Limit (dBuV/m)</th>
<th>Margin (dBuV/m)</th>
<th>SA Reading (dBuV)</th>
<th>Factor</th>
<th>Remark</th>
<th>ANT High</th>
<th>Turn Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>136.76</td>
<td>34.47</td>
<td>43.58</td>
<td>-9.03</td>
<td>Peak</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>2</td>
<td>161.88</td>
<td>40.26</td>
<td>43.58</td>
<td>-3.24</td>
<td>Peak</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>3</td>
<td>186.24</td>
<td>38.52</td>
<td>43.58</td>
<td>-4.98</td>
<td>Peak</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>4</td>
<td>511.19</td>
<td>35.15</td>
<td>46.80</td>
<td>-10.85</td>
<td>Peak</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>5</td>
<td>898.24</td>
<td>36.14</td>
<td>46.80</td>
<td>-9.86</td>
<td>Peak</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>6</td>
<td>953.42</td>
<td>38.78</td>
<td>46.80</td>
<td>-7.22</td>
<td>Peak</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)
*Factor includes antenna factor, cable loss and amplifier gain
Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).
Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.
<table>
<thead>
<tr>
<th>Modulation</th>
<th>11a</th>
<th>Test Freq. (MHz)</th>
<th>5825</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polarization</td>
<td>Vertical</td>
<td>Test Configuration</td>
<td>4</td>
</tr>
</tbody>
</table>

Graph

- **FCC CLASS B**

Table

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Emission Limit, dBuV/m</th>
<th>Margin, dB</th>
<th>SA Reading, dBuV/m</th>
<th>Factor, dB</th>
<th>Remark</th>
<th>ANT</th>
<th>Turn</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>36.75</td>
<td>-8.25</td>
<td>49.25</td>
<td>-17.50</td>
<td>Peak</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>2</td>
<td>161.83</td>
<td>-11.17</td>
<td>49.39</td>
<td>-17.06</td>
<td>Peak</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>3</td>
<td>186.13</td>
<td>-13.86</td>
<td>48.70</td>
<td>-19.06</td>
<td>Peak</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>4</td>
<td>364.62</td>
<td>-12.08</td>
<td>48.52</td>
<td>-14.60</td>
<td>Peak</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>5</td>
<td>585.83</td>
<td>-13.40</td>
<td>42.43</td>
<td>-9.83</td>
<td>Peak</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>6</td>
<td>797.27</td>
<td>-10.04</td>
<td>42.90</td>
<td>-6.94</td>
<td>Peak</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.
3.5.5 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 11a

<table>
<thead>
<tr>
<th>Modulation</th>
<th>11a</th>
<th>Test Freq. (MHz)</th>
<th>5745</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polarization</td>
<td>Horizontal</td>
<td>Test Configuration</td>
<td>1</td>
</tr>
</tbody>
</table>

![Graph showing emissions levels](image)

<table>
<thead>
<tr>
<th>Freq. Emission Limit level MHz</th>
<th>5715.00</th>
<th>5725.00</th>
<th>11490.00</th>
<th>11490.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limit (dBuV/m)</td>
<td>61.28</td>
<td>72.94</td>
<td>45.22</td>
<td>57.62</td>
</tr>
<tr>
<td>Margin (dBuV/m)</td>
<td>68.20</td>
<td>78.20</td>
<td>54.00</td>
<td>74.00</td>
</tr>
<tr>
<td>SA reading (dB)</td>
<td>-6.92</td>
<td>-5.26</td>
<td>-8.78</td>
<td>-16.38</td>
</tr>
<tr>
<td>Factor (dB)</td>
<td>54.58</td>
<td>66.23</td>
<td>29.00</td>
<td>41.40</td>
</tr>
<tr>
<td>Remark</td>
<td>Peak</td>
<td>Peak</td>
<td>Average</td>
<td>Peak</td>
</tr>
<tr>
<td>ANT table High cm</td>
<td>100</td>
<td>100</td>
<td>230</td>
<td>230</td>
</tr>
<tr>
<td>Turn Table cm</td>
<td>70</td>
<td>70</td>
<td>146</td>
<td>146</td>
</tr>
</tbody>
</table>

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)
*Factor includes antenna factor, cable loss and amplifier gain
Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).
<table>
<thead>
<tr>
<th>Modulation</th>
<th>Test Freq. (MHz)</th>
<th>Polarization</th>
<th>Test Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>11a</td>
<td>5745</td>
<td>Vertical</td>
<td>1</td>
</tr>
</tbody>
</table>

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)
*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).
Test Configuration 1

<table>
<thead>
<tr>
<th>Freq. (MHz)</th>
<th>Emission Limit (dBuV/m)</th>
<th>Margin (dB)</th>
<th>SA Reading (dBUV)</th>
<th>Factor (dB)</th>
<th>Remark</th>
<th>ANT High (cm)</th>
<th>Turn High (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5715.00</td>
<td>59.13</td>
<td>68.28</td>
<td>-9.07</td>
<td>Peak</td>
<td>100</td>
<td>58</td>
</tr>
<tr>
<td>2</td>
<td>5725.00</td>
<td>60.12</td>
<td>78.28</td>
<td>-18.08</td>
<td>Peak</td>
<td>100</td>
<td>58</td>
</tr>
<tr>
<td>3</td>
<td>11570.00</td>
<td>45.17</td>
<td>54.88</td>
<td>-8.83</td>
<td>Average</td>
<td>245</td>
<td>169</td>
</tr>
<tr>
<td>4</td>
<td>11570.00</td>
<td>57.33</td>
<td>74.00</td>
<td>-16.67</td>
<td>Peak</td>
<td>245</td>
<td>169</td>
</tr>
</tbody>
</table>

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).
<table>
<thead>
<tr>
<th>Modulation</th>
<th>11a</th>
<th>Test Freq. (MHz)</th>
<th>5785</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polarization</td>
<td>Vertical</td>
<td>Test Configuration</td>
<td>1</td>
</tr>
</tbody>
</table>

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).
<table>
<thead>
<tr>
<th>Modulation</th>
<th>11a</th>
<th>Test Freq. (MHz)</th>
<th>5825</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polarization</td>
<td>Horizontal</td>
<td>Test Configuration</td>
<td>1</td>
</tr>
</tbody>
</table>

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)
*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

![Graph showing level vs frequency]

<table>
<thead>
<tr>
<th>Freq.</th>
<th>Emission Limit</th>
<th>Margin</th>
<th>SA Reading</th>
<th>Factor</th>
<th>Remark</th>
<th>ANT Turn</th>
<th>High Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>level</td>
<td>MHz dBuV/m</td>
<td>dB</td>
<td>dBuV</td>
<td>dB</td>
<td></td>
<td>cm</td>
<td>deg</td>
</tr>
<tr>
<td>1</td>
<td>5850.00</td>
<td>71.89</td>
<td>78.28</td>
<td>-6.31</td>
<td>64.94</td>
<td>6.95</td>
<td>Peak</td>
</tr>
<tr>
<td>2</td>
<td>5860.00</td>
<td>49.33</td>
<td>54.00</td>
<td>-4.67</td>
<td>42.38</td>
<td>6.95</td>
<td>Average</td>
</tr>
<tr>
<td>3</td>
<td>5865.00</td>
<td>62.22</td>
<td>74.08</td>
<td>-11.88</td>
<td>55.17</td>
<td>6.95</td>
<td>Peak</td>
</tr>
<tr>
<td>4</td>
<td>11650.00</td>
<td>46.76</td>
<td>54.00</td>
<td>-7.24</td>
<td>38.74</td>
<td>16.02</td>
<td>Average</td>
</tr>
<tr>
<td>5</td>
<td>11650.00</td>
<td>58.81</td>
<td>74.00</td>
<td>-15.19</td>
<td>42.79</td>
<td>16.02</td>
<td>Peak</td>
</tr>
</tbody>
</table>
Table 1: Emission Levels

<table>
<thead>
<tr>
<th>Modulation</th>
<th>Test Freq. (MHz)</th>
<th>Polarization</th>
<th>Test Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>11a</td>
<td>5825</td>
<td>Vertical</td>
<td>1</td>
</tr>
</tbody>
</table>

Table Data

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Emission Level</th>
<th>Limit</th>
<th>Margin</th>
<th>SA Reading</th>
<th>Factor</th>
<th>Remark</th>
<th>ANT High</th>
<th>Turn Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>5850.00</td>
<td>77.09</td>
<td>78.20</td>
<td>-1.11</td>
<td>78.14</td>
<td>6.95</td>
<td>Peak</td>
<td>338</td>
<td>89</td>
</tr>
<tr>
<td>5860.00</td>
<td>52.98</td>
<td>54.00</td>
<td>-1.02</td>
<td>46.03</td>
<td>6.95</td>
<td>Average</td>
<td>338</td>
<td>89</td>
</tr>
<tr>
<td>5880.00</td>
<td>69.57</td>
<td>74.08</td>
<td>-4.43</td>
<td>62.62</td>
<td>6.95</td>
<td>Peak</td>
<td>338</td>
<td>89</td>
</tr>
<tr>
<td>11650.00</td>
<td>46.97</td>
<td>54.00</td>
<td>-7.03</td>
<td>38.95</td>
<td>16.02</td>
<td>Average</td>
<td>255</td>
<td>39</td>
</tr>
<tr>
<td>11650.00</td>
<td>38.69</td>
<td>74.00</td>
<td>-15.31</td>
<td>42.67</td>
<td>16.02</td>
<td>Peak</td>
<td>255</td>
<td>39</td>
</tr>
</tbody>
</table>

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)
*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).
Test Configuration

<table>
<thead>
<tr>
<th>Modulation</th>
<th>Test Freq. (MHz)</th>
<th>Polarization</th>
</tr>
</thead>
<tbody>
<tr>
<td>11a</td>
<td>5745</td>
<td>Horizontal</td>
</tr>
</tbody>
</table>

Note 1

Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2

Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m)

Table:

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Emission Level (dBuV/m)</th>
<th>Margin (dB)</th>
<th>SA Reading (dBuV)</th>
<th>Factor</th>
<th>Emission Limit (dBuV/m)</th>
<th>Remark</th>
<th>ANT Height</th>
<th>Table High</th>
<th>Turn Table deg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5715.00</td>
<td>60.12</td>
<td>68.20</td>
<td>-8.06</td>
<td>53.42</td>
<td>6.70</td>
<td>Peak</td>
<td>245</td>
<td>279</td>
</tr>
<tr>
<td>2</td>
<td>5725.00</td>
<td>67.88</td>
<td>78.20</td>
<td>-10.32</td>
<td>61.17</td>
<td>6.71</td>
<td>Peak</td>
<td>245</td>
<td>279</td>
</tr>
<tr>
<td>3</td>
<td>11490.00</td>
<td>44.56</td>
<td>54.08</td>
<td>-9.44</td>
<td>28.34</td>
<td>16.22</td>
<td>Average</td>
<td>210</td>
<td>163</td>
</tr>
<tr>
<td>4</td>
<td>11490.00</td>
<td>57.29</td>
<td>74.00</td>
<td>-16.71</td>
<td>41.07</td>
<td>16.22</td>
<td>Peak</td>
<td>210</td>
<td>163</td>
</tr>
<tr>
<td>Modulation</td>
<td>11a</td>
<td>Test Freq. (MHz)</td>
<td>5745</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-----</td>
<td>-----------------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polarization</td>
<td>Vertical</td>
<td>Test Configuration</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Emission Limit</th>
<th>Margin</th>
<th>SA Reading</th>
<th>Factor</th>
<th>Remark</th>
<th>ANT</th>
<th>Turn</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5715.00</td>
<td>67.09</td>
<td>68.20</td>
<td>-1.11</td>
<td>68.39</td>
<td>6.70</td>
<td>Peak</td>
</tr>
<tr>
<td>2</td>
<td>5725.00</td>
<td>77.19</td>
<td>78.20</td>
<td>-1.01</td>
<td>78.48</td>
<td>6.71</td>
<td>Peak</td>
</tr>
<tr>
<td>3</td>
<td>11490.00</td>
<td>45.12</td>
<td>54.08</td>
<td>-8.88</td>
<td>28.90</td>
<td>16.22</td>
<td>Average</td>
</tr>
<tr>
<td>4</td>
<td>11490.00</td>
<td>57.58</td>
<td>74.00</td>
<td>-16.42</td>
<td>41.36</td>
<td>16.22</td>
<td>Peak</td>
</tr>
</tbody>
</table>

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)
*Factor includes antenna factor, cable loss and amplifier gain
Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).
Modulation

<table>
<thead>
<tr>
<th>Modulation</th>
<th>11a</th>
</tr>
</thead>
</table>

Test Freq. (MHz)

<table>
<thead>
<tr>
<th>Test Freq. (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5785</td>
</tr>
</tbody>
</table>

Polarization

<table>
<thead>
<tr>
<th>Polarization</th>
<th>Horizontal</th>
</tr>
</thead>
</table>

Test Configuration

<table>
<thead>
<tr>
<th>Test Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

Diagram

![Graph showing frequency and emission level](image)

Table

<table>
<thead>
<tr>
<th>Freq. Emission Level</th>
<th>Limit</th>
<th>Margin</th>
<th>SA Reading</th>
<th>Factor</th>
<th>Remark</th>
<th>ANT</th>
<th>Turn</th>
</tr>
</thead>
<tbody>
<tr>
<td>MHz</td>
<td>dBuV/m</td>
<td>dBuV/m</td>
<td>dB</td>
<td>dB</td>
<td></td>
<td></td>
<td>cm</td>
</tr>
<tr>
<td>1</td>
<td>5715.00</td>
<td>58.13</td>
<td>68.20</td>
<td>-10.07</td>
<td>51.43</td>
<td>6.70</td>
<td>Peak</td>
</tr>
<tr>
<td>2</td>
<td>5725.00</td>
<td>59.46</td>
<td>78.20</td>
<td>-18.74</td>
<td>52.75</td>
<td>6.71</td>
<td>Peak</td>
</tr>
<tr>
<td>3</td>
<td>11570.00</td>
<td>45.76</td>
<td>54.88</td>
<td>-8.24</td>
<td>29.64</td>
<td>16.12</td>
<td>Average</td>
</tr>
<tr>
<td>4</td>
<td>11570.00</td>
<td>57.40</td>
<td>74.80</td>
<td>-16.60</td>
<td>41.28</td>
<td>16.12</td>
<td>Peak</td>
</tr>
</tbody>
</table>

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).
<table>
<thead>
<tr>
<th>Modulation</th>
<th>11a</th>
<th>Test Freq. (MHz)</th>
<th>5785</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polarization</td>
<td>Vertical</td>
<td>Test Configuration</td>
<td>2</td>
</tr>
</tbody>
</table>

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)
*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m)
<table>
<thead>
<tr>
<th>Modulation</th>
<th>Test Freq. (MHz)</th>
<th>Polarization</th>
<th>Test Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>11a</td>
<td>5825</td>
<td>Horizontal</td>
<td>2</td>
</tr>
</tbody>
</table>

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

<table>
<thead>
<tr>
<th>Freq. Emission level</th>
<th>Limit</th>
<th>Margin</th>
<th>SA Reading</th>
<th>Factor</th>
<th>Remark</th>
<th>ANT High</th>
<th>Table Turn</th>
</tr>
</thead>
<tbody>
<tr>
<td>MHz</td>
<td>dBuV/m</td>
<td>dB</td>
<td>dBuV</td>
<td>dB</td>
<td></td>
<td>cm</td>
<td>deg</td>
</tr>
<tr>
<td>1</td>
<td>5850.00</td>
<td>78.07</td>
<td>78.28</td>
<td>-7.33</td>
<td>63.92</td>
<td>6.95</td>
<td>Peak</td>
</tr>
<tr>
<td>2</td>
<td>5860.00</td>
<td>48.32</td>
<td>54.00</td>
<td>-5.68</td>
<td>41.37</td>
<td>6.95</td>
<td>Average</td>
</tr>
<tr>
<td>3</td>
<td>5860.00</td>
<td>69.96</td>
<td>74.08</td>
<td>-4.84</td>
<td>63.01</td>
<td>6.95</td>
<td>Peak</td>
</tr>
<tr>
<td>4</td>
<td>11650.00</td>
<td>45.12</td>
<td>54.00</td>
<td>-8.88</td>
<td>29.10</td>
<td>16.02</td>
<td>Average</td>
</tr>
<tr>
<td>5</td>
<td>11650.00</td>
<td>57.53</td>
<td>74.08</td>
<td>-16.47</td>
<td>41.51</td>
<td>16.02</td>
<td>Peak</td>
</tr>
<tr>
<td>Modulation</td>
<td>11a</td>
<td>Test Freq. (MHz)</td>
<td>5825</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-----</td>
<td>-----------------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polarization</td>
<td>Vertical</td>
<td>Test Configuration</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)
*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).
Modulation: 11a
Test Freq. (MHz): 5745

Polarization: Horizontal
Test Configuration: 3

Table: Emission Level and Margin

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Emission Level (dBuV/m)</th>
<th>Limit (dBuV/m)</th>
<th>Margin (dB)</th>
<th>SA Reading (dBuV)</th>
<th>Factor (dB)</th>
<th>Remark</th>
<th>ANT High (cm)</th>
<th>Turn Table (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5715.00</td>
<td>51.29</td>
<td>54.00</td>
<td>-2.71</td>
<td>44.59</td>
<td>6.70</td>
<td>Average</td>
<td>101</td>
</tr>
<tr>
<td>2</td>
<td>5715.00</td>
<td>68.28</td>
<td>74.00</td>
<td>-5.72</td>
<td>61.58</td>
<td>6.70</td>
<td>Peak</td>
<td>101</td>
</tr>
<tr>
<td>3</td>
<td>5725.00</td>
<td>76.37</td>
<td>78.28</td>
<td>-1.83</td>
<td>69.66</td>
<td>6.71</td>
<td>Peak</td>
<td>101</td>
</tr>
<tr>
<td>4</td>
<td>11490.00</td>
<td>44.89</td>
<td>54.00</td>
<td>-9.11</td>
<td>28.67</td>
<td>16.22</td>
<td>Average</td>
<td>281</td>
</tr>
<tr>
<td>5</td>
<td>11490.00</td>
<td>57.73</td>
<td>74.00</td>
<td>-16.27</td>
<td>41.51</td>
<td>16.22</td>
<td>Peak</td>
<td>281</td>
</tr>
</tbody>
</table>

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).
<table>
<thead>
<tr>
<th>Modulation</th>
<th>11a</th>
<th>Test Freq. (MHz)</th>
<th>5745</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polarization</td>
<td>Vertical</td>
<td>Test Configuration</td>
<td>3</td>
</tr>
</tbody>
</table>

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).
<table>
<thead>
<tr>
<th>Modulation</th>
<th>11a</th>
<th>Test Freq. (MHz)</th>
<th>5785</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polarization</td>
<td>Horizontal</td>
<td>Test Configuration</td>
<td>3</td>
</tr>
</tbody>
</table>

![Graph showing emission levels and margin calculation](image)

<table>
<thead>
<tr>
<th>Freq. Emission Limit</th>
<th>Margin</th>
<th>SA Reading</th>
<th>Factor</th>
<th>Remark</th>
<th>AN</th>
<th>Turn</th>
</tr>
</thead>
<tbody>
<tr>
<td>MHz</td>
<td>dBuV/m</td>
<td>dB</td>
<td>dBuV</td>
<td>dB</td>
<td>cm</td>
<td>cm</td>
</tr>
<tr>
<td>1</td>
<td>5715.00</td>
<td>60.92</td>
<td>68.20</td>
<td>-7.28</td>
<td>54.22</td>
<td>6.70</td>
</tr>
<tr>
<td>2</td>
<td>5725.00</td>
<td>61.09</td>
<td>78.20</td>
<td>-17.11</td>
<td>54.38</td>
<td>6.71</td>
</tr>
<tr>
<td>3</td>
<td>5850.00</td>
<td>60.82</td>
<td>78.20</td>
<td>-17.28</td>
<td>53.87</td>
<td>6.95</td>
</tr>
<tr>
<td>4</td>
<td>5860.00</td>
<td>60.43</td>
<td>68.20</td>
<td>-7.77</td>
<td>53.48</td>
<td>6.95</td>
</tr>
<tr>
<td>5</td>
<td>11570.00</td>
<td>45.45</td>
<td>54.00</td>
<td>-8.55</td>
<td>29.33</td>
<td>16.12</td>
</tr>
<tr>
<td>6</td>
<td>11570.00</td>
<td>58.11</td>
<td>74.00</td>
<td>-15.89</td>
<td>41.99</td>
<td>16.12</td>
</tr>
</tbody>
</table>

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss, and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).
<table>
<thead>
<tr>
<th>Modulation</th>
<th>Test Freq. (MHz)</th>
<th>(5785)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polarization</td>
<td>Test Configuration</td>
<td>(3)</td>
</tr>
</tbody>
</table>

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).
<table>
<thead>
<tr>
<th>Modulation</th>
<th>11a</th>
<th>Test Freq. (MHz)</th>
<th>5825</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polarization</td>
<td>Horizontal</td>
<td>Test Configuration</td>
<td>3</td>
</tr>
</tbody>
</table>

Test Configuration 3

Level (dBuV/m)

Frequency (MHz)

<table>
<thead>
<tr>
<th>Freq.</th>
<th>Emission level</th>
<th>Limit</th>
<th>Margin</th>
<th>SA Reading</th>
<th>Factor</th>
<th>Remark</th>
<th>ANT</th>
<th>Turn</th>
</tr>
</thead>
<tbody>
<tr>
<td>MHz</td>
<td>dBuV/m</td>
<td>dBuV/m</td>
<td>dB</td>
<td>dBuV</td>
<td>dB</td>
<td></td>
<td>cm</td>
<td>deg</td>
</tr>
<tr>
<td>1</td>
<td>5850.00</td>
<td>76.72</td>
<td>78.20</td>
<td>-1.48</td>
<td>69.77</td>
<td>6.95</td>
<td>Peak</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>5860.00</td>
<td>52.20</td>
<td>54.00</td>
<td>-1.80</td>
<td>45.25</td>
<td>6.95</td>
<td>Average</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>5880.00</td>
<td>67.76</td>
<td>74.08</td>
<td>-6.24</td>
<td>68.81</td>
<td>6.95</td>
<td>Peak</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>11650.00</td>
<td>46.33</td>
<td>54.00</td>
<td>-7.67</td>
<td>38.31</td>
<td>16.02</td>
<td>Average</td>
<td>281</td>
</tr>
<tr>
<td>5</td>
<td>11650.00</td>
<td>58.79</td>
<td>74.00</td>
<td>-15.21</td>
<td>42.77</td>
<td>16.02</td>
<td>Peak</td>
<td>281</td>
</tr>
</tbody>
</table>

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)
*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).
Modulation 11a
Polarization Vertical
Test Freq. (MHz) 5825
Test Configuration 3

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Emission Level (dBuV/m)</th>
<th>Limit (dBuV/m)</th>
<th>Margin (dB)</th>
<th>SA Reading (dBuV)</th>
<th>Factor (dB)</th>
<th>Remark</th>
<th>ANTH (cm)</th>
<th>Table (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5850.00</td>
<td>72.35</td>
<td>78.20</td>
<td>-5.35</td>
<td>65.90</td>
<td>6.95</td>
<td>Peak</td>
<td>224</td>
<td>280</td>
</tr>
<tr>
<td>5860.00</td>
<td>49.57</td>
<td>54.00</td>
<td>-4.43</td>
<td>42.62</td>
<td>6.95</td>
<td>Average</td>
<td>224</td>
<td>280</td>
</tr>
<tr>
<td>5880.00</td>
<td>64.86</td>
<td>74.00</td>
<td>-9.94</td>
<td>57.11</td>
<td>6.95</td>
<td>Peak</td>
<td>224</td>
<td>280</td>
</tr>
<tr>
<td>11650.00</td>
<td>45.03</td>
<td>54.00</td>
<td>-8.97</td>
<td>29.01</td>
<td>16.02</td>
<td>Average</td>
<td>261</td>
<td>368</td>
</tr>
<tr>
<td>11650.00</td>
<td>57.92</td>
<td>74.00</td>
<td>-16.08</td>
<td>41.90</td>
<td>16.02</td>
<td>Peak</td>
<td>261</td>
<td>368</td>
</tr>
</tbody>
</table>

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)
*Factor includes antenna factor, cable loss and amplifier gain
Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).
<table>
<thead>
<tr>
<th>Modulation</th>
<th>11a</th>
<th>Test Freq. (MHz)</th>
<th>5745</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polarization</td>
<td>Horizontal</td>
<td>Test Configuration</td>
<td>4</td>
</tr>
</tbody>
</table>

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).
Modulation: 11a
Test Freq. (MHz): 5745
Polarization: Vertical
Test Configuration: 4

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)
*Factor includes antenna factor, cable loss and amplifier gain
Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).
<table>
<thead>
<tr>
<th>Modulation</th>
<th>11a</th>
<th>Test Freq. (MHz)</th>
<th>5785</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polarization</td>
<td>Horizontal</td>
<td>Test Configuration</td>
<td>4</td>
</tr>
</tbody>
</table>

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)
*Factor includes antenna factor, cable loss and amplifier gain
Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).
Modulation: 11a
Test Freq. (MHz): 5785
Polarization: Vertical
Test Configuration: 4

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)
*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).
<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Emission Limit</th>
<th>Margin</th>
<th>SA Reading</th>
<th>Factor</th>
<th>Remark</th>
<th>ANT High</th>
<th>Turn Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>5850.00</td>
<td>74.68</td>
<td>78.28</td>
<td>-3.52</td>
<td>67.73</td>
<td>6.95</td>
<td>Peak</td>
<td>100</td>
</tr>
<tr>
<td>5860.00</td>
<td>63.76</td>
<td>68.28</td>
<td>-4.44</td>
<td>56.81</td>
<td>6.95</td>
<td>Peak</td>
<td>100</td>
</tr>
<tr>
<td>11650.00</td>
<td>44.67</td>
<td>54.08</td>
<td>-9.33</td>
<td>28.65</td>
<td>16.02</td>
<td>Average</td>
<td>100</td>
</tr>
<tr>
<td>11650.00</td>
<td>56.62</td>
<td>74.00</td>
<td>-17.38</td>
<td>40.60</td>
<td>16.02</td>
<td>Peak</td>
<td>100</td>
</tr>
</tbody>
</table>

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)
*Factor includes antenna factor, cable loss and amplifier gain
Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).
<table>
<thead>
<tr>
<th>Modulation</th>
<th>Test Freq. (MHz)</th>
<th>11a</th>
<th>5825</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polarization</td>
<td>Test Configuration</td>
<td>Vertical</td>
<td>4</td>
</tr>
</tbody>
</table>

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)
*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).
3.5.6 Transmitter Radiated Unwanted Emissions (Above 1GHz) for HT20

<table>
<thead>
<tr>
<th>Modulation</th>
<th>HT20</th>
<th>Test Freq. (MHz)</th>
<th>5745</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polarization</td>
<td>Horizontal</td>
<td>Test Configuration</td>
<td>1</td>
</tr>
</tbody>
</table>

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)
*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

![Graph showing radiated emissions](image)

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Emission Level (dBuV/m)</th>
<th>Limit (dBuV/m)</th>
<th>Margin (dB)</th>
<th>SA Reading (dBuV/m)</th>
<th>Factor</th>
<th>Remark</th>
<th>ANT High Table cm</th>
<th>Turn deg</th>
</tr>
</thead>
<tbody>
<tr>
<td>5715.00</td>
<td>62.84</td>
<td>68.20</td>
<td>-5.36</td>
<td>56.14</td>
<td>6.70</td>
<td>Peak</td>
<td>100</td>
<td>44</td>
</tr>
<tr>
<td>5725.00</td>
<td>73.18</td>
<td>78.20</td>
<td>-5.02</td>
<td>66.47</td>
<td>6.71</td>
<td>Peak</td>
<td>100</td>
<td>44</td>
</tr>
<tr>
<td>11490.00</td>
<td>44.97</td>
<td>54.00</td>
<td>-9.03</td>
<td>28.75</td>
<td>16.22</td>
<td>Average</td>
<td>240</td>
<td>166</td>
</tr>
<tr>
<td>11490.00</td>
<td>57.32</td>
<td>74.00</td>
<td>-16.68</td>
<td>41.10</td>
<td>16.22</td>
<td>Peak</td>
<td>240</td>
<td>166</td>
</tr>
<tr>
<td>Modulation</td>
<td>HT20</td>
<td>Test Freq. (MHz)</td>
<td>5745</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>------</td>
<td>-----------------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polarization</td>
<td>Vertical</td>
<td>Test Configuration</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)
*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).
<table>
<thead>
<tr>
<th>Modulation</th>
<th>HT20</th>
<th>Test Freq. (MHz)</th>
<th>5785</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polarization</td>
<td>Horizontal</td>
<td>Test Configuration</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Emission Limit (dBuV/m)</th>
<th>Margin (dB)</th>
<th>SA Reading (dBuV)</th>
<th>Factor (dB)</th>
<th>Remark</th>
<th>ANT</th>
<th>Turn</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5715.00</td>
<td>59.28</td>
<td>68.28</td>
<td>-8.92</td>
<td>52.58</td>
<td>6.70</td>
<td>Peak</td>
</tr>
<tr>
<td>2</td>
<td>5725.00</td>
<td>60.32</td>
<td>78.28</td>
<td>-17.88</td>
<td>53.61</td>
<td>6.71</td>
<td>Peak</td>
</tr>
<tr>
<td>3</td>
<td>11570.00</td>
<td>44.98</td>
<td>54.88</td>
<td>-9.02</td>
<td>28.86</td>
<td>16.12</td>
<td>Average</td>
</tr>
<tr>
<td>4</td>
<td>11570.00</td>
<td>57.12</td>
<td>74.00</td>
<td>-16.88</td>
<td>41.00</td>
<td>16.12</td>
<td>Peak</td>
</tr>
</tbody>
</table>

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)
*Factor includes antenna factor, cable loss and amplifier gain
Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).
<table>
<thead>
<tr>
<th>Modulation</th>
<th>Test Freq. (MHz)</th>
<th>Polarization</th>
<th>Test Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT20</td>
<td>5785</td>
<td>Vertical</td>
<td>1</td>
</tr>
</tbody>
</table>

Graph

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Emission Limit (dBuV/m)</th>
<th>Margin (dB)</th>
<th>SA Reading (dBuV)</th>
<th>Factor (dB)</th>
<th>Remark</th>
<th>High Turn</th>
</tr>
</thead>
<tbody>
<tr>
<td>5751.5</td>
<td>58.38</td>
<td>-9.82</td>
<td>51.68</td>
<td>6.70</td>
<td>Peak</td>
<td>336</td>
</tr>
<tr>
<td></td>
<td>5750.0</td>
<td>-18.92</td>
<td>52.57</td>
<td>6.71</td>
<td>Peak</td>
<td>336</td>
</tr>
<tr>
<td>6170.0</td>
<td>46.15</td>
<td>-7.85</td>
<td>48.93</td>
<td>16.12</td>
<td>Average</td>
<td>227</td>
</tr>
<tr>
<td>6157.0</td>
<td>58.87</td>
<td>-15.13</td>
<td>42.75</td>
<td>16.12</td>
<td>Peak</td>
<td>227</td>
</tr>
</tbody>
</table>
Modulation | HT20 | Test Freq. (MHz) | 5825 |
---|---|---|---|
Polarization | Horizontal | Test Configuration | 1 |

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Emission level</th>
<th>Limit</th>
<th>Margin</th>
<th>SA reading</th>
<th>Factor</th>
<th>Remark</th>
<th>ANT High Table</th>
<th>Turn cm</th>
<th>Turn deg</th>
</tr>
</thead>
<tbody>
<tr>
<td>5850.00</td>
<td>71.93</td>
<td>78.28</td>
<td>-6.27</td>
<td>64.98</td>
<td>6.95</td>
<td>Peak</td>
<td>104</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>5860.00</td>
<td>49.28</td>
<td>54.08</td>
<td>-4.72</td>
<td>42.33</td>
<td>6.95</td>
<td>Average</td>
<td>104</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>5880.00</td>
<td>61.96</td>
<td>74.08</td>
<td>-12.04</td>
<td>55.81</td>
<td>6.95</td>
<td>Peak</td>
<td>104</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>11650.00</td>
<td>45.97</td>
<td>54.08</td>
<td>-8.03</td>
<td>29.95</td>
<td>16.02</td>
<td>Average</td>
<td>222</td>
<td>166</td>
<td></td>
</tr>
<tr>
<td>11650.00</td>
<td>58.19</td>
<td>74.08</td>
<td>-15.81</td>
<td>42.17</td>
<td>16.02</td>
<td>Peak</td>
<td>222</td>
<td>166</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)
*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).
<table>
<thead>
<tr>
<th>Modulation</th>
<th>HT20</th>
<th>Test Freq. (MHz)</th>
<th>5825</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polarization</td>
<td>Vertical</td>
<td>Test Configuration</td>
<td>1</td>
</tr>
</tbody>
</table>

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).
<table>
<thead>
<tr>
<th>Modulation</th>
<th>HT20</th>
<th>Test Freq. (MHz)</th>
<th>5745</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polarization</td>
<td>Horizontal</td>
<td>Test Configuration</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Emission Level (dBuV/m)</th>
<th>Limit (dBuV/m)</th>
<th>Margin (dB)</th>
<th>SA Reading (dBuV)</th>
<th>Factor (dB)</th>
<th>Remark</th>
<th>ANT High (cm)</th>
<th>Turn Table (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5715.00</td>
<td>60.00</td>
<td>68.20</td>
<td>-8.20</td>
<td>53.30</td>
<td>6.70</td>
<td>Peak</td>
<td>250</td>
<td>288</td>
</tr>
<tr>
<td>5725.00</td>
<td>68.67</td>
<td>78.20</td>
<td>-9.53</td>
<td>61.96</td>
<td>6.71</td>
<td>Peak</td>
<td>250</td>
<td>288</td>
</tr>
<tr>
<td>11490.00</td>
<td>44.20</td>
<td>54.88</td>
<td>-9.88</td>
<td>27.98</td>
<td>16.22</td>
<td>Average</td>
<td>178</td>
<td>350</td>
</tr>
<tr>
<td>11490.00</td>
<td>57.09</td>
<td>74.00</td>
<td>-16.91</td>
<td>48.87</td>
<td>16.22</td>
<td>Peak</td>
<td>178</td>
<td>350</td>
</tr>
</tbody>
</table>

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)
*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).
Table:

<table>
<thead>
<tr>
<th>Modulation</th>
<th>Test Freq. (MHz)</th>
<th>Polarization</th>
<th>Test Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT20</td>
<td>5745</td>
<td>Vertical</td>
<td>2</td>
</tr>
</tbody>
</table>

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)
*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).
Modulation | HT20 | **Test Freq. (MHz)** | 5785 | **Polarization** | Horizontal | **Test Configuration** | 2

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)
*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).
Table of Emission Levels

<table>
<thead>
<tr>
<th>Modulation</th>
<th>Test Freq. (MHz)</th>
<th>Polarization</th>
<th>Test Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT20</td>
<td>5785</td>
<td>Vertical</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Emission Level (dBuV/m)</th>
<th>Limit (dBuV/m)</th>
<th>Margin (dB)</th>
<th>SA Reading (dBuV)</th>
<th>Factor (dB)</th>
<th>Remark</th>
<th>ANT High (cm)</th>
<th>Turn Table (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5715.00</td>
<td>59.87</td>
<td>68.20</td>
<td>-8.33</td>
<td>53.17</td>
<td>6.70</td>
<td>Peak</td>
<td>186</td>
</tr>
<tr>
<td>2</td>
<td>5725.00</td>
<td>60.09</td>
<td>78.20</td>
<td>-18.11</td>
<td>53.38</td>
<td>6.71</td>
<td>Peak</td>
<td>186</td>
</tr>
<tr>
<td>3</td>
<td>11570.00</td>
<td>46.76</td>
<td>54.88</td>
<td>-7.24</td>
<td>38.64</td>
<td>16.12</td>
<td>Average</td>
<td>176</td>
</tr>
<tr>
<td>4</td>
<td>11570.00</td>
<td>58.87</td>
<td>74.80</td>
<td>-15.13</td>
<td>42.75</td>
<td>16.12</td>
<td>Peak</td>
<td>176</td>
</tr>
</tbody>
</table>

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain.

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).
<table>
<thead>
<tr>
<th>Modulation</th>
<th>HT20</th>
<th>Test Freq. (MHz)</th>
<th>5825</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polarization</td>
<td>Horizontal</td>
<td>Test Configuration</td>
<td>2</td>
</tr>
</tbody>
</table>

![Graph showing Emission Levels and Test Configuration]

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Emission Level (dBuV/m)</th>
<th>Limit (dBuV/m)</th>
<th>Margin (dB)</th>
<th>SA Reading (dBuV)</th>
<th>Factor (dB)</th>
<th>Remark</th>
<th>ANT High</th>
<th>Turn Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5850.00</td>
<td>72.12</td>
<td>78.28</td>
<td>-6.08</td>
<td>65.17</td>
<td>6.95</td>
<td>Peak</td>
<td>262</td>
</tr>
<tr>
<td>2</td>
<td>5860.00</td>
<td>48.06</td>
<td>54.08</td>
<td>-5.94</td>
<td>41.11</td>
<td>6.95</td>
<td>Average</td>
<td>262</td>
</tr>
<tr>
<td>3</td>
<td>5880.00</td>
<td>63.13</td>
<td>74.08</td>
<td>-10.87</td>
<td>56.18</td>
<td>6.95</td>
<td>Peak</td>
<td>262</td>
</tr>
<tr>
<td>4</td>
<td>11650.00</td>
<td>44.89</td>
<td>54.08</td>
<td>-9.11</td>
<td>28.87</td>
<td>16.02</td>
<td>Average</td>
<td>220</td>
</tr>
<tr>
<td>5</td>
<td>11650.00</td>
<td>57.18</td>
<td>74.08</td>
<td>-16.82</td>
<td>41.16</td>
<td>16.02</td>
<td>Peak</td>
<td>220</td>
</tr>
</tbody>
</table>

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)
*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).
Modulation: HT20
Test Freq. (MHz): 5825

Polarization: Vertical
Test Configuration: 2

<table>
<thead>
<tr>
<th>Freq.</th>
<th>Emission Limit</th>
<th>Margin</th>
<th>SA Reading</th>
<th>Factor</th>
<th>Remark</th>
<th>ANT</th>
<th>Turn</th>
</tr>
</thead>
<tbody>
<tr>
<td>MHz</td>
<td>dBuV/m</td>
<td>dB</td>
<td>dBuV</td>
<td>dB</td>
<td></td>
<td>cm</td>
<td>deg</td>
</tr>
<tr>
<td>1</td>
<td>5850.00</td>
<td>75.13</td>
<td>78.20</td>
<td>-3.07</td>
<td>68.18</td>
<td>6.95</td>
<td>Peak</td>
</tr>
<tr>
<td>2</td>
<td>5860.00</td>
<td>52.64</td>
<td>54.80</td>
<td>-1.36</td>
<td>45.69</td>
<td>6.95</td>
<td>Average</td>
</tr>
<tr>
<td>3</td>
<td>5880.00</td>
<td>70.12</td>
<td>74.88</td>
<td>-3.88</td>
<td>63.17</td>
<td>6.95</td>
<td>Peak</td>
</tr>
<tr>
<td>4</td>
<td>11650.00</td>
<td>45.67</td>
<td>54.00</td>
<td>-8.33</td>
<td>29.65</td>
<td>16.02</td>
<td>Average</td>
</tr>
<tr>
<td>5</td>
<td>11650.00</td>
<td>58.11</td>
<td>74.00</td>
<td>-15.89</td>
<td>42.09</td>
<td>16.02</td>
<td>Peak</td>
</tr>
</tbody>
</table>

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)
*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).
<table>
<thead>
<tr>
<th>Modulation</th>
<th>HT20</th>
<th>Test Freq. (MHz)</th>
<th>5745</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polarization</td>
<td>Horizontal</td>
<td>Test Configuration</td>
<td>3</td>
</tr>
</tbody>
</table>

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor*(dB)
*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).
<table>
<thead>
<tr>
<th>Modulation</th>
<th>HT20</th>
<th>Test Freq. (MHz)</th>
<th>5745</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polarization</td>
<td>Vertical</td>
<td>Test Configuration</td>
<td>3</td>
</tr>
</tbody>
</table>

![Graph showing level (dBuV/m) vs. Frequency (MHz)]

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Emission Level (dBuV/m)</th>
<th>Limit (dBuV/m)</th>
<th>Margin (dB)</th>
<th>SA Reading (dBuV)</th>
<th>Factor (dB)</th>
<th>Remark</th>
<th>ANT High Table cm</th>
<th>Turn cm/deg</th>
</tr>
</thead>
<tbody>
<tr>
<td>5715.00</td>
<td>49.24</td>
<td>54.00</td>
<td>-4.76</td>
<td>42.54</td>
<td>6.70</td>
<td>Average</td>
<td>241</td>
<td>273</td>
</tr>
<tr>
<td>5715.00</td>
<td>64.08</td>
<td>74.00</td>
<td>-9.92</td>
<td>57.38</td>
<td>6.70</td>
<td>Peak</td>
<td>241</td>
<td>273</td>
</tr>
<tr>
<td>5725.00</td>
<td>73.48</td>
<td>78.28</td>
<td>-4.72</td>
<td>66.77</td>
<td>6.71</td>
<td>Peak</td>
<td>241</td>
<td>273</td>
</tr>
<tr>
<td>11490.00</td>
<td>44.29</td>
<td>54.00</td>
<td>-9.71</td>
<td>28.07</td>
<td>16.22</td>
<td>Average</td>
<td>265</td>
<td>309</td>
</tr>
<tr>
<td>11490.00</td>
<td>56.88</td>
<td>74.00</td>
<td>-17.12</td>
<td>40.66</td>
<td>16.22</td>
<td>Peak</td>
<td>265</td>
<td>309</td>
</tr>
</tbody>
</table>

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)
*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).
<table>
<thead>
<tr>
<th>Modulation</th>
<th>HT20</th>
<th>Test Freq. (MHz)</th>
<th>5785</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polarization</td>
<td>Horizontal</td>
<td>Test Configuration</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Emission Limit (dBuV/m)</th>
<th>Margin (dB)</th>
<th>SA Reading (dBuV/m)</th>
<th>SA Factor (dB)</th>
<th>Remark</th>
<th>ANT High (cm)</th>
<th>Turn Table (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5715.00</td>
<td>61.38</td>
<td>68.28</td>
<td>-6.82</td>
<td>54.68</td>
<td>6.70</td>
<td>Peak</td>
</tr>
<tr>
<td>2</td>
<td>5725.00</td>
<td>61.51</td>
<td>78.28</td>
<td>-16.69</td>
<td>54.80</td>
<td>6.71</td>
<td>Peak</td>
</tr>
<tr>
<td>3</td>
<td>5850.00</td>
<td>61.24</td>
<td>78.28</td>
<td>-16.96</td>
<td>54.29</td>
<td>6.95</td>
<td>Peak</td>
</tr>
<tr>
<td>4</td>
<td>5860.00</td>
<td>60.72</td>
<td>68.28</td>
<td>-7.48</td>
<td>53.77</td>
<td>6.95</td>
<td>Peak</td>
</tr>
<tr>
<td>5</td>
<td>11570.00</td>
<td>45.12</td>
<td>54.00</td>
<td>-8.88</td>
<td>29.00</td>
<td>16.12</td>
<td>Average</td>
</tr>
<tr>
<td>6</td>
<td>11570.00</td>
<td>57.74</td>
<td>74.00</td>
<td>-16.26</td>
<td>41.62</td>
<td>16.12</td>
<td>Peak</td>
</tr>
</tbody>
</table>

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)
*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).
Modulation and Test Configuration

<table>
<thead>
<tr>
<th>Modulation</th>
<th>HT20</th>
<th>Test Freq. (MHz)</th>
<th>5785</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polarization</td>
<td>Vertical</td>
<td>Test Configuration</td>
<td>3</td>
</tr>
</tbody>
</table>

Emission Levels and Margin

<table>
<thead>
<tr>
<th>Freq. (MHz)</th>
<th>Emission Limit (dBuV/m)</th>
<th>Margin (dB)</th>
<th>SA Reading (dBuV/m)</th>
<th>Factor (dB)</th>
<th>Remark</th>
<th>ANT</th>
<th>Turn</th>
<th>High</th>
<th>Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5715.00</td>
<td>-7.00</td>
<td>54.50</td>
<td>6.70</td>
<td>Peak</td>
<td>196</td>
<td>287</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5725.00</td>
<td>-16.60</td>
<td>54.89</td>
<td>6.71</td>
<td>Peak</td>
<td>196</td>
<td>287</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5850.00</td>
<td>-17.06</td>
<td>54.19</td>
<td>6.95</td>
<td>Peak</td>
<td>196</td>
<td>287</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5860.00</td>
<td>-7.40</td>
<td>53.85</td>
<td>6.95</td>
<td>Peak</td>
<td>196</td>
<td>287</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>11570.00</td>
<td>-9.79</td>
<td>28.09</td>
<td>16.12</td>
<td>Average</td>
<td>270</td>
<td>313</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>11570.00</td>
<td>-16.94</td>
<td>40.94</td>
<td>16.12</td>
<td>Peak</td>
<td>270</td>
<td>313</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m)
<table>
<thead>
<tr>
<th>Modulation</th>
<th>HT20</th>
<th>Test Freq. (MHz)</th>
<th>5825</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polarization</td>
<td>Horizontal</td>
<td>Test Configuration</td>
<td>3</td>
</tr>
</tbody>
</table>

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)
*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Graph and Table:

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Emission level</th>
<th>Margin</th>
<th>SA reading</th>
<th>Factor</th>
<th>Remarks</th>
<th>ANT</th>
<th>Turn</th>
</tr>
</thead>
<tbody>
<tr>
<td>5850.00</td>
<td>76.11</td>
<td>78.20</td>
<td>-2.09</td>
<td>69.16</td>
<td>6.95</td>
<td>Peak</td>
<td>100</td>
</tr>
<tr>
<td>5860.00</td>
<td>51.92</td>
<td>54.00</td>
<td>-2.08</td>
<td>44.97</td>
<td>6.95</td>
<td>Average</td>
<td>100</td>
</tr>
<tr>
<td>5880.00</td>
<td>69.99</td>
<td>74.08</td>
<td>-4.01</td>
<td>63.84</td>
<td>6.95</td>
<td>Peak</td>
<td>100</td>
</tr>
<tr>
<td>11650.00</td>
<td>46.02</td>
<td>54.00</td>
<td>-7.98</td>
<td>38.00</td>
<td>16.02</td>
<td>Average</td>
<td>283</td>
</tr>
<tr>
<td>11650.00</td>
<td>58.42</td>
<td>74.00</td>
<td>-15.58</td>
<td>42.40</td>
<td>16.02</td>
<td>Peak</td>
<td>283</td>
</tr>
</tbody>
</table>
Modulation: HT20
Test Freq. (MHz): 5825
Polarization: Vertical
Test Configuration: 3

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Emission Level (dBuV/m)</th>
<th>Limit (dBuV/m)</th>
<th>Margin (dB)</th>
<th>SA Reading (dBuV)</th>
<th>dB</th>
<th>Factor (dB)</th>
<th>Remark</th>
<th>ANT</th>
<th>Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5850.00</td>
<td>73.14</td>
<td>78.28</td>
<td>-5.06</td>
<td>66.19</td>
<td>6.95</td>
<td>Peak</td>
<td>221</td>
<td>275</td>
</tr>
<tr>
<td>2</td>
<td>5860.00</td>
<td>49.89</td>
<td>54.00</td>
<td>-4.11</td>
<td>42.94</td>
<td>6.95</td>
<td>Average</td>
<td>221</td>
<td>275</td>
</tr>
<tr>
<td>3</td>
<td>5860.00</td>
<td>64.49</td>
<td>74.08</td>
<td>-9.51</td>
<td>57.54</td>
<td>6.95</td>
<td>Peak</td>
<td>221</td>
<td>275</td>
</tr>
<tr>
<td>4</td>
<td>11650.00</td>
<td>44.87</td>
<td>54.00</td>
<td>-9.13</td>
<td>28.85</td>
<td>16.02</td>
<td>Average</td>
<td>253</td>
<td>291</td>
</tr>
<tr>
<td>5</td>
<td>11650.00</td>
<td>57.60</td>
<td>74.00</td>
<td>-16.40</td>
<td>41.58</td>
<td>16.02</td>
<td>Peak</td>
<td>253</td>
<td>291</td>
</tr>
</tbody>
</table>

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)
*Factor includes antenna factor, cable loss and amplifier gain
Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Diagram with Graph and Table
<table>
<thead>
<tr>
<th>Modulation</th>
<th>HT20</th>
<th>Test Freq. (MHz)</th>
<th>5745</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polarization</td>
<td>Horizontal</td>
<td>Test Configuration</td>
<td>4</td>
</tr>
</tbody>
</table>

![Graph showing emission levels and test configuration]

Table

<table>
<thead>
<tr>
<th>Freq. Emission Limit</th>
<th>Margin</th>
<th>SA Reading</th>
<th>Factor</th>
<th>Remark</th>
<th>ANT</th>
<th>Turn</th>
<th>cm</th>
<th>deg</th>
</tr>
</thead>
<tbody>
<tr>
<td>MHz</td>
<td>dBuV/m</td>
<td>dBuV/m</td>
<td>dB</td>
<td>dBuV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5715.00</td>
<td>64.40</td>
<td>68.20</td>
<td>-3.80</td>
<td>57.70</td>
<td>6.70</td>
<td>Peak</td>
<td>101</td>
</tr>
<tr>
<td>2</td>
<td>5725.00</td>
<td>75.68</td>
<td>78.20</td>
<td>-2.52</td>
<td>68.97</td>
<td>6.71</td>
<td>Peak</td>
<td>101</td>
</tr>
<tr>
<td>3</td>
<td>11490.00</td>
<td>44.33</td>
<td>54.88</td>
<td>-9.67</td>
<td>28.11</td>
<td>16.22</td>
<td>Average</td>
<td>101</td>
</tr>
<tr>
<td>4</td>
<td>11490.00</td>
<td>56.99</td>
<td>74.80</td>
<td>-17.01</td>
<td>48.77</td>
<td>16.22</td>
<td>Peak</td>
<td>101</td>
</tr>
</tbody>
</table>

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).
Modulation
HT20

Test Freq. (MHz)
5745

Polarization
Vertical

Test Configuration
4

Table:

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Emission Level (dBuV/m)</th>
<th>Limit (dBuV/m)</th>
<th>Margin (dB)</th>
<th>SA Reading (dBuV/m)</th>
<th>Factor (dB)</th>
<th>Remark</th>
<th>ANT</th>
<th>Turn</th>
<th>Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5715.00</td>
<td>66.20</td>
<td>68.20</td>
<td>-2.00</td>
<td>59.50</td>
<td>6.70</td>
<td></td>
<td></td>
<td>226</td>
</tr>
<tr>
<td>2</td>
<td>5725.00</td>
<td>77.18</td>
<td>78.20</td>
<td>-1.02</td>
<td>70.47</td>
<td>6.71</td>
<td>Peak</td>
<td></td>
<td>226</td>
</tr>
<tr>
<td>3</td>
<td>11490.00</td>
<td>44.76</td>
<td>54.08</td>
<td>-9.24</td>
<td>28.54</td>
<td>16.22</td>
<td>Average</td>
<td></td>
<td>226</td>
</tr>
<tr>
<td>4</td>
<td>11490.00</td>
<td>56.79</td>
<td>74.00</td>
<td>-17.21</td>
<td>46.57</td>
<td>16.22</td>
<td>Peak</td>
<td></td>
<td>226</td>
</tr>
</tbody>
</table>

Notes:

1. Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)
2. Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

*Factor includes antenna factor, cable loss, and amplifier gain.
<table>
<thead>
<tr>
<th>Modulation</th>
<th>HT20</th>
<th>Test Freq. (MHz)</th>
<th>5785</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polarization</td>
<td>Horizontal</td>
<td>Test Configuration</td>
<td>4</td>
</tr>
</tbody>
</table>

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).
<table>
<thead>
<tr>
<th>Modulation</th>
<th>HT20</th>
<th>Test Freq. (MHz)</th>
<th>5785</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polarization</td>
<td>Vertical</td>
<td>Test Configuration</td>
<td>4</td>
</tr>
</tbody>
</table>

![Graph showing emission levels and calculations.]

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Emission Limit (dBuV/m)</th>
<th>Margin (dB)</th>
<th>SA Reading (dBuV)</th>
<th>Factor (dB)</th>
<th>Remark</th>
<th>ANT High</th>
<th>Turn Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5715.00</td>
<td>58.81</td>
<td>68.28</td>
<td>-9.39</td>
<td>Peak</td>
<td>226</td>
<td>111</td>
</tr>
<tr>
<td>2</td>
<td>5725.00</td>
<td>59.41</td>
<td>78.28</td>
<td>-18.79</td>
<td>Peak</td>
<td>226</td>
<td>111</td>
</tr>
<tr>
<td>3</td>
<td>5850.00</td>
<td>59.16</td>
<td>78.28</td>
<td>-19.04</td>
<td>Peak</td>
<td>226</td>
<td>111</td>
</tr>
<tr>
<td>4</td>
<td>5860.00</td>
<td>58.96</td>
<td>68.28</td>
<td>-9.24</td>
<td>Peak</td>
<td>226</td>
<td>111</td>
</tr>
<tr>
<td>5</td>
<td>11570.00</td>
<td>44.35</td>
<td>54.08</td>
<td>-9.65</td>
<td>Average</td>
<td>295</td>
<td>66</td>
</tr>
<tr>
<td>6</td>
<td>11570.00</td>
<td>56.71</td>
<td>74.08</td>
<td>-17.29</td>
<td>Peak</td>
<td>295</td>
<td>66</td>
</tr>
</tbody>
</table>

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).
<table>
<thead>
<tr>
<th>Modulation</th>
<th>HT20</th>
<th>Test Freq. (MHz)</th>
<th>5825</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polarization</td>
<td>Horizontal</td>
<td>Test Configuration</td>
<td>4</td>
</tr>
</tbody>
</table>

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).
Modulation	HT20
Test Freq. (MHz) | 5825 |
Polarization | Vertical |
Test Configuration | 4 |

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)
*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).
3.6 Frequency Stability

3.6.1 Limit of Frequency Stability

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user’s manual.

3.6.2 Test Procedures

1. The EUT is installed in an environment test chamber with external power source.
2. Set the chamber to operate at 20 centigrade and external power source to output at nominal voltage of EUT.
3. A sufficient stabilization period at each temperature is used prior to each frequency measurement.
4. When temperature is stabilized, measure the frequency stability.
5. The test shall be performed under -30 to 70 centigrade and 85 to 115 percent of the nominal voltage. Change setting of chamber and external power source to complete all conditions.

3.6.3 Test Setup
Test Result of Frequency Stability

<table>
<thead>
<tr>
<th>Frequency: 5785 MHz</th>
<th>Frequency Drift (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 minute</td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td></td>
</tr>
<tr>
<td>T20°C Vmax</td>
<td>2.25</td>
</tr>
<tr>
<td>T20°C Vmin</td>
<td>3.42</td>
</tr>
<tr>
<td>T70°C Vnom</td>
<td>1.67</td>
</tr>
<tr>
<td>T60°C Vnom</td>
<td>1.44</td>
</tr>
<tr>
<td>T50°C Vnom</td>
<td>2.88</td>
</tr>
<tr>
<td>T40°C Vnom</td>
<td>5.00</td>
</tr>
<tr>
<td>T30°C Vnom</td>
<td>1.45</td>
</tr>
<tr>
<td>T20°C Vnom</td>
<td>3.72</td>
</tr>
<tr>
<td>T10°C Vnom</td>
<td>6.90</td>
</tr>
<tr>
<td>T0°C Vnom</td>
<td>4.54</td>
</tr>
<tr>
<td>T-10°C Vnom</td>
<td>4.52</td>
</tr>
<tr>
<td>T-20°C Vnom</td>
<td>5.29</td>
</tr>
<tr>
<td>T-30°C Vnom</td>
<td>5.13</td>
</tr>
</tbody>
</table>

Vnom [Vac]: 120 Vmax [Vac]: 138 Vmin [Vac]: 102
Tnom [°C]: 20 Tmax [°C]: 70 Tmin [°C]: -30
4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corp, it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan Hsiang. Location map can be found on our website http://www.icertifi.com.tw.

<table>
<thead>
<tr>
<th>Linkou</th>
<th>Kwei Shan</th>
<th>Kwei Shan Site II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tel: 886-2-2601-1640</td>
<td>Tel: 886-3-271-8666</td>
<td>Tel: 886-3-271-8640</td>
</tr>
<tr>
<td>No. 30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei City, Taiwan, R.O.C.</td>
<td>No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.</td>
<td>No. 14-1, Lane 19, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.</td>
</tr>
</tbody>
</table>

If you have any suggestion, please feel free to contact us as below information

Tel: 886-3-271-8666
Fax: 886-3-318-0155
Email: ICC_Service@icertifi.com.tw

---END---