

IC DFS Test Report

IC : 3147A-SSD45N

Equipment : Radio Module

Model No. : SSD45N

Brand Name : Laird Technologies

Applicant : Laird Technologies

Address : 11160 Thompson Ave. / Lenexa, Kansas /

66219 / USA

Standard : RSS-210 Issue 8 December 2010

Received Date : May 14, 2013

Tested Date : Jul. 04 ~ Jul. 05, 2013

Operating Mode : Client without ad hoc and radar detection

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Approved & Reviewed by:

Gary Chang / Manager

ilac MRA

Page: 1 of 15

Report No.: CZ442904 Report Version: Rev. 01

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	
	Information	5
1.2	Support Equipment List	5
1.3	The Equipment List	
1.4	Testing Condition	6
1.5	Test Standards	
2	TECHNICAL REQUIREMENTS FOR DFS	7
2.1	Applicability of DFS Requirements	7
2.2	DFS Detection Thresholds and Response Requirement	
2.3	Radar Test Waveforms	g
3	TEST RESULT	12
3.1	Channel Closing Transmission and Channel Move Time	12
3.2	Non-Occupancy	14
4	TEST LABORATORY INFORMATION	15

Release Record

Report No.	Version	Description	Issued Date
CZ442904	Rev. 01	Initial issue	May 06, 2014

Report No.: CZ442904 Page: 3 of 15

Summary of Test Results

IC Rules	Description of Test	Result
RSS-210 Issue 8 Annex 9.3	Channel Closing Transmission Time	Pass
RSS-210 Issue 8 Annex 9.3	Channel Move Time	Pass
RSS-210 Issue 8 Annex 9.3	Non-occupancy	Pass

Report No.: CZ442904 Page: 4 of 15

1 General Description

1.1 Information

1.1.1 Specification of the Equipment under Test (EUT)

Frequency Range (GHz)	5.15~5.25, 5.25~5.35, 5.47~5.725,5.725~5.85
Wireless Function	11a / n HT20
Operating Mode at DFS Band	Client without radar detection and ad hoc function
Firmware / Software Version	3.4.0

1.1.2 Antenna Details

Ant.	Brand / Model	Туре	Connector	Operat	ing Frequenc	cies (MHz) / A	ntenna Gain	(dBi)
No.	Brana / Moder	Type	Connector	2400~2483.5	5150~5250	5250~5350	5470~5725	5725~5850
1	MAG.LAYERS EDA-1513-25GR 2-B2-CY	Dipole	SMA Jack Reverse	2	2	2	2	2
2	MAG.LAYERS PCA-4606-2G4C 1-A13-CY	PCB Dipole	UFL	2.21	2.21	2.21	2.21	2.21
3	Larid NanoBlade-IP04	PCB Dipole	UFL	2	3.9	3.9	4	4
4	Larid MAF95310 Mini NanoBlade Flex	PCB Dipole	UFL	2.79	3.38	3.38	3.38	3.38
5	Laird NanoBlue-IP04	PCB Dipole	UFL	2				-
6	Ethertronics WLAN_1000146	PIFA	UFL	2.5	3.5	3.5	3.5	3.5

1.2 Support Equipment List

	Support Equipment List					
No.	p. Equipment Brand Name Model Name FCC ID					
1	AP (Master)	D-Link	DIR-826L	KA2IR826LMO1		
2	Notebook	DELL	LATITUDE-E5420	B6FV9T1		

Report No.: CZ442904 Page: 5 of 15

1.3 The Equipment List

Test Site	DF01-WS				
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until
Spectrum Analyzer	R&S	FSV 7	101607	Dec. 19, 2012	Dec. 18, 2013
Horn Antenna 1G-18G	ETS-LINDGREN	3115	00149268	Oct. 05, 2012	Oct. 04, 2013
RF Cable	HUBER+SUHNER	SUCOFLEX_104	MY15686/4	Dec. 24, 2012	Dec. 23, 2013
RF Cable	HUBER+SUHNER	SUCOFLEX_104	296081/4	Dec. 24, 2012	Dec. 23, 2013
RF Cable	HUBER+SUHNER	SUCOFLEX_104	329023/4	Dec. 24, 2012	Dec. 23, 2013
RF Cable	HUBER+SUHNER	SUCOFLEX_104	329021/4	Dec. 24, 2012	Dec. 23, 2013
Vector signal generator	R&S	SMJ100A	100498	Dec. 13, 2012	Dec. 12, 2013
Note: Calibration Inter	Note: Calibration Interval of instruments listed above is one year.				

1.4 Testing Condition

Test Item	Test Site	Ambient Condition	Tested By
DFS	DF01-WS	26°C / 66%	Alex Huang

1.5 Test Standards

According to the specification of EUT, the EUT must comply with following standards and KDB documents.

RSS-210 Issue 8 December 2010

FCC 06-96

KDB 848637

Report Version: Rev. 01

Report No.: CZ442904 Page: 6 of 15

2 Technical Requirements for DFS

2.1 Applicability of DFS Requirements

2.1.1 Applicability of DFS Requirements Prior to use of a Channel

	Operational Mode			
Requirement	Master	Client Without Radar Detection	Client With Radar Detection	
Non-Occupancy Period	Yes	Not required	Yes	
DFS Detection Threshold	Yes	Not required	Yes	
Channel Availability Check Time	Yes	Not required	Not required	
Uniform Spreading	Yes	Not required	Not required	
U-NII Detection Bandwidth	Yes	Not required	Yes	

2.1.2 Applicability of DFS Requirements during Normal Operation

	Operational Mode			
Requirement	Master	Client Without Radar Detection	Client With Radar Detection	
DFS Detection Threshold	Yes	Not required	Yes	
Channel Closing Transmission Time	Yes	Yes	Yes	
Channel Move Time	Yes	Yes	Yes	
U-NII Detection Bandwidth	Yes	Not required	Yes	

Report No.: CZ442904 Page: 7 of 15

2.2 DFS Detection Thresholds and Response Requirement

Below table provides the DFS Detection Thresholds for Master Devices as well as Client Devices incorporating In-Service Monitoring.

DFS Detection Thresholds for Master Devices and Client Devices With Radar Detection.

Maximum Transmit Power	Value (See Notes 1 and 2)
≥ 200 milliwatt	-64 dBm
< 200 milliwatt	-62 dBm

Note:

- 1) This is the level at the input of the receiver assuming a 0 dBi receive antenna.
- 2) Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

DFS Response Requirement Values

Parameter	Value
Non-occupancy period	Minimum 30 minutes.
Channel Availability Check Time	60 seconds.
Channel Move Time	10 seconds. (See Note 1.)
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. (See Notes 1 and 2.)
U-NII Detection Bandwidth	Minimum 80% of the U- NII 99% transmission power bandwidth. (See Note 3.)

Note

- 1) The instant that the Channel Move Time and the Channel Closing Transmission Time begins is as follows:
 - For the Short Pulse Radar Test Signals this instant is the end of the Burst.
 - For the Frequency Hopping radar Test Signal, this instant is the end of the last radar Burst generated.
 - For the Long Pulse Radar Test Signal this instant is the end of the 12 second period defining the Radar Waveform.
- 2) The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.
- 3) During the U-NII Detection Bandwidth detection test, radar type 1 is used and for each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

Report No.: CZ442904 Page: 8 of 15

2.3 Radar Test Waveforms

This section provides the parameters for required test waveforms, minimum percentage of successful detections, and the minimum number of trials that must be used for determining DFS conformance. Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

2.3.1 Short Pulse Radar Test Waveforms

Radar Type	Pulse Width (µsec)	PRI (μsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Number of Trials
1	1	1428	18	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate	(Radar Types 1-4)	80%	120		

A minimum of 30 unique waveforms are required for each of the Short Pulse Radar Types 2 through 4. For Short Pulse Radar Type 1, the same waveform is used a minimum of 30 times. If more than 30 waveforms are used for Short Pulse Radar Types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. The aggregate is the average of the percentage of successful detections of Short Pulse Radar Types 1-4.

2.3.2 Long Pulse Radar Test Waveform

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per Burst	Number of Bursts	Minimum Percentage of Successful Detection	Minimum Number of Trials
5	50-100	5-20	1000-2000	1-3	8-20	80%	30

The parameters for this waveform are randomly chosen. Thirty unique waveforms are required for the Long Pulse Radar Type waveforms. If more than 30 waveforms are used for the Long Pulse Radar Type waveforms, then each additional waveform must also be unique and not repeated from the previous waveforms.

Report No.: CZ442904 Page: 9 of 15

2.3.3 Frequency Hopping Radar Test Waveform

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Number of Trials
6	1	333	9	0.333	300	70%	30

For the Frequency Hopping Radar Type, the same Burst parameters are used for each waveform. The hopping sequence is different for each waveform and a 100-length segment is selected from the hopping sequence defined by the following algorithm

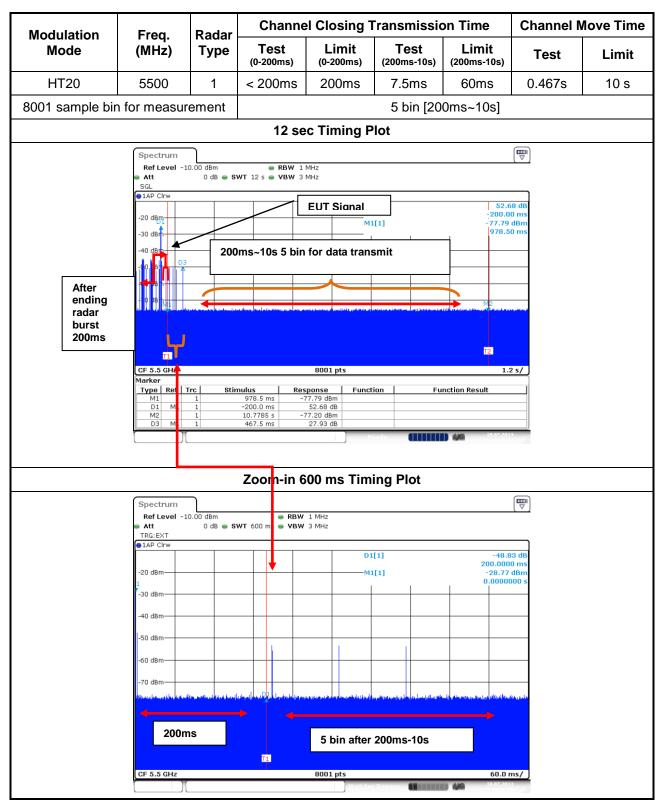
2.3.4 Radar waveform generation

A single R&S SMJ100A Vector Signal Generator is used for the DFS signal generation. This instrument is capable of generating all the above waveforms with Pulse Sequencer Software. The R&S Pulse Sequencer Software comes as a stand-alone PC based software with preconfigured project files for DFS. It simplifies the generation of all required waveforms and offers a one box solution

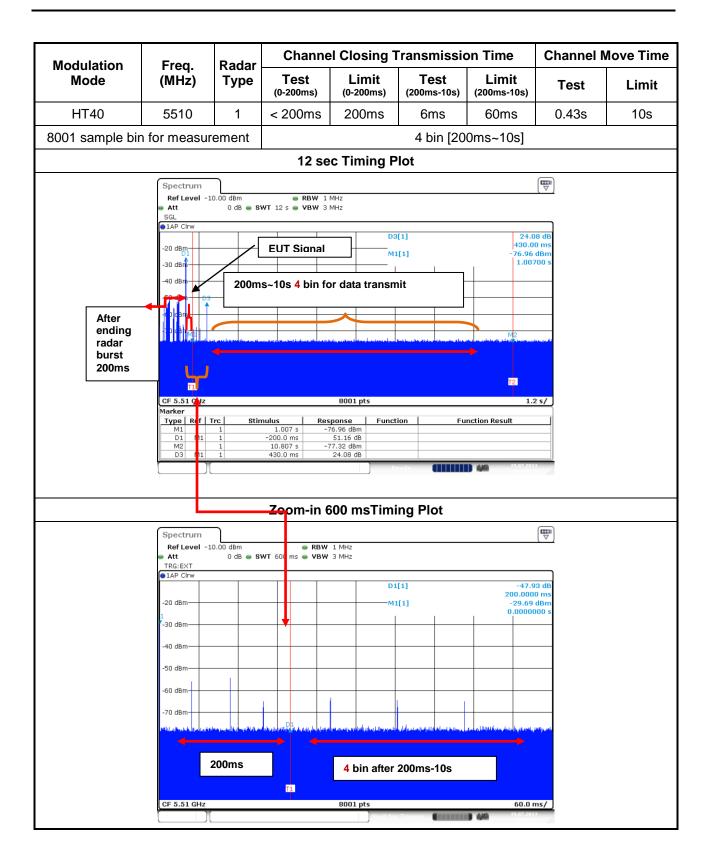
Report No.: CZ442904 Page: 10 of 15

2.3.5 Verify DFS Detection Threshold levels

Master DFS Threshold Level					
DFS Threshold level:	-63	dBm	at the antenna connector(-63 dBm conducted)		
			in front of the antenna(-63 dBm e.i.r.p.)		
The Interference Rada	ar Det	ection The	reshold Level is (-64dBm) + (0 [dBi]) + {1 dB}= -63 dBm. That had		
been taken into account the master output power range and antenna gain.					

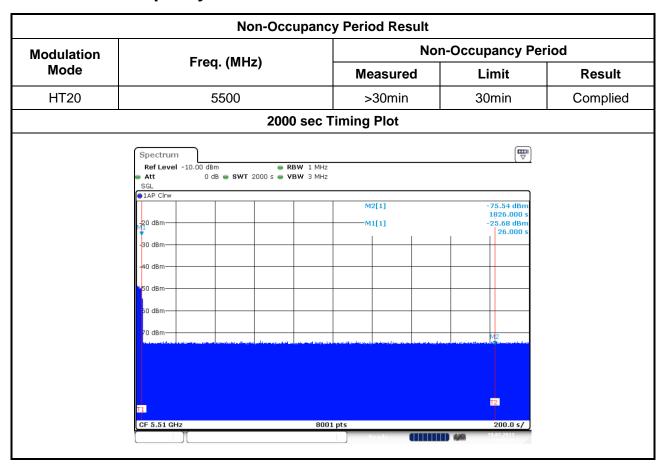


Report No.: CZ442904 Page: 11 of 15


3 Test Result

3.1 Channel Closing Transmission and Channel Move Time

Report No.: CZ442904 Report Version: Rev. 01



Report No.: CZ442904 Page: 13 of 15

3.2 Non-Occupancy

Report No.: CZ442904 Page: 14 of 15

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corp, it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan Hsiang. Location map can be found on our website http://www.icertifi.com.tw.

Linkou Kwei Shan

Tel: 886-2-2601-1640 Tel: 886-3-271-8666

No. 30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei
City, Taiwan, R.O.C.

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan
Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

If you have any suggestion, please feel free to contact us as below information

Tel: 886-3-271-8666 Fax: 886-3-318-0155

Email: ICC_Service@icertifi.com.tw

==END==

Report No.: CZ442904 Page: 15 of 15