

smart BASIC
BL620 Extensions

User Manual
Release 12.4.14.0

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

2 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Embedded Wireless Solutions Support Center: http://ews-support.lairdtech.com
Americas: +1-800-492-2320

Europe: +44-1628-858-940

Asia: +852-2923-0610
www.lairdtech.com/bluetooth

© 2014 Laird Technologies

All Rights Reserved. No part of this document may be photocopied, reproduced, stored in a

retrieval system, or transmitted, in any form or by any means whether, electronic, mechanical, or

otherwise without the prior written permission of Laird Technologies.

No warranty of accuracy is given concerning the contents of the information contained in this

publication. To the extent permitted by law no liability (including liability to any person by reason

of negligence) will be accepted by Laird Technologies, its subsidiaries or employees for any

direct or indirect loss or damage caused by omissions from or inaccuracies in this document.

Laird Technologies reserves the right to change details in this publication without notice.

Windows is a trademark and Microsoft, MS-DOS, and Windows NT are registered trademarks of

Microsoft Corporation. BLUETOOTH is a trademark owned by Bluetooth SIG, Inc., U.S.A. and

licensed to Laird Technologies and its subsidiaries.

Other product and company names herein may be the trademarks of their respective owners.

Laird Technologies

Saturn House,

Mercury Park,

Wooburn Green,

Bucks HP10 0HH,

UK.

Tel: +44 (0) 1628 858 940

Fax: +44 (0) 1628 528 382

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

3 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

REVISION HISTORY

Version Revisions Date Change History

12.1.1.0 24 Feb 2014 Initial Release

12.2.9.0 27 Apr 2014 Engineering release (No bonding manager)

12.4.10.0 10 Oct 2014 Draft Production Release

12.4.10.0 24 Nov 2014 Added UartOpen specifics

12.4.14.0 8 Mar 2015 Cosmetic versin number change

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

4 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

CONTENTS

Revision History ... 3

Contents .. 4

1. Introduction ... 5
Documentation Overview ... 5
What Does a BLE Module Contain? .. 5

2. Interactive Mode Commands .. 6
AT I or ATI .. 7

3. Core Language Built-in Routines .. 15
Result Codes ... 15
Information Routines .. 16
UART (Universal Asynchronous Receive Transmit) ... 19
I2C – Two Wire Interface (TWI)... 20
SPI Interface .. 20

4. Core Extensions Built-in Routines .. 20
Miscellaneous Routines .. 20
Input/Output Interface Routines .. 21

5. BLE Extensions Built-in Routines .. 31
MAC Address ... 31
Events and Messages .. 32
Miscellaneous Functions ... 47
Advertising Functions ... 50
Scanning Functions ... 60
Whitelist Management Functions ... 75
Connection Functions ... 79
Security Manager Functions ... 90
GATT Server Functions .. 94
GATT Client Functions ... 136
Attribute Encoding Functions ... 181
Attribute Decoding Functions ... 191
Pairing/Bonding Functions .. 205
Virtual Serial Port Service – Managed test when dongle and application availbable ... 211

6. Other Extension Built-in Routines .. 214
System Configuration Routines .. 214
Miscellaneous Routines .. 214

7. Events and Messages .. 216

8. Module Configuration ... 218

9. Miscellaneous ... 218

10. Acknowledgements .. 220

Index of smartBASIC Commands .. 221

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

5 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

1. INTRODUCTION

Documentation Overview

This BL620 Extension Functionality user guide provides detailed information on BL620-specific

smartBASIC extensions which provide a high level managed interface to the underlying

Bluetooth stack in order to manage the following:

 GATT table – Services, characteristics, descriptors, advert reports

 Gatt server/client operation

 Advertisments and connections

 BLE security and bonding

 Attribute encoding and decoding

 Laird custom VSP service

 Power management

 Wireless status

 Events related to the above

Please refer to the smartBASIC core reference manual for more details on common functionality

that exists in all platforms that offer smartBASIC.

What Does a BLE Module Contain?

Laird’s smart BASIC-based BLE modules are designed to provide a complete wireless processing

solution and contain the following:

 A highly integrated radio with an integrated antenna (external antenna options are also

available)

 BLE Physical and Link Layer

 Higher level stack

 Multiple GPIO and ADC

 Wired communication interfaces such as UART, I2C, and SPI

 A smart BASIC run-time engine

 Program-accessible flash memory which contains a robust flash file system exposing a

conventional file system and a database for storing user configuration data

 Voltage regulators and brown-out detectors

For simple end devices, these modules can completely replace an embedded processing

system.

The following block diagram (Figure 1) illustrates the structure of the BLE smart BASIC module from

a hardware perspective on the left and a firmware/software perspective on the right.

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

6 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

smartBASIC

run-time engine
(provides safe access to
BLE stack, drivers and

non-vol stores)

Non-Vol

File

System

for

smartBASIC

Apps

Non-Vol

Data

Store

I/
O

,
U

A
R

T
,I
2
C

,S
P

I
D

ri
v
e
rs

Bluetooth Low Energy Stack

User smartBASIC Application

Example App

 PRINT "Laird BL600 Module"

 WaitEvent

44 connection pads

UART GPIO ADC I2C SPI

16K RAM

256K Flash

BLE Radio

OR UFL
Internal

Antenna

ARM Cortex M0

(smartBASIC)

Figure 1: BLE smart BASIC module block diagram

2. INTERACTIVE MODE COMMANDS

Interactive mode commands allow a host processor or terminal emulator to interrogate and

control the operation of a smart BASIC-based module. Many of these emulate the functionality

of AT commands. Others add extra functionality for controlling the filing system and compilation

process.

Syntax Unlike commands for AT modems, a space character must be inserted between AT, the

command, and subsequent parameters. This allows the smart BASIC tokeniser to

efficiently distinguish between AT commands and other tokens or variables starting with

the letters AT.

‘Example:

AT I 3

The response to every Interactive mode command has the following form:

<linefeed character> response text <carriage return>

This format simplifies the parsing within the host processor. The response may be one or multiple

lines. Where more than one line is returned, the last line has one of the following formats:

<lf>00<cr> for a successful outcome, or

<lf>01<tab> hex number <tab> optional verbose explanation <cr> for failure.

Note: In the case of the 01 response, the <tab>optional_verbose_explanation is missing in

resource constrained platforms like the BL620 modules. The verbose explanation is a

constant string and since there are over 1000 error codes, these verbose strings can

occupy more than 10 kilobytes of flash memory.

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

7 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

The hex number in the response is the error result code consisting of two digits which can be

used to help investigate the problem causing the failure. Rather than provide a list of all the error

codes in this manual, you can use UWTerminal to obtain a verbose description of an error when

it is not provided on a platform.

To get the verbose description, click the BASIC tab (in UWTerminal) and, if the error value is hhhh,

enter the command ER 0xhhhh and note the 0x prefix to hhhh. This is illustrated in Figure 2.

Figure 2: Optional verbose explanation

You can also obtain a verbose description of an error by highlighting the error value, right-

clicking, and selecting Lookup Selected ErrorCode in the Terminal window.

If you get the text UNKNOWN RESULT CODE 0xHHHH, please contact Laird for the latest version of

UWterminal.

AT I or ATI

Provided to give compatibility with the AT command set of Laird’s standard Bluetooth modules.

AT I num

COMMAND

Returns \n10\tMM\tInformation\r

\n00\r

Where

\n = linefeed character 0x0A

\t = horizontal tab character 0x09

MM = a number (see below)

Information = sting consisting of information requested associated with MM
\r = carriage return character 0x0D

Arguments

num Integer Constant – A number in the range 0 to 65,535. Currently defined numbers

are:

0 Name of device

3 Version number of the module firmware

4 MAC address in the form TT AAAAAAAAAAAA

5 Chipset name

6 Flash File System size stats (data segment): Total/Free/Deleted

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

8 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

7 Flash File System size stats (FAT segment) : Total/Free/Deleted

12 Last error code

13 Language hash value

16 NvRecord Memory Store stats: Total/Free/Deleted

33 BASIC core version number

601 Flash File System: Data Segment: Total Space

602 Flash File System: Data Segment: Free Space

603 Flash File System: Data Segment: Deleted Space

604 Flash File System: FAT Segment: Total Space

605 Flash File System: FAT Segment: Free Space

606 Flash File System: FAT Segment: Deleted Space

631 NvRecord Memory Store Segment: Total Space

632 NvRecord Memory Store Segment: Free Space

633 NvRecord Memory Store Segment: Deleted Space

1000…1999 See SYSINFO() function definition

2000…2999 See SYSINFO() function definition

Interactiv

e

Command

Yes

Any other number currently returns the manufacturer’s name.

For ATi4, the TT in the response is the type of address as follows:

00 Public IEEE format address

01 Random static address (default as shipped)

02
Random Private Resolvable (used with bonded devices) – not currently

available

03
Random Private Non-Resolvable (used for reconnections) – not currently

available

Note: Please refer to the Bluetooth specification for a further description of the types.

This is an Interactive mode command and must be terminated by a carriage return for it to be

processed.

‘Example:

AT i 3

10 3 2.0.1.2

00

AT I 4

10 4 01 D31A920731B0

AT i is a core command.

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

9 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

The information returned by this Interactive command can also be useful from within a running

application and so a built-in function called SYSINFO(cmdId) can be used to return exactly the

same information and cmdid is the same value as used in the list above.

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

10 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

AT+CFG

COMMAND

AT+CFG is used to set a non-volatile configuration key. Configuration keys are are comparable

to S registers in modems. Their values are kept over a power cycle but are deleted if the AT&F*

command is used to clear the file system.

If a configuration key that you need isn’t listed below, use the functions NvRecordSet() and

NvRecordGet() to set and get these keys respectively.

The ‘num value’ syntax is used to set a new value and the ‘num ?’ syntax is used to query the

current value. When the value is read the syntax of the response is

27 0xhhhhhhhh (dddd)

where 0xhhhhhhhh is an eight hexdigit number which is 0 padded at the left and ‘dddd’ is the

decimal signed value.

AT+CFG num value or AT+CFG num ?

Returns If the config key is successfully updated or read, the response is \n00\r.

Arguments:

num Integer Constant

The ID of the required configuration key. All of the configuration keys are stored

as an array of 16 bit words.

value Integer_constant

The new value for the configuration key. The syntax allows decimal, octal,

hexadecimal or binary values.

Interactive

Command
Yes

This is an Interactive mode command and MUST be terminated by a carriage return for it to be

processed.

The following configuration key IDs are defined.

Key
ID

Definition

40 Maximum size of locals simple variables

41 Maximum size of locals complex variables

42 Maximum depth of nested user defined functions and subroutines

43 Stack size for storing user functions simple variables

44 Stack size for storing user functions complex variables

45 Message argument queue length

100 Enable/disable Virtual Serial Port Service when in interactive mode. Valid values are:

0x0000 Disable

0x0001 Enable

0x80nn Enable only if the module’s signal pin nn is set high.

0xC0nn Enable only if the module’s signal pin nn is set low.

ELSE Disable

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

11 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Key

ID
Definition

101 Virtual Serial Port Service to use INDICATE or NOTIFY to send data to client.

0 Prefer Notify

ELSE Prefer Indicate

This is a preference; the actual value is forced by the property of the TX characteristic of
the service.

102 Advert interval in milliseconds when advertising for connections in interactive mode and
AT Parse mode.

Valid values: 20 to 10240 milliseconds

103 Advert timeout in milliseconds when advertising for connections in interactive mode

and AT Parse mode.

Valid values: 1 to 16383 seconds

104 Data transfer is managed in the VSP service manager. The underlying stack uses

transmission buffers when sending data using NOTIFIES. This specifies the number of

transmissions to leave unused when sending a large amount of data. This allows other
services to send NOTIFIES without having to wait.

Determine the total number of transmission buffers by calling SYSINFO(2014) or in
interactive mode by submitting the command ATi 2014.

105 The minimum connection interval (in milliseconds) to be negotiated with the master
when in interactive mode and connected for VSP services.

Valid value: 0 to 4000 ms

Note: A minimum value of 7.5 is selected if a value of less than eight is specified.

106 The maximum connection interval (in milliseconds) to be negotiated with the master
when in interactive mode and connected for VSP services.

Valid value: 0 to 4000 ms

Note: If the value is less than the minimum specified in 105, then it is forced to the value
in 105 plus two ms.

107 The connection supervision timeout in milliseconds to be negotiated with the master
when in interactive mode and connected for VSP services.

Valid range: 0 to 32000

Note: If the value is less than the value in 106, then a value twice that value specified in
106 is used.

108 The slave latency to be negotiated with the master when in interactive mode and

connected for VSP services.

Note: An adjusted value is used if this value x the value in 106 is greater than the
supervision timeout in 107.

109 The Tx power used for adverts and connections when in interactive mode and
connected for VSP services.

A low setting (and resultant limited range) allows many stations to be used to program
devices if smart BASIC applications are downloaded over-the-air during production.

110 Indicates the size of the transmit ring buffer in the managed layer (above the service

characteristic FIFO register) if VSP service is enabled in interactive mode (see 100).

111 Indicates the size of the receiving ring buffer in the managed layer (above the service
characteristic FIFO register) if VSP service is enabled in interactive mode (see 100).

Valid value: 32 to 256

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

12 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Key

ID
Definition

112 If set to 1, then the service UUID for the virtual serial port is as per Nordic’s

implementation and any other value is a per the modified Laird’s service.

AT+CFG is a core command.

Note: These values revert to factory default values if the flash file system is deleted using

the

AT & F * interactive command.

AT&F

COMMAND

AT&F provides facilities for erasing various portions of the module’s non-volatile memory.

AT&F integermask

Returns OK if file successfully erased.

Arguments

Integermask Integer corresponding to a bit mask or the asterisk (*) character

The mask is an additive integer mask, with the following meaning:

1 Erases normal file system and system config keys (see AT+CFG for
examples of config keys)

16 Erases the User config keys and bonding manager

* Erases all data segments

Else Not applicable to current modules

Interactive

Command
Yes

If an asterisk is used in place of a number, then the module is configured back to the factory

default state by erasing all flash file segments.

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be

processed.

AT&F 1 ‘delete the file system

AT&F 16 ‘delete the user config keys and bonding manager

AT&F * ‘delete all data segments

AT&F is a core command.

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

13 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

AT + BTD *

COMMAND

Deletes the bonded device database from the flash.

AT + BTD*

Returns \n00\r

Arguments None

Interactive

Command
Yes

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be

processed.

Note: The module self-reboots so that the bonding manager context is also reset.

‘Examples:

AT+BTD*

AT+BTD* is an extension command

AT + MAC “12 hex digit mac address”

COMMAND

This is a command that is successful one time as it writes an IEEE MAC address to non-volatile

memory. This address is then used instead of the random static MAC address that comes

preprogrammed in the module.

Notes: If the module has an invalid licence then this address is not visible.

If the address 000000000000 is written then it is treated as invalid and prevents a new

address from being entered.

AT + MAC “12 hex digits”

Returns \n00\r

or

\n01 192A\r

Where the error code 192A is NVO_NVWORM_EXISTS. This means that an IEEE MAC

address already exists, which can be read using the command AT I 24.

Arguments

A string delimited by “” which shall be a valid 12 hex digit mac address that is

written to non-volatile memory.

Interactive

Command
Yes

This is an Interactive mode command and MUST be terminated by a carriage return for it to be

processed.

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

14 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Note: The module self-reboots if the write is successful. Subsequent invocations of this

command generate an error.

‘Examples:

AT+MAC “008098010203”

AT+MAC is an extension command

AT + BLX

COMMAND

This command is used to stop all radio activity (adverts or connections) when in interactive

mode. It is particularly useful when the virtual serial port is enabled while in interactive mode.

AT + BLX

Returns \n00\r

Arguments None

Interactive

Command
Yes

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be

processed.

Note: The module self-reboots so that the bonding manager context is also reset.

‘Examples:

AT+BLX

AT+BLX is an extension command.

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

15 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

3. CORE LANGUAGE BUILT-IN ROUTINES

Core Language built-in routines are present in every implementation of smart BASIC. These

routines provide the basic programming functionality. They are augmented with target specific

routines for different platforms which are described in the next chapter.

Result Codes

Some of these built-in routines are subroutines and some are functions. Functions always return a

value and, for some of these functions the value returned is a result code, indicating success or

failure in executing that function. A failure may not necessarily result in a run-time error (see

GetLastError() and ResetLastError()), but may lead to an unexpected output.

Being able to see the cause of a failure helps with the debugging process. If you declare an

integer variable such as rc and set its value to your function call, after the function is executed

you can print rc and see the result code. For this to be useful, it must be in hexadecimal form;

prefix your result code variable with INTEGER.H’ when printing it. You can also save some

memory by printing the return value from the function directly without the use of a variable.

 //Example :: ResultCodes.sb (See in BL620CodeSnippets.zip)

 DIM cB,nItems,rc,s$

 rc=CircBufItems(cB,nItems)

 PRINT INTEGER.H'rc

 PRINT "\n"; //New line

 //Printing return value directly

 PRINT INTEGER.H'CircBufItems(cB,nItems)

 //To remove the leading zeros

 SPRINT #s$, INTEGER.H'CircBufItems(cB,nItems)

 StrShiftLeft(s$,4) : PRINT s$

Highlight the last four characters of the result code in UwTerminal and select Lookup Selected

ErrorCode.

Figure 3: Lookup Selected ErrorCode

Expected Output:

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

16 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Information Routines

SYSINFO

FUNCTION

Returns an informational integer value depending on the value of varId argument.

SYSINFO(varId)

Returns INTEGER .Value of information corresponding to integer ID requested.

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments

varId byVal varId AS INTEGER

An integer ID which is used to determine which information is to be returned as

described below.

ID Definition

0 Device ID. For the BL620 module, the value is 0x42460600

3

Version number of the module firmware. For example W.X.Y.Z is

returned as a 32 bit value made up as follows:

 (W<<26) + (X<<20) + (Y<<6) + (Z)
 where Y is the build number and Z is the sub-build number

33 BASIC core version number

601 Flash File System: Data Segment: Total Space

602 Flash File System: Data Segment: Free Space

603 Flash File System: Data Segment: Deleted Space

611 Flash File System: FAT Segment: Total Space

612 Flash File System: FAT Segment: Free Space

613 Flash File System: FAT Segment: Deleted Space

631 NvRecord Memory Store Segment: Total Space

632 NvRecord Memory Store Segment: Free Space

633 NvRecord Memory Store Segment: Deleted Space

1000 BASIC compiler HASH value as a 32 bit decimal value

1001 How RAND() generates values: 0 for PRNG and 1 for hardware assist

1002 Minimum baudrate

1003 Maximum baudrate

1004 Maximum STRING size

1005
1: Run-time only implementation

3: Compiler included

//smartBASIC Error Code: 073D -> "RUN_INV_CIRCBUF_HANDLE"

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

17 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

2000

Reason for reset:

8: Self-reset due to Flash Erase

9: ATZ

10: Self-reset due to smart BASIC app invoking function RESET()

2002 Timer resolution in microseconds

2003 Number of timers available in a smart BASIC application

2004 Tick timer resolution in microseconds

2005 LMP version number for BT 4.0 spec

2006 LMP sub-version number

2007 Chipset company ID allocated by BT SIG

2008 Returns the current TX power setting (see also 2018)

2009 Number of devices in trusted device database

2010 Number of devices in trusted device database with IRK

2011 Number of devices in trusted device database with CSRK

2012
Max number of devices that can be stored in trusted device
database

2013 Maximum length of a GATT Table attribute in this implementation

2014 Total number of transmission buffers for sending attribute NOTIFIES

2015 Number of transmission buffers for sending attribute NOTIFIES – free

2016

Radio activity of the baseband. A bit mask as follows:

Bit 0: Advertising

Bit 1: Connected as slave

Bit 2: Initiating

Bit 3: Scanning

Bit 4: Connected as master

2018 Returns the TX power while pairing in progress (see also 2008)

2019
Default ring buffer length for notify/indicates in GATT client manager

(see BleGattcOpen function)

2020
Maximum ring buffer length for notify/indicates in GATT client

manager (see BleGattcOpen function)

2021 Stack tide mark in percent. Values near 100 are not good

2022 Stack size

2023 Initial Heap size

2040
Max number of devices that can be stored in trusted device
database

2041 Number of devices in trusted device database

2042 Number of devices in trusted device database classed as Rolling

2043 Number of devices in trusted device database that can Persist

2100 Connect Scan interval (in milliseconds) used when connecting

2101 Connect Scan window (in milliseconds) used when connecting

2102 Connect slave latency in outgoing connection request

2105 Multi-Link connection Interval periodicity in milliseconds

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

18 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

2150 Scan Interval (in milliseconds) used when connecting

2151 Scan Window (in milliseconds) used when connecting

2152 Type of scanning: Active or Passive

0x8000

to
0x81FF

Content of FICR register in the Nordic nrf51 chipset. In the nrf51

datasheet, in the FICR section, all the FICR registers are listed in a

table with each register identified by an offset. For example, to read

the Code memory page size which is at offset 0x010, call
SYSINFO(0x8010) or in interactive mode use AT I 0x8010.

Interactive

Command
No

 //Example :: SysInfo.sb (See in BL620CodeSnippets.zip)
 PRINT "\nSysInfo 1000 = ";SYSINFO(1000) // BASIC compiler HASH value

 PRINT "\nSysInfo 2003 = ";SYSINFO(2003) // Number of timers

 PRINT "\nSysInfo 0x8010 = ";SYSINFO(0x8010) // Code memory page size from FICR

Expected Output (For BL620):

SYSINFO is a core language function.

SYSINFO$

FUNCTION

Returns an informational string value depending on the value of varId argument.

SYSINFO$(varId)

Returns STRING .Value of information corresponding to integer ID requested.

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

varId byVal varId AS INTEGER

An integer ID which is used to determine which information is to be returned as

described below.

4

The Bluetooth address of the module. It is seven bytes long. First byte is 00

for IEEE public address and 01 for random public address. Next six bytes

are the address.

14

A random public address unique to this module.May be the same value

as in 4 above unless AT+MAC was used to set an IEEE MAC address. It is

seven bytes long. First byte is 00 for IEEE public address and 01 for random

public address. Next six bytes are the address.

Interactive

Command
No

SysInfo 1000 = 1315489536

SysInfo 2003 = 8

SysInfo 0x8010 = 1024

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

19 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 //Example :: SysInfo$.sb (See in BL620CodeSnippets.zip)

 PRINT "\nSysInfo$(4) = ";SYSINFO$(4) // address of module

 PRINT "\nSysInfo$(14) = ";SYSINFO$(14) // public random address

 PRINT "\nSysInfo$(0) = ";SYSINFO$(0)

Expected Output:

SYSINFO$ is a core language function.

UART (Universal Asynchronous Receive Transmit)

UartOpen

FUNCTION

This function is used to open the main default uart peripheral using the parameters specified.

See core manual for further details.

UARTOPEN (baudrate,txbuflen,rxbuflen,stOptions)

stOptions

byVal stOptions AS STRING

This string (can be a constant) MUST be exactly 5 characters long where each
character is used to specify further comms parameters as follows.

Character Offset:

0

DTE/DCE role request:

 T – DTE

 C – DCE

1

Parity:

 N – None

 O – Odd (Not Available)

 E – Even (Not Available)

2 Databits: 8

3 Stopbits: 1

4

Flow Control:

 N – None

 H – CTS/RTS hardware

 X – Xon/Xof (Not Available)

UartCloseEx

 //Example :: UartCloseEx.sb (See in Firmware Zip file)

 DIM rc1

 DIM rc2

 UartClose()

 rc1 = UartOpen(9600,0,0,"CN81H") //open as DTE at 300 baudrate, odd parity

 //8 databits, 1 stopbits, cts/rts flow

control

SysInfo$(4) = \01\FA\84\D7H\D9\03

SysInfo$(14) = \01\FA\84\D7H\D9\03

SysInfo$(0) =

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

20 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 PRINT "Laird"

 IF UartCloseEx(1)!=0 THEN

 PRINT "\nData in at least one buffer. Uart Port not closed"

 ELSE

 rc1 = UartOpen(9600,0,0,"CN81H") //open as DTE at 300 baudrate, odd parity

 PRINT "\nUart Port was closed"

 ENDIF

Expected Output:

UARTCLOSEEX is a core function.

UartSetRTS

The BL620 module does not offer the capability to control the RTS pin as the underlying hardware

does not allow it. The function exists to enable porting of applications from platforms where an

app has invoked it.

UartBREAK

The BL620 module does not offer the capability to send a BREAK signal.

If this feature is required, then the best way to expedite it is to put UART_TX and an I/O pin

configured as an output through an AND gate.

For normal operation the general purpose output pin is set to logic high which means the output

of the AND gate follows the state of the UART_TX pin.

When a BREAK is to be sent, the general purpose pin is set to logic high which means the output

of the AND gate is low and remains low regardless of the state of the UART_TX pin.

I2C – Two Wire Interface (TWI)

The BL620 can only be configured as an I2C master with the additional constraint that it be the

only master on the bus and only 7 bit slave addressing is supported.

SPI Interface

The BL620 module can only be configured as a SPI master.

4. CORE EXTENSIONS BUILT-IN ROUTINES

Miscellaneous Routines

AssertBL620

SUBROUTINE

Laird

Data in at least one buffer. Uart Port not closed

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

21 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

This function’s main use case is during smartBASIC source compilation and the presence of at

least one instance of this statement ensures that the smartBASIC application only fully compiles

without errors on a BL620 module. This ensures that apps for other modules are not mistakenly

loaded into the BL620.

ASSERTBL620()

Returns Not Applicable as it is a subroutine

Arguments None

Interactive

Command
No

 AssertBL620()//Ensure loading on BL620 only

ASSERTBL620 is an extension subroutine.

Input/Output Interface Routines

I/O and interface commands allow access to the physical interface pins and ports of the smart

BASIC modules. Most of these commands are applicable to the range of modules. However,

some are dependent on the actual I/O availability of each module.

GPIO Events

EVGPIOCHANn

Here, n is from 0 to N where N is platform dependent and an event is

generated when a preconfigured digital input transition occurs. The number

of digital inputs that can auto-generate is hardware dependent. For the

BL620 module, N can be 0,1,2 or 3.

Use GpioBindEvent() to generate these events.

See example for GpioBindEvent()

EVDETECTCHANn

Here, n is from 0 to N where N is platform dependent and an event is

generated when a preconfigured digital input transition occurs. The number

of digital inputs that can auto-generate is hardware dependent. For the

BL620 module, N can only be 0.

Use GpioAssignEvent() to generate these events.

See example for GpioAssignEvent()

GpioSetFunc

FUNCTION

This routine sets the function of the GPIO pin identified by the nSigNum argument.

The module datasheet contains a pinout table which denotes SIO (Special I/O) pins. The number

designated for that special I/O pin corresponds to the nSigNum argument.

GPIOSETFUNC (nSigNum, nFunction, nSubFunc)

Returns
INTEGER, a result code. The most typical value is 0x0000, indicating a

successful operation.

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

22 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Arguments

nSigNum
byVal nSigNum AS INTEGER

The signal number as stated in the pinout table of the module.

nFunction

byVal nFunction AS INTEGER

Specifies the configuration of the GPIO pin as follows:

1 DIGITAL_IN

2 DIGITAL_OUT

3 ANALOG_IN

4 ANALOG_REF (not currently available on the BL620 module)

5 ANALOG_OUT (not currently available on the BL620 module)

nSubFunc

byVal nSubFunc INTEGER

Configures the pin as follows:

If nFunction == DIGITAL_IN

Bits 0..3

0x01 Pull down resistor (weak)

0x02 Pull up resistor (weak)

0x03 Pull down resistor (strong)

0x04 Pull up resistor (strong)

Else No pull resistors

Bits 4, 5

0x10 When in deep sleep mode, awake when this pin is LOW

0x20 When in deep sleep mode, awake when this pin is HIGH

Else No effect in deep sleep mode

Bits 8..31

Must be 0s

If nFuncType == DIGITAL_OUT

Values:

0 Initial output to LOW

1 Initial output to HIGH

2

Output is PWM (Pulse Width Modulated Output). See function

GpioConfigPW() for more configuration. The duty cycle is set using

function GpioWrite().

3

Output is FREQUENCY. The frequency is set using function GpioWrite()

where 0 switches off the output; any value in range 1..4000000

generates an output signal with 50% duty cycle with that frequency.

Bits 4..6 (output drive capacity)

0 0 = Standard; 1 = Standard

1 0 = High; 1 = Standard

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

23 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

2 0 = Standard; 1 = High

3 0 = High; 1 = High

4 0 = Disconnect; 1 = Standard

5 0 = Disconnect; 1 = High

6 0 = Standard; 1 = Disconnect

7 0 = High; 1 = Disconnect

If nFuncType == ANALOG_IN

 0 := Use Default for system.

For BL620 : 10 bit adc and 2/3rd scaling

0x13 := For BL620 : 10 bit adc, 1/3rd scaling

0x11 := For BL620 : 10 bit adc, unity scaling

0 Use the system default: 10-bit ADC, 2/3 scaling

0x13 10-bit ADC, 1/3 scaling

0x11 10-bit ADC, unity scaling

Note: The internal reference voltage is 1.2V with +/- 1.5% accuracy.

WARNING: This subfunc value is ‘global’ and once changed will apply to all ADC inputs.

Interactive Command: NO

 //Example :: GpioSetFunc.sb (See in Firmware Zip file)

 PRINT GpioSetFunc(3,1,2) //Digital In Gpio pin 3, weak pull up resistor

 PRINT GpioSetFunc(4,3,0) //Analog In Gpio pin 4, default settings

 PRINT GpioSetFunc(5,1,0x12) //internal pull up on gpio5 and wake from deep sleep

 //when there is transition from high to low

Expected Output:

GPIOSETFUNC is a Module function.

GpioConfigPwm

FUNCTION

This routine configures the PWM (Pulse Width Modulation) of all output pins when they are set as

a PWM output using GpioSetFunc() function described above.

Note: This is a ‘sticky’ configuration; calling it affects all currently configured PWM outputs.

We recommend that this is called once at the beginning of your application and

not changed again within the application unless all PWM outputs are deconfigured

and then re-enabled after this function is called.

000

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

24 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

The PWM output is generated using 32-bit hardware timers. The timers are clocked by a 1 MHz

clock source.

A PWM signal has a frequency and a duty cycle property; the frequency is set using this function

and is defined by the nMaxResolution parameter. For a given nMaxResolution value, given that

the timer is clocked using a 1 MHz source, the frequency of the generated signal is 1000000

divided by nMaxResolution. Hence if nMinFreqHz is more than the 1000000/nMaxResolution, this

function will fail with a non-zero value.

The nMaxResolution can also be viewed as defining the resolution of the PWN output in the

sense that the duty cycle can be varied from 0 to nMaxResolution. The duty cycle of the PWM

signal is modified using the GpioWrite() command

For example, a period of 1000 generates an output frequency of 1KHz, a period of 500, and a

frequency of 2Khz etc.

On exit, the function returns with the actual frequency in the nMinFreqHz parameter.

GPIOCONFIGPWM (nMinFreqHz, nMaxResolution)

Returns
INTEGER, a result code.

Most typical value: 0x0000 (indicates a successful operation)

Arguments

nMinFreqHz byRef nMinFreqHz AS INTEGER

On entry this variable contains the minimum frequency desired for the PWM

output. On exit, if successful, it contains the actual frequency of the PWM

output.

nMaxResolution byVal nMaxResolution INTEGER.

This specifies the duty cycle resolution and the value to set to get a 100% duty

cycle.

Interactive

Command
No

 // Example :: GpioConfigPWM() (See in Firmware Zip file)
 DIM rc

 DIM nFreqHz, nMaxRes

 // we want a minimum frequency of 500Hz so that we can use a 100Hz low pass filter to

 // create an analogue output which has a 100Hz bandwidth

 nFreqHz = 500

 // we want a resolution of 1:1000 in the generated analogue output

 nMaxValUs = 1000

 PRINT GpioConfigPWM(nFreqHz,nMaxRes)

 PRINT "\nThe actual frequency of the PWM output is ";nFreqHz;"\n"

 // now configure SIO2 pin as a PWM output

 PRINT GpioSetFunc(2,2,2) //3rd parameter is subfunc == PWM output

 // Set PWM output to 0%

 GpioWrite(2,0)

 // Set PWM output to 50%

 GpioWrite(2,(nMaxRes/2))

 // Set PWM output to 100%

 GpioWrite(2,nMaxRes) // any value >= nMaxRes will give a 100% duty cycle

 // Set PWM output to 33.333%

GpioWrite(2,(nMaxRes/3))

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

25 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Expected Output:

GPIOCONFIGPWM is a Module function.

GpioRead

FUNCTION

This routine reads the value from a SIO (special purpose I/O) pin.

The module datasheet contains a pinout table which mentions SIO (Special I/O) pins and the

number designated for that special I/O pin corresponds to the nSigNum argument.

GPIOREAD (nSigNum)

Returns

INTEGER, the value from the signal. If the signal number is invalid, it returns the

value 0. For digital pins, the value is 0 or 1. For ADC pins it is a value in the range

of 0 to M where M is the maximum based on the bit resolution of the analogue

to digital converter.

Arguments

nSigNum byVal nSigNum INTEGER

The signal number as stated in the pinout table of the module.

Interactive

Command
No

 //Example :: GpioRead.sb (See in Firmware Zip file)

 DIM signal

 signal = GpioRead(3)

 PRINT signal

Expected Output:

GPIOREAD is a Module function.

GpioWrite

SUBROUTINE

This routine writes a new value to the GPIO pin. If the pin number is invalid, nothing happens.

If the GPIO pin has been configured as a PWM output then the nNewValue specifies a value in

the range 0 to N where N is the maximum PWM value that generates a 100% duty cycle output

(a constant high signal) and N is a value that is configured using the function GpioConfigPWM().

0

The actual frequency of the PWM output is 1000

0

1

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

26 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

If the GPIO pin has been configured as a FREQUENCY output then the nNewValue specifies the

desired frequency in Hertz in the range 0 to 4000000. Setting a value of 0 makes the output a

constant low value. Setting a value greater than 4000000 clips the output to a 4 MHz signal.

GPIOWRITE (nSigNum, nNewValue)

Arguments

nSigNum byVal nSigNum INTEGER.

The signal number as stated in the pinout table of the module.

nNewValue byVal nNewValue INTEGER.

The value to be written to the port. If the pin is configured as digital then 0 clears

the pin and a non-zero value sets it.

If the pin is configured as analogue – value is written to the pin

If the pin is configured as a PWM – value sets the duty cycle

If the pin is configured as a FREQUENCY – value sets the frequency

Interactive

Command
No

 //Example :: GpioWrite.sb (See in Firmware Zip file)

 DIM rc,dutycycle,freqHz,minFreq

 //set sio pin 1 to an output and initialise it to high

 PRINT GpioSetFunc(1,2,0);"\n"

 //set sio pin 5 to PWM output

 minFreq = 500

 PRINT GpioConfigPWM(minFreq,1024);"\n" //set max pwm value/resolution to 1:1024

 PRINT GpioSetFunc(5,2,2);"\n"

 PRINT GpioSetFunc(7,2,3);"\n\n" //set sio pin 7 to Frequency output

 GpioWrite(18,0) //set pin 1 to low

 GpioWrite(18,1) //set pin 1 to high

 //Set the PWM output to 25%

 GpioWrite(5,256) //256 = 1024/4

 //Set the FREQ output to 4.236 Khz

 GpioWrite(7,4236)

 //Note you can generate a chirp output on sio 7 by starting a timer which expires

 //every 100ms and then in the timer handler call GpioWrite(7,xx) and then

 //increment xx by a certain value

Expected Output:

GPIOWRITE is a Module function.

GpioBindEvent

FUNCTION

This routine binds an event to a level transition on a specified special I/O line configured as a

digital input so that changes in the input line can invoke a handler in smart BASIC user code.

0000

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

27 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Note: In the BL620 module, using this function results in over 1 mA of continuous current

consumption from the power supply. If power is important, use GpioAssignEvent()

instead which uses other resources to expedite an event.

GPIOBINDEVENT (nEventNum, nSigNum, nPolarity)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

nEventNum byVal nEventNum INTEGER

The GPIO event number (in the range of 0 - N) which results in the event

EVGPIOCHANn being thrown to the smart BASIC runtime engine.

nSigNum byVal nSigNum INTEGER

The signal number as stated in the pinout table of the module.

nPolarity byVal nPolarity INTEGER

States the transition as follows:

0 Low to high transition

1 High to low transition

2 Either a low to high or high to low transition

Interactive

Command
No

 //Example :: GpioBindEvent.sb (See in Firmware Zip file)
 FUNCTION Btn0Press()

 PRINT "\nHello"

 ENDFUNC 0

 PRINT GpioBindEvent(0,16,1) //Bind event 0 to high low transition on sio16

(button0)

 ONEVENT EVGPIOCHAN0 CALL Btn0Press //When event 0 happens, call Btn0Press

 PRINT "\nPress button 0"

 WAITEVENT

Expected Output:

GPIOBINDEVENT is a Module function.

GpioUnbindEvent

FUNCTION

This routine unbinds the runtime engine event from a level transition bound using

GpioBindEvent().

0

Press button 0

Hello

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

28 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

GPIOUNBINDEVENT (nEventNum)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

nEventNum byVal nEventNum INTEGER.

The GPIO event number (in the range of 0 - N) which is disabled so that it no

longer generates run-time events in smart BASIC.

Interactive

Command
No

 //Example :: GpioUnbindEvent.sb (See in Firmware Zip file)

 FUNCTION Btn0Press()

 PRINT "\nHello"

 ENDFUNC 1

 FUNCTION Tmr0TimedOut()

 PRINT "\nNothing happened"

 ENDFUNC 0

 PRINT GpioBindEvent(0,16,1);"\n"

 ONEVENT EVGPIOCHAN0 CALL Btn0Press

 ONEVENT EVTMR0 CALL Tmr0TimedOut

 PRINT GpioUnbindEvent(0);"\n"

 PRINT "\nPress button 0\n"

 TimerStart(0,8000,0)

 WAITEVENT

Expected Output:

GPIOUNBINDEVENT is a Module function.

GpioAssignEvent

FUNCTION

This routine assigns an event to a level transition on a specified special I/O line configured as a

digital input. Changes in the input line can invoke a handler in smart BASIC user code

0

0

Press button 0

Nothing happened

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

29 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Note: In the BL620, this function results in approximately 4 uA of continuous current

consumption from the power supply. It is impossible to assign a polarity value which

detects either level transitions.

GPIOASSIGNEVENT (nEventNum, nSigNum, nPolarity)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

nEventNum byVal nEventNum INTEGER.

The GPIO event number (in the range of 0 - N) which results in the event

EVDETECTCHANn being thrown to the smart BASIC runtime engine.

Note: A value of 0 is only valid for the BL620.

nSigNum byVal nSigNum INTEGER.

The signal number as stated in the pinout table of the module.

nPolarity byVal nPolarity INTEGER.

States the transition as follows:

0 Low to high transition

1 High to low transition

2
Either a low to high or high to low transition

Note: This is not available in the BL620 module.

Interactive

Command
No

 //Example :: GpioAssignEvent.sb (See in Firmware Zip file)
 FUNCTION Btn0Press()

 PRINT "\nHello"

 ENDFUNC 0

 PRINT GpioAssignEvent(0,16,1) //Assign event 0 to high low transition on

sio16 (button0)

 ONEVENT EVDETECTCHAN0 CALL Btn0Press //When event 0 is detected, call Btn0Press

 PRINT "\nPress button 0"

 WAITEVENT

Expected Output:

GPIOASSIGNEVENT is a Module function.

0

Press button 0

Hello

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

30 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

GpioUnAssignEvent

FUNCTION

This routine unassigns the runtime engine event from a level transition assigned using

GpioAssignEvent().

GPIOUNASSIGNEVENT (nEventNum)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

nEventNum byVal nEventNum INTEGER.

The GPIO event number (in the range of 0 - N) which is disabled so that it no

longer generates run-time events in smart BASIC.

Note: A value of 0 is only valid for the BL620.

Interactive

Command
No

 //Example :: GpioUnAssignEvent.sb (See in Firmware Zip file)

 FUNCTION Btn0Press()

 PRINT "\nHello"

 ENDFUNC 1

 FUNCTION Tmr0TimedOut()

 PRINT "\nNothing happened"

 ENDFUNC 0

 PRINT GpioAssignEvent(0,16,1);"\n"

 ONEVENT EVDETECTCHAN0 CALL Btn0Press

 ONEVENT EVTMR0 CALL Tmr0TimedOut

 PRINT GpioUnAssignEvent(0);"\n"

 PRINT "\nPress button 0\n"

 TimerStart(0,8000,0)

 WAITEVENT

Expected Output:

GPIOUNASSIGNEVENT is a Module function.

0

0

Press button 0

Nothing happened

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

31 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

5. BLE EXTENSIONS BUILT-IN ROUTINES

Bluetooth Low Energy (BLE) extensions are specific to the BL620 smart BASIC BLE module and

provide a high level managed interface to the underlying Bluetooth stack.

MAC Address

To address privacy concerns, there are four types of MAC addresses in a BLE device which can

change as needed. For example, an iPhone regularly changes its BLE MAC address and it

always exposes only its resolvable random address.

To manage this, the usual six octet MAC address is qualified on-air by a single bit which qualifies

the MAC address as public or random. If public, then the format is as defined by the IEEE

organisation. If random, then it can be up to three types and this qualification is done using the

upper two bits of the most significant byte of the random MAC address. The exact details and

format of how the specification requires this to be managed is not relevant for the purpose of

how BLE functionality as exposed in this module; only details on how various API functions in

smartBASIC expect MAC addresses to be provided is described.

Where a MAC address is expected as a parameter (or provided as a response) it is always a

STRING variable. This variable is seven octets long where the first octet is the address type and

the other six octets are the usual MAC address in big endian format (so that most significant

octet of the address is at offset 1), whether public or random.

The address type is:

0 Public

1 Random Static

2 Random Private Resolvable

3 Random Private Non-Resolvable

All other values are illegal

For example, to specify a public address which has the MAC potion as 112233445566 then the

STRING variable contains seven octets 00112233445566 and a variable can be initialised using a

constant string by escaping as follows:

DIM address \00\11\22\33\44\55\66

Static random address 01C12233445566 (upper tow bits of MAC portion == 11)

Resolvable random
address

02412233445566 (upper 2 bits of MAC portion == 01)

Non-resolvable address 03112233445566 (upper 2 bits of MAC portion == 00)

Note: The MAC address portion in smartBASIC is always in big endian format. If you sniff on-

air packets, the same six packets appear in little endian format, hence reverse order;

you will not see seven bytes, but a bit in the packet somewhere which specifies it to

be public or random.

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

32 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Events and Messages

EVBLE_CONN_TIMEOUT

This event is thrown when a connection attempt initiated by the BleConnect() function times out.

 //See example for BleConnect()

EVBLE_ADV_REPORT

This event is thrown when an advert report is received whether successfully cached or not.

 //See example for BleScanGetAdvReport.sb

EVBLE_FAST_PAGED

This event is thrown when an advert report is received of type ADV_DIRECT_IND and the advert

had a target address (InitA in the spec) which matches the address of this module.

 //See example for BleScanGetPagerAddr.sb

EVBLE_SCAN_TIMEOUT

This event is thrown when a scanning procedure initiated by the BleScanStart() function times

out.

 //See example for BleScanStart()

EVBLEMSG

The BLE subsystem is capable of informing a smart BASIC application when a significant BLE

related event has occurred. It does so by throwing this message (as opposed to an EVENT, which

is akin to an interrupt and has no context or queue associated with it). The message contains

two parameters:

 msgID – Identifies what event was triggered

 msgCtx – Conveys some context data associated with that event.

The smart BASIC application must register a handler function which takes two integer arguments

to be able to receive and process this message.

Note: The messaging subsystem, unlike the event subsystem, has a queue associated with

it and unless that queue is full, pends all messages until they are handled. Only

messages that have handlers associated with them are inserted into the queue. This

is to prevent messages that are not handled from filling that queue. The list of triggers

and associated context parameter are described in Table 1.

Table 1: Triggers and associated context parameters

MsgID Description

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

33 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

MsgID Description

0 A connection has been established and msgCtx is the connection handle.

1 A disconnection event and msgCtx identifies the handle.

2 Immediate Alert Service Alert. The 2nd parameter contains new alert level.

3 Link Loss Alert. The 2nd parameter contains new alert level.

4 A BLE Service Error. The 2nd parameter contains the error code.

5
Thermometer Client Characteristic Descriptor value has changed. (Indication

enable state and msgCtx contains new value: 0 for disabled, 1 for enabled)

6 Thermometer measurement indication has been acknowledged.

7
Blood Pressure Client Characteristic Descriptor value has changed. (Indication

enable state and msgCtx contains new value: 0 for disabled, 1 for enabled)

8 Blood Pressure measurement indication has been acknowledged.

9 Pairing in progress and display Passkey supplied in msgCtx.

10 A new bond has been successfully created.

11 Pairing in progress and authentication key requested. msgCtx is key type.

12
Heart Rate Client Characteristic Descriptor value has changed. (Notification

enable state and msgCtx contains new value: 0 for disabled, 1 for enabled)

14 Connection parameters update and msgCtx is the conn handle.

15 Connection parameters update fail and msgCtx is the conn handle.

16 Connected to a bonded master and msgCtx is the conn handle.

17 A new pairing has replaced old key for the connection handle specified.

18 The connection is now encrypted and msgCtx is the conn handle.

19
The supply voltage has dropped below that specified in the most recent call of

SetPwrSupplyThreshMv() and msgCtx is the current voltage in milliVolts.

20 The connection is no longer encrypted and msgCtx is the conn handle

21
The device name characteristic in the GAP service of the local gatt table has

been written by the remote gatt client.

Note: Message ID 13 is reserved for future use

The following is an example of how these messages can be used:

 //Example :: EvBleMsg.sb (See in BL620CodeSnippets.zip)
 DIM addr$: addr$=""

 DIM rc

 //==

 // This handler is called when there is a BLE message

 //==

 FUNCTION HndlrBleMsg(BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER)

 SELECT nMsgId

 CASE 0

 PRINT "\nBle Connection ";nCtx

 rc = BleAuthenticate(nCtx)

 CASE 1

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

34 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 PRINT "\nDisconnected ";nCtx;"\n"

 CASE 18

 PRINT "\nConnection ";nCtx;" is now encrypted"

 CASE 16

 PRINT "\nConnected to a bonded master"

 CASE 17

 PRINT "\nA new pairing has replaced the old key";

 CASE ELSE

 PRINT "\nUnknown Ble Msg"

 ENDSELECT

 ENDFUNC 1

 FUNCTION HndlrBlrAdvTimOut()

 PRINT "\nAdvert stopped via timeout"

 PRINT "\nExiting..."

 ENDFUNC 0

 FUNCTION Btn0Press()

 PRINT "\nExiting..."

 ENDFUNC 0

 PRINT GpioSetFunc(16,1,0x12)

 PRINT GpioBindEvent(0,16,0)

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 ONEVENT EVBLE_ADV_TIMEOUT CALL HndlrBlrAdvTimOut

 ONEVENT EVGPIOCHAN0 CALL Btn0Press

 // start adverts

 IF BleAdvertStart(0,addr$,100,10000,0)==0 THEN

 PRINT "\nAdverts Started"

 PRINT "\nPress button 0 to exit\n"

 ELSE

 PRINT "\n\nAdvertisement not successful"

 ENDIF

 WAITEVENT

Expected Output (When connection made with BL620):

Expected Output (When no connection made):

Adverts Started

Press button 0 to exit

BLE Connection 3634

Connected to a bonded master

Connection 3634 is now encrypted

A new pairing has replaced the old key

Disconnected 3634

Exiting...

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

35 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

EVDISCON

This event is thrown when there is a disconnection. It comes with two parameters:

 Parameter 1 – Connection handle

 Parameter 2 – The reason for the disconnection

For example: The reason can be 0x08 which signifies a link connection supervision timeout which

is used in the Proximity Profile.

A full list of Bluetooth HCI result codes for the reason of disconnection can be determined and

provided in this document here.

 //Example :: EvDiscon.sb (See in BL620CodeSnippets.zip)

 DIM addr$: addr$=""

 FUNCTION HndlrBleMsg(BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER)

 IF nMsgID==0 THEN

 PRINT "\nNew Connection ";nCtx

 ENDIF

 ENDFUNC 1

 FUNCTION Btn0Press()

 PRINT "\nExiting..."

 ENDFUNC 0

 FUNCTION HndlrDiscon(BYVAL hConn AS INTEGER, BYVAL nRsn AS INTEGER) AS INTEGER

 PRINT "\nConnection ";hConn;" Closed: 0x";nRsn

 ENDFUNC 0

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 ONEVENT EVDISCON CALL HndlrDiscon

 // start adverts

 IF BleAdvertStart(0,addr$,100,10000,0)==0 THEN

 PRINT "\nAdverts Started\n"

 ELSE

 PRINT "\n\nAdvertisement not successful"

 ENDIF

 WAITEVENT

Expected Output:

Adverts Started

Press button 0 to exit

Advert stopped via timeout

Exiting...

Adverts Started

New Connection 2915

Connection 2915 Closed: 0x19

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

36 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

EVCHARVAL

This event is thrown when a characteristic has been written to by a remote GATT client. It comes

with three parameters which are the characteristic handle that was returned when the

characteristic was registered using the function BleCharCommit() the Offset and Length of the

data from the characteristic value

 //Example :: EvCharVal.sb (See in BL620CodeSnippets.zip)

 DIM hMyChar,rc,at$,conHndl

 //==

 // Initialise and instantiate service, characteristic, start adverts

 //==

 FUNCTION OnStartup()

 DIM rc, hSvc, attr$, adRpt$, addr$, scRpt$: attr$="Hi"

 //commit service

 rc=BleSvcCommit(1,BleHandleUuid16(0x18EE),hSvc)

 //initialise char, write/read enabled, accept signed writes

 rc=BleCharNew(0x0A,BleHandleUuid16(1),BleAttrMetaData(1,1,20,0,rc),0,0)

 //commit char initialised above, with initial value "hi" to service 'hSvc'

 rc=BleCharCommit(hSvc,attr$,hMyChar)

 rc=BleScanRptInit(scRpt$)

 //Add 1 service handle to scan report

 //rc=BleAdvRptAddUuid16(scRpt$,hSvc,-1,-1,-1,-1,-1)

 //commit reports to GATT table - adRpt$ is empty

 rc=BleAdvRptsCommit(adRpt$,scRpt$)

 rc=BleAdvertStart(0,addr$,20,300000,0)

 ENDFUNC rc

 //==

 // Close connections so that we can run another app without problems

 //==

 SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

 ENDSUB

 //==

 // Ble event handler

 //==

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n--- Disconnected from client"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n--- Connected to client"

 ENDIF

 ENDFUNC 1

 //==

 // New char value handler

 //==

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

37 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 FUNCTION HandlerCharVal(BYVAL charHandle, BYVAL offset, BYVAL len)

 DIM s$

 IF charHandle == hMyChar THEN

 PRINT "\n";len;" byte(s) have been written to char value attribute from

offset ";offset

 rc=BleCharValueRead(hMyChar,s$)

 PRINT "\nNew Char Value: ";s$

 ENDIF

 CloseConnections()

 ENDFUNC 1

 ONEVENT EVCHARVAL CALL HandlerCharVal

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 IF OnStartup()==0 THEN

 rc = BleCharValueRead(hMyChar,at$)

 PRINT "\nValue of the characteristic is ";at$

 PRINT "\nSend a new value to write to the characteristic\n"

 ELSE

 PRINT "\nFailure OnStartup"

 ENDIF

 WAITEVENT

 PRINT "\nExiting..."

Expected Output:

EVCHARHVC

This event is thrown when a value sent via an indication to a client gets acknowledged. It comes

with one parameter – the characteristic handle that was returned when the characteristic was

registered using the function BleCharCommit().

// Example :: EVCHARHVC charHandle

// See example that is provided for EVCHARCCCD

The characteristic’s value is Hi

Write a new value to the characteristic

--- Connected to client

5 byte(s) have been written to char value attribute from offset 0

New Char Value: Hello

--- Disconnected from client

Exiting...

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

38 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

EVCHARCCCD

This event is thrown when the client writes to the CCCD descriptor of a characteristic. It comes

with two parameters:

 The characteristic handle returned when the characteristic was registered with

BleCharCommit()

 The new 16 bit value in the updated CCCD attribute.

 //Example :: EvCharCccd.sb (See in BL620CodeSnippets.zip)

 DIM hMyChar,rc,at$,conHndl

 //==

 // Initialise and instantiate service, characteristic, start adverts

 //==

 FUNCTION OnStartup()

 DIM rc, hSvc, metaSuccess, at$, attr$, adRpt$, addr$, scRpt$

 attr$="Hi"

 DIM svcUuid : svcUuid=0x18EE

 DIM charUuid : charUuid = BleHandleUuid16(1)

 DIM charMet : charMet = BleAttrMetaData(1,1,20,0,metaSuccess)

 DIM hSvcUuid : hSvcUuid = BleHandleUuid16(svcUuid)

 DIM mdCccd : mdCccd = BleAttrMetadata(1,1,2,0,rc) //CCCD metadata for char

 //Commit svc with handle 'hSvcUuid'

 rc=BleSvcCommit(1,hSvcUuid,hSvc)

 //initialise char, write/read enabled, accept signed writes, indicatable

 rc=BleCharNew(0x6A,charUuid,charMet,mdCccd,0)

 //commit char initialised above, with initial value "hi" to service 'hMyChar'

 rc=BleCharCommit(hSvc,attr$,hMyChar)

 rc=BleScanRptInit(scRpt$)

 //Add 1 service handle to scan report

 rc=BleAdvRptAddUuid16(scRpt$,hSvc,-1,-1,-1,-1,-1)

 //commit reports to GATT table - adRpt$ is empty

 rc=BleAdvRptsCommit(adRpt$,scRpt$)

 rc=BleAdvertStart(0,addr$,20,300000,0)

 rc=GpioBindEvent(1,16,1) //Channel 1, bind to low transition on GPIO pin 16

 ENDFUNC rc

 //==

 // Close connections so that we can run another app without problems

 //==

 SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

 rc=GpioUnbindEvent(1)

 ENDSUB

 //==

 // Ble event handler

 //==

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n--- Disconnected from client"

 EXITFUNC 0

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

39 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 ELSEIF nMsgID==0 THEN

 PRINT "\n--- Connected to client"

 ENDIF

 ENDFUNC 1

 //==

 // Indication acknowledgement from client handler

 //==

 FUNCTION HndlrCharHvc(BYVAL charHandle AS INTEGER) AS INTEGER

 IF charHandle == hMyChar THEN

 PRINT "\nGot confirmation of recent indication"

 ELSE

 PRINT "\nGot confirmation of some other indication: ";charHandle

 ENDIF

 ENDFUNC 1

 //==

 //handler to service button 0 pressed

 //==

 FUNCTION HndlrBtn0Pr() AS INTEGER

 CloseConnections()

 ENDFUNC 1

 //==

 // CCCD descriptor written handler

 //==

 FUNCTION HndlrCharCccd(BYVAL charHandle, BYVAL nVal) AS INTEGER

 DIM value$

 IF charHandle==hMyChar THEN

 IF nVal & 0x02 THEN

 PRINT "\nIndications have been enabled by client"

 value$="hello"

 IF BleCharValueIndicate(hMyChar,value$)!=0 THEN

 PRINT "\nFailed to indicate new value"

 ENDIF

 ELSE

 PRINT "\nIndications have been disabled by client"

 ENDIF

 ELSE

 PRINT "\nThis is for some other characteristic"

 ENDIF

 ENDFUNC 1

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 ONEVENT EVCHARHVC CALL HndlrCharHvc

 ONEVENT EVCHARCCCD CALL HndlrCharCccd

 ONEVENT EVGPIOCHAN1 CALL HndlrBtn0Pr

 IF OnStartup()==0 THEN

 rc = BleCharValueRead(hMyChar,at$)

 PRINT "\nCharacteristic Value ";at$

 PRINT "\nYou can write to the CCCD characteristic."

 PRINT "\nThe BL620 will then indicate a new characteristic value\n"

 PRINT "\nPress button 0 to exit"

 ELSE

 PRINT "\nFailure OnStartup"

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

40 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 ENDIF

 WAITEVENT

 PRINT "\nExiting..."

EVCHARSCCD

This event is thrown when the client writes to the SCCD descriptor of a characteristic. It comes

with two parameters:

 The characteristic handle that was returned when the characteristic was registered using

the function BleCharCommit()

 The new 16 bit value in the updated SCCD attribute

The SCCD is used to manage broadcasts of characteristic values.

 //Example :: EvCharSccd.sb (See in BL620CodeSnippets.zip)

 DIM hMyChar,rc,at$,conHndl

 //==

 // Initialise and instantiate service, characteristic, start adverts

 //==

 FUNCTION OnStartup()

 DIM rc, hSvc, at$, attr$, adRpt$, addr$, scRpt$

 attr$="Hi"

 DIM charMet : charMet = BleAttrMetaData(1,0,20,0,rc)

 DIM mdSccd : mdSccd = BleAttrMetadata(1,1,2,0,rc)

 //Commit svc with handle 'hSvcUuid'

 rc=BleSvcCommit(1,BleHandleUuid16(0x18EE),hSvc)

 //initialise char, read enabled, accept signed writes, broadcast capable

 rc=BleCharNew(0x03,BleHandleUuid16(1),charMet,0,mdSccd)

 //commit char initialised above, with initial value "hi" to service

'hMyChar'

 rc=BleCharCommit(hSvc,attr$,hMyChar)

 rc=BleAdvRptInit(adRpt$,0x02,0,20)

 //commit reports to GATT table - adRpt$ is empty

 rc=BleAdvRptsCommit(adRpt$,scRpt$)

 rc=BleAdvertStart(0,addr$,20,300000,0)

 rc=GpioBindEvent(1,16,1) //Channel 1, bind to low transition on GPIO

pin 16

 ENDFUNC rc

 //==

 // Close connections so that we can run another app without problems

 //==

 SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

 rc=GpioUnbindEvent(1)

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

41 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 ENDSUB

 //==

 // Ble event handler

 //==

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n--- Disconnected from client"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n--- Connected to client"

 ENDIF

 ENDFUNC 1

 //==

 //handler to service button 0 pressed

 //==

 FUNCTION HndlrBtn0Pr() AS INTEGER

 CloseConnections()

 ENDFUNC 1

 //==

 // CCCD descriptor written handler

 //==

 FUNCTION HndlrCharSccd(BYVAL charHandle, BYVAL nVal) AS INTEGER

 DIM value$

 IF charHandle==hMyChar THEN

 IF nVal & 0x01 THEN

 PRINT "\nBroadcasts have been enabled by client"

 ELSE

 PRINT "\nBroadcasts have been disabled by client"

 ENDIF

 ELSE

 PRINT "\nThis is for some other characteristic"

 ENDIF

 ENDFUNC 1

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 ONEVENT EVCHARSCCD CALL HndlrCharSccd

 ONEVENT EVGPIOCHAN1 CALL HndlrBtn0Pr

 IF OnStartup()==0 THEN

 rc = BleCharValueRead(hMyChar,at$)

 PRINT "\nCharacteristic Value: ";at$

 PRINT "\nYou can write to the SCCD attribute."

 PRINT "\n--- Press button 0 to exit\n"

 ELSE

 PRINT "\nFailure OnStartup"

 ENDIF

 WAITEVENT

 PRINT "\nExiting..."

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

42 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

EVCHARDESC

This event is thrown when the client writes to writable descriptor of a characteristic which is not a

CCCD or SCCD (CCCD and SCCD are catered for with their own dedicated messages). It

comes with two parameters:

 The characteristic handle that was returned when the characteristic was registered using

the function BleCharCommit()

 An index into an opaque array of handles managed inside the characteristic handle

Both parameters are supplied as-is as the first two parameters to the function

BleCharDescRead().

 //Example :: EvCharDesc.sb (See in BL620CodeSnippets.zip)

 DIM hMyChar,rc,at$,conHndl, hOtherDescr

 //==

 // Initialise and instantiate service, characteristic, start adverts

 //==

 Sub OnStartup()

 DIM rc, hSvc, at$, adRpt$, addr$, scRpt$, hOtherDscr,attr$, attr2$

 attr$="Hi"

 DIM charMet : charMet = BleAttrMetaData(1,1,20,0,rc)

 //Commit svc with handle 'hSvcUuid'

 rc=BleSvcCommit(1,BleHandleUuid16(0x18EE),hSvc)

 //initialise char, read/write enabled, accept signed writes

 rc=BleCharNew(0x4A,BleHandleUuid16(1),charMet,0,0)

 //Add another descriptor

 attr$="descr_value"

 rc=BleCharDescAdd(0x2999,attr$,BleAttrMetadata(1,1,20,0,rc))

 //commit char initialised above, with initial value "hi" to service 'hMyChar'

 attr2$="char value"

 rc=BleCharCommit(hSvc,attr2$,hMyChar)

 rc=BleAdvRptInit(adRpt$,0x02,0,20)

 rc=BleScanRptInit(scRpt$)

 //get UUID handle for other descriptor

 hOtherDscr=BleHandleUuid16(0x2905)

 //Add 'hSvc','hMyChar' and the other descriptor to the advert report

 rc=BleAdvRptAddUuid16(adRpt$,hSvc,hOtherDscr,-1,-1,-1,-1)

 rc=BleAdvRptAddUuid16(scRpt$,hOtherDscr,-1,-1,-1,-1,-1)

 //commit reports to GATT table - adRpt$ is empty

 rc=BleAdvRptsCommit(adRpt$,scRpt$)

 rc=BleAdvertStart(0,addr$,20,300000,0)

 rc=GpioBindEvent(1,16,1) //Channel 1, bind to low transition on GPIO pin 16

 ENDSUB

 //==

 // Close connections so that we can run another app without problems

 //==

 SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

 rc=GpioUnbindEvent(1)

 ENDSUB

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

43 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 //==

 // Ble event handler

 //==

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n--- Disconnected from client"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n--- Connected to client"

 ENDIF

 ENDFUNC 1

 //==

 //handler to service button 0 pressed

 //==

 FUNCTION HndlrBtn0Pr() AS INTEGER

 CloseConnections()

 ENDFUNC 1

 //==

 // Client has written to writeable descriptor

 //==

 FUNCTION HndlrCharDesc(BYVAL charHandle, BYVAL hDesc) AS INTEGER

 IF charHandle == hMyChar THEN

 PRINT "\n ::Char Handle: ";charHandle

 PRINT "\n ::Descriptor Index: ";hDesc

 PRINT "\nThe new descriptor value is then read using the function

BleCharDescRead()"

 ELSE

 PRINT "\nThis is for some other characteristic"

 ENDIF

 ENDFUNC 1

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 ONEVENT EVCHARDESC CALL HndlrCharDesc

 ONEVENT EVGPIOCHAN1 CALL HndlrBtn0Pr

 OnStartup()

 PRINT "\nWrite to the User Descriptor with UUID 0x2999"

 PRINT "\n--- Press button 0 to exit\n"

 WAITEVENT

 PRINT "\nExiting..."

EVNOTIFYBUF

When in a connection and attribute data is sent to the GATT client using a notify procedure

(such as the function BleCharValueNotify()) or when a Write_with_no_response is sent by the

Gatt client to a remote server, they are stored in temporary buffers in the underlying stack. There

is finite number of these temporary buffers and if they are exhausted, the notify function or the

write_with_no_resp command will fail with a result code of 0x6803 (BLE_NO_TX_BUFFERS). Once

the attribute data is transmitted over the air, given there are no acknowledges for Notify

messages, the buffer is freed to be reused.

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

44 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

This event is thrown when at least one buffer has been freed; the smartBASIC application can

thenhandle this event to retrigger the data pump for sending data using notifies or

writes_with_no_resp commands.

Note: When sending data using Indications, this event is not thrown because those

messages have to be confirmed by the client which results in a EVCHARHVC

message to the smartBASIC application. Likewise, writes which are acknowledged

also do not consume these buffers.

 //Example :: EvNotifyBuf.sb (See in BL620CodeSnippets.zip)

 DIM hMyChar,rc,at$,conHndl,ntfyEnabled

 //==

 // Initialise and instantiate service, characteristic, start adverts

 //==

 FUNCTION OnStartup()

 DIM rc, hSvc, at$, attr$, adRpt$, addr$, scRpt$

 attr$="Hi"

 DIM mdCccd : mdCccd = BleAttrMetadata(1,1,2,0,rc) //CCCD metadata for char

 //Commit svc with handle 'hSvcUuid'

 rc=BleSvcCommit(1,BleHandleUuid16(0x18EE),hSvc)

 //initialise char, write/read enabled, accept signed writes, notifiable

 rc=BleCharNew(0x12,BleHandleUuid16(1),BleAttrMetaData(1,0,20,0,rc),mdCccd,0)

 //commit char initialised above, with initial value "hi" to service 'hMyChar'

 rc=BleCharCommit(hSvc,attr$,hMyChar)

 rc=BleScanRptInit(scRpt$)

 //Add 1 service handle to scan report

 rc=BleAdvRptAddUuid16(scRpt$,hSvc,-1,-1,-1,-1,-1)

 //commit reports to GATT table - adRpt$ is empty

 rc=BleAdvRptsCommit(adRpt$,scRpt$)

 rc=BleAdvertStart(0,addr$,50,0,0)

 ENDFUNC rc

 //==

 // Close connections so that we can run another app without problems

 //==

 SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

 ENDSUB

 SUB SendData()

 DIM tx$, count

 IF ntfyEnabled then

 PRINT "\n--- Notifying"

 DO

 tx$="SomeData"

 rc=BleCharValueNotify(hMyChar,tx$)

 count=count+1

 UNTIL rc!=0

 PRINT "\n--- Buffer full"

 PRINT "\nNotified ";count;" times"

 ENDIF

 ENDSUB

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

45 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 //==

 // Ble event handler

 //==

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==0 THEN

 PRINT "\n--- Connected to client"

 ELSEIF nMsgID THEN

 PRINT "\n--- Disconnected from client"

 EXITFUNC 0

 ENDIF

 ENDFUNC 1

 //==

 // Tx Buffer free handler

 //==

 FUNCTION HndlrNtfyBuf()

 SendData()

 ENDFUNC 0

 //==

 // CCCD descriptor written handler

 //==

 FUNCTION HndlrCharCccd(BYVAL charHandle, BYVAL nVal) AS INTEGER

 DIM value$,tx$

 IF charHandle==hMyChar THEN

 IF nVal THEN

 PRINT " : Notifications have been enabled by client"

 ntfyEnabled=1

 tx$="Hello"

 rc=BleCharValueNotify(hMyChar,tx$)

 ELSE

 PRINT "\nNotifications have been disabled by client"

 ntfyEnabled=0

 ENDIF

 ELSE

 PRINT "\nThis is for some other characteristic"

 ENDIF

 ENDFUNC 1

 ONEVENT EVNOTIFYBUF CALL HndlrNtfyBuf

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 ONEVENT EVCHARCCCD CALL HndlrCharCccd

 IF OnStartup()==0 THEN

 rc = BleCharValueRead(hMyChar,at$)

 PRINT "\nYou can connect and write to the CCCD characteristic."

 PRINT "\nThe BL620 will then send you data until buffer is full\n"

 ELSE

 PRINT "\nFailure OnStartup"

 ENDIF

 WAITEVENT

 CloseConnections()

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

46 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 PRINT "\nExiting..."

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

47 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Expected Output:

Miscellaneous Functions

This section describes all BLE-related functions that are not related to advertising, connection,

security manager, or GATT.

BleTxPowerSet

FUNCTION

This function sets the power of all packets that are transmitted subsequently.

The actual value is determined by scanning through the value list (4, 0, -4, -8, -12, -16, -20, -30 , -

55) so that the highest value in the list which is less than the desired value is set. Note that if

desired value is less than

-55 then -55 is selected.

For example, setting 1000 results in +4; -3 results in -4; -100 results in -55.

At any time SYSINFO(2008) returns the actual transmit power setting. Or, when in command

mode, use the command AT I 2008.

BLETXPOWERSET(nTxPower)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

nTxPower byVal nTxPower AS INTEGER.

Specifies the new transmit power in dBm units to be used for all subsequent tx

packets.

The actual value is determined by scanning through the value list (4, 0, -4, -8, -12,

-16, -20, -30 , -55) so that the highest value in the list which is less than the desired

value is set. Note that if desired value is less than

-55 then -55 is selected.

Interactive

Command
No

//Example :: BleTxPowerSet.sb (See in BL620CodeSnippets.zip)

DIM rc,dp

You can connect and write to the CCCD characteristic.

The BL620 will then send you data until buffer is full

--- Connected to client

Notifications have been disabled by client : Notifications have been

enabled by client

--- Notifying

--- Buffer full

Notified 1818505336 times

Exiting...

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

48 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

dp=1000 : rc = BleTxPowerSet(dp)

PRINT "\nrc = ";rc

PRINT "\nTx power : desired= ";dp," actual= "; SysInfo(2008)

dp=8 : rc = BleTxPowerSet(dp)

PRINT "\nTx power : desired= ";dp," "," actual= "; SysInfo(2008)

dp=2 : rc = BleTxPowerSet(dp)

PRINT "\nTx power : desired= ";dp," "," actual= "; SysInfo(2008)

dp=-10 : rc = BleTxPowerSet(dp)

PRINT "\nTx power : desired= ";dp," "," actual= "; SysInfo(2008)

dp=-25 : rc = BleTxPowerSet(dp)

PRINT "\nTx power : desired= ";dp," "," actual= "; SysInfo(2008)

dp=-45 : rc = BleTxPowerSet(dp)

PRINT "\nTx power : desired= ";dp," "," actual= "; SysInfo(2008)

dp=-1000 : rc = BleTxPowerSet(dp)

PRINT "\nTx power : desired= ";dp," actual= "; SysInfo(2008)

Expected Output:

BLETXPOWERSET is an extension function.

BleTxPwrWhilePairing

FUNCTION

This function sets the transmit power of all packets that are transmitted while a pairing is in

progress. This mode of pairing is referred to as Whsiper Mode Pairing. The actual value is clipped

to the transmit power for normal operation which is set using BleTxPowerSet() function.

The actual value is determined by scanning through the value list (4, 0, -4, -8, -12, -16, -20, -30 , -

55) so that the highest value in the list which is less than the desired value is set. Note that if

desired value is less than

-55 then -55 is selected.

For example, setting 1000 results in +4; -3 results in -4; -100 results in -55.

At any time SYSINFO(2008) returns the actual transmit power setting. Or, when in command

mode, use the command AT I 2008.

BLETXPWRWHILEPAIRING(nTxPower)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

nTxPower byVal nTxPower AS INTEGER.

Specifies the new transmit power in dBm units to be used for all subsequent tx

rc = 0

Tx power : desired= 1000 actual= 4

Tx power : desired= 8 actual= 4

Tx power : desired= 2 actual= 0

Tx power : desired= -10 actual= -12

Tx power : desired= -25 actual= -30

Tx power : desired= -45 actual= -55

Tx power : desired= -1000 actual= -55

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

49 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

packets.

The actual value is determined by scanning through the value list (4, 0, -4, -8, -12,

-16, -20, -30 , -55) so that the highest value in the list which is less than the desired

value is set. Note that if desired value is less than

-55 then -55 is selected.

Interactive

Command
No

//Example :: BleTxPwrWhilePairing.sb (See in BL620CodeSnippets.zip)

DIM rc,dp

dp=1000 : rc = BleTxPwrWhilePairing(dp)

PRINT "\nrc = ";rc

PRINT "\nTx power while pairing: desired= ";dp," actual= "; SysInfo(2018)

dp=8 : rc = BleTxPwrWhilePairing(dp)

PRINT "\nTx power while pairing: desired= ";dp," "," actual= "; SysInfo(2018)

dp=2 : rc = BleTxPwrWhilePairing(dp)

PRINT "\nTx power while pairing: desired= ";dp," "," actual= "; SysInfo(2018)

dp=-10 : rc = BleTxPwrWhilePairing(dp)

PRINT "\nTx power while pairing: desired= ";dp," actual= "; SysInfo(2018)

dp=-25 : rc = BleTxPwrWhilePairing(dp)

PRINT "\nTx power while pairing: desired= ";dp," actual= "; SysInfo(2018)

dp=-45 : rc = BleTxPwrWhilePairing(dp)

PRINT "\nTx power while pairing: desired= ";dp," actual= "; SysInfo(2018)

dp=-1000 : rc = BleTxPwrWhilePairing(dp)

PRINT "\nTx power while pairing: desired= ";dp," actual= "; SysInfo(2018)

Expected Output:

BLETXPOWERSET is an extension function.

BleConfigDcDc

SUBROUTINE

This routine is used to configure the DC to DC converter to one of three states: OFF, ON, or

AUTOMATIC

Note: Until a future revision when the chipset vendor has fixed a hardware issue at the

silicon level, this function does not function as stated and any nNewState value are

interpreted as OFF.

BLECONFIGDCDC(nNewState)

rc = 0

Tx power while pairing: desired= 1000 actual= 4

Tx power while pairing: desired= 8 actual= 4

Tx power while pairing: desired= 2 actual= 0

Tx power while pairing: desired= -10 actual= -12

Tx power while pairing: desired= -25 actual= -30

Tx power while pairing: desired= -45 actual= -55

Tx power while pairing: desired= -1000 actual= -55

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

50 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Returns None

Arguments

nNewState byVal nNewState AS INTEGER.

Configure the internal DC to DC converter as follows:

0 Off

2 Auto

All other values On

Interactive

Command
No

 BleConfigDcDc(2) //Set for automatic operation

BLECONFIGDCDC is an extension function.

Advertising Functions

Note: The BL620 module is NOT capable of being a peripheral device and so, although the

functions described below exist, most will return an error. They only function as

described in the BL620 module, or in the future in a module with a combined central

and peripheral stack.

An advertisement consists of a packet of information with a header identifying it as one of four

types along with an optional payload that consists of multiple advertising records, referred to as

AD in the rest of this manual.

Each AD record consists of up to three fields:

 First field – One octet in length and contains the number of octets that follow it that

belong to that record

 Second field – One octet and is a tag value which identifies the type of payload that starts

at the next octet. Hence the payload data is length – 1.

A special NULL AD record consists of only one field, that is, the length field, when it contains just

the 00 value.

The specification also allows custom AD records to be created using the Manufacturer Specific

Data AD record.

Refer to the Supplement to the Bluetooth Core Specification, Version 1, Part A which has the

latest list of all AD records. You must register as at least an Adopter, which is free, to gain access

to this information. It is available at

https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=245130

http://ews-support.lairdtech.com/
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=245130

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

51 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

BleAdvertStart

FUNCTION

This function causes a BLE advertisement event as per the Bluetooth Specification. An

advertisement event consists of an advertising packet in each of the three advertising channels.

The type of advertisement packet is determined by the nAdvType argument and the data in

the packet is initialised, created, and submitted by the BLEADVRPTINIT, BLEADVRPTADDxxx, and

BLEADVRPTCOMMIT functions respectively.

If the Advert packet type (nAdvType) is specified as 1 (ADV_DIRECT_HIGH_DUTY_CYCLE) then

the peerAddr$ string must not be empty and should be a valid address. When advertising with

this packet type, the timeout is automatically set to 1280 ms.

If the Advert packet type (nAdvType) is specified as 4 (ADV_DIRECT_LOW_DUTY_CYCLE) then

the peerAddr$ string must not be empty and should be a valid address. When advertising with

this packet type, the timeout is as per the interval and timeout values specified.

When filter policy is enabled, the whitelist consisting of all bonded masters is submitted to the

underlying stack so that only those bonded masters result in scan and connection requests

being serviced.

Note: nAdvTimeout is rounded up to the nearest 1000 msec.

BLEADVERTSTART (nAdvType,peerAddr$,nAdvInterval, nAdvTimeout, nFilterPolicy)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

If a 0x6A01 resultcode is received, it implies whitelist has been enabled but the Flags AD in the

advertising report is set for limited and/or general discoverability. The solution is to resubmit a

new advert report which is made up so that the nFlags argument to BleAdvRptInit() function is

0.

The BT 4.0 spec disallows discoverability when a whitelist is enabled during advertisement see

Volume 3, Sections 9.2.3.2 and 9.2.4.2.

Arguments

nAdvType byVal nAdvType AS INTEGER.
Specifies the advertisement type as follows:

0 ADV_IND – Invites connection requests

1

ADV_DIRECT_HIGH_DUTY_CYCLE – Invites connection from addressed

device using high duty cycle timing. nAdvInternal and nAdvTimeout

are ignored and interval is set to 3.75ms and Timeout to 1.28 seconds as

per the specification. See ADV_DIRECT_LOW_DUTY_CYCLE for an
alternative.

2 ADV_SCAN – Invites scan requests for more advert data

3 ADV_NONCONN – Does not accept connections and/or active scans

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

52 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

peerAddr$

byRef peerAddr$ AS STRING

It can be an empty string that is omitted if the advertisement type is not

ADV_DIRECT_IND. This is only required when nAdvType == 1.

When not empty, a valid address string is exactly seven octets long (such as

\00\11\22\33\44\55\66), where the first octet is the address type and the rest

of the 6 octets is the usual MAC address in big endian format (so that most

significant octet of the address is at offset 1), whether public or random.

0 Public

1 Random Static

2 Random Private Resolvable

3 Random Private Non-resolvable

All other values are illegal.

nAdvInterval

byVal nAdvInterval AS INTEGER.

The interval between two advertisement events (in milliseconds).

An advertisement event consists of a total of three packets being transmitted in

the three advertising channels.

Interval range: Between 20 and 10240 milliseconds.

nAdvTimeout

byVal nAdvTimeout AS INTEGER.

The time after which the module stops advertising (in milliseconds).

Value range: Between 0 and 16383000 milliseconds (rounded up to the nearest

one seconds or 1000 ms).

A value of 0 means disable the timeout, but note that if limited advert modes

was specified in BleAdvRptInit() then the timeout is capped to 180000 ms as per

the Bluetooth Specification. When the advert type specified is ADV_DIRECT_IND

, the timeout is automatically set to 1280 ms as per the Bluetooth Specification.

Warning: To save power, do not set this to (e.g.) 100 ms.

nFilterPolicy

byVal nFilterPolicy AS INTEGER.

Specifies the filter policy for the whitelist consisting of all bonded masters as

follows:

0 Disable whitelist

1 Filter scan request; allow connection request from any

2 Filter connection request; allow scan request from any

3 Filter scan request and connection request

If the filter policy is not 0, the whitelist is enabled and filled with all the
addresses of all the devices in the trusted device database.

Interactive

Command
No

 //Example :: BleAdvertStart.sb (See in BL600CodeSnippets.zip)

 DIM addr$: addr$=""

 FUNCTION HndlrBlrAdvTimOut()

 PRINT "\nAdvert stopped via timeout"

 PRINT "\nExiting..."

 ENDFUNC 0

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

53 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 //The advertising interval is set to 25 milliseconds. The module will stop

 //advertising after 60000 ms (1 minute)

 IF BleAdvertStart(0,addr$,25,60000,0)==0 THEN

 PRINT "\nAdverts Started"

 PRINT "\nIf you search for bluetooth devices on your device, you should see

'Laird BL600'"

 ELSE

 PRINT "\n\nAdvertisement not successful"

 ENDIF

 ONEVENT EVBLE_ADV_TIMEOUT CALL HndlrBlrAdvTimOut

 WAITEVENT

Expected Output:

BLEADVERTSTART is an extension function.

BleAdvertStop

FUNCTION

Note: The function is not available in the BL620 module and always returns an error.

This function causes the BLE module to stop advertising.

BLEADVERTSTOP ()

Returns
INTEGER, a result code.

Most typical value – 0x0000, indicating a successful operation.

Arguments None

Interactive

Command
No

 //Example :: BleAdvertStop.sb (See in BL620CodeSnippets.zip)

 DIM addr$: addr$=""

 DIM rc

 FUNCTION HndlrBlrAdvTimOut()

 PRINT "\nAdvert stopped via timeout"

 PRINT "\nExiting..."

 ENDFUNC 0

 FUNCTION Btn0Press()

 IF BleAdvertStop()==0 THEN

 PRINT "\nAdvertising Stopped"

Adverts Started

If you search for bluetooth devices on your device, you should see 'Laird

BL600'

Advert stopped via timeout

Exiting...

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

54 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 ELSE

 PRINT "\n\nAdvertising failed to stop"

 ENDIF

 PRINT "\nExiting..."

 ENDFUNC 0

 IF BleAdvertStart(0,addr$,25,60000,0)==0 THEN

 PRINT "\nAdverts Started. Press button 0 to stop.\n"

 ELSE

 PRINT "\n\nAdvertisement not successful"

 ENDIF

 rc = GpioSetFunc(16,1,2)

 rc = GpioBindEvent(0,16,1)

 ONEVENT EVBLE_ADV_TIMEOUT CALL HndlrBlrAdvTimOut

 ONEVENT EVGPIOCHAN0 CALL Btn0Press

 WAITEVENT

Expected Output:

BLEADVERTSTOP is an extension function.

BleAdvRptInit

FUNCTION

Note: The function is not available in the BL620 module and always returns an error.

This function is used to create and initialise an advert report with a minimal set of ADs

(advertising records) and store it the string specified. It is not advertised until

BLEADVRPTSCOMMIT is called.

This report is for use with advertisement packets.

BLEADVRPTINIT(advRpt$, nFlagsAD, nAdvAppearance, nMaxDevName)

Returns

INTEGER, a result code. The most typical value is 0x0000, indicating a successful

operation.

Arguments

advRpt$ byRef advRpt$ AS STRING.
This contains an advertisement report.

nFlagsAD byVal nFlagsAD AS INTEGER.

Specifies the flags AD bits where bit 0 is set for limited discoverability and bit 1 is

set for general discoverability. Bit 2 is forced to 1 and bits 3 and 4 are forced to
0. Bits 3 to 7 are reserved for future use by the BT SIG and must be set to 0.

Adverts Started. Press button 0 to stop.

Advertising Stopped

Exiting...

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

55 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Note: If a whitelist is enabled in the BleAdvertStart() function then both Limited

and General Discoverability flags MUST be 0 as per the BT 4.0

specification (Volume 3, Sections 9.2.3.2 and 9.2.4.2)

nAdvAppearance byVal nAdvAppearance AS INTEGER.

Determines whether the appearance advert should be added or omitted as

follows:

0 Omit appearance advert

1
Add appearance advert as specified in the GAP service which is

supplied via the BleGapSvcInit() function.

nMaxDevName byVal nMaxDevName AS INTEGER.

The n leftmost characters of the device name specified in the GAP service. If
this value is set to 0 then the device name is not included.

Interactive

Command
No

 //Example :: BleAdvRptInit.sb (See in BL620CodeSnippets.zip)

 DIM advRpt$: advRpt$=""

 DIM discovMode : discovMode=0

 DIM advAppearance : advAppearance = 1

 DIM maxDevName : maxDevName = 10

 IF BleAdvRptInit(advRpt$, discovMode, advAppearance, maxDevName)==0 THEN

 PRINT "\nAdvert report initialised"

 ENDIF

Expected Output:

BLEADVRPTINIT is an extension function.

BleScanRptInit

FUNCTION

Note: The function is not available in the BL620 module and will always return an error.

This function is used to create and initialise a scan report which will be sent in a SCAN_RSP

message. It will not be used until BLEADVRPTSCOMMIT is called.

This report is for use with SCAN_RESPONSE packets.

BLESCANRPTINIT(scanRpt)

Returns
INTEGER, a result code.

Most typical value – 0x0000, indicating a successful operation.

Arguments

scanRpt byRef scanRpt ASSTRING.

This contains a scan report.

Advert report initialised

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

56 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Interactive

Command
No

 //Example :: BleScanRptInit.sb (See in BL620CodeSnippets.zip)

 DIM scnRpt$: scnRpt$=""

 IF BleScanRptInit(scnRpt$)==0 THEN

 PRINT "\nScan report initialised"

 ENDIF

Expected Output:

BLESCANRPTINIT is an extension function.

BleAdvRptAddUuid16

FUNCTION

Note: The function is not available in the BL620 module and always returns an error.

This function is used to add a 16 bit UUID service list AD (Advertising record) to the advert report.

This consists of all the 16 bit service UUIDs that the device supports as a server.

BLEADVRPTADDUUID16 (advRpt, nUuid1, nUuid2, nUuid3, nUuid4, nUuid5, nUuid6)

Returns
INTEGER, a result code.

Most typical value – 0x0000, indicating a successful operation.

Arguments

AdvRpt byRef AdvRpt AS STRING.

The advert report onto which the 16 bit uuids AD record is added.

Uuid1 byVal uuid1 AS INTEGER

UUID in the range 0 to FFFF, if value is outside that range it is ignored.

Set the value to -1 to have it ignored and then all further UUID arguments are
also ignored.

Uuid2 byVal uuid2 AS INTEGER

UUID in the range 0 to FFFF, if value is outside that range it is ignored.

Set the value to -1 to have it ignored and then all further UUID arguments are
also ignored.

Uuid3 byVal uuid3 AS INTEGER

UUID in the range 0 to FFFF, if value is outside that range it is ignored.

Set the value to -1 to have it ignored and then all further UUID arguments are
also ignored.

Uuid4 byVal uuid4 AS INTEGER

UUID in the range 0 to FFFF, if value is outside that range it is ignored.

Set the value to -1 to have it ignored and then all further UUID arguments are
also ignored.

Scan report initialised

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

57 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Uuid5 byVal uuid5 AS INTEGER

UUID in the range 0 to FFFF, if value is outside that range it is ignored.

Set the value to -1 to have it ignored and then all further UUID arguments are
also ignored.

Uuid6 byVal uuid6 AS INTEGER

UUID in the range 0 to FFFF, if value is outside that range it is ignored.

Set the value to -1 to have it ignored and then all further UUID arguments are
also ignored.

Interactive

Command
No

 //Example :: BleAdvAddUuid16.sb (See in BL620CodeSnippets.zip)

 DIM advRpt$, rc

 DIM discovMode : discovMode=0

 DIM advAppearance : advAppearance = 1

 DIM maxDevName : maxDevName = 10

 rc = BleAdvRptInit(advRpt$, discovMode, advAppearance, maxDevName)

 //BatteryService = 0x180F

 //DeviceInfoService = 0x180A

 IF BleAdvRptAddUuid16(advRpt$,0x180F,0x180A, -1, -1, -1, -1)==0 THEN

 PRINT "\nUUID Service List AD added"

 ENDIF

 //Only the battery and device information services are included in the advert report

Expected Output:

BLEADVRPTADDUUID16 is an extension function.

BleAdvRptAddUuid128

FUNCTION

Note: The function is not available in the BL620 module and always returns an error.

This function is used to add a 128 bit UUID service list AD (Advertising record) to the advert report

specified. Given that an advert can have a maximum of only 31 bytes, it is not possible to have

a full UUID list unless there is only one to advertise.

BLEADVRPTADDUUID128 (advRpt, nUuidHandle)

Returns
INTEGER, a result code.

Most typical value – 0x0000, indicating a successful operation.

Arguments

advRpt byRef AdvRpt AS STRING.

The advert report into which the 128 bit uuid AD record is to be added.

nUuidHandle byVal nUuidHandle AS INTEGER

UUID Service List AD added

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

58 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

This is handle to a 128 bit uuid which was obtained using say the function
BleHandleUuid128() or some other function which returns one, like BleVSpOpen()

Interactive

Command
No

 //Example :: BleAdvAddUuid128.sb (See in BL620CodeSnippets.zip)

 DIM tx$,scRpt$,adRpt$,addr$, hndl

 scRpt$=""

 PRINT BleScanRptInit(scRpt$)

 //Open the VSP

 PRINT BleVSpOpen(128,128,0,hndl)

 //Advertise the VSPservice in a scan report

 PRINT BleAdvRptAddUuid128(scRpt$,hndl)

 adRpt$=""

 PRINT BleAdvRptsCommit(adRpt$,scRpt$)

 addr$="" //because we are not doing a DIRECT advert

 PRINT BleAdvertStart(0,addr$,20,30000,0)

Expected Output:

BLEADVRPTADDUUID128 is an extension function.

BleAdvRptAppendAD

FUNCTION

Note: The function is not available in the BL620 module always returns an error.

This function adds an arbitrary AD (Advertising record) field to the advert report. An AD element

consists of a LEN:TAG:DATA construct where TAG can be any value from 0 to 255 and DATA is a

sequence of octets.

BLEADVRPTAPPENDAD (advRpt, nTag, stData$)

Returns
INTEGER, a result code.

Most typical value – 0x0000, indicating a successful operation.

Arguments

AdvRpt byRef AdvRpt AS STRING.

The advert report onto which the AD record is to be appended.

nTag byVal nTag AS INTEGER

nTag should be in the range 0 to FF and is the TAG field for the record.

stData$ byRef stData$ AS STRING

This is an octet string which can be 0 bytes long. The maximum length is
governed by the space available in AdvRpt, a maximum of 31 bytes long.

Interactive

Command
No

00000

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

59 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 //Example :: BleAdvRptAppendAD.sb (See in BL620CodeSnippets.zip)

 DIM scnRpt$,ad$

 ad$="\01\02\03\04"

 PRINT BleScanRptInit(scnRpt$)

 IF BleAdvRptAppendAD(scnRpt$,0x31,ad$)==0 THEN //6 bytes will be used up in the

report

 PRINT "\nAD with data '";ad$;"' was appended to the advert report"

 ENDIF

Expected Output:

BLEADVRPTAPPENDAD is an extension function

BleAdvRptsCommit

FUNCTION

Note: The function is not available in the BL620 module and will always return an error.

This function is used to commit one or both advert reports. If the string is empty then that report

type is not updated. Both strings can be empty and in that case this call has no effect.

The advertisements do not occu until they are started using BleAdvertStart() function.

BLEADVRPTSCOMMIT(advRpt, scanRpt)

Returns
INTEGER, a result code.

Most typical value – 0x0000, indicating a successful operation.

Arguments

advRpt byRef advRpt AS STRING.

The most recent advert report.

scanRpt byRef scanRpt AS STRING.

The most recent scan report.

Note: If any one of the two strings is not valid then the call will be aborted

without updating the other report even if this other report is valid.

Interactive

Command
No

 //Example :: BleAdvRptsCommit.sb (See in BL620CodeSnippets.zip)

 DIM advRpt$: advRpt$=""

 DIM scRpt$: scRpt$=""

 DIM discovMode : discovMode = 0

 DIM advApprnce : advApprnce = 1

 DIM maxDevName : maxDevName = 10

0

AD with data '\01\02\03\04' was appended to the advert report

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

60 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 PRINT BleAdvRptInit(advRpt$, discovMode, advApprnce, maxDevName)

 PRINT BleAdvRptAddUuid16(advRpt$, 0x180F,0x180A, -1, -1, -1, -1)

 PRINT BleAdvRptsCommit(advRpt$, scRpt$)

 // Only the advert report will be updated.

Expected Output:

BLEADVRPTSCOMMIT is an extension function.

Scanning Functions

When a peripheral advertises, the advert packet consists type of advert, address, RSSI, and

some user data information.

A central role device enters scanning mode to receive these advert packets from any device

that is advertising.

For each advert that is received the data is cached in a ring buffer, if space exists and the

EVBLE_ADV_REPORT event is thrown to the smartBASIC application so that it can invoke the

function BleScanGetAdvReport() to read it.

The scan procedure ends when it times out (timeout parameter is supplied when scanning is

initiated) or is explicity instructed to abort or stop.

Note: While scanning for a long period of time, it is possible that a peripheral device is

advertising for a connection to it using the ADV_DIRECT_IND advert type. When this

happens, it is good practice for the central device to stop scanning and initiate the

connection. To cater for this specific scenario, which would normally require the

central device to look out for that advert type and the self address, the

EVBLE_FAST_PAGED event is thrown to the application. Theuser app must install a

handler for that event which stops the scan procedure and immediately start a

connection procedure.

For more information about adverts see the section “Advertising Functions”

BleScanStart

FUNCTION

This function is used to start a scan for adverts which may result in at least one of these events

being thrown:

EVBLE_SCAN_TIMEOUT End of scanning

EVBLE_ADV_REPORT Advert report received

EVBLE_FAST_PAGED Peripheral inviting connection to this module

The event EVBLE_ADV_REPORT is received when an advert has been successfully cached in a ring

buffer. The handler should call the function BleScanGetAdvReport() repeatedly to read all the

advert reports that have been cached until the cache is empty, otherwise there is a risk that

advert reports will be discarded. The output parameter nDiscarded returns the number of

discarded reports, if any.

000

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

61 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

The event EVBLE_FAST_PAGED is received when a peripheral has sent an advert with the address

of this module. The handler should stop scanning using BleScanStop() and then initiate a

connection using BleConnect().

There are three parameters used when initiating a scan that are configurable using

BleScanConfig(), otherwise default values are used:

Scan Interval
Specify the duty cycle for listening for adverts.

Default values:

Scan Interval – 80 milliseconds

Scan Window – 40 milliseconds
Scan Window

Scan Type Default: Active

Active scanning means that for each advert received, if it is of type ADV_IND or

ADV_DISCOVER_IND then a SCAN_REQ is sent to the advertising device so that the data in the

scan response can be appended to the data that has already been received for the advert.

These values for these default parameters can be changed prior to invoking this function by

calling the function BleScanConfig() appropriately.

There can be situations where there are many peripherals advertising and it may desirable to

save power by not having to process all the adverts that are received. For this situation, this

function takes a filter parameter which enables an opaque object to be presented to the

baseband which contains a whitelist of MAC addresses. This means that only addresses that

match those in the object get transferred to upper layers for further processing. This opaque

object consisting of whitelisted mac addresses is created and modified using the functions

BleWhiteListCreate(), BleWhiteListAddAddr(), and BleWhiteListAddIrk().

Note: Irk stands for Identity Resolving Key.

Finally be aware that scanning is a memory-intensive operation and so heap memory is used to

manage a cache. If the heap is fragmented, it is likely this function will fail with an appropriate

resultcode returned. When that happens, you can call reset() and then attempt the scan start

again. The memory that is allocated to manage this scan process is NOT released when the

scanning times out. To force release of that memory, it is recommend starting the scan and then

immediately calling BleScanStop().

BLESCANSTART (scanTimeoutMs, nFilterHandle)

Returns
INTEGER, a result code.

Most typical value – 0x0000, indicating a successful operation.

Arguments

scanTimeoutMs byVAL scanTimeoutMs AS INTEGER.

The length milliseconds the scan for adverts lasts.

If it times out then the event EVBLE_SCAN_TIMEOUT is thrown to the

smartBASIC application.
Valid range – 0 to 65535000 milliseconds (about 18 hours).

If 0 is supplied it will not start a timer and scanning can only be stopped by
calling either BleScanAbort() or Ble ScanStop().

nFilterHandle byVAL nFilterHandle AS INTEGER

This must be 0 to specify no filtering of adverts, otherwise it will be a value

returned by BleWhiteListCreate() and subsequently updated by

BleWhiteListAddAddr() and/or BleWhiteListAddIrk().

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

62 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Scanning

Scan timeout

When non-zero, only devices with matching address (or resolvable address

corresponding to the IRK) result in a EVBLE_ADV_REPORT event to the
smartBASIC application.

Interactive

Command
No

 //Example :: BleScanStart.sb (See in BL620CodeSnippets.zip)

 DIM rc

 '//Scan for 20 seconds with no filtering

 rc = BleScanStart(20000, 0)

 IF rc==0 THEN

 PRINT "\nScanning"

 ELSE

 PRINT "\nError: "; INTEGER.H'rc

 ENDIF

 '//This handler will be called when scanning times out

 FUNCTION HndlrScanTO()

 PRINT "\nScan timeout"

 ENDFUNC 0

 ONEVENT EVBLE_SCAN_TIMEOUT CALL HndlrScanTO

 WAITEVENT

Expected Output:

BLESCANSTART is an extension function.

BleScanAbort

FUNCTION

This function is used to cancel an ongoing scan for adverts which has not timed out. It takes no

parameters since there can only be one scan in progress.

Use the value returned by SYSINFO(2016) to determine if there is an ongoing scan operation in

progress. The vaule is a bit mask:

Bit 0 Set if advertising is in progress (not possible with the BL620)

Bit 1
Set if there is already a connection in the peripheral role (not possible with the
BL620)

Bit 2 Set if there is a current connection attempt ongoing

Bit 3 Set when scanning

Bit 4 Set if there is already a connection to a peripheral

Note: There is also BleScanStop() which also cancels an ongoing scan. The difference is

that, by calling BleScanAbort(), the memory that was allocated from the heap by

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

63 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Scanning

Aborting scan

Scan aborted

BleScanStart() is not released back to the heap. The scan manager retains it for the

next scan operation.

BLESCANABORT()

Returns
INTEGER, a result code.

Most typical value – 0x0000, indicating a successful operation.

Arguments None

Interactive

Command
No

 //Example :: BleScanAbort.sb (See in BL620CodeSnippets.zip)

 DIM rc, startTick

 '//Scan for 20 seconds with no filtering

 rc = BleScanStart(20000, 0)

 IF rc==0 THEN

 PRINT "\nScanning"

 ELSE

 PRINT "\nError: "; INTEGER.H'rc

 ENDIF

 '//Wait 2 seconds before aborting scan

 startTick = GetTickCount()

 WHILE GetTickSince(startTick) < 2000

 ENDWHILE

 '//If scan in progress, abort

 IF SysInfo(2016) == 0x08 THEN

 PRINT "\nAborting scan"

 rc = BleScanAbort()

 IF SysInfo(2016) == 0 THEN

 PRINT "\nScan aborted"

 ENDIF

 ENDIF

Expected Output:

BLESCANABORT is an extension function.

BleScanStop

FUNCTION

This function is used to cancel an ongoing scan for adverts which has not timed out. It takes no

parameters since there can only be one scan in progress.

Use the value returned by SYSINFO(2016) to determine if there is an ongoing scan operation in

progress. The vaule is a bit mask:

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

64 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Bit 0 Set if advertising is in progress (not possible with the BL620)

Bit 1
Set if there is already a connection in the peripheral role (not possible with the

BL620)

Bit 2 Set if there is a current connection attempt ongoing

Bit 3 Set when scanning

Bit 4 Set if there is already a connection to a peripheral

Note: There is also BleScanAbort() which also cancels an ongoing scan. The difference is

that, by calling BleScanStop(), the memory that was allocated from the heap by

BleScanStart() is released back to the heap. The scan manager must reallocate the

memory if BleScanStart() is called again.

BLESCANSTOP()

Returns
INTEGER, a result code.

Most typical value – 0x0000, indicating a successful operation.

Arguments None

Interactive

Command
No

 //Example :: BleScanStop.sb (See in BL620CodeSnippets.zip)

 DIM rc, startTick

 '//Scan for 20 seconds with no filtering

 rc = BleScanStart(20000, 0)

 IF rc==0 THEN

 PRINT "\nScanning"

 ELSE

 PRINT "\nError: "; INTEGER.H'rc

 ENDIF

 '//Wait 2 seconds before aborting scan

 startTick = GetTickCount()

 WHILE GetTickSince(startTick) < 2000

 ENDWHILE

 '//If scan in progress, abort

 IF SysInfo(2016) == 0x08 THEN

 PRINT "\nStop scanning. Freeing up allocated memory"

 rc = BleScanStop()

 IF SysInfo(2016) == 0 THEN

 PRINT "\nScan stopped"

 ENDIF

 ENDIF

Expected Output:

Scanning

Stop scanning. Freeing up allocated memory

Scan stopped

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

65 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

BLESCANSTOP is an extension function.

BleScanFlush

FUNCTION

This function is used to flush the buffer that contains advert reports that are currently in the

internal cache waiting to be read by the function BleScanGetAdvReport().

When scanning is initiated using BleScanStart() the internal cache is automatically flushed so no

need to call this function prior to starting a scan.

BLESCANFLUSH()

Returns
INTEGER, a result code.

Most typical value – 0x0000, indicating a successful operation.

Arguments None

Interactive

Command
No

DIM rc

 '//Flush the advert report cache

 rc = BleScanFlush()

BLESCANFLUSH is an extension function.

BleScanConfig

FUNCTION

This function is used to modify the default parameters that are used when initiating a scan

operation using BleScanStart().

The following lists the default parameters and their settings:

Scan Interval 80 milliseconds

Scan Window 40 milliseconds

Scan Type (Active/Passive) Active

Minimum Reports in the
Cache

4

Note: The default Scan Window and Interval give a 50% duty cycle. The 50% duty cycle

attempts to ensure that connection events for existing connections are missed as

infrequently as possible.

BLESCANCONFIG (configID,configValue)

Returns
INTEGER, a result code.

Most typical value – 0x0000, indicating a successful operation.

Arguments

configID byVal configID AS INTEGER

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

66 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

This identifies the value to update as follows:

0 Scan Interval in milliseconds (range 0..10240)

1 Scan Window in milliseconds (range 0..10240)

2 Scan Type (0=Passive, 1=Active)

3 Advert Report Cache Size

For all other configID values, the function returns an error.

configValue byVal configValue AS INTEGER

This contains the new value to set in the parameters indentified by configID.

Interactive

Command
No

//Example :: BleScanConfig.sb (See in BL620CodeSnippets.zip)

 DIM rc, startTick

 PRINT "\nScan Interval: "; SysInfo(2150) //get current scan interval

 PRINT "\nScan Window: "; SysInfo(2151) //get current scan window

 PRINT "\nScan Type: ";

 IF SysInfo(2152)==0 THEN //get current scan type

 PRINT "Passive"

 ELSE

 PRINT "Active"

 ENDIF

 PRINT "\nReport Cache Size: "; SysInfo(2153) //get report cache size

 PRINT "\n\nSetting new parameters..."

 rc = BleScanConfig(0, 100) //set scan interval to 100

 rc = BleScanConfig(1, 50) //set scan window to 50

 rc = BleScanConfig(2, 0) //set scan type to passive

 rc = BleScanConfig(3, 3) //set report cache size

 PRINT "\n\n--- New Parameters:"

 PRINT "\nScan Interval: "; SysInfo(2150) //get current scan interval

 PRINT "\nScan Window: "; SysInfo(2151) //get current scan window

 PRINT "\nScan Type: ";

 IF SysInfo(2152)==0 THEN //get current scan type

 PRINT "Passive"

 ELSE

 PRINT "Active"

 ENDIF
 PRINT "\nReport Cache Size: "; SysInfo(2153) //get report cache size

 Expected Output:

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

67 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

BLESCANCONFIG is an extension function.

BleScanGetAdvReport

FUNCTION

When a scan is in progress after having called BleScanStart() for each advert report the

information is cached in a queue buffer and a EVBLE_ADV_REPORT event is thrown to the

smartBASIC application.

This function is used by the smartBASIC application to extract it from the queue for further

processing in the handler for the EVBLE_ADV_REPORT event.

The information that is retrieved consists of the address of the peripheral that sent the advert, the

data payload, the number of adverts (all, not just from that peripheral) that have been

discarded since the last time this function was called and the rssi value for that packet. The rssi

can be used to determine the closest device, but please be aware that due to fading and

reflections it is possible that a device further away could result in a higher rssi value.

BLESCANGETADVREPORT (periphAddr$, advData$, nDiscarded, nRssi)

Returns
INTEGER, a result code.

Most typical value – 0x0000, indicating a successful operation.

Arguments

periphAddr$ byREF periphAddr$ AS STRING

On return this parameter is updated with the address of the peripheral that sent
the advert.

advData$ byREF advData $ AS STRING

On return this parameter is updated with the data payload of the advert which
consists of multiple AD elements.

nDiscarded byREF nDiscarded AS INTEGER

On return this parameter is updated with the number of adverts that were
discarded because there was no space in the internal queue.

nRssi byREF nRssi AS INTEGER

On return this parameter is updated with the RSSI as reported by the stack for
that advert.

Note: This is NOT a value that is sent by the peripheral but a value that is
calculated by the receiver in this module.

Interactive

Command
No

Note: This code snippet was tested with another BL620 running the iBeacon app (see in

smartBASIC_Sample_Apps folder) on Peripheral firmware.

 //Example :: BleScanGetAdvReport.sb (See in BL620CodeSnippets.zip)

 DIM rc

Scan Type: Active

Report Cache Size: 4

Setting new parameters..

--- New Parameters:

Scan Interval: 100

Scan Window: 50

Scan Type: Passive

Report Cache Size: 3

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

68 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 '//Scan for 5 seconds with no filtering

 rc = BleScanStart(5000, 0)

 IF rc==0 THEN

 PRINT "\nScanning"

 ELSE

 PRINT "\nError: "; INTEGER.H'rc

 ENDIF

 '//This handler will be called when scanning times out

 FUNCTION HndlrScanTO()

 PRINT "\nScan timeout"

 ENDFUNC 0

 '//This handler will be called when an advert is received

 FUNCTION HndlrAdvRpt()

 DIM periphAddr$, advData$, nDiscarded, nRssi

 '//Read all cached advert reports

 DO

 rc=BleScanGetAdvReport(periphAddr$, advData$, nDiscarded, nRssi)

 PRINT "\n\nPeer Address: "; StrHexize$(periphAddr$)

 PRINT "\nAdvert Data: ";StrHexize$(advData$)

 PRINT "\nNo. Discarded Adverts: ";nDiscarded

 PRINT "\nRSSI: ";nRssi

 UNTIL rc!=0

 PRINT "\n\n --- No more adverts in cache"

 ENDFUNC 1

 ONEVENT EVBLE_SCAN_TIMEOUT CALL HndlrScanTO

 ONEVENT EVBLE_ADV_REPORT CALL HndlrAdvRpt

 WAITEVENT

Expected Output:

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

69 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

BLESCANGETADVREPORT is an extension function.

BleGetADbyIndex

FUNCTION

This function is used to extract a copy of the nth (zero based) advertising data (AD) element

from a string which is assumed to contain the data portion of an advert report, incoming or

outgoing.

Note: If the last AD element is malformed then it is treated as not existing. For example, it is

malformed if the length byte for that AD element suggests that more data bytes are

required than actually exist in the report string.

BLEGETADBYINDEX (nIndex, rptData$, nADtag, ADval$)

Returns
INTEGER, a result code.

Most typical value – 0x0000, indicating a successful operation.

Scanning

Peer Address: 01D8CFCF14498D

Advert Data:

0201061AFF4C000215E2C56DB5DFFB48D2B060D0F5A71096E012345678C4

No. Discarded Adverts: 0

RSSI: -97

Peer Address: 01D8CFCF14498D

Advert Data:

0201061AFF4C000215E2C56DB5DFFB48D2B060D0F5A71096E012345678C4

No. Discarded Adverts: 0

RSSI: -97

 --- No more adverts in cache

Peer Address: 01D8CFCF14498D

Advert Data:

0201061AFF4C000215E2C56DB5DFFB48D2B060D0F5A71096E012345678C4

No. Discarded Adverts: 0

RSSI: -92

Peer Address: 01D8CFCF14498D

Advert Data:

0201061AFF4C000215E2C56DB5DFFB48D2B060D0F5A71096E012345678C4

No. Discarded Adverts: 0

RSSI: -92

 --- No more adverts in cache

Scan timeout

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

70 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Arguments

nIndex byVAL nIndex AS INTEGER

This is a zero based index of the AD element that is copied into the output data
parameter ADval$.

rptData$ byREF rptData$ AS STRING.

This parameter is a string that contains concatenated AD elements which are

either constructed for an outgoing advert or received in a scan (depends on
module variant)

nADTag byREF nADTag AS INTEGER

When the nth index is found, the single byte tag value for that AD element is
returned in this paramater

ADval$ byREF ADval$ AS STRING

When the nth index is found, the data excluding single byte the tag value for

that AD element is returned in this parameter.

Interactive

Command
No

 //Example :: BleAdvGetADbyIndex.sb (See in BL620CodeSnippets.zip)

 DIM rc, ad1$, ad2$, fullAD$, nADTag, ADval$

 '//AD with length = 6 bytes, tag = 0xDD

 ad1$="\06\DD\11\22\33\44\55"

 '//AD with length = 7 bytes, tag = 0xDA

 ad2$="\07\EE\AA\BB\CC\DD\EE\FF"

 fullAD$ = ad1$ + ad2$

 PRINT "\n\n"; Strhexize$(fullAD$);"\n"

 rc=BleGetADbyIndex(0, fullAD$, nADTag, ADval$)

 IF rc==0 THEN

 PRINT "\nFirst AD element with tag 0x"; INTEGER.H'nADTag ;" is

";StrHexize$(ADval$)

 ELSE

 PRINT "\nError reading AD: " ;INTEGER.H'rc

 ENDIF

 rc=BleGetADbyIndex(1, fullAD$, nADTag, ADval$)

 IF rc==0 THEN

 PRINT "\nSecond AD element with tag 0x"; INTEGER.H'nADTag ;" is

";StrHexize$(ADval$)

 ELSE

 PRINT "\nError reading AD: "; INTEGER.H'rc

 ENDIF

 '//Will fail because there are only 2 AD elements

 rc=BleGetADbyIndex(2, fullAD$, nADTag, ADval$)

 IF rc==0 THEN

 PRINT "\nThird AD element with tag 0x"; INTEGER.H'nADTag ;" is

";StrHexize$(ADval$)

 ELSE

 PRINT "\nError reading AD: "; INTEGER.H'rc

 ENDIF

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

71 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

06DD112233445507EEAABBCCDDEEFF

First AD element with tag 0x000000DD is 1122334455

Second AD element with tag 0x000000EE is AABBCCDDEEFF

Error reading AD: 00006060

Expected Output:

BLEGETADBYINDEX is an extension function.

BleGetADbyTag

FUNCTION

This function is used to extract a copy of the first advertising data (AD) element that has the tag

byte specified from a string which is assumed to contain the data portion of an advert report,

incoming or outgoing. If multiple instances of that AD tag type are suspected, then use the

function BleGetADbyIndex to extract.

Note: If the last AD element is malformed then it is treated as not existing. For example, it is

malformed if the length byte for that AD element suggests that more data bytes are

required than actually exist in the report string.

BLEGETADBYTAG (rptData$, nADtag, ADval$)

Returns
INTEGER, a result code.

Most typical value – 0x0000, indicating a successful operation.

Arguments

rptData$ byREF rptData$ AS STRING.

This parameter is a string that contains concatenated AD elements which are

either constructed for an outgoing advert or received in a scan (depends on
module variant)

nADTag byVAL nADTag AS INTEGER

This parameter specifies the single byte tag value for the AD element that is to

returned in the ADval$ parameter. Only the first instance can be catered for. If
multiple instances are suspected then use BleAdvADbyIndex() to extract it.

ADval$ byREF ADval$ AS STRING

When the nth index is found, the data excluding single byte the tag value for
that AT element is returned in this parameter.

Interactive

Command
No

 //Example :: BleAdvGetADbyIndex.sb (See in BL620CodeSnippets.zip)

 DIM rc, ad1$, ad2$, fullAD$, nADTag, ADval$

 '//AD with length = 6 bytes, tag = 0xDD

 ad1$="\06\DD\11\22\33\44\55"

 '//AD with length = 7 bytes, tag = 0xDA

 ad2$="\07\EE\AA\BB\CC\DD\EE\FF"

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

72 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

06DD112233445507EEAABBCCDDEEFF

AD element with tag 0x000000DD is 1122334455

AD element with tag 0x000000EE is AABBCCDDEEFF

Error reading AD: 00006060

 fullAD$ = ad1$ + ad2$

 PRINT "\n\n"; Strhexize$(fullAD$);"\n"

 nADTag = 0xDD

 rc=BleGetADbyTag(fullAD$, nADTag, ADval$)

 IF rc==0 THEN

 PRINT "\nAD element with tag 0x"; INTEGER.H'nADTag ;" is ";StrHexize$(ADval$)

 ELSE

 PRINT "\nError reading AD: " ;INTEGER.H'rc

 ENDIF

 nADTag = 0xEE

 rc=BleGetADbyTag(fullAD$, nADTag, ADval$)

 IF rc==0 THEN

 PRINT "\nAD element with tag 0x"; INTEGER.H'nADTag ;" is ";StrHexize$(ADval$)

 ELSE

 PRINT "\nError reading AD: "; INTEGER.H'rc

 ENDIF

 nADTAG = 0xFF

 '//Will fail because no AD exists in 'fullAD$' with the tag 'FF'

 rc=BleGetADbyTag(fullAD$, nADTag, ADval$)

 IF rc==0 THEN

 PRINT "\nAD element with tag 0x"; INTEGER.H'nADTag ;" is ";StrHexize$(ADval$)

 ELSE

 PRINT "\nError reading AD: "; INTEGER.H'rc

 ENDIF

Expected Output:

BLEGETADBYTAG is an extension function.

BleScanGetPagerAddr

FUNCTION

When a scan is in progress after calling BleScanStart(), an EVBLE_FAST_PAGED event is thrown

whenever an ADV_DIRECT_IND advert is received with the address of this module, requesting a

connection to it.

This function returns the address of the peripheral requesting a connection and the RSSI. It should

be used in the handler of the EVBLE_FAST_PAGED event to get the peripheral’s address.

Scanning should then be stopped using either BleScanAbort() or BleScanStop(). You can then

use the address supplied by this function to connect to the peripheral using BleConnect() if that

is the desired use case. The Bluetooth specification does NOT mandate a connection.

BLESCANGETPAGERADDR (periphAddr$, nRssi)

Returns
INTEGER, a result code.

Most typical value – 0x0000, indicating a successful operation.

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

73 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Scanning

Advert received from peripheral 01D8CFCF14498D with RSSI -96

requesting a connection to this module

Arguments

periphAddr$ byREF periphAddr$ AS STRING

On return this parameter is updated with the address of the peripheral that sent
the advert.

nRssi byREF nRssi AS INTEGER

On return this parameter is updated with the RSSI as reported by the stack for
that advert.

Note: This is NOT a value that is sent by the peripheral but a value that is
calculated by the receiver in this module.

Interactive

Command
No

 //Example :: BleScanGetPagerAddr.sb (See in BL620CodeSnippets.zip)

 DIM rc

 '//Scan for 20 seconds with no filtering

 rc = BleScanStart(10000, 0)

 IF rc==0 THEN

 PRINT "\nScanning"

 ELSE

 PRINT "\nError: "; INTEGER.H'rc

 ENDIF

 '//This handler will be called when scanning times out

 FUNCTION HndlrScanTO()

 PRINT "\nScan timeout"

 ENDFUNC 0

 '//This handler will be called when an advert is received requesting a connection to

this module

FUNCTION HndlrFastPaged()

 DIM periphAddr$, nRssi

 rc = BleScanGetPagerAddr(periphAddr$, nRssi)

 PRINT "\nAdvert received from peripheral "; StrHexize$(periphAddr$); " with RSSI

";nRssi

 PRINT "\nrequesting a connection to this module"

 rc = BleScanStop()

 ENDFUNC 0

 ONEVENT EVBLE_SCAN_TIMEOUT CALL HndlrScanTO

 ONEVENT EVBLE_FAST_PAGED CALL HndlrFastPaged

 WAITEVENT

Expected Output:

BLESCANGETPAGERADDR is an extension function.

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

74 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

75 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Whitelist Management Functions

IMPORTANT! The functions in this section are still in alpha state and should not be used.

The BLE paradigm is to consume as little power as possible so that operation from whatever

power source lasts as long as possible.

One way to minimise power consumption is to ensure that incoming radio packets are filtered at

the baseband level so that only a subset of addresses result in upper layers being informed

about those radio packets.

This subset list of addresses is referred to as a whitelist in the Bluetooth specification. When a

device powers up, the whitelist is empty. It is up to the upper layers to populate that list.

This section deals with all smartBASIC functions that enable that whitelist to be created in an

opaque object for other operations such as BleScanStart() to use and activate. The functions

allow creation, addition of addresses and identitiy resolving keys (IRKs), and destruction of the

whitelist.

An identity resolving key (IRK) is a 128 bit value that is used as a key in an AES encryption EBC

algorithm along with a three-byte random number to create another three-byte value such that

when they are concatenated a resolvable MAC address is created as per the Bluetooth

specification. The upper two bits of this six-byte MAC address is adjusted to signify that it is a

resolvable random MAC address.

The receiving device examines the upper two bits and if it signifies a resolvable address, then it

takes the relevant three bytes from that address and uses an IRK that it acquired from a device

through a bonding process to determine whether it is a known address. For whitelisting purposes,

all of this is done by the lower layers in the baseband.

BleWhiteListCreate

FUNCTION

This function is used to create a whitelist which is empty but contains enough memory to hold a

maximum number of MAC addresses and a maximum number of Identity Resolving Keys (IRKs).

It returns a handle to the opaque object which is then subsequently used with the other

whiteliste API functions.

Note: Do NOT destroy this object using BleWhiteListDestroy() while the object is in use by the

underlying stack. This results in unpredictable behaviour.

BLEWHITELISTCREATE (maxMacAddr, maxIRKs)

Returns

INTEGER

This is a handle that identifies the opaque object that was created.

It is 0 if there was no free memory in the heap to create it. Always check for
this.

Arguments

maxMacAddr byVAL maxMacAddr AS INTEGER.

The is the maximum number of addresses that are stored in the created

whitelist opaque object. Each MAC address is a seven-byte entity: six for the
address and the seventh for the type.

To add a key to this list, use the BleWhiteListAddAddr() function.

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

76 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Whitelist created. Handle: -1091583777

maxIRKs byVAL maxIRKS AS INTEGER.

The is the maximum number of indentity resolving keys that will be stored in the

whitelist opaque object that will be created. Each key is 16 bytes in length. To
add a key to this list use the function BleWhiteListAddIrk().

Interactive

Command
No

 //Example :: BleWhiteListCreate.sb (See in BL620CodeSnippets.zip)

 DIM hWhiteList : hWhiteList = BleWhiteListCreate(20,10)

 IF hWhiteList == 0 THEN

 PRINT "\nWhitelist not created, not enough memory"

 ELSE

 PRINT "\nWhitelist created. Handle: "; rc

 ENDIF

Expected Output:

BLEWHITELISTCREATE is an extension function.

BleWhiteListAddAddr

FUNCTION

This function is used to add a mac address to a whitelist that was created using

BleWhiteListCreate() and returns a resultcode.

Do not attempt to add a resolvable random address. Instead use BleWhiteListAddIrk() and add

the identity resolving key for that instead.

BLEWHITELISTADDADDR (handle, macAddr$)

Returns
INTEGER, a result code.

Most typical value – 0x0000, indicating a successful operation.

Arguments

handle byVAL handle AS INTEGER

This is a handle to the whitelist object that needs to be added to and is returned
by BleWhiteListCreate().

macAddr$ byREF macAddr$ AS STRING

This is the mac address (seven bytes in length) to be added to the whitelist
identified by the handle above.

Interactive

Command
No

 //Example :: BleWhiteListAddAddr.sb (See in BL620CodeSnippets.zip)

 DIM rc

 DIM hWhiteList : hWhiteList = BleWhiteListCreate(20,10)

 DIM macAddr$: macAddr$ = "\01\D8\CF\CF\14\49\8D"

 IF hWhiteList == 0 THEN

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

77 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Whitelist created. Handle: -1091583780

MAC Address 01D8CFCF14498D was added to the whitelist

Whitelist with handle: -1091583777 destroyed

 PRINT "\nWhitelist not created, not enough memory"

 ELSE

 PRINT "\nWhitelist created. Handle: ";hWhiteList

 ENDIF

 rc = BleWhiteListAddAddr(hWhiteList, macAddr$)

 IF rc==0 THEN

 PRINT "\nMAC Address "; StrHexize$(macAddr$);" was added to the whitelist"

 ELSE

 PRINT "\nError: "; INTEGER.H'rc

 ENDIF

Expected Output:

BLEWHITELISTADDADDR is an extension function.

BleWhiteListDestroy

SUBROUTINE

This function is used to destroy a whitelist object that was created using BleWhiteListCreate().

Note: Do NOT destroy a whitelist object while the object is in use by the underlying stack.

This results in unpredictable behaviour.

BLEWHITELISTDESTORY ()

Returns None

Arguments

handle byVAL handle AS INTEGER

This is a handle to the whitelist object that needs to be destroyed and is returned
by BleWhiteListCreate().

Interactive

Command
No

 //Example :: BleWhiteListDestroy.sb (See in BL620CodeSnippets.zip)

 DIM hWhiteList : hWhiteList = BleWhiteListCreate(20,10)

 IF hWhiteList!=0 THEN

 BleWhiteListDestroy(hWhiteList)

 PRINT "\nWhitelist with handle: ";hWhiteList;" destroyed"

 ENDIF

Expected Output:

BLEWHITELISTDESTROY is an extension function.

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

78 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

79 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Connection Functions

This section describes all the connection manager related routines.

The Bluetooth specification stipulates that a peripheral cannot initiate a connection but can

perform disconnections. Only Central Role devices are allowed to connect when an

appropriate advertising packet is received from a peripheral.

Events and Messages

See also Events and Messages for BLE-related messages that are thrown to the application when

there is a connection or disconnection. The relevant message IDs are (0), (1), (14), (15), (16), (17),

(18) and (20):

MsgId Description

0 There is a connection and the context parameter contains the connection handle.

1 There is a disconnection and the context parameter contains the connection handle.

14 New connection parameters for connection associated with connection handle.

15 Request for new connection parameters failed for connection handle supplied.

16 The connection is to a bonded master

17 The bonding has been updated with a new long term key

18 The connection is encrypted

20 The connection is no longer encrypted

BleConnect

FUNCTION

This function is used to make a connection to a device in peripheral mode which is actively

advertising. Note that the peripheral device MUST be advertising with either ADV_IND or

ADV_DIRECT_IND type of advert to be able to successfully connect.

When the connection is complete a EVBLEMSG message with msgId = 0 and context containing

the handle is thrown to the smartBASIC runtime engine.

If the connection times out, then the event EVBLE_CONN_TIMEOUT is thrown to the smartBASIC

application.

When a connection is attempted, there are other parameters that are used and the default

values for those are assumed; such as scan window, scan interval, and periodicity. The default

values for these can be changed using the BleConnectConfig() function. At any time, the

current settings can be obtained via the SYSINFO() command.

BLECONNECT (periphAddr$, connTimeoutMs, minConnIntUs,maxConnIntUs, nSuprToutUs)

Returns
INTEGER, a result code.

Most typical value – 0x0000, indicating a successful operation.

Arguments

periphAddr$ byRef periphAddr$ AS STRING

This is the MAC address of the device to connect to which MUST be properly
formatted and is exactly seven bytes long.

connTimeoutMs byVal connTimeoutMs AS INTEGER.

The length of time in milliseconds of the connection attempt. If it times out

then the event EVBLE_CONN_TIMEOUT is thrown to the smartBASIC

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

80 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

application.

minConnIntUs byVal minConnIntUs AS INTEGER.
The minimum connection interval in microseconds.

maxConnIntUs byVal maxConnIntUs AS INTEGER.

The maximum connection interval in microseconds.

nSuprToutUs byVal nSuprToutUs AS INTEGER.

The link supervision timeout for the connection in microseconds.

Interactive

Command
No

 //Example :: BleConnect.sb (See in BL620CodeSnippets.zip)

 DIM rc, periphAddr$

 '//Scan indefinitely

 rc=BleScanStart(0, 0)

 IF rc==0 THEN

 PRINT "\nScanning"

 ELSE

 PRINT "\nError: "; INTEGER.H'rc

 ENDIF

 '//This handler will be called when an advert is received

 FUNCTION HndlrAdvRpt()

 DIM advData$, nDiscarded, nRssi

 '//Read an advert report and connect to the sender

 rc=BleScanGetAdvReport(periphAddr$, advData$, nDiscarded, nRssi)

 rc=BleScanStop()

 '//Connect to device with MAC address obtained above with 5s connection timeout,

 '//20ms min connection interval, 75 max, 5 second supervision timeout.

 rc=BleConnect(periphAddr$, 5000, 20000, 75000, 5000000)

 IF rc==0 THEN

 PRINT "\n--- Connecting"

 ELSE

 PRINT "\nError: "; INTEGER.H'rc

 ENDIF

 ENDFUNC 1

 '//This handler will be called in the event of a connection timeout

 FUNCTION HndlrConnTO()

 PRINT "\n--- Connection timeout"

 rc=BleScanStart(0, 0)

 ENDFUNC 1

 '//This handler will be called when there is a BLE message

 FUNCTION HndlrBleMsg(nMsgId, nCtx)

 IF nMsgId == 0 THEN

 PRINT "\n--- Connected to device with MAC address "; StrHexize$(periphAddr$)

 PRINT "\n--- Disconnecting now"

 rc=BleDisconnect(nCtx)

 ENDIF

 ENDFUNC 1

 '//This handler will be called when a disconnection happens

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

81 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 FUNCTION HndlrDiscon(nCtx, nRsn)

 ENDFUNC 0

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 ONEVENT EVDISCON CALL HndlrDiscon

 ONEVENT EVBLE_ADV_REPORT CALL HndlrAdvRpt

 ONEVENT EVBLE_CONN_TIMEOUT CALL HndlrConnTO

 WAITEVENT

Expected Output:

BLECONNECT is an extension function.

BleConnectCancel

FUNCTION

This function is used to cancel an ongoing connection attempt which has not timed out. It takes

no parameters as there can only be one attempt in progress.

Use the value returned by SYSINFO(2016) to determine if there is an ongoing connection

attempt.

The value is a bit mask:

Bit 0 Set if advertising is in progress (not possible with the BL620)

Bit 1 Set if there is already a connection in peripheral mode (not possible with the BL620)

Bit 2 Set if there is current connection attempt ongoing

Bit 3 Set when scanning

Bit 4 Set if there is already a connection to a peripheral

BLECONNECTCANCEL ()

Returns
INTEGER, a result code.

Most typical value – 0x0000, indicating a successful operation.

Arguments None

Interactive

Command
No

//Example :: BleConnectCancel.sb (See in BL620CodeSnippets.zip)

 DIM rc, periphAddr$

 '//Scan indefinitely

 rc=BleScanStart(0, 0)

 IF rc==0 THEN

Scanning

--- Connecting

--- Connected to device with MAC address 01D8CFCF14498D

--- Disconnecting now

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

82 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 PRINT "\nScanning"

 ELSE

 PRINT "\nError: "; INTEGER.H'rc

 ENDIF

 '//This handler will be called when an advert is received

 FUNCTION HndlrAdvRpt()

 DIM advData$, nDiscarded, nRssi

 '//Read an advert report and connect to the sender

 rc=BleScanGetAdvReport(periphAddr$, advData$, nDiscarded, nRssi)

 rc=BleScanStop()

 '//Wait until module stops scanning

 WHILE SysInfo(2016)==8

 ENDWHILE

 '//Connect to device with MAC address obtained above with 5s connection timeout,

 '//20ms min connection interval, 75 max, 5 second supervision timeout.

 rc=BleConnect(periphAddr$, 5000, 20000, 75000, 5000000)

 IF rc==0 THEN

 PRINT "\n--- Connecting \nCancel"

 ELSE

 PRINT "\nError: "; INTEGER.H'rc

 ENDIF

 '//Cancel current connection attempt

 rc=BleConnectCancel()

 PRINT "\n--- Connection attempt cancelled"

 ENDFUNC 0

 ONEVENT EVBLE_ADV_REPORT CALL HndlrAdvRpt

 WAITEVENT

Expected Output:

BLECONNECTCANCEL is an extension function.

BleConnectConfig

FUNCTION

This function is used to modify the default parameters that are used when attempting a

connection using BleConnect(). At any time they can be read by adding the configID to 2100

and then passing that value to SYSINFO().

When connecting, the central device must scan for adverts and then, when the particular peer

address is encountered, it can send the connection message to that peripheral.

Scanning

--- Connecting

Cancel

--- Connection attempt cancelled

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

83 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Therefore a connection attempt requires the underlying stack API to be supplied with a scan

interval and scan window. In addition, when multiple connections are in place, the radio must

be shared as efficiently as possible; one scheme to put in place is to have all connections

parmeters being integer multiples of a ‘base’ value. For the purpose of this documentation and

discussions with Laird, this parameter is referred to as ‘multi-link connection interval periodicity’.

The default settings for these parameters are as follows:

Multi-link

Connection Interval
Periodicity

20 milliseconds

Scan Interval 80 milliseconds

Scan Window 40 milliseconds

Scan Latency 0

Notes:

 The Scan Window and Interval are multiple integers of the periodicity (but do not have to

be) and the scanning has a 50% duty cycle. The 50% duty cycle attempts to ensure that

connection events for existing connections are missed as infrequently as possible.

 The Scan Window and Interval are internally stored in units of 0.625 milliseconds slots,

therefore reading back via SYSINFO() does not accurately return the value you set.

BLECONNECTCONFIG (configID,configValue)

Returns
INTEGER, a result code.

Most typical value – 0x0000, indicating a successful operation.

Arguments

configID byVal configID AS INTEGER.

This identifies the value to update as follows:

0 Scan Interval in milliseconds (range 0..10240)

1 Scan Window in milliseconds (range 0..10240)

2 Slave Latency (0..1000)
5 Multi-Link Connection Interval Periodicity (20..200)

For all other configID values, the function returns an error.

configValue byVal configValue AS INTEGER.
This contains the new value to set in the parameters indentified by configID.

Interactive

Command
No

 //Example :: BleConnectConfig.sb (See in BL620CodeSnippets.zip)

 DIM rc, startTick

 SUB GetParms()

 //get default scan interval for connecting

 PRINT "\nConn Scan Interval: "; SysInfo(2100);"ms"

 //get default scan window for connecting

 PRINT "\nConn Scan Window: "; SysInfo(2101);"ms”

 //get default slave latency for connecting

 PRINT "\nConn slave latency: "; SysInfo(2102)

 //get current multi-link connection interval periodicity

 PRINT "\nML Conn Interval Periodicity: "; SysInfo(2105);"ms"

 ENDSUB

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

84 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 PRINT "\n\n--- Current Parameters:"

 GetParms()

 PRINT "\n\nSetting new parameters..."

 rc = BleConnectConfig(0, 60) //set scan interval to 60

 rc = BleConnectConfig(1, 13) //set scan window to 13 (will round to 12)

 rc = BleConnectConfig(2, 3) //set slave latency to 1

 rc = BleConnectConfig(5, 30) //set ML connection interval periodicity to 30

 PRINT "\n"; integer.h'rc

 PRINT "\n\n--- New Parameters:"

 GetParms()

Expected Output:

BLECONNECTCONFIG is an extension function.

BleDisconnect

FUNCTION

This function causes an existing connection identified by a handle to be disconnected from the

peer.

When the disconnection is complete, a EVBLEMSG message with msgId = 1 and context

containing the handle is thrown to the smart BASIC runtime engine.

BLEDISCONNECT (nConnHandle)

Returns
INTEGER, a result code.

Most typical value – 0x0000, indicating a successful operation.

Arguments

nConnHandle byVal nConnHandle AS INTEGER.

Specifies the handle of the connection that must be disconnected.

Interactive

Command
No

--- Current Parameters:

Conn Scan Interval: 80ms

Conn Scan Window: 40ms

Conn slave latency: 0

ML Conn Interval Periodicity: 20ms

Setting new parameters...

--- New Parameters:

Conn Scan Interval: 60ms

Conn Scan Window: 12ms

Conn slave latency: 3

ML Conn Interval Periodicity: 30ms

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

85 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 //Example :: BleDisconnect.sb (See in BL620CodeSnippets.zip)

 DIM addr$: addr$=""

 DIM rc

 FUNCTION HndlrBleMsg(BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER)

 SELECT nMsgId

 CASE 0

 PRINT "\nNew Connection ";nCtx

 rc = BleAuthenticate(nCtx)

 PRINT BleDisconnect(nCtx)

 CASE 1

 PRINT "\nDisconnected ";nCtx;"\n"

 EXITFUNC 0

 ENDSELECT

 ENDFUNC 1

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 IF BleAdvertStart(0,addr$,100,30000,0)==0 THEN

 PRINT "\nAdverts Started\n"

 ELSE

 PRINT "\n\nAdvertisement not successful"

 ENDIF

 WAITEVENT

Expected Output:

BLEDISCONNECT is an extension function.

BleSetCurConnParms

FUNCTION

This function triggers an existing connection identified by a handle to have new connection

parameters. For example interval, slave latency and link supervision timeout.

When the request is complete, a EVBLEMSG message with msgId = 14 and context containing

the handle is thrown to the smart BASIC runtime engine if it was successful. If the request to

change the connection parameters fails, an EVBLEMSG message with msgid = 15 is thrown to the

smart BASIC runtime engine.

BLESETCURCONNPARMS (nConnHandle, nMinIntUs, nMaxIntUs, nSuprToutUs, nSlaveLatency)

Returns
INTEGER, a result code.

Most typical value – 0x0000, indicating a successful operation.

Arguments

nConnHandle byVal nConnHandle AS INTEGER.

Specifies the handle of the connection that must have the connection
parameters changed.

nMinIntUs byVal nMinIntUs AS INTEGER.

Adverts Started

New Connection 35800

Disconnected 3580

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

86 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

The minimum acceptable connection interval in microseconds.

Valid range is 7500 to 4000000 and it must be less than or equal to nMaxIntUs

nMaxIntUs byVal nMaxIntUs AS INTEGER.

The maximum acceptable connection interval in microseconds.

Valid range is 7500 to 4000000 and it must be less than or equal to nMinIntUs

nSuprToutUs byVal nSuprToutUs AS INTEGER.

The link supervision timeout for the connection in microseconds. It should be
greater than the slave latency times the actual granted connection interval.

nSlaveLatency byVal nSlaveLatency AS INTEGER.

The number of connection interval polls that the peripheral may ignore. This

times the connection interval shall not be greater than the link supervision
timeout.

Interactive

Command
No

Note: Slave latency is a mechanism that reduces power usage in a peripheral device and

maintains short latency. Generally a slave reduces power usage by setting the

largest connection interval possible. This means the latency is equivalent to that

connection interval. To mitigate this, the peripheral can greatly reduce the

connection interval and then have a non-zero slave latency.

 For example, a keyboard could set the connection interval to 1000 msec and slave

latency to 0. In this case, key presses are reported to the central device once per

second, a poor user experience. Instead, the connection interval can be set to e.g.

50 msec and slave latency to 19. If there are no key presses, the power use is the

same as before because ((19+1) * 50) equals 1000. When a key is pressed, the

peripheral knows that the central device will poll within 50 msec, so it can send that

keypress with a latency of 50 msec. A connection interval of 50 and slave latency of

19 means the slave is allowed to NOT acknowledge a poll for up to 19 poll messages

from the central device.

 //Example :: BleSetCurConnParms.sb (See in BL620CodeSnippets.zip)

 DIM rc

 DIM addr$: addr$=""

 FUNCTION HandlerBleMsg(BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER) AS INTEGER

 DIM intrvl,sprvTo,sLat

 SELECT nMsgId

 CASE 0 //BLE_EVBLEMSGID_CONNECT

 PRINT "\n --- New Connection : ","",nCtx

 rc=BleGetCurconnParms(nCtx,intrvl,sprvto,slat)

 IF rc==0 THEN

 PRINT "\nConn Interval","","",intrvl

 PRINT "\nConn Supervision Timeout",sprvto

 PRINT "\nConn Slave Latency","",slat

 PRINT "\n\nRequest new parameters"

 //request connection interval in range 50ms to 75ms and link

 //supervision timeout of 4seconds with a slave latency of 19

 rc = BleSetCurconnParms(nCtx, 50000,75000,4000000,19)

 ENDIF

 CASE 1 //BLE_EVBLEMSGID_DISCONNECT

 PRINT "\n --- Disconnected : ",nCtx

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

87 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 EXITFUNC 0

 CASE 14 //BLE_EVBLEMSGID_CONN_PARMS_UPDATE

 rc=BleGetCurconnParms(nCtx,intrvl,sprvto,slat)

 IF rc==0 THEN

 PRINT "\n\nConn Interval",intrvl

 PRINT "\nConn Supervision Timeout",sprvto

 PRINT "\nConn Slave Latency",slat

 ENDIF

 CASE 15 //BLE_EVBLEMSGID_CONN_PARMS_UPDATE_FAIL

 PRINT "\n ??? Conn Parm Negotiation FAILED"

 CASE ELSE

 PRINT "\nBle Msg",nMsgId

 ENDSELECT

 ENDFUNC 1

 ONEVENT EVBLEMSG CALL HandlerBleMsg

 IF BleAdvertStart(0,addr$,25,60000,0)==0 THEN

 PRINT "\nAdverts Started\n"

 PRINT "\nMake a connection to the BL620"

 ELSE

 PRINT "\n\nAdvertisement not successful"

 ENDIF

 WAITEVENT

Expected Output (Unsuccessful Negotiation):

Expected Output (Successful Negotiation):

Adverts Started

Make a connection to the BL620

 --- New Connection : 1352

Conn Interval 7500

Conn Supervision Timeout 7000000

Conn Slave Latency 0

Request new parameters

 ??? Conn Parm Negotiation FAILED

 --- Disconnected : 1352

Adverts Started

Make a connection to the BL620

 --- New Connection : 134

Conn Interval 30000

Conn Supervision Timeout 720000

Conn Slave Latency 0

Request new parameters

New conn Interval 75000

New conn Supervision Timeout 4000000

New conn Slave Latency 19

--- Disconnected : 134

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

88 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Note: First set of parameters differ depending on your central device.

BLESETCURCONNPARMS is an extension function.

BleGetCurConnParms

FUNCTION

This function gets the current connection parameters for the connection identified by the

connection handle. Given there are three connection parameters, the function takes three

variables by reference so that the function can return the values in those variables.

BLEGETCURCONNPARMS (nConnHandle, nIntervalUs, nSuprToutUs, nSlaveLatency)

Returns
INTEGER, a result code.

Most typical value – 0x0000, indicating a successful operation.

Arguments

nConnHandle byVal nConnHandle AS INTEGER.

Specifies the handle of the connection that must have the connection
parameters changed

nIntervalUs byRef nIntervalUs AS INTEGER.
The current connection interval in microseconds

nSuprToutUs byRef nSuprToutUs AS INTEGER.

The current link supervision in mictoseconds timeout for the connection.

nSlaveLatency byRef nSlaveLatency AS INTEGER.

This is the current number of connection interval polls that the peripheral may

ignore. This value multiplied by the connection interval will not be greater
than the link supervision timeout.

Note: See Note on Slave Latency.

Interactive

Command
No

See previous example

BLEGETCURCONNPARMS is an extension function.

BleGetConnHandleFromAddr

FUNCTION

Given a seven byte Bluetooth MAC address in Little Endian format (the first byte is the type and

the second byte is the most significant byte of the six byte mac address) this function returns a

valid connection handle in the nConnHandle argument if a connection exists and an invalid

one if there isn’t.

BLEGETCONNHANDLEFROMADDR(addr$, nConnHandle)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

addr$ byRef addr$ AS STRING

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

89 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

This is a 7 byte string which must be a valid 7 byte mac address.

nConnHandle

byRef nConnHandle AS INTEGER.

The connection handle will be returned in this argument. Will be an invalid
handle value if a connection does not exist.

Interactive

Command
No

 DIM addr$: addr$=""

 DIM rc, connHandle

 addr$ = "\00\00\01\64\01\02\03"

 rc = BleConnHandleFromAddr(addr$,connHandle)

 PRINT "\nConnection Handle = ";integer.h’ connHandle

Expected Output:

BLEGETCONNHANDLEFROMADDR is an extension function.

BleGetAddrFromConnHandle

FUNCTION

Given a valid connection handle, a seven byte Bluetooth MAC address in Little Endian format

(the first byte is the type and the second byte is the most significant byte of the six byte mac

address) is returned which is the Bluetooth address of the connected device.

BLEGETADDRFROMCONNHANDLE (nConnHandle, addr$)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

nConnHandle

byVal nConnHandle AS INTEGER.

The connection handle for the connection for which the connected device

address is to be returned. Note this will be a resolvable address in the case of
say iOS devices.

addr$

byRef addr$ AS STRING

The 7 byte string will contain a valid 7 byte mac address if the connection
handle provided is for a valid connection.

Interactive

Command
No

 DIM addr$: addr$=""

 DIM rc, connHandle

 connHandle = 0x0001FF00

Connection Handle = 0001FF00

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

90 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 rc = BleAddrFromConnHandle (connHandle , addr$)

 PRINT "\Address = ";StrHexize$(addr$)

Expected Output:

BLEGETADDRFROMCONNHANDLE is an extension function.

Security Manager Functions

This section describes routines which manage all aspects of BLE security such as saving,

retrieving, and deleting link keys and creation of those keys using pairing and bonding

procedures.

Events and Messages

The following security manager messages are thrown to the run-time engine using the EVBLEMSG

message with msgIDs as follows:

MsgId Description

9 Pairing in progress and display Passkey supplied in msgCtx.

10 A new bond has been successfully created

11

Pairing in progress and authentication key requested. Type of key is in msgCtx.

msgCtx is 1 for passkey_type which is a number in the range 0 to 999999 and 2 for OOB

key which is a 16 byte key.

To submit a passkey, use the function BLESECMNGRPASSKEY.

BleSecMngrPasskey

FUNCTION

This function submits a passkey to the underlying stack during a pairing procedure when

prompted by the EVBLEMSG with msgId set to 11. See Events and Messages.

BLESECMNGRPASSKEY(connHandle, nPassKey)

Returns
INTEGER, a result code.

Most typical value – 0x0000, indicating a successful operation.

Arguments

connHandle byVal connHandle AS INTEGER.

This is the connection handle as received via the EVBLEMSG event with msgId
set to 0.

nPassKey byVal nPassKey AS INTEGER.

This is the passkey to submit to the stack. Submit a value outside the range 0 to
999999 to reject the pairing.

Address = 00000164010203

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

91 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Interactive

Command
No

//Example :: BleSecMngrPasskey.sb (See in BL620CodeSnippets.zip)

 DIM rc, connHandle

 DIM addr$: addr$=""

 FUNCTION HandlerBleMsg(BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER) AS INTEGER

 SELECT nMsgId

 CASE 0

 connHandle = nCtx

 PRINT "\n--- Ble Connection, ",nCtx

 CASE 1

 PRINT "\n--- Disconnected ";nCtx;"\n"

 EXITFUNC 0

 CASE 11

 PRINT "\n +++ Auth Key Request, type=";nCtx

 rc=BleSecMngrPassKey(connHandle,123456)

 IF rc==0 THEN //key is 123456

 PRINT "\nPasskey 123456 was used"

 ELSE

 PRINT "\nResult Code 0x";integer.h'rc

 ENDIF

 CASE ELSE

 ENDSELECT

 ENDFUNC 1

 ONEVENT EVBLEMSG CALL HandlerBleMsg

 rc=BleSecMngrIoCap(4) //Set i/o capability - Keyboard Only (authenticated pairing)

 IF BleAdvertStart(0,addr$,25,0,0)==0 THEN

 PRINT "\nAdverts Started\n"

 PRINT "\nMake a connection to the BL620"

 ELSE

 PRINT "\n\nAdvertisement not successful"

 ENDIF

 WAITEVENT

Expected Output:

BLESECMNGRPASSKEY is an extension function.

BleSecMngrKeySizes

FUNCTION

This function sets minimum and maximum long term encryption key size requirements for

subsequent pairings.

Adverts Started

Make a connection to the BL620

--- Ble Connection, 1655

 +++ Auth Key Request, type=1

Passkey 123456 was used

--- Disconnected 1655

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

92 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

If this function is not called, default values are 7 and 16 respectively. To ship your end product to

a country with an export restriction, reduce nMaxKeySize to an appropriate value and ensure it is

not modifiable.

BLESECMNGRKEYSIZES(nMinKeysize, nMaxKeysize)

Returns
INTEGER, a result code.

Most typical value – 0x0000, indicating a successful operation.

Arguments

nMinKeysiz byVal nMinKeysiz AS INTEGER.

The minimum key size. The range of this value is from 7 to 16.

nMaxKeysize byVal nMaxKeysize AS INTEGER.

The maximum key size. The range of this value is from nMinKeysize to 16.

Interactive

Command
No

 //Example :: BleSecMngrKeySizes.sb (See in BL620CodeSnippets.zip)

 PRINT BleSecMngrKeySizes(8,15)

Expected Output:

BLESECMNGRKEYSIZES is an extension function.

BleSecMngrIoCap

FUNCTION

This function sets the user I/O capability for subsequent pairings and is used to determine if the

pairing is authenticated. This is related to Simple Secure Pairing as described in the following

whitepapers:

https://www.bluetooth.org/docman/handlers/DownloadDoc.ashx?doc_id=86174

https://www.bluetooth.org/docman/handlers/DownloadDoc.ashx?doc_id=86173

In addition the “Security Manager Specification” in the core 4.0 specification Part H provides a

full description.

You must be registered with the Bluetooth SIG (www.bluetooth.org) to get access to all these

documents.

An authenticated pairing is deemed to be one with less than 1 in a million probability that the

pairing was compromised by a MITM (Man in the middle) security attack.

The valid user I/O capabilities are as described below.

BLESECMNGRIOCAP (nIoCap)

Returns
INTEGER, a result code.

Most typical value – 0x0000, indicating a successful operation.

Arguments

nIoCap byVal nIoCap AS INTEGER.
The user I/O capability for all subsequent pairings.

0

http://ews-support.lairdtech.com/
https://www.bluetooth.org/docman/handlers/DownloadDoc.ashx?doc_id=86174
https://www.bluetooth.org/docman/handlers/DownloadDoc.ashx?doc_id=86173
http://www.bluetooth.org/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

93 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

0 None. Also known as Just Works (unauthenticated pairing)

1 Display with Yes/No input capability (authenticated pairing)

2 Keyboard only (authenticated pairing)

3 Display only (authenticated pairing – if other end has input cap)

4 Keyboard only (authenticated pairing)

Interactive

Command
No

 //Example :: BleSecMngrIoCap.sb (See in BL620CodeSnippets.zip)

 PRINT BleSecMngrIoCap(1)

Expected Output:

BLESECMNGRIOCAP is an extension function.

BleSecMngrBondReq

FUNCTION

This function is used to enable or disable bonding when pairing.

Note: This function will be deprecated in future releases. It is recommended to invoke this

function, with the parameter set to 0, before calling BleAuthenticate().

BLESECMNGRBONDREQ (nBondReq)

Returns
INTEGER, a result code.

Most typical value – 0x0000, indicating a successful operation.

Arguments

nBondReq byVal nBondReq AS INTEGER.

0 Disable
1 Enable

Interactive

Command
No

 //Example :: BleSecMngrBondReq.sb (See in BL620CodeSnippets.zip)

 IF BleSecMngrBondReq(0)==0 THEN

 PRINT "\nBonding disabled"

 ENDIF

Expected Output:

0

Bonding disabled

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

94 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

BLESECMNGRBONDREQ is an extension function.

BlePair

FUNCTION

This routine is used to start a pairing procedure with the peer. It will result in various EVBLEMSG

events, such as :

BLE_EVBLEMSGID_NEW_BOND messageId = 10

BLE_EVBLEMSGID_AUTH_KEY_REQUEST messageId = 11

BLE_EVBLEMSGID_UPDATED_BOND messageId = 17

BLE_EVBLEMSGID_ENCRYPTED messageId = 18

If the pairing fails for any reason then the connection is dropped.

BLEPAIR (nAppConnHandle, nPairType)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

nAppConnHand

e

byVal nAppConnHandle AS INTEGER.
This is the connection handle for the device that should be paired.

nPairType

0
Bonding is not performed therefore the connection enters

encryption but keys are not exchanged for future use.

1

Bonding id forced (phase 3 of the pairing procedure as

described in the Bluetooth specification) which means any

exchanged keys are stored in the bonding manager database.

Not 0 or 1
The type of bonding is dictated by the default setting which is

set by the function BleSecMngrBondReq.

Interactive

Command
No

See example for BleDisconnect:

Change “rc = BlePair(nCtx)” to “PRINT BlePair(nCtx)”

BLEPAIR is an extension function.

BleAuthenticate

FUNCTION

This function is internally the same as BlePair(), see details of that function, and exists for legacy

reasons only.

GATT Server Functions

This section describes all functions related to creating and managing services that collectively

define a GATT table from a GATT server role perspective. These functions allow the developer to

create any service that has been described and adopted by the Bluetooth SIG or any custom

service that implements some custom unique functionality, within resource constraints such as

the limited RAM and FLASH memory that is exist in the module.

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

95 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

A GATT table is a collection of adopted or custom Services which in turn are a collection of

adopted or custom characteristics. Although, by definition an adopted service cannot contain

custom characteristics but the reverse is possible where a custom service can include both

adopted and custom characteristics.

Descriptions of services and characteristics are available in the Bluetooth Specification v4.0 or

newer and like most specifications are concise and difficult to understand. What follows is an

attempt to familiarise the reader with those concepts using the perspective of the smartBASIC

programming environment.

To help understand the terms services and characteristics better, think of a characteristic as a

container (or a pot) of data where the pot comes with space to store the data and a set of

properties that are officially called descriptors in the BT spec. In the pot analogy, think of

descriptor as colour of the pot, whether it has a lid, whether the lid has a lock or whether it has a

handle or a spout, etc. For a full list of these descriptors, see

http://developer.bluetooth.org/gatt/descriptors/Pages/DescriptorsHomePage.aspx . These

descriptors are assigned 16 bit UUIDs (value 0x29xx) and are referenced in some of the

smartBASIC API functions if you decide to add those to your characteristic definition.

To wrap up the loose analogy, think of service as just a carrier bag to hold a group of related

characterisics together where the printing on the carrier bag is a UUID. You will find that from a

smartBASIC developer’s perspective, a set of characteristics is what you need to manage and

the concept of service is only required at GATT table creation time.

A GATT table can have many services each containing one or more characteristics. The

differentiation between services and characteristics is expedited using an identification number

called a UUID (Universally Unique Identifier) which is a 128 bit (16 byte) number. Adopted

services or characteristics have a 16 bit (2 byte) shorthand identifier (which is just an offset plus a

base 128 bit UUID defined and reserved by the Bluetooth SIG) and custom service or

characteristics shall have the full 128 bit UUID. The logic behind this is that when you come

across a 16 bit UUID, it implies that a specification is published by the Bluetooth SIG whereas

using a 128 bit UUID does NOT require any central authority to maintain a register of those UUIDs

or specifications describing them.

The lack of requirement for a central register is important to understand, in the sense that if a

custom service or characteristic needs to be created, the developer can use any publicly

available UUID (sometimes also known as GUID) generation utility.

These utilities use entropy from the real world to generate a 128 bit random number that has an

extremely low probability to be the same as that generated by someone else at the same time

or in the past or future.

As an example, at the time of writing this document, the following website

http://www.guidgenerator.com/online-guid-generator.aspx offers an immediate UUID

generation service, although it uses the term GUID. From the GUID Generator website:

How unique is a GUID?

128-bits is big enough and the generation algorithm is unique enough that if

1,000,000,000 GUIDs per second were generated for 1 year the probability of a

duplicate would be only 50%. Or if every human on Earth generated 600,000,000

GUIDs there would only be a 50% probability of a duplicate.

This extremely low probability of generating the same UUID is why there is no need for a central

register maintained by the Bluetooth SIG for custom UUIDs.

http://ews-support.lairdtech.com/
http://developer.bluetooth.org/gatt/descriptors/Pages/DescriptorsHomePage.aspx
http://www.guidgenerator.com/online-guid-generator.aspx

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

96 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Note that Laird does not warrant or guarantee that the UUID generated by this website or any

other utility is unique. It is left to the judgement of the developer whether to use it or not.

Note: If the developer does intend to create custom services and/or characteristics then it is

recommended that a single UUID is generated and be used from then on as a 128 bit

(16 byte) company/developer unique base along with a 16 bit (2 byte) offset, in the

same manner as the Bluetooth SIG.

 This allows up to 65536 custom services and characteristics to be created with the

added advantage that it is easier to maintain a list of 16-bit integers.

 The main reason for avoiding more than one long UUID is to keep RAM usage down

given that 16 bytes of RAM is used to store a long UUID. smartBASIC functions are

provided to manage these custom 2-byte UUIDs along with their 16-byte base UUIDs.

In this document when a service or characteristic is described as adopted, it implies that the

Bluetooth SIG has published a specification which defines that service or characteristic and

there is a requirement that any device claiming to support them SHALL have approval to prove

that the functionality has been tested and verified to behave as per that specification.

Currently there is no requirement for custom service and/or characteristics to have any

approval. By definition, interoperability is restricted to just the provider and implementer.

A service is an abstraction of some collectivised functionality which, if broken down further into

smaller components, would cease to provide the intended behaviour. A couple of examples in

the BLE domain that have been adopted by the Bluetooth SIG are Blood Pressure Service and

Heart Rate Service. Each have sub-components that map to characteristics.

Blood pressure is defined by a collection of data entities like for example Systolic Pressure,

Diastolic Pressure, Pulse Rate, and many more. Likewise a Heart Rate service also has a

collection which includes entities such as the Pulse Rate and Body Sensor Location.

A list of all the adopted Services is

at:http://developer.bluetooth.org/gatt/services/Pages/ServicesHome.aspx. Laird recommends

that if you decide to create a custom service then it is defined and described in a similar

fashion, so that your goal should be to get the Bluetooth SIG to adopt it for everyone to use in an

interoperable manner.

These services are also assigned 16 bit UUIDs (value 0x18xx) and are referenced in some of the

smart BASIC API functions described in this section.

Services, as described above, are a collection of one or more characteristics. A list of all

adopted characteristics is found at

http://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicsHome.aspx. You

should note that these descriptors are also assigned 16 bit UUIDs (value 0x2Axx) and are

referenced in some of the API functions described in this section. Custom characteristics have

128 bit (16 byte) UUIDs and API functions are provided to handle those.

Note: If you intend to create a custom service or characteristic, and adopt the

recommendation, stated above, of a single long 16 byte base UUID, so that the service

can be identified using a 2 byte UUID, then allocate a 16 bit value which is not going to

coincide with any adopted values to minimise confusion. Selecting a similar value is

possible and legal given that the base UUID is different. The recommendation is just for

ease of maintenance.

http://ews-support.lairdtech.com/
http://developer.bluetooth.org/gatt/services/Pages/ServicesHome.aspx
http://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicsHome.aspx

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

97 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Finally, having prepared a background to services and characteristics, the rest of this

introduction will focus on the specifics of how to create and manage a GATT table from a

perspective of the smart BASIC API functions in the module.

Recall that a service has been described as a carrier bag that groups related characteristics

together and a characteristic is just a data container (pot). Therefore, a remote GATT client,

looking at the server, which is presented in your GATT table, sees multiple carrier bags each

containing one or more pots of data.

The GATT client (remote end of the wireless connection) needs to see those carrier bags to

determine the groupings and once it has identified the pots it will only need to keep a list of

references to the pots it is interested in. Once that list is made at the client end, it can ‘throw

away the carrier bag’.

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

98 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 Yes

 Yes
Broadcastable

Create a metadata object which
defines the permissions for the

characteristic value attribute

Notifiable OR
Indicatable

BleHandleUuid()

BleSvcCommit()

BleAttrMetadata()

BleAttrMetadata()

Create a metadata object which
defines the permissions for the
characteristic CCCD attribute

BleAttrMetadata()

Create a metadata object which
defines the permissions for the
characteristic SCCD attribute

Start the definition of a new characteristic
which will be later commited to the GATT

table in a single transaction
BleCharNew()

 Yes User Desc
Descriptor?

BleAttrMetadata()

Create a metadata object which
defines the permissions for the

User Desc Descriptor

Add parameters for creation of
User Desc Descriptor

BleCharDescUserDesc()

BleHandleUuid()

Create a UUID Handle for Service (16/128)

Create a UUID Handle for Characterisitic (16/128)

 Yes

BleAttrMetadata()

Add other
Descriptor?

Add parameters for creation of
other Descriptor

Create a metadata object which
defines the permissions for the

other Descriptor

BleCharDescAdd()

Commit the Characteristic to the
Gatt ServerTable in single transaction

BleCharCommit()

Commit a PRIMARY or SECONDARY
service which returns a service handle

 Yes

More
Services?

 Yes

More
Characteristics?

Save the handle

that is returned

as it is used to

interact with the

characteristic

 Yes Pres'tion Format
Descriptor?

Add parameters for creation of
Presentation Format Descriptor
BleCharDescPrstnFrmt()

Similarly in the module, once the

GATT table is created and after each

Service is fully populated with one or

more characteristics there is no need

to keep that ‘carrier bag’. However,

as each characterstic is ‘placed in

the carrier bag’ using the

appropriate smartBASIC API function,

a ‘receipt’ will be returned and is

referred to as a char_handle. The

developer will then need to keep

those handles to be able to read and

write and generally interact with that

particular characteristic. The handle

does not care whether the

Characteristic is adopted or custom

because from then on the firmware

managing it behind the scenes in

smartBASIC does not care.

Therefore from the smartBASIC app

developer’s logical perspective a

GATT table looks nothing like the

table that is presented in most BLE

literature. Instead the GATT table is

purely and simply just a collection of

char_handles that reference the

characteristics (data containers)

which have been registered with the

underlying GATT table in the BLE

stack.

A particular char_handle is in turn

used to make something happen to

the referenced characteristic (data

container) using a smart BASIC

function and conversely if data is

written into that characteristic (data

container), by a remote GATT Client,

then an event is thrown, in the form of

a message, into the smart BASIC

runtime engine which will get

processed if and only if a handler

function has been registered by the

apps developer using the ONEVENT

statement.

With this simple model in mind, an

overview of how the smart BASIC

functions are used to register Services

and Characteristics is illustrated in the

flowchart on the right and sample

code follows on the next page.

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

99 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 //Example :: ServicesAndCharacteristics.sb (See in BL620CodeSnippets.zip)

 //==

 //Register two Services in the GATT Table. Service 1 with 2 Characteristics and

 //Service 2 with 1 characteristic. This implies a total of 3 characteristics to

 //manage.

 //The characteristic 2 in Service 1 will not be readable or writable but only

 //indicatable

 //The characteristic 1 in Service 2 will not be readable or writable but only

 //notifyable

 //==

 DIM rc //result code

 DIM hSvc //service handle

 DIM mdAttr

 DIM mdCccd

 DIM mdSccd

 DIM chProp

 DIM attr$

 DIM hChar11 // handles for characteristic 1 of Service 1

 DIM hChar21 // handles for characteristic 2 of Service 1

 DIM hChar12 // handles for characteristic 1 of Service 2

 DIM hUuidS1 // handles for uuid of Service 1

 DIM hUuidS2 // handles for uuid of Service 2

 DIM hUuidC11 // handles for uuid of characteristic 1 in Service 1

 DIM hUuidC12 // handles for uuid of characteristic 2 in Service 1

 DIM hUuidC21 // handles for uuid of characteristic 1 in Service 2

 //---Register Service 1

 hUuidS1 = BleHandleUuid16(0x180D)

 rc = BleSvcCommit(BLE_SERVICE_PRIMARY, hUuidS1,hSvc)

 //---Register Characteristic 1 in Service 1

 mdAttr = BleAttrMetadata(BLE_ATTR_ACCESS_OPEN,BLE_ATTR_ACCESS_OPEN,10,0,rc)

 mdCccd = BLE_CHAR_METADATA_ATTR_NOT_PRESENT

 mdSccd = BLE_CHAR_METADATA_ATTR_NOT_PRESENT

 chProp = BLE_CHAR_PROPERTIES_READ + BLE_CHAR_PROPERTIES_WRITE

 hUuidC11 = BleHandleUuid16(0x2A37)

 rc = BleCharNew(chProp, hUuidC11,mdAttr,mdCccd,mdSccd)

 rc = BleCharCommit(shHrs,hrs$,hChar11)

 //---Register Characteristic 2 in Service 1

 mdAttr = BleAttrMetadata(BLE_ATTR_ACCESS_OPEN,BLE_ATTR_ACCESS_OPEN,10,0,rc)

 mdCccd = BleAttrMetadata(BLE_ATTR_ACCESS_OPEN,BLE_ATTR_ACCESS_OPEN,2,0,rc)

 mdSccd = BLE_CHAR_METADATA_ATTR_NOT_PRESENT

 chProp = BLE_CHAR_PROPERTIES_INDICATE

 hUuidC12 = BleHandleUuid16(0x2A39)

 rc = BleCharNew(chProp, hUuidC12,mdAttr,mdCccd,mdSccd)

 attr$="\00\00"

 rc = BleCharCommit(hSvc,attr$,hChar21)

 //---Register Service 2 (can now reuse the service handle)

 hUuidS2 = BleHandleUuid16(0x1856)

 rc = BleSvcCommit(BLE_SERVICE_PRIMARY, hUuidS2,hSvc)

 //---Register Characteristic 1 in Service 2

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

100 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 mdAttr = BleAttrMetadata(BLE_ATTR_ACCESS_NONE,BLE_ATTR_ACCESS_NONE,10,0,rc)

 mdCccd = BleAttrMetadata(BLE_ATTR_ACCESS_OPEN,BLE_ATTR_ACCESS_OPEN,2,0,rc)

 mdSccd = BLE_CHAR_METADATA_ATTR_NOT_PRESENT

 chProp = BLE_CHAR_PROPERTIES_NOTIFY

 hUuidC21 = BleHandleUuid16(0x2A54)

 rc = BleCharNew(chProp, hUuidC21,mdAttr,mdCccd,mdSccd)

 attr$="\00\00\00\00"

 rc = BleCharCommit(hSvc,attr$,hChar12)

 //===The 2 services are now visible in the gatt table

Writes into a characteristic from a remote client is detected and processed as follow:

 //--

 // To deal with writes from a gatt client into characteristic 1 of Service 1

 // which has the handle hChar11

 //--

 // This handler is called when there is a EVCHARVAL message

 FUNCTION HandlerCharVal(BYVAL hChar AS INTEGER) AS INTEGER

 DIM attr$

 IF hChar == hChar11 THEN

 rc = BleCharValueRead(hChar11,attr$)

 print "Svc1/Char1 has been writen with = ";attr$

 ENDIF

 ENDFUNC 1

 //enable characteristic value write handler

 OnEvent EVCHARVAL call HandlerCharVal

 WAITEVENT

Assuming there is a connection and notify has been enabled then a value notification is

expedited as follows:

 //--

 // Notify a value for characteristic 1 in service 2

 //--

 attr$="somevalue"

 rc = BleCharValueNotify(hChar12,attr$)

Assuming there is a connection and indicate has been enabled then a value indication is

expedited as follows:

 //--

 // indicate a value for characteristic 2 in service 1

 //--

 // This handler is called when there is a EVCHARHVC message

 FUNCTION HandlerCharHvc(BYVAL hChar AS INTEGER) AS INTEGER

 IF hChar == hChar12 THEN

 PRINT "Svc1/Char2 indicate has been confirmed"

 ENDIF

 ENDFUNC 1

 //enable characteristic value indication confirm handler

 OnEvent EVCHARHVC CALL HandlerCharHvc

 attr$="somevalue"

 rc = BleCharValueIndicate(hChar12,attr$)

The rest of this section details all the smart BASIC functions that help create that framework.

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

101 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

102 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Events and Messages

See also Events and Messages for the messages that are thrown to the application which are

related to the generic characteristics API. The relevant messages are those that start with

EVCHARxxx.

BleGapSvcInit

FUNCTION

This function updates the GAP service, which is mandatory for all approved devices to expose,

with the information provided. If it is not called before adverts are started, default values are

exposed. Given this is a mandatory service, unlike other services which need to be registered,

this one must only be initialised as the underlying BLE stack unconditionally registers it when

starting up.

The GAP service contains five characteristics as listed at the following site:

http://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.servic

e.generic_access.xml

A central only role module will never be a peripheral so the the ‘Peripheral Preferred Connection

Parameters’ characteristic, which is optional will not be exist and so the the last four parameters

of this function are ignored and exist only to maintain compatibility with the BL620 firmware. In

future when 4.1 compatible firmware is available it will make sense again.

BLEGAPSVCINIT (deviceName, nameWritable, nAppearance, nMinConnInterval,

nMaxConnInterval, nSupervisionTout, nSlaveLatency)

Returns
INTEGER, a result code.

Most typical value – 0x0000, indicating a successful operation.

Arguments

deviceName byRef deviceName AS STRING

The name of the device (e.g. Laird_Thermometer) to store in the ‘Device

Name’ characteristic of the GAP service.

Note: When an advert report is created using BLEADVRPTINIT() this field is

read from the service and an attempt is made to append it in the

Device Name AD. If the name is too long, that function fails to

initialise the advert report and a default name is transmitted. It is

recommended that the device name submitted in this call be as

short as possible.

nameWritable byVal nameWritable AS INTEGER

If non-zero, the peer device is allowed to write the device name. Some
profiles allow this to be made optional.

nAppearance byVal nAppearance AS INTEGER

Field lists the external appearance of the device and updates the

Appearance characteristic of the GAP service. Possible values:

org.bluetooth.characteristic.gap.appearance.

nMinConnInterval byVal nMinConnInterval AS INTEGER

This parameter is ignored in this module.

The preferred minimum connection interval, updates the ‘Peripheral

Preferred Connection Parameters’ characteristic of the GAP service. Range

is between 7500 and 4000000 microseconds (rounded to the nearest 1250

microseconds). This must be smaller than nMaxConnInterval.

http://ews-support.lairdtech.com/
http://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.generic_access.xml
http://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.generic_access.xml
https://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicViewer.aspx?u=org.bluetooth.characteristic.gap.appearance.xml

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

103 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

nMaxConnInterval byVal nMaxConnInterval AS INTEGER

This parameter is ignored in this module.

The preferred maximum connection interval, updates the ‘Peripheral

Preferred Connection Parameters’ characteristic of the GAP service.

Range is between 7500 and 4000000 microseconds (rounded to the

nearest 1250 microseconds). This must be larger than nMinConnInterval.

nSupervisionTimeout byVal nSupervisionTimeout AS INTEGER

This parameter is ignored in this module.

The preferred link supervision timeout and updates the ‘Peripheral

Preferred Connection Parameters’ characteristic of the GAP service.

Range is between 100000 to 32000000 microseconds (rounded to the

nearest 10000 microseconds).

nSlaveLatency byVal nSlaveLatency AS INTEGER

This parameter is ignored in this module.

The preferred slave latency is the number of communication intervals

that a slave may ignore without losing the connection and updates the

‘Peripheral Preferred Connection Parameters’ characteristic of the GAP

service. This value must be smaller than (nSupervisionTimeout/

nMaxConnInterval) -1. i.e. nSlaveLatency < (nSupervisionTimeout /

nMaxConnInterval) -1

Interactive

Command
No

 //Example :: BleGapSvcInit.sb (See in BL620CodeSnippets.zip)

 DIM rc,dvcNme$,nmeWrtble,apprnce,MinConnInt,MaxConnInt,ConnSupTO,sL,s$

 dvcNme$= "Laird_TS"

 nmeWrtble = 0 //Device name will not be writable by peer

 apprnce = 768 //The device will appear as a Generic Thermometer

 MinConnInt = 500000 //Minimum acceptable connection interval is 0.5 seconds

 MaxConnInt = 1000000 //Maximum acceptable connection interval is 1 second

 ConnSupTO = 4000000 //Connection supervisory timeout is 4 seconds

 sL = 0 //Slave latency--number of conn events that can be missed

 rc=BleGapSvcInit(dvcNme$,nmeWrtble,apprnce,MinConnInt,MaxConnInt,ConnSupTO,sL)

 IF !rc THEN

 PRINT "\nSuccess"

 ELSE

 PRINT "\nFailed 0x"; INTEGER.H'rc //Print result code as 4 hex digits

 ENDIF

Expected Output:

BLEGAPSVCINIT is an extension function.

BleGetDeviceName$

FUNCTION

Success

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

104 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

This function reads the device name characteristic value from the local gatt table. This value is

the same as that supplied in BleGapSvcInit() if the ‘nameWritable’ parameter was 0, otherwise it

can be different.

EVBLEMSG event is thrown with ‘msgid’ == 21 when the GATT client writes a new value and is the

best time to call this function.

BLEGETDEVICENAME$ ()

Returns

STRING, the current device name in the local GATT table. It is the same as that

supplied in BleGapSvcInit() if the ‘nameWritable’ parameter was 0, otherwise it

can be different. EVBLEMSG event is thrown with ‘msgid’ == 21 when the GATT
client writes a new value.

Arguments None

Interactive

Command
No

 //Example :: BleGetDeviceName$.sb (See in BL620CodeSnippets.zip)

 DIM rc,dvcNme$,nmeWrtble,apprnce,MinConnInt,MaxConnInt,ConnSupTO,sL

 PRINT "\n --- DevName : "; BleGetDeviceName$()

 // Changing device name manually

 dvcNme$= "My BL620"

 nmeWrtble = 0

 apprnce = 768

 MinConnInt = 500000

 MaxConnInt = 1000000

 ConnSupTO = 4000000

 sL = 0

 rc = BleGapSvcInit(dvcNme$,nmeWrtble,apprnce,MinConnInt,MaxConnInt,ConnSupTO,sL)

 PRINT "\n --- New DevName : "; BleGetDeviceName$()

Expected Output:

BLEGETDEVICENAME$ is an extension function.

BleSvcRegDevInfo

FUNCTION

This function is used to register the device Information service with the GATT server. The Device

Information service contains nine characteristics as listed at the following website:

http://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.servic

e.device_information.xml

The firmware revision string is always set to BL620:vW.X.Y.Z where W,X,Y,Z are as per the revision

information which is returned to the command AT I 4.

--- DevName : LAIRD BL620

--- New DevName : My BL620

http://ews-support.lairdtech.com/
http://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.device_information.xml
http://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.device_information.xml

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

105 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

BLESVCREGDEVINFO (manfName$, modelNum$, serialNum$, hwRev$,

swRev$, sysId$, regDataList$, pnpId$)

FUNCTION

Returns
INTEGER, a result code.

Most typical value – 0x0000, indicating a successful operation.

Arguments

manfName$ byVal manfName$ AS STRING

The device manufacturer. Can be set empty to omit submission.

modelNum$ byVal modelNum$ AS STRING

The device model number. Can be set empty to omit submission.

serialNum$ byVal serialNum$ AS STRING
The device serial number. Can be set empty to omit submission.

hwRev$ byVal hwRev$ AS STRING
The device hardware revision string. Can be set empty to omit submission.

swRev$ byVal swRev$ AS STRING
The device software revision string. Can be set empty to omit submission.

sysId$ byVal sysId$ AS STRING

The device system ID as defined in the specifications. Can be set empty to omit

submission.

Otherwise it shall be a string exactly 8 octets long, where:

Byte 0..4 Manufacturer Identifier

Byte 5..7 Organisationally Unique Identifier

For the special case of the string being exactly one character long and

containing @, the system ID is created from the MAC address if (and only if) an

IEEE public address is set. If the address is the random static variety, this
characteristic is omitted.

regDataList$ byVal regDataList$ AS STRING

The device’s regulatory certification data list as defined in the specification. It

can be set as

an empty string to omit submission.

pnpId$ byVal pnpId$ AS STRING

The device’s plug and play ID as defined in the specification. Can be set empty

to omit

submission. Otherwise, it shall be exactly 7 octets long, where:

Byte 0 Vendor ID source

Byte 1,

2

Vendor ID (byte 1 is LSB)

Byte 3,

4

Product ID (byte 3 is LSB)

Byte 5,
6

Product version (byte 5 is LSB)

Interactive

Command
No

 //Example :: BleSvcRegDevInfo.sb (See in BL620CodeSnippets.zip)

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

106 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 DIM rc,manfNme$,mdlNum$,srlNum$,hwRev$,swRev$,sysId$,regDtaLst$,pnpId$

 manfNme$ = "Laird Technologies"

 mdlNum$ = "BL620"

 srlNum$ = "" //empty to omit submission

 hwRev$ = "1.0"

 swRev$ = "1.0"

 sysId$ = "" //empty to omit submission

 regDtaLst$ = "" //empty to omit submission

 pnpId$ = "" //empty to omit submission

 rc=BleSvcRegDevInfo(manfNme$,mdlNum$,srlNum$,hwRev$,swRev$,sysId$,regDtaLst$,pnpId$)

 IF !rc THEN

 PRINT "\nSuccess"

 ELSE

 PRINT "\nFailed 0x"; INTEGER.H'rc

 ENDIF

Expected Output:

BLESVCREGDEVINFO is an extension function.

BleHandleUuid16

FUNCTION

This function takes an integer in the range 0 to 65535 and converts it into a 32-bit integer handle

that associates the integer as an offset into the Bluetooth SIG 128 bit (16byte) base UUID which is

used for all adopted services, characteristics and descriptors.

If the input value is not in the valid range then an invalid handle (0) is returned

The returned handle shall be treated by the developer as an opaque entity and no further logic

shall be based on the bit content, apart from all 0s which represents an invalid UUID handle.

BLEHANDLEUUID16 (nUuid16)

Returns
INTEGER, a nonzero handle shorthand for the UUID. Zero is an invalid UUID
handle.

Arguments

nUuid16 byVal nUuid16 AS INTEGER

nUuid16 is first bitwise ANDed with 0xFFFF and the result will be treated as an
offset into the Bluetooth SIG 128 bit base UUID.

Interactive

Command
No

 //Example :: BleHandleUuid16.sb (See in BL620CodeSnippets.zip)
 DIM uuid

 DIM hUuidHRS

 uuid = 0x180D //this is UUID for Heart Rate Service

 hUuidHRS = BleHandleUuid16(uuid)

 IF hUuidHRS == 0 THEN

 PRINT "\nFailed to create a handle"

 ELSE

Success

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

107 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 PRINT "Handle for HRS Uuid is "; integer.h' hUuidHRS;"(";hUuidHRS;")"
 ENDIF

Expected Output:

BLEHANDLEUUID16 is an extension function.

Handle for HRS Uuid is FE01180D (-33482739)

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

108 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

BleHandleUuid128

FUNCTION

This function takes a 16 byte string and converts it into a 32 bit integer handle. The handle

consists of a 16 bit (two byte) offset into a new 128 bit base UUID.

The base UUID is basically created by taking the 16 byte input string and setting bytes 12 and 13

to zero after extracting those bytes and storing them in the handle object. The handle also

contains an index into an array of these 16 byte base UUIDs which are managed opaquely in

the underlying stack.

The returned handle shall be treated by the developer as an opaque entity and no further logic

shall be based on the bit content. However, note that a string of zeroes represents an invalid

UUID handle.

Please ensure that you use a 16 byte UUID that has been generated using a random number

generator with sufficient entropy to minimise duplication, as stated in an earlier section and that

the first byte of the array is the most significant byte of the UUID.

BLEHANDLEUUID128 (stUuid$)

Returns

INTEGER, A handle representing the shorthand UUID. If zero, which is an invalid

UUID handle, there is either no spare RAM memory to save the 16 byte base or
more than 253 custom base UUIDs have been registered.

Arguments

stUuid$ byRef stUuid$ AS STRING

Any 16 byte string that was generated using a UUID generation utility that has

enough entropy to ensure that it is random. The first byte of the string is the MSB
of the UUID – that is, big endian format.

Interactive

Command
No

 //Example :: BleHandleUuid128.sb (See in BL620CodeSnippets.zip)
 DIM uuid$: hUuidCustom

 //create a custom uuid for my ble widget

 uuid$ = "ced9d91366924a1287d56f2764762b2a"

 uuid$ = StrDehexize$(uuid$)

 hUuidCustom = BleHandleUuid128(uuid$)

 IF hUuidCustom == 0 THEN

 PRINT "\nFailed to create a handle"

 ELSE

 PRINT "Handle for custom Uuid is ";integer.h’ hUuidCustom; "(";hUuidCustom;")"
 ENDIF

 // hUuidCustom now references an object which points to

 // a base uuid = ced9d91366924a1287d56f2747622b2a (note 0's in byte position 2/3)

 // and an offset = 0xd913

Expected Output:

BLEHANDLEUUID128 is an extension function.

Handle for custom Uuid is FC03D913 (-66856685)

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

109 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

110 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

BleHandleUuidSibling

FUNCTION

This function takes an integer in the range 0 to 65535 along with a UUID handle which had been

previously created using BleHandleUuid16() or BleHandleUuid128() to create a new UUID handle.

This handle references the same 128 base UUID as the one referenced by the UUID handle

supplied as the input parameter.

The returned handle shall be treated by the developer as an opaque entity and no further logic

shall be based on the bit content, apart from all 0s which represents an invalid UUID handle.

BLEHANDLEUUIDSIBLING (nUuidHandle, nUuid16)

Returns
INTEGER, a handle representing the shorthand UUID and can be zero which is an

invalid UUID handle, if nUuidHandle is an invalid handle in the first place.

Arguments

nUuidHandle byVal nUuidHandle AS INTEGER

A handle that was previously created using either BleHandleUui16() or

BleHandleUuid128().

nUuid16 byVal nUuid16 AS INTEGER

A UUID value in the range 0 t0 65535 which will be treated as an offset into the

128 bit base UUID referenced by nUuidHandle.

Interactive

Command
No

 //Example :: BleHandleUuidSibling.sb (See in BL620CodeSnippets.zip)

 DIM uuid$,hUuid1, hUuid2 //hUuid2 will have the same base uuid as hUuid1

 //create a custom uuid for my ble widget

 uuid$ = "ced9d91366924a1287d56f2764762b2a"

 uuid$ = StrDehexize$(uuid$)

 hUuid1 = BleHandleUuid128(uuid$)

 IF hUuid1 == 0 THEN

 PRINT "\nFailed to create a handle"

 ELSE

 PRINT "Handle for custom Uuid is ";integer.h' hUuid1;"(";hUuid1;")"

 ENDIF

 // hUuid1 now references an object which points to

 // a base uuid = ced9000066924a1287d56f2747622b2a (note 0's in byte position 2/3)

 // and an offset = 0xd913

 hUuid2 = BleHandleUuidSibling(hUuid1,0x1234)

 IF hUuid2 == 0 THEN

 PRINT "\nFailed to create a handle"

 ELSE

 PRINT "\nHandle for custom sibling Uuid is ";integer.h';hUuid2;"(";hUuid2;")"

 ENDIF

 // hUuid2 now references an object which also points to

 // the base uuid = ced9000066924a1287d56f2700004762 (note 0's in byte position 2/3)

 // and has the offset = 0x1234

Expected Output:

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

111 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

BLEHANDLEUUIDSIBLING is an extension function.

BleSvcCommit

This function is now deprecated. Use BleServiceNew() & BleServiceCommt() instead.

BleServiceNew

FUNCTION

As explained in an earlier section, a service in the context of a GATT table is just a collection of

related characteristics. This function is used to inform the underlying GATT table manager that

one or more related characteristics are going to be created and installed in the GATT table and

that until the next call of this function they shall be associated with the service handle that it

provides upon return of this call.

Under the hood, this call results in a single attribute being installed in the GATT table with a type

signifying a PRIMARY or a SECONDARY service. The value for this attribute is the UUID that

identifies this service and in turn is precreated using one of these functions: BleHandleUuid16(),

BleHandleUuid128(), or BleHandleUuidSibling().

Note that when a GATT Client queries a GATT server for services over a BLE connection, it only

receives a list of PRIMARY services. SECONDARY services are a mechanism for multiple PRIMARY

services to reference single instances of shared characteristics that are collected in a

SECONDARY service. This referencing is expedited within the definition of a service using the

concept of INCLUDED SERVICE which itself is just an attribute that is grouped with the PRIMARY

service definition. An Included Service is expedited using the function BleSvcAddIncludeSvc()

which is described immediately after this function.

This function now replaces BleSvcCommit() and marks the beginning of a service definition in the

GATT server table. When the last descriptor of the last characteristic has been registered the

service definition should be terminated by calling BleServiceCommit().

BLESERVICENEW (nSvcType, nUuidHandle, hService)

Returns
INTEGER, a result code.

Most typical value – 0x0000, indicating a successful operation.

Arguments

nSvcType byVal nSvcType AS INTEGER

This will be 0 for a SECONDARY service and 1 for a PRIMARY service and all other

values are reserved for future use and will result in this function failing with an
appropriate result code.

nUuidHandle byVal nUuidHandle AS INTEGER

This is a handle to a 16 bit or 128 bit UUID that identifies the type of Service

function provided by all the Characteristics collected under it. It will have been

pre-created using one of the three functions: BleHandleUuid16(),
BleHandleUuid128() or BleHandleUuidSibling()

hService byRef hService AS INTEGER

If the Service attribute is created in the GATT table then this will contain a

composite handle which references the actual attribute handle. This is then

subsequently used when adding Characteristics to the GATT table. If the

function fails to install the Service attribute for any reason this variable will
contain 0 and the returned result code will be non-zero.

Handle for custom Uuid is FC03D913 (-66856685)

Handle for custom sibling Uuid is FC031234 (-66907596)

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

112 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Interactive

Command
No

 //Example :: BleServiceNew.sb (See in BL620CodeSnippets.zip)

 #DEFINE BLE_SERVICE_SECONDARY 0

 #DEFINE BLE_SERVICE_PRIMARY 1

 //--

 //Create a Health Thermometer PRIMARY service attribute which has a uuid of 0x1809

 //--

 DIM hHtsSvc //composite handle for hts primary service

 DIM hUuidHT : hUuidHT = BleHandleUuid16(0x1809) //HT Svc UUID Handle

 IF BleServiceNew(BLE_SERVICE_PRIMARY,hUuidHT,hHtsSvc)==0 THEN

 PRINT "\nHealth Thermometer Service attribute written to GATT table"

 PRINT "\nUUID Handle value: ";hUuidHT

 PRINT "\nService Attribute Handle value: ";hHtsSvc

 ELSE

 PRINT "\nService Commit Failed"

 ENDIF

 //--

 //Create a Battery PRIMARY service attribute which has a uuid of 0x180F

 //--

 DIM hBatSvc //composite handle for battery primary service

 //or we could have reused nHtsSvc

 DIM hUuidBatt : hUuidBatt = BleHandleUuid16(0x180F) //Batt Svc UUID Handle

 IF BleServiceNew(BLE_SERVICE_PRIMARY,hUuidBatt,hBatSvc)==0 THEN

 PRINT "\n\nBattery Service attribute written to GATT table"

 PRINT "\nUUID Handle value: ";hUuidBatt

 PRINT "\nService Attribute Handle value: ";hBatSvc

 ELSE

 PRINT "\nService Commit Failed"

 ENDIF

Expected Output:

BLESERVICENEW is an extension function.

BleServiceCommit

This function in the BL620 is a dummy function and does not do anything. However, for portability

to other Laird 4.0 compatible modules, always invoke this function after the last descriptor of the

last characteristic of a service has been committed to the gatt server.

BLESERVICECOMMIT (hService)

Health Thermometer Service attribute written to GATT table

UUID Handle value: -33482743

Service Attribute Handle value: 16

Battery Service attribute written to GATT table

UUID Handle value: -33482737

Service Attribute Handle value: 17

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

113 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Returns
INTEGER, a result code.

Most typical value – 0x0000, indicating a successful operation.

Arguments

hService byVal hService AS INTEGER

This handle will have been returned from BleServiceNew()

Interactive

Command
No

BleSvcAddIncludeSvc

FUNCTION

Note: This function is currently not available for use on the BL620.

This function is used to add a reference to a service within another service. This is usually, but not

necessarily, a SECONDARY service which is virtually identical to a PRIMARY service from the

GATT server perspective and the only difference is that when a GATT client queries a device for

all services it does not get any mention of SECONDARY services.

When a GATT client encounters an INCLUDED SERVICE object when querying a particular service

it performs a sub-procedure to get handles to all the characteristics that are part of that

INCLUDED service.

This mechanism is provided to allow for a single set of characteristics to be shared by multiple

primary services. This is most relevant if a characteristic is defined so that it can have only one

instance in a GATT table but needs to be offered in multiple PRIMARY services. Hence a typical

implementation, where a characteristic is part of many PRIMARY services, installs that

characteristic in a SECONDARY service (see BleSvcCommit()) and then uses the function

defined in this section to add it to all the PRIMARY services that want to have that characteristic

as part of their group.

It is possible to include a service which is also a PRIMARY or SECONDARY service, which in turn

can include further PRIMARY or SECONDARY services. The only restriction to nested includes is

that there cannot be recursion.

Further note that if a service has INCLUDED services, then they are installed in the GATT table

immediately after a service is created using BleSvcCommit() and before BleCharCommit(). The

BT 4.0 specification mandates that any Included Service attribute is present before any

characteristic attributes within a particular service group declaration.

BleSvcAddIncludeSvc (hService)

Returns
INTEGER, a result code.

Most typical value – 0x0000, indicating a successful operation.

Arguments

hService byVal hService AS INTEGER

This argument will contain a handle that was previously created using the
function BleSvcCommit()

Interactive

Command
No

 //Example :: BleSvcAddIncludeSvc.sb (See in BL620CodeSnippets.zip)

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

114 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 #define BLE_SERVICE_SECONDARY 0

 #define BLE_SERVICE_PRIMARY 1

 //--

 //Create a Battery SECONDARY service attribure which has a uuid of 0x180F

 //--

 dim hBatSvc //composite handle for batteru primary service

 dim rc //or we could have reused nHtsSvc

 dim metaSuccess

 DIM charMet : charMet = BleAttrMetaData(1,1,10,1,metaSuccess)

 DIM s$: s$ = "Hello" //initial value of char in Battery Service

 DIM hBatChar

 rc = BleSvcCommit(BLE_SERVICE_SECONDARY,BleHandleUuid16(0x180F),hBatSvc)

 rc = BleCharNew(3,BleHandleUuid16(0x2A1C),charMet,0,0)

 rc = BleCharCommit(hBatSvc, s$,hBatChar)

 //--

 //Create a Health Thermometer PRIMARY service attribure which has a uuid of 0x1809

 //--

 DIM hHtsSvc //composite handle for hts primary service

 rc = BleSvcCommit(BLE_SERVICE_PRIMARY,BleHandleUuid16(0x1809),hHtsSvc)

 //Have to add includes before any characteristics are committed

 PRINT INTEGER.h'BleSvcAddIncludeSvc(hBatSvc)

BleSvcAddIncludeSvc is an extension function.

BleAttrMetadata

FUNCTION

A GATT table is an array of attributes which are grouped into characteristics which in turn are

further grouped into services. Each attribute consists of a data value which can be anything

from 1 to 512 bytes long according to the specification and properties such as read and write

permissions, authentication, and security properties. When services and characteristics are

added to a GATT server table, multiple attributes with appropriate data and properties are

added.

This function allows a 32 bit integer to be created (an opaque object) which defines those

properties and is then submitted along with other information to add the attribute to the GATT

table.

When adding a service attribute (not the whole service, in this context), the properties are

defined in the BT specification so that it is open for reads without any security requirements but

cannot be written and always has the same data content structure. This implies that a metadata

object does NOT need to be created.

However, when adding characteristics, which consists of a minimum of 2 attributes, one similar in

function as the aforementioned service attribute and the other the actual data container, then

properties for the value attribute must be specified. Here, properties refers to properties for the

attribute, not properties for the characteristic container as a whole. These also exist and must be

specified, but that is done in a different manner as explained later.

For example, the value attribute must be specified for read/write permission and whether it

needs security and authentication to be accessed.

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

115 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

If the characteristic is capable of notification and indication, the client must be able to enable

or disable it. This is done through a Characteristic Descriptor, another attribute. The attribute also

needs to have a metadata supplied when the characteristic is created and registered in the

GATT table. This attribute, if it exists, is called a Client Characteristic Configuration Descriptor

(CCCD). A CCCD always has two bytes of data and currently only two bits are used as on/off

settings for notification and indication.

A characteristic can also be capable of broadcasting its value data in advertisements. For the

GATT client to be able to control this, there is another type of Characteristic Descriptor which

also needs a metadata object to be supplied when the characteristic is created and registered

in the GATT table. This attribute, if it exists, is called a Server Characteristic Configuration

Descriptor (SCCD). A SCCD always has two bytes of data and currently only one bit is used as

on/off settings for broadcasts.

Finally if the characteristic has other descriptors to qualify its behaviour, a separate API function

is also supplied to add that to the GATT table and when setting up a metadata object must be

supplied.

In a nutshell, think of a metadata object as a note to define how an attribute behaves and the

GATT table manager needs that before it is added. Some attributes have those ‘notes’ specified

by the BT specification and so the GATT table manager does not need to be provided with any,

but the rest require it.

This function helps write that metadata.

BLEATTRMETADATA (nReadRights, nWriteRights, nMaxDataLen, fIsVariableLen, resCode)

Returns
INTEGER, a 32 bit opaque data object to be used in subsequent calls when

adding characteristics to a GATT table.

Arguments

nReadRights byVal nReadRights AS INTEGER
This specifies the read rights and shall have one of the following values:

0 No access

1 Open

2 Encrypted with no Man-in-the-Middle (MITM) protection

3 Encrypted with MITM protection

4 Signed with MITM protection (not available)

5 Signed with MITM protection (not available)

Note: In early releases of the firmware, 4 and 5 are not available.

nWriteRights byVal nWriteRights AS INTEGER
This specifies the write rights and shall have one of the following values:

0 No access

1 Open

2 Encrypted with no Man-in-the-Middle (MITM) protection

3 Encrypted with MITM protection

4 Signed with MITM protection (not available)

5 Signed with MITM protection (not available)

Note: In early releases of the firmware, 4 and 5 are not available.

nMaxDataLen byVal nMaxDataLen AS INTEGER

This specifies the maximum data length of the VALUE attribute. Range is from 1

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

116 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

to 512 bytes according to the BT specification; the stack implemented in the
module may limit it for early versions.

At the time of writing, the limit is 20 bytes.

fIsVariableLen byVal fIsVariableLen AS INTEGER

Set this to non-zero only if you want the attribute to automatically shorten its
length according to the number of bytes written by the client.

For example, if the initial length is two and the client writes one byte, then if this
is 0, only the first byte is updated and the rest remains unchanged.

If this parameter is set to one, then when a single byte is written the attribute

shortens its length to accommodate. If the client tries to write more bytes than
the initial maximum length, then the client receives an error response.

resCode byRef resCode AS INTEGER

This variable will be updated with result code which will be 0 if a metadata

object was successfully returned by this call. Any other value implies a
metadata object did not get created.

Interactive

Command
No

 //Example :: BleAttrMetadata.sb (See in BL620CodeSnippets.zip)

 DIM mdVal //metadata for value attribute of Characteristic

 DIM mdCccd //metadata for CCCD attribute of Characteristic

 DIM mdSccd //metadata for SCCD attribute of Characteristic

 DIM rc

 //++++

 // Create the metadata for the value attribute in the characteristic

 // and Heart Rate attribute has variable length

 //++++

 //There is always a Value attribute in a characteristic

 mdVal=BleAttrMetadata(17,0,20,0,rc)

 //There is a CCCD and SCCD in this characteristic

 mdCccd=BleAttrMetadata(1,2,2,0,rc)

 mdSccd=BleAttrMetadata(0,0,2,0,rc)

 //Create the Characteristic object

 IF BleCharNew(3,BleHandleUuid16(0x2A1C),mdVal,mdCccd,mdSccd)==0 THEN

 PRINT "\nSuccess"

 ELSE

 PRINT "\nFailed"

 ENDIF

Expected Output:

BLEATTRMETADATA is an extension function.

BleCharNew

FUNCTION

Success

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

117 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

When a characteristic is to be added to a GATT table, multiple attribute ‘objects’ must be

precreated. After they are all created successfully, they are committed to the GATT table in a

single atomic transaction.

This function is the first function that is called to start the process of creating those multiple

attribute ‘objects’. It is used to select the characteristic properties (which are distinct and

different from attribute properties), the UUID to be allocated for it and then up to three

metadata objects for the value attribute, and CCCD/SCCD Descriptors respectively.

BLECHARNEW (nCharProps,nUuidHandle,mdVal,mdCccd,mdSccd)

Returns
INTEGER, a result code.

Most typical value – 0x0000, indicating a successful operation.

Arguments

nCharProps byVal nCharProps AS INTEGER

This variable contains a bit mask to specify the following high level properties for

the characteristic that is added to the GATT table:

Bit Description

0 Broadcast capable (SCCD descriptor must be present)

1 Can be read by the client

2 Can be written by the client without response

3 Can be written

4 Can be notifiable (CCCD descriptor must be present)

5 Can be indicatable (CCCD descriptor must be present)

6 Can accept signed writes

7 Reliable writes

nUuidHandle byVal nUuidHandle AS INTEGER

This specifies the UUID that is allocated to the characteristic – either 16 or 128

bits. This variable is a handle, pre-created using one of the following functions:

 BleHandleUuid16()

 BleHandleUuid128()

 BleHandleUuidSibling()

mdVal byVal mdVal AS INTEGER

This is the mandatory metadata that is used to define the properties of the

Value attribute that is created in the characteristic and is pre-created using the

help of the function BleAttrMetadata().

mdCccd byVal mdCccd AS INTEGER

This is an optional metadata that is used to define the properties of the CCCD

descriptor attribute that is created in the characteristic and is pre-created using

the help of the function BleAttrMetadata() or set to 0 if CCCD is not to be

created. If nCharProps specifies that the characteristic is notifiable or

indicatable and this value contains 0, this function aborts with an appropriate

result code.

mdSccd byVal mdSccd AS INTEGER

This is an optional metadata that is used to define the properties of the SCCD

descriptor attribute that is created in the characteristic and is pre-created using

the help of the function BleAttrMetadata() or set to 0 if SCCD is not to be

created. If nCharProps specifies that the characteristic is broadcastable and this

value contains 0, this function aborts with an appropriate resultcode.

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

118 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Interactive

Command
No

 // Example :: BleCharNew.sb (See in BL620CodeSnippets.zip)

 DIM rc

 DIM charUuid : charUuid = BleHandleUuid16(2) //Characteristic's UUID

 DIM mdVal : mdVal = BleAttrMetadata(1,0,20,0,rc) //Metadata for value attribute

 DIM mdCccd : mdCccd = BleAttrMetadata(1,1,2,0,rc) //Metadata for CCCD attribute of

Characteristic

 //==

 // Create a new char:

 // --- Indicatable, not Broadcastable (so mdCccd is included, but not mdSccd)

 // --- Can be read, not written (shown in mdVal as well)

 //==

 IF BleCharNew(0x22,charUuid,mdVal,mdCccd,0)==0 THEN

 PRINT "\nNew Characteristic created"

 ELSE

 PRINT "\nFailed"

 ENDIF

Expected Output:

BLECHARNEW is an extension function.

BleCharDescUserDesc

FUNCTION

This function adds an optional User Description descriptor to a characteristic and can only be

called after BleCharNew() has started the process of describing a new characteristic.

The BT 4.0 specification describes the User Description descriptor as “.. a UTF-8 string of variable

size that is a textual description of the characteristic value.” It further stipulates that this attribute

is optionally writable and so a metadata argument exists to configure it to be so. The metadata

automatically updates the Writable Auxilliaries properties flag for the characteristic. This is why

that flag bit is NOT specified for the nCharProps argument to the BleCharNew() function.

BLECHARDESCUSERDESC(userDesc$, mdUser)

Returns
INTEGER, a result code.

Most typical value – 0x0000, indicating a successful operation.

Arguments

userDesc$ byRef userDesc$ AS STRING

The user description string with which to initiliase the descriptor. If the length of

the string exceeds the maximum length of an attribute then this function aborts
with an error result code.

mdUser byVal mdUser AS INTEGER

This is a mandatory metadata that defines the properties of the User Description

descriptor attribute created in the characteristic and pre-created using the help

of BleAttrMetadata(). If the write rights are set to one or greater, the attribute is

marked as writable and the client is able to provide a user description that
overwrites the one provided in this call.

New Characteristic created

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

119 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Interactive

Command
No

 //Example :: BleCharDescUserDesc.sb (See in BL620CodeSnippets.zip)

 DIM rc, metaSuccess,usrDesc$: usrDesc$="A description"

 DIM charUuid : charUuid = BleHandleUuid16(1)

 DIM charMet : charMet = BleAttrMetaData(1,1,20,0,metaSuccess)

 DIM mdUsrDsc : mdUsrDsc = BleAttrMetaData(1,1,20,0,metaSuccess)

 DIM mdSccd : mdSccd = BleAttrMetadata(1,1,2,0,rc) //CCCD metadata for char

 //initialise char, write/read enabled, accept signed writes, indicatable

 rc=BleCharNew(0x4B,charUuid,charMet,0,mdSccd)

 rc=BleCharDescUserDesc(usrDesc$,mdUsrDsc)

 IF rc==0 THEN

 PRINT "\nChar created and User Description '";usrDesc$;"' added"

 ELSE

 PRINT "\nFailed"

 ENDIF

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

120 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Expected Output:

BLECHARDESCUSERDESC is an extension function.

BleCharDescPrstnFrmt

FUNCTION

This function adds an optional Presentation Format descriptor to a characteristic and can only

be called after BleCharNew() has started the process of describing a new characteristic. It adds

the descriptor to the GATT table with open read permission and no write access, which means a

metadata parameter is not required.

The BT 4.0 specification states that one or more presentation format descriptors can occur in a

characteristic and that, if more than one, then an Aggregate Format description is also

included.

The book Bluetooth Low Energy: The Developer's Handbook by Robin Heydon, says the following

on the subject of the Presentation Format descriptor:

“One of the goals for the Generic Attribute Profile was to enable generic clients. A

generic client is defined as a device that can read the values of a characteristic

and display them to the user without understanding what they mean.

. . .

The most important aspect that denotes if a characteristic can be used by a

generic client is the Characteristic Presentation Format descriptor. If this exists, it’s

possible for the generic client to display its value, and it is safe to read this value.”

BLECHARDESCPRSTNFRMT (nFormat,nExponent,nUnit,nNameSpace,nNSdesc)

Returns
INTEGER, a result code.

Most typical value – 0x0000, indicating a successful operation.

Arguments

nFormat byVal nFormat AS INTEGER

Valid range 0 to 255.

The format specifies how the data in the Value attribute is structured. A list of

valid values for this argument is found at

http://developer.bluetooth.org/gatt/Pages/FormatTypes.aspx and the

enumeration is described in the BT 4.0 spec, section 3.3.3.5.2.

At the time of writing, the enumeration list is as follows:

0x00 RFU 0x01 boolean

0x02 2bit 0x03 Nibble

0x04 uint8 0x05 uint12

0x06 uint16 0x07 uint24

0x08 uint32 0x09 uint48

0x0A uint64 0x0B uint128

0x0C sint8 0x0D sint12

0x0E sint16 0x0F sint24

0x10 sint32 0x11 sint48

0x12 sint64 0x13 sint128

Char created and User Description 'A description' added

http://ews-support.lairdtech.com/
http://developer.bluetooth.org/gatt/Pages/FormatTypes.aspx

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

121 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

0x14 float32 0x15 float64

0x16 SFLOAT 0x17 FLOAT

0x18 duint16 0x19 utf8s

0x1A utf16s 0x1B struct

0x1C-0xFF RFU

nExponent byVal nExponent AS INTEGER

Valid range -128 to 127. This value is used with integer data types given by the

enumeration in nFormat to further qualify the value so that the actual value is:

actual value = Characteristic Value * 10 to the power of nExponent.

nUnit byVal nUnit AS INTEGER

Valid range 0 to 65535. This value is a 16 bit UUID used as an enumeration to

specify the units which are listed in the Assigned Numbers document published

by the Bluetooth SIG, found at:

http://developer.bluetooth.org/gatt/units/Pages/default.aspx

nNameSpace byVal nNameSpace AS INTEGER

Valid range 0 to 255. The value identifies the organization, defined in the

Assigned Numbers document published by the Bluetooth SIG, found at:

https://developer.bluetooth.org/gatt/Pages/GattNamespaceDescriptors.aspx

nNSdesc byVal nNSdesc AS INTEGER

Valid range 0 to 65535. This value is a description of the organisation specified

by nNameSpace.

Interactive

Command
No

 //Example :: BleCharDescPrstnFrmt.sb (See in BL620CodeSnippets.zip)

 DIM rc, metaSuccess,usrDesc$: usrDesc$="A description"

 DIM charUuid : charUuid = BleHandleUuid16(1)

 DIM charMet : charMet = BleAttrMetaData(1,1,20,0,metaSuccess)

 DIM mdUsrDsc : mdUsrDsc = BleAttrMetaData(1,1,20,0,metaSuccess)

 DIM mdSccd : mdSccd = BleAttrMetadata(1,1,2,0,rc) //CCCD metadata for char

 //initialise char, write/read enabled, accept signed writes, indicatable

 rc=BleCharNew(0x4B,charUuid,charMet,0,mdSccd)

 rc=BleCharDescUserDesc(usrDesc$,mdUsrDsc)

 IF rc==0 THEN

 PRINT "\nChar created and User Description '";usrDesc$;"' added"

 ELSE

 PRINT "\nFailed"

 ENDIF

 // ~ ~ ~

 // other optional descriptors

 // ~ ~ ~

 // 16 bit signed integer = 0x0E

 // exponent = 2

 // unit = 0x271A (amount concentration (mole per cubic metre))

 // namespace = 0x01 == Bluetooth SIG

 // description = 0x0000 == unknown

 IF BleCharDescPrstnFrmt(0x0E,2,0x271A,0x01,0x0000)==0 THEN

 PRINT "\nPresentation Format Descriptor added"

 ELSE

http://ews-support.lairdtech.com/
http://developer.bluetooth.org/gatt/units/Pages/default.aspx
https://developer.bluetooth.org/gatt/Pages/GattNamespaceDescriptors.aspx

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

122 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 PRINT "\nPresentation Format Descriptor not added"

 ENDIF

Expected Output:

BLECHARDESCPRSTNFRMT is an extension function.

BleCharDescAdd

Note: This function has a bug for firmware versions prior to 1.4.X.Y.

FUNCTION

This function is used to add any characteristic descriptor as long as its UUID is not in the range

0x2900 to 0x2904 inclusive as they are treated specially using dedicated API functions. For

example, 0x2904 is the Presentation Format descriptor and it is catered for by the API function

BleCharDescPrstnFrmt().

Since this function allows existing/future defined descriptors to be added that may or may not

have write access or require security requirements, a metadata object must be supplied

allowing that to be configured.

BLECHARDESCADD (nUuid16, attr$, mdDesc)

Returns
INTEGER, a result code.

Most typical value – 0x0000, indicating a successful operation.

Arguments

nUuid16 byVal nUuid16 AS INTEGER
This is a value in the range 0x2905 to 0x2999

Note: This is the actual UUID value, NOT the handle.

The highest value at the time of writing is 0x2908, defined for the Report Reference

Descriptor. See

http://developer.bluetooth.org/gatt/descriptors/Pages/DescriptorsHomePage.asp
x for a list of descriptors defined and adopted by the Bluetooth SIG.

attr$ byRef attr$ AS STRING
This is the data that will be saved in the descriptor’s attribute.

mdDesc byVal n AS INTEGER

This is mandatory metadata that is used to define the properties of the descriptor

attribute that is created in the characteristic and was pre-created using the help

of the function BleAttrMetadata(). If the write rights are set to one or greater, then

the attribute is marked as writable and so the client is to modify the attribute
value.

Interactiv

e

Comman

d

No

Char created and User Description 'A description' added

Presentation Format Descriptor added

http://ews-support.lairdtech.com/
http://developer.bluetooth.org/gatt/descriptors/Pages/DescriptorsHomePage.aspx
http://developer.bluetooth.org/gatt/descriptors/Pages/DescriptorsHomePage.aspx

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

123 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 //Example :: BleCharDescAdd.sb (See in BL620CodeSnippets.zip)

 DIM rc, metaSuccess,usrDesc$: usrDesc$="A description"

 DIM charUuid : charUuid = BleHandleUuid16(1)

 DIM charMet : charMet = BleAttrMetaData(1,1,20,0,metaSuccess)

 DIM mdUsrDsc : mdUsrDsc = charMet

 DIM mdSccd : mdSccd = charMet

 //initialise char, write/read enabled, accept signed writes, indicatable

 rc=BleCharNew(0x4B,charUuid,charMet,0,mdSccd)

 rc=BleCharDescUserDesc(usrDesc$,mdUsrDsc)

 rc=BleCharDescPrstnFrmt(0x0E,2,0x271A,0x01,0x0000)

 // ~ ~ ~

 // other descriptors

 // ~ ~ ~

 //++++

 //Add the other Descriptor 0x29XX -- first one

 //++++

 DIM mdChrDsc : mdChrDsc = BleAttrMetadata(1,0,20,0,metaSuccess)

 DIM attr$: attr$="some_value1"

 rc=BleCharDescAdd(0x2905,attr$,mdChrDsc)

 //++++

 //Add the other Descriptor 0x29XX -- second one

 //++++

 attr$="some_value2"

 rc=rc+BleCharDescAdd(0x2906,attr$,mdChrDsc)

 //++++

 //Add the other Descriptor 0x29XX -- last one

 //++++

 attr$="some_value3"

 rc=rc+BleCharDescAdd(0x2907,attr$,mdChrDsc)

 IF rc==0 THEN

 PRINT "\nOther descriptors added successfully"

 ELSE

 PRINT "\nFailed"

 ENDIF

Expected Output:

BLECHARDESCADD is an extension function.

BleCharCommit

FUNCTION

This function commits a characteristic which was prepared by calling BleCharNew() and

optionally BleCharDescUserDesc(),BleCharDescPrstnFrmt() or BleCharDescAdd().

It is an instruction to the GATT table manager that all relevant attributes that make up the

characteristic should appear in the GATT table in a single atomic transaction. If it successfully

created, a single composite characteristic handle is returned which should not be confused with

GATT table attribute handles. If the characteristic is not accepted then this function returns a

Other descriptors added successfully

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

124 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

non-zero result code which conveys the reason and the handle argument that is returned has a

special invalid handle of 0.

The characteristic handle that is returned references an internal opaque object that is a linked

list of all the attribute handles in the characteristic which by definition implies that there is a

minimum of 1 (for the characteristic value attribute) and more as appropriate. For example, if

the characteristic’s property specified is notifiable then a single CCCD attribute also exists.

Please note that in reality, in the GATT table, when a characteristic is registered there are

actually a minimum of two attribute handles, one for the characteristic declaration and the

other for the value. However, there is no need for the smart BASIC apps developer to access it,

so it is not exposed. Access is not required because the characteristic was created by the

application developer and so shall already know its content – which never changes once

created.

BLECHARCOMMIT (hService,attr$,charHandle)

Returns
INTEGER, a result code.

Most typical value – 0x0000, indicating a successful operation.

Arguments

hService byVal hService AS INTEGER

This is the handle of the service that this characteristic belongs to, which in turn
was created using the function BleSvcCommit().

attr$ byRef attr$ AS STRING

This string contains the initial value of the value attribute in the characteristic.

The content of this string is copied into the GATT table and so the variable can
be reused after this function returns.

charHandle byRef charHandle AS INTEGER

The composite handle for the newly created characteristic is returned in this

argument. It is zero if the function fails with a non-zero result code. This handle is

then used as an argument in subsequent function calls to perform read/write
actions, so it is must be placed in a global smartBASIC variable.

When a significant event occurs as a result of action by a remote client, an

event message is sent to the application which can be serviced using a handler.

That message contains a handle field corresponding to this composite

characteristic handle. Standard procedure is to ‘select’ on that value to

determine which characteristic the message is intended for.

See event messages: EVCHARHVC, EVCHARVAL, EVCHARCCCD, EVCHARSCCD,
EVCHARDESC.

Interactive

Command
No

 // Example :: BleCharCommit.sb (See in BL620CodeSnippets.zip)

 #DEFINE BLE_SERVICE_SECONDARY 0

 #DEFINE BLE_SERVICE_PRIMARY 1

 DIM rc

 DIM attr$,usrDesc$: usrDesc$="A description"

 DIM hHtsSvc //composite handle for hts primary service

 DIM mdCharVal : mdCharVal = BleAttrMetaData(1,1,20,0,rc)

 DIM mdCccd : mdCccd = BleAttrMetadata(1,1,2,0,rc)

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

125 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 DIM mdUsrDsc : mdUsrDsc = BleAttrMetaData(1,1,20,0,rc)

 DIM hHtsMeas //composite handle for htsMeas characteristic

 //--

 //Create a Health Thermometer PRIMARY service attribute which has a uuid of 0x1809

 //--

 rc=BleSvcCommit(BLE_SERVICE_PRIMARY,BleHandleUuid16(0x1809),hHtsSvc)

 //--

 //Create the Measurement Characteristic object, add user description descriptor

 //--

 rc=BleCharNew(0x2A,BleHandleUuid16(0x2A1C),mdCharVal,mdCccd,0)

 rc=BleCharDescUserDesc(usrDesc$,mdUsrDsc)

 //--

 //Commit the characteristics with some initial data

 //--

 attr$="hello\00worl\64"

 IF BleCharCommit(hHtsSvc,attr$,hHtsMeas)==0 THEN

 PRINT "\nCharacteristic Commited"

 ELSE

 PRINT "\nFailed"

 ENDIF

 //the characteristic will now be visible in the GATT table

 //and is refrenced by ‘hHtsMeas’for subsequent calls

Expected Output:

BLECHARCOMMIT is an extension function.

BleCharValueRead

FUNCTION

This function reads the current content of a characteristic identified by a composite handle that

was previously returned by the function BleCharCommit().

In most cases a read is performed when a GATT client writes to a characteristic value attribute.

The write event is presented asynchronously to the smart BASIC application in the form of

EVCHARVAL event and so this function is most often accessed from the handler that services

that event.

BLECHARVALUEREAD (charHandle,attr$)

Returns
INTEGER, a result code.

Most typical value – 0x0000, indicating a successful operation.

Arguments

charHandle byVal charHandle AS INTEGER

This is the handle to the characteristic whose value must be read which was
returned when BleCharCommit() was called

Characteristic Commited

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

126 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

attr$ byRef attr$ AS STRING

This string variable contains the new value from the characteristic.

Interactive

Command
No

 //Example :: BleCharValueRead.sb (See in BL620CodeSnippets.zip)

 DIM hMyChar,rc, conHndl

 //==

 // Initialise and instantiate service, characteristic,

 //==

 FUNCTION OnStartup()

 DIM rc, hSvc, scRpt$, adRpt$, addr$, attr$: attr$="Hi"

 //commit service

 rc=BleSvcCommit(1,BleHandleUuid16(0x18EE),hSvc)

 //initialise char, write/read enabled, accept signed writes

 rc=BleCharNew(0x0A,BleHandleUuid16(1),BleAttrMetaData(1,1,20,0,rc),0,0)

 //commit char initialised above, with initial value "hi" to service 'hSvc'

 rc=BleCharCommit(hSvc,attr$,hMyChar)

 //initialise scan report

 rc=BleScanRptInit(scRpt$)

 //Add 1 service handle to scan report

 rc=BleAdvRptAddUuid16(scRpt$,hSvc,-1,-1,-1,-1,-1)

 //commit reports to GATT table - adRpt$ is empty

 rc=BleAdvRptsCommit(adRpt$,scRpt$)

 rc=BleAdvertStart(0,addr$,150,0,0)

 ENDFUNC rc

 //==

 // New char value handler

 //==

 FUNCTION HndlrChar(BYVAL chrHndl, BYVAL offset, BYVAL len)

 dim s$

 IF chrHndl == hMyChar THEN

 PRINT "\n";len;" byte(s) have been written to char value attribute from

offset ";offset

 rc=BleCharValueRead(hMyChar,s$)

 PRINT "\nNew Char Value: ";s$

 ENDIF

 rc=BleAdvertStop()

 rc=BleDisconnect(conHndl)

 ENDFUNC 0

 //==

 // Get the connnection handle

 //==

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtn)

 conHndl=nCtn

 ENDFUNC 1

 IF OnStartup()==0 THEN

 DIM at$: rc = BleCharValueRead(hMyChar,at$)

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

127 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 PRINT "\nCharacteristic value attribute: ";at$;"\nConnect to BL620 and send a new

value\n"

 ELSE

 PRINT "\nFailure OnStartup"

 ENDIF

 ONEVENT EVCHARVAL CALL HndlrChar

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 WAITEVENT

 PRINT "\nExiting..."

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

128 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Expected Output:

BLECHARVALUEREAD is an extension function.

BleCharValueWrite

Note: For firmware versions prior to 1.4.x.x, the module must be in a connection for this function

to work.

FUNCTION

This function writes new data into the VALUE attribute of a characteristic, which is in turn

identified by a composite handle returned by the function BleCharCommit().

BLECHARVALUEWRITE (charHandle,attr$)

Returns
INTEGER, a result code.

Most typical value – 0x0000, indicating a successful operation.

Arguments

charHandle byVal charHandle AS INTEGER

This is the handle to the characteristic whose value must be updated which was
returned when BleCharCommit() was called.

attr$ byRef attr$ AS STRING
String variable, contains new value to write to the characteristic.

Interactive

Command
No

//Example :: BleCharValueWrite.sb (See in BL620CodeSnippets.zip)

 DIM hMyChar,rc

 //==

 // Initialise and instantiate service, characteristic,

 //==

 FUNCTION OnStartup()

 DIM rc, hSvc, attr$: attr$="Hi"

 //commit service

 rc=BleSvcCommit(1,BleHandleUuid16(0x18EE),hSvc)

 //initialise char, write/read enabled, accept signed writes

 rc=BleCharNew(0x4A,BleHandleUuid16(1),BleAttrMetaData(1,1,20,0,rc),0,0)

 //commit char initialised above, with initial value "hi" to service 'hSvc'

 rc=BleCharCommit(hSvc,attr$,hMyChar)

 ENDFUNC rc

 //==

 // Uart Rx handler - write input to characteristic

 //==

Characteristic value attribute: Hi

Connect to BL620 and send a new value

New characteristic value: Laird

Exiting...

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

129 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 FUNCTION HndlrUartRx()

 TimerStart(0,10,0)

 ENDFUNC 1

 //==

 // Timer0 timeout handler

 //==

 FUNCTION HndlrTmr0()

 DIM t$: rc=UartRead(t$)

 IF BleCharValueWrite(hMyChar,t$)==0 THEN

 PRINT "\nNew characteristic value: ";t$

 ELSE

 PRINT "\nFailed to write new characteristic value"

 ENDIF

 ENDFUNC 0

 IF OnStartup()==0 THEN

 DIM at$: rc = BleCharValueRead(hMyChar,at$)

 PRINT "\nCharacteristic value attribute: ";at$;"\nSend a new value\n"

 ELSE

 PRINT "\nFailure OnStartup"

 ENDIF

 ONEVENT EVUARTRX CALL HndlrUartRx

 ONEVENT EVTMR0 CALL HndlrTmr0

 WAITEVENT

 PRINT "\nExiting..."

Expected Output:

BLECHARVALUEWRITE is an extension function.

BleCharValueNotify

FUNCTION

If there is BLE connection, this function writes new data into the VALUE attribute of a

characteristic so that it can be sent as a notification to the GATT client. The characteristic is

identified by a composite handle that is returned by the function BleCharCommit().

A notification does not result in an acknowledgement from the client.

BLECHARVALUENOTIFY (charHandle,attr$)

Returns
INTEGER, a result code.

Most typical value – 0x0000, indicating a successful operation.

Arguments

Characteristic value attribute: Hi

Send a new value

Laird

New characteristic value: Laird

Exiting...

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

130 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

charHandle byVal charHandle AS INTEGER

This is the handle to the characteristic whose value must be updated which was
returned when BleCharCommit() was called.

attr$ byRef attr$ AS STRING

String variable containing new value to write to the characteristic and then send

as a notification to the client. If there is no connection, this function fails with an
appropriate result code.

Interactive

Command
No

 //Example :: BleCharValueNotify.sb (See in BL620CodeSnippets.zip)

 DIM hMyChar,rc,at$,conHndl

 //==

 // Initialise and instantiate service, characteristic, start adverts

 //==

 FUNCTION OnStartup()

 DIM rc, hSvc, at$, attr$, adRpt$, addr$, scRpt$

 attr$="Hi"

 DIM mdCccd : mdCccd = BleAttrMetadata(1,1,2,0,rc) //CCCD metadata for char

 //Commit svc with handle 'hSvcUuid'

 rc=BleSvcCommit(1,BleHandleUuid16(0x18EE),hSvc)

 //initialise char, write/read enabled, accept signed writes, notifiable

 rc=BleCharNew(0x12,BleHandleUuid16(1),BleAttrMetaData(1,0,20,0,rc),mdCccd,0)

 //commit char initialised above, with initial value "hi" to service 'hMyChar'

 rc=BleCharCommit(hSvc,attr$,hMyChar)

 rc=BleScanRptInit(scRpt$)

 //Add 1 service handle to scan report

 rc=BleAdvRptAddUuid16(scRpt$,hSvc,-1,-1,-1,-1,-1)

 //commit reports to GATT table - adRpt$ is empty

 rc=BleAdvRptsCommit(adRpt$,scRpt$)

 rc=BleAdvertStart(0,addr$,50,0,0)

 ENDFUNC rc

 //==

 // Ble event handler

 //==

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n--- Disconnected from client"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n--- Connected to client"

 ENDIF

 ENDFUNC 1

 //==

 // CCCD descriptor written handler

 //==

 FUNCTION HndlrCharCccd(BYVAL charHandle, BYVAL nVal) AS INTEGER

 DIM value$

 IF charHandle==hMyChar THEN

 PRINT "\nCCCD Val: ";nVal

 IF nVal THEN

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

131 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 PRINT " : Notifications have been enabled by client"

 value$="hello"

 IF BleCharValueNotify(hMyChar,value$)!=0 THEN

 PRINT "\nFailed to notify new value :";INTEGER.H'rc

 ELSE

 PRINT "\nSuccessful notification of new value"

 EXITFUNC 0

 ENDIF

 ELSE

 PRINT " : Notifications have been disabled by client"

 ENDIF

 ELSE

 PRINT "\nThis is for some other characteristic"

 ENDIF

 ENDFUNC 1

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 ONEVENT EVCHARCCCD CALL HndlrCharCccd

 IF OnStartup()==0 THEN

 rc = BleCharValueRead(hMyChar,at$)

 PRINT "\nCharacteristic Value: ";at$

 PRINT "\nYou can connect and write to the CCCD characteristic."

 PRINT "\nThe BL620 will then notify your device of a new characteristic value\n"

 ELSE

 PRINT "\nFailure OnStartup"

 ENDIF

 WAITEVENT

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

 PRINT "\nExiting..."

Expected Output:

BLECHARVALUENOTIFY is an extension function.

BleCharValueIndicate

FUNCTION

If there is BLE connection this function is used to write new data into the VALUE attribute of a

characteristic so that it can be sent as an indication to the GATT client. The characteristic is

identified by a composite handle returned by the function BleCharCommit().

Characteristic Value: Hi

You can connect and write to the CCCD characteristic.

The BL620 will then notify your device of a new characteristic value

--- Connected to client

CCCD Val: 0 : Notifications have been disabled by client

CCCD Val: 1 : Notifications have been enabled by client

Successful notification of new value

Exiting...

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

132 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

An indication results in an acknowledgement from the client and that is presented to the smart

BASIC application as the EVCHARHVC event.

BLECHARVALUEINDICATE (charHandle,attr$)

Returns
INTEGER, a result code.

Most typical value – 0x0000, indicating a successful operation.

Arguments

charHandle byVal charHandle AS INTEGER

This is the handle to the characteristic whose value must be updated which was
returned when BleCharCommit() was called.

attr$ byRef attr$ AS STRING

String variable containing new value to write to the characteristic and then to

send as a notification to the client. If there is no connection, this function fails
with an appropriate result code.

Interactive

Command
No

 //Example :: BleCharValueIndicate.sb (See in BL620CodeSnippets.zip)

 DIM hMyChar,rc,at$,conHndl

 //==

 // Initialise and instantiate service, characteristic, start adverts

 //==

 FUNCTION OnStartup()

 DIM rc, hSvc, at$, attr$, adRpt$, addr$, scRpt$

 attr$="Hi"

 DIM mdCccd : mdCccd = BleAttrMetadata(1,1,2,0,rc) //CCCD metadata for char

 //Commit svc with handle 'hSvcUuid'

 rc=BleSvcCommit(1,BleHandleUuid16(0x18EE),hSvc)

 //initialise char, write/read enabled, accept signed writes, notifiable

 rc=BleCharNew(0x22,BleHandleUuid16(1),BleAttrMetaData(1,0,20,0,rc),mdCccd,0)

 //commit char initialised above, with initial value "hi" to service 'hMyChar'

 rc=BleCharCommit(hSvc,attr$,hMyChar)

 rc=BleScanRptInit(scRpt$)

 //Add 1 service handle to scan report

 rc=BleAdvRptAddUuid16(scRpt$,hSvc,-1,-1,-1,-1,-1)

 //commit reports to GATT table - adRpt$ is empty

 rc=BleAdvRptsCommit(adRpt$,scRpt$)

 rc=BleAdvertStart(0,addr$,50,0,0)

 ENDFUNC rc

 //==

 // Ble event handler

 //==

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n--- Disconnected from client"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n--- Connected to client"

 ENDIF

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

133 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 ENDFUNC 1

 //==

 // CCCD descriptor written handler

 //==

 FUNCTION HndlrCharCccd(BYVAL charHandle, BYVAL nVal)

 DIM value$

 IF charHandle==hMyChar THEN

 PRINT "\nCCCD Val: ";nVal

 IF nVal THEN

 PRINT " : Indications have been enabled by client"

 value$="hello"

 rc=BleCharValueIndicate(hMyChar,value$)

 IF rc!=0 THEN

 PRINT "\nFailed to indicate new value :";INTEGER.H'rc

 ELSE

 PRINT "\nSuccessful indication of new value"

 EXITFUNC 1

 ENDIF

 ELSE

 PRINT " : Indications have been disabled by client"

 ENDIF

 ELSE

 PRINT "\nThis is for some other characteristic"

 ENDIF

 ENDFUNC 1

 //==

 // Indication Acknowledgement Handler

 //==

 FUNCTION HndlrChrHvc(BYVAL charHandle)

 IF charHandle == hMyChar THEN

 PRINT "\n\nGot confirmation of recent indication"

 ELSE

 PRINT "\n\nGot confirmation of some other indication: ";charHandle

 ENDIF

 ENDFUNC 0

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 ONEVENT EVCHARCCCD CALL HndlrCharCccd

 ONEVENT EVCHARHVC CALL HndlrChrHvc

 IF OnStartup()==0 THEN

 rc = BleCharValueRead(hMyChar,at$)

 PRINT "\nCharacteristic Value: ";at$

 PRINT "\nYou can connect and write to the CCCD characteristic."

 PRINT "\nThe BL620 will then indicate a new characteristic value\n"

 ELSE

 PRINT "\nFailure OnStartup"

 ENDIF

 WAITEVENT

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

 PRINT "\nExiting..."

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

134 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Expected Output:

BLECHARVALUEINDICATE is an extension function.

BleCharDescRead

FUNCTION

This function reads the current content of a writable characteristic descriptor identified by the

two parameters supplied in the EVCHARDESC event message after a Gatt client writes to it.

In most cases a local read is performed when a GATT client writes to a characteristic descriptor

attribute. The write event is presented asynchronously to the smart BASIC application in the form

of an EVCHARDESC event and so this function is most often be accessed from the handler that

services that event.

BLECHARDESCREAD (charHandle,nDescHandle,nOffset,nLength,nDescUuidHandle,attr$)

Returns
INTEGER, a result code.

Most typical value – 0x0000, indicating a successful operation.

Arguments

charHandle byVal charHandle AS INTEGER

This is the handle to the characteristic whose descriptor must be read

which was returned when BleCharCommit() was called and is supplied in
the EVCHARDESC event message.

nDescHandle byVal nDescHandle AS INTEGER

This is an index into an opaque array of descriptor handles inside the

charHandle and is supplied as the second parameter in the EVCHARDESC

event message.

nOffset byVal nOffset AS INTEGER

This is the offset into the descriptor attribute from which the data shoud be

read and copied into attr$.

nLength byVal nLength AS INTEGER

This is the number of bytes to read from the descriptor attribute from offset

nOffset and copied into attr$.

nDescUuidHandle byRef nDescUuidHandle AS INTEGER

On exit, this is updated with the applicable UUID handle of the descriptor.

attr$ byRef attr$ AS STRING

On exit this string variable contains the new value from the characteristic

descriptor.

Characteristic Value: Hi

You can connect and write to the CCCD characteristic.

The BL620 will then indicate a new characteristic value

--- Connected to client

CCCD Val: 0 : Indications have been disabled by client

CCCD Val: 2 : Indications have been enabled by client

Successful indication of new value

Got confirmation of recent indication

Exiting...

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

135 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Interactive

Command
No

 //Example :: BleCharDescRead.sb (See in BL620CodeSnippets.zip)

 DIM rc,conHndl,hMyChar

 //--

 //Create some PRIMARY service attribure which has a uuid of 0x18FF

 //--

 SUB OnStartup()

 DIM hSvc,attr$,scRpt$,adRpt$,addr$

 rc=BleSvcCommit(1,BleHandleUuid16(0x18FF),hSvc)

 // Add one or more characteristics

 rc=BleCharNew(0x0a,BleHandleUuid16(0x2AFF),BleAttrMetadata(1,1,20,1,rc),0,0)

 //Add a user description

 DIM s$: s$="You can change this"

 rc=BleCharDescAdd(0x2999,s$,BleAttrMetadata(1,1,20,1,rc))

 //commit characteristic

 attr$="\00" //no initial alert

 rc = BleCharCommit(hSvc,attr$,hMyChar)

 rc=BleScanRptInit(scRpt$)

 //Add 1 char handle to scan report

 rc=BleAdvRptAddUuid16(scRpt$,hMyChar,-1,-1,-1,-1,-1)

 //commit reports to GATT table - adRpt$ is empty

 rc=BleAdvRptsCommit(adRpt$,scRpt$)

 rc=BleAdvertStart(0,addr$,200,0,0)

 ENDSUB

 //==

 // Close connections so that we can run another app without problems

 //==

 SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

 ENDSUB

 //==

 // Ble event handler - Just to get the connection handle

 //==

 FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 ENDFUNC 1

 //==

 // Handler to service writes to descriptors by a gatt client

 //==

 FUNCTION HandlerCharDesc(BYVAL hChar AS INTEGER, BYVAL hDesc AS INTEGER)

 DIM instnc,nUuid,a$, offset,duid

 IF hChar == hMyChar THEN

 rc = BleCharDescRead(hChar,hDesc,0,20,duid,a$)

 IF rc==0 THEN

 PRINT "\nRead 20 bytes from index ";offset;" in new char value."

 PRINT "\n ::New Descriptor Data: ";StrHexize$(a$);

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

136 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 PRINT "\n ::Length=";StrLen(a$)

 PRINT "\n ::Descriptor UUID ";integer.h' duid

 EXITFUNC 0

 ELSE

 PRINT "\nCould not access the uuid"

 ENDIF

 ELSE

 PRINT "\nThis is for some other characteristic"

 ENDIF

 ENDFUNC 1

 //install a handler for writes to characteristic values

 ONEVENT EVCHARDESC CALL HandlerCharDesc

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 OnStartup()

 PRINT "\nWrite to the User Descriptor with UUID 0x2999"

 //wait for events and messages

 WAITEVENT

 CloseConnections()

 PRINT "\nExiting..."

Expected Output:

BLECHARDESCREAD is an extension function.

GATT Client Functions

This section describes all functions related to GATT client capability which enables interaction

with GATT servers at the other end of the BLE connection. The Bluetooth Specification 4.0 and

newer allows for a device to be a GATT server and/or GATT client simultaneously and the fact

that a peripheral mode device accepts a connection and in all use cases has a GATT server

table does not preclude it from interacting with a GATT table in the central role device which is

connected to it.

These GATT client functions allow the developer to discover services, characteristics and

descriptors, read and write to characteristics and descriptors and handle either notifications or

indications.

To interact with a remote GATT server it is important to have a good understanding of how it is

constructed and the best way is to see it as a table consisting of many rows and three visible

columns (handle, type, value) and at least one more column which is not visible but the content

affects access to the data column.

16 bit Handle Type (16 or 128 bit) Value (1 to 512 bytes) Permissions

Write to the User Descriptor with UUID 0x2999

Read 20 bytes from index 0 in new char value.

 ::New Descriptor Data: 4C61697264

 ::Length=5

 ::Descriptor UUID FE012999

Exiting...

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

137 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

These rows are grouped into collections called services and characteristics. The grouping is

achieved by creating a row with Type = 0x2800 or 0x2801 for services (primary and secondary

respectively) and 0x2803 for characteristics.

Basically, a table should be scanned from top to bottom and the specification stipulates that

the 16 bit handle field contains values in the range 1 to 65535 and are in ascending order and

gaps are allowed.

When scanning, if a row is encountered with the value 0x2800 or 0x2801 in the Type column then

it is understood as the start of a primary or secondary service which in turn contains at least one

charactestic or one ‘included service’ which have Type=0x2803 and 0x2802 respectively.

When a row with Type = 0x2803 (a characteristic) is encountered, the next row will contain the

value for that characteristic and then after that there may be 0 or more descriptors.

This means each characteristic shall consist of at least two rows in the table, and if descriptors

exist for that characteristic, then a single row per descriptor.

Handle Type Value Comments

0x0001 0x2800 UUID of the Service Primary Service 1 Start

0x0002 0x2803 Properties, Value Handle, Value

UUID1

Characteristic 1 Start

0x0003 Value

UUID1

Value : 1 to 512 bytes Actual data

0x0004 0x2803 Properties, Value Handle, Value

UUID2

Characteristic 2 Start

0x0005 Value

UUID2

Value : 1 to 512 bytes Actual data

0x0006 0x2902 Value Descriptor 1(CCCD)

0x0007 0x2903 Value Descriptor 2 (SCCD)

0x0008 0x2800 UUID of the Service Primary Service 2 Start

0x0009 0x2803 Properties, Value Handle, Value

UUID3

Characteristic 1 Start

0x000A Value

UUID3

Value : 1 to 512 bytes Actual data

0x000B 0x2800 UUID of the Service Primary Service 3 Start

0x000C 0x2803 Properties, Value Handle, Value

UUID3

Characteristic 3 Start

0x000D Value

UUID3

Value : 1 to 512 bytes Actual data

0x000E 0x2902 Value Descriptor 1(CCCD)

0x000F 0x2903 Value Descriptor 2 (SCCD)

0x0010 0x2904 Value (presentation format data) Descriptor 3

0x00111 0x2906 Value (valid range) Descriptor 4 (Range)

A colour highlighted example of a GATT server table is shown above which shows there are

three services (at handles 0x0001,0x0008 and 0x000B) because there are three rows where the

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

138 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Type = 0x2803 and all rows up to the next instance of a row with Type=0x2800 or 2801 belong to

that service.

In each group of rows for a service, you can see one or more characteristics where

Type=0x2803. For example the service beginning at handle 0x0008 has one characteristic which

contains two rows identified by handles 0x0009 and 0x000A and the actual value for the

characteristic starting at 0x0009 is in the row identified by 0x000A.

Likewise, each characteristic starts with a row with Type=0x2803 and all rows following it up to a

row with type = 0x2800/2801/2803 are considered belonging to that characteristic. For example

see characteristic at row with handle = 0x0004 which has the mandatory value row and then 2

descriptors.

The Bluetooth specification allows for multiple instances of the same service or characteristics or

descriptors and they are differentiated by the unique handle. Hence when a handle is known

there is no ambiguity.

Each GATT server table will allocate the handle numbers, the only stipulation being that they be

in ascending order (gaps are allowed). This is important to understand because two devices

containing the same services and characteristic and in EXACTLY the same order may NOT

allocate the same handle values, especially if one device increments handles by one and

another with some other arbitrary random value. The specification DOES however stipulate that

once the handle values are allocated they be fixed for all subsequent connections, unless the

device exposes a GATT service which allows for indications to the client that the handle order

has changed and thus force it to flush it’s cache and rescan the GATT table.

When a connection is first established, there is no prior knowledge as to which services exist and

of their handles, so the GATT protocol which is used to interact with GATT servers provides

procedures that allow for the GATT table to be scanned so that the client can ascertain which

services are offered. This section describes smartBASIC functions which encapsulate and

manage those procedures to enable a smartBASIC application to map the table.

These helper functions have been written to help gather the handles of all the rows which

contain the value type for appropriate characteristics as those are the ones that will be read or

written to. The smartBASIC internal engine also maintains data objects so that it is possible to

interact with descriptors associated with the characteristic.

In a nutshell, the table scanning process will reveal characteristic handles (as handles of

handles) and these are then used in other GATT client related smartBASIC functions to interact

with the table to for example read/write or accept and process incoming notifications and

indications.

This encapsulated approach is to ensure that the least amount of RAM resource is required to

implement a GATT Client and given that these procedures operate at speeds many orders of

magnitude slower compared to the speed of the cpu and energy consumption is to be kept as

low as possible, the response to a command will be delivered asynchnornously as an event for

which a handler will have to be specified in the user smartBASIC application.

The rest of this chapter describes all the GATT client commands, responses and events in detail

along with example code demonstrating usage and expected output.

Events and Messages

The nature of GATT client operation consists of multiple queries and acting on the responses. Due

to the connection intervals being vastly slower than the speed of the CPU, responses can arrive

many tens of milliseconds after the precedure was triggered, which are delivered to an

application using an event or message. Since these event/messages are tightly coupled with

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

139 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

the appropriate commands, all but one is described when the command that triggers them is

described.

The event EVGATTCTOUT is applicable for all Gatt client-related functions which result in

transactions over the air. The Bluetooth specification states that if an operation is initiated and is

not completed within 30 seconds then the connection shall be dropped as no further Gatt

Client transaction can be initiated.

EVATTRWRITE event message

This event message is thrown if BleGattcWrite() returns a success. The message contains the

following three INTEGER parameters:

 Connection handle

 Handle of the attribute

 Gatt status of the write operation.

Gatt status of the write operation is one of the following values, where 0 implies the write was

successfully expedited.

0x0000 Success

0x0001 Unknown or not applicable status

0x0100 ATT Error: Invalid Error Code

0x0101 ATT Error: Invalid Attribute Handle

0x0102 ATT Error: Read not permitted

0x0103 ATT Error: Write not permitted

0x0104 ATT Error: Used in ATT as Invalid PDU

0x0105 ATT Error: Authenticated link required

0x0106 ATT Error: Used in ATT as Request Not Supported

0x0107 ATT Error: Offset specified was past the end of the attribute

0x0108 ATT Error: Used in ATT as Insufficient Authorisation

0x0109 ATT Error: Used in ATT as Prepare Queue Full

0x010A ATT Error: Used in ATT as Attribute not found

0x010B ATT Error: Attribute cannot be read or written

 using read/write blob requests

0x010C ATT Error: Encryption key size used is insufficient

0x010D ATT Error: Invalid value size

0x010E ATT Error: Very unlikely error

0x010F ATT Error: Encrypted link required

0x0110 ATT Error: Attribute type is not a supported grouping attribute

0x0111 ATT Error: Encrypted link required

0x0112 ATT Error: Reserved for Future Use range #1 begin

0x017F ATT Error: Reserved for Future Use range #1 end

0x0180 ATT Error: Application range begin

0x019F ATT Error: Application range end

0x01A0 ATT Error: Reserved for Future Use range #2 begin

0x01DF ATT Error: Reserved for Future Use range #2 end

0x01E0 ATT Error: Reserved for Future Use range #3 begin

0x01FC ATT Error: Reserved for Future Use range #3 end

0x01FD ATT Common Profile and Service Error:

 Client Characteristic Configuration Descriptor (CCCD)

 improperly configured

0x01FE ATT Common Profile and Service Error:

 Procedure Already in Progress

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

140 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

0x01FF ATT Common Profile and Service Error:

 Out Of Range

EVGATTCTOUT event message

This event message is thrown if a Gatt Client transaction takes longer than 30 seconds. It

contains the following INTEGER parameter

 Connection Handle

//Example :: EVGATTCTOUT.sb (See in BL620CodeSnippets.zip)

//

DIM rc,conHndl

//==

// Initialise and instantiate service, characteristic, start adverts

//==

FUNCTION OnStartup()

 DIM rc, adRpt$, addr$, scRpt$

 rc=BleAdvRptInit(adRpt$, 2, 0, 10)

 IF rc==0 THEN : rc=BleScanRptInit(scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvRptsCommit(adRpt$,scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvertStart(0,addr$,50,0,0) : ENDIF

 //open the gatt client with default notify/indicate ring buffer size

 IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF

ENDFUNC rc

//==

// Ble event handler

//==

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n- Disconnected"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n- Connected"

 ENDIF

ENDFUNC 1

'//==

'//==

FUNCTION HandlerGattcTout(cHndl) AS INTEGER

 PRINT "\nEVGATTCTOUT connHandle=";cHndl

ENDFUNC 1

//==

// Main() equivalent

//==

ONEVENT EVBLEMSG CALL HndlrBleMsg

OnEvent EVGATTCTOUT call HandlerGattcTout

rc = OnStartup()

WAITEVENT

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

141 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Expected Output:

BleGattcOpen

FUNCTION

This function is used to initialise the GATT client functionality for immediate use so that

appropriate buffers for caching GATT responses are created in the heap memory. About 300

bytes of RAM is required by the GATT client manager and given that a majority of BL620 use

cases do not use it, the sacrifice of 300 bytes, which is nearly 15% of the available memory, is not

worth the permament allocation of memory.

There are various buffers that need to be created that are needed for scanning a remote GATT

table which are of fixed size. There is however, one buffer which can be configured by the

smartBASIC apps developer and that is the ring buffer that is used to store incoming notifiable

and indicatable characteristics. At the time of writing this user manual the default minimum size

is 64 unless a bigger one is desired and in that case the input parameter to this function specifies

that size. A maximum of 2048 bytes is allowed, but that can result in unreliable operation as the

smartBASIC runtime engine is starved of memory very quickly.

Use SYSINFO(2019) to obtain the actual default size and SYSINFO(2020) to obtain the maximum

allowed. The same information can be obtained in interactive mode using the commands AT I

2019 and 2020 respectively.

Note: When the ring buffer for the notifiable and indicatable characteristics is full, then any

new messages are discarded and depending on the flags parameter the indicates

are or are not confirmed.

This function is safe to call when the GATT client manager is already open, however, in that case

the parameters are ignored and existing values are retained and any existing gattc client

operations are not interrupted.

It is recommended that this function NOT be called when in a connection.

BLEGATTCOPEN (nNotifyBufLen, nFlags)

Returns
INTEGER, a result code.

Most typical value – 0x0000, indicating a successful operation.

Arguments

nNotifyBufLen byVal nNotifyBufLen AS INTEGER

This is the size of the ring buffer used for incoming notifiable and indicatable
characterstic data. Set to 0 to use the default size.

nFlags byVal nFlags AS INTEGER

Bit 0 : Set to 1 to disable automatic indication confirmations if buffer is full then the

Handle

Value confirmation will only be sent when BleGattcNotifyRead() is called to read

the ring

buffer.

. . .

. . .

EVGATTCTOUT connHandle=123

. . .

. . .

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

142 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Bit 1..31 : Reserved for future use and must be set to 0s

Interactive

Command
No

 //Example :: BleGattcOpen.sb (See in BL620CodeSnippets.zip)
DIM rc

//open the gatt client with default notify/indicate ring buffer size

rc = BleGattcOpen(0,0)

IF rc == 0 THEN

 PRINT "\nGatt Client is now open"

ENDIF

//open the client with default notify/indicate ring buffer size - again

rc = BleGattcOpen(128,1)

IF rc == 0 THEN

 PRINT "\nGatt Client is still open, because already open"

ENDIF

Expected Output:

BLEGATTCOPEN is an extension function.

BleGattcClose

SUBROUTINE

This function is used to close the GATT client manager and is safe to call if it is already closed.

It is recommended that this function is not called when in a connection.

BLEGATTCCLOSE ()

Arguments None

Interactive

Command
No

//Example :: BleGattcClose.sb (See in BL620CodeSnippets.zip)

DIM rc

//open the gatt client with default notify/indicate ring buffer size

rc = BleGattcOpen(0,0)

IF rc == 0 THEN

 PRINT "\nGatt Client is now open"

ENDIF

BleGattcClose()

PRINT "\nGatt Client is now closed"

BleGattcClose()

PRINT "\nGatt Client is closed - was safe to call when already closed"

Expected Output:

Gatt Client is now open

Gatt Client is still open, because already open

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

143 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

BLEGATTCCLOSE is an extension subroutine.

BleDiscServiceFirst / BleDiscServiceNext

FUNCTIONS

This pair of functions is used to scan the remote Gatt server for all primary services with the help

of the EVDISCPRIMSVC message event and when called, a handler for the event message must

be registered as the discovered primary service information is passed back in that message.

A generic or UUID-based scan can be initiated. The former scans for all primary services and the

latter scans for a primary service with a particular UUID, the handle of which must be supplied

and is generated by using either BleHandleUuid16() or BleHandleUuid128().

While the scan is in progress and waiting for the next piece of data from a GATT server, the

module enters low power state as the WAITEVENT statement is used as normal to wait for events

and messages.

Depending on the size of the remote GATT server table and the connection interval, the scan of

all primary may take many 100s of milliseconds, and while this is in progress it is safe to do other

non GATT-related operations such as servicing sensors and displays or any of the onboard

peripherals.

EVDISCPRIMSVC event message

This event message is thrown if either BleDiscServiceFirst() or BleDiscServiceNext() returns a

success. The message contains the following four INTEGER parameters:

 Connection Handle

 Service Uuid Handle

 Start Handle of the service in the Gatt Table

 End Handle for the service.

If no more services were discovered because the end of the table was reached, then all

parameters contain 0 except for the Connection Handle.

BLEDISCSERVICEFIRST (connHandle,startAttrHandle,uuidHandle)

A typical pseudo code for discovering primary services involves first calling BleDiscServiceFirst(),

then waiting for the EVDISCPRIMSVC event message and depending on the information

returned in that message calling BleDiscServiceNext(), which in turn results in another

EVDISCPRIMSVC event message and typically is as follows:

Register a handler for the EVDISCPRIMSVC event message

On EVDISCPRIMSVC event message

 If Start/End Handle == 0 then scan is complete

 Else Process information then

 call BleDiscServiceNext()

 if BleDiscServiceNext() not OK then scan complete

Call BleDiscServiceFirst()

If BleDiscServiceFirst() ok then Wait for EVDISCPRIMSVC

Gatt Client is now open

Gatt Client is now closed

Gatt Client is closed - was safe to call when already closed

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

144 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Returns

INTEGER, a result code.

The typical value is 0x0000, indicating a successful operation and it means an

EVDISCPRIMSVC event message is thrown by the smartBASIC runtime engine

containing the results. A non-zero return value implies an EVDISCPRIMSVC
message is not thrown.

Arguments

connHandle byVal nConnHandle AS INTEGER

This is the connection handle as returned in the on-connect event for the

connection on which the remote GATT Server can be accessed. This is

returned in the EVBLEMSG event message with msgId == 0 and msgCtx has the
connection handle.

startAttrHandle byVal startAttrHandle AS INTEGER

This is the attribute handle from where the scan for primary services starts and

you can typically set it to 0 to ensure that the entire remote GATT server is
scanned.

uuidHandle byVal uuidHandle AS INTEGER

Set this to 0 if you want to scan for any service, otherwise this value is

generated either by BleHandleUuid16() or BleHandleUuid128() or
BleHandleUuidSibling().

 .

BLEDISCSERVICENEXT (connHandle)

Calling this assumes that BleDiscServiceFirst() has been called at least once to set up the internal

primary services scanning state machine.

Returns

INTEGER, a result code.

The typical value is 0x0000, indicating a successful operation and it means an

EVDISCPRIMSVC event message is thrown by the smartBASIC runtime engine

containing the results. A non-zero return value implies an EVDISCPRIMSVC
message is not thrown.

Arguments

connHandle byVal nConnHandle AS INTEGER

This is the connection handle as returned in the on-connect event for the

connection on which the remote GATT Server can be accessed. This is returned

in the EVBLEMSG event message with msgId == 0 and msgCtx has the
connection handle.

Interactive

Command
No

//Example :: BleDiscServiceFirst.Next.sb (See in BL620CodeSnippets.zip)

//

//Remote server has 5 prim services with 16 bit uuid and 3 with 128 bit uuids

// 3 of the 16 bit uuid are the same value 0xDEAD and

// 2 of the 128 bit uuids are also the same 112233445566778899AABBCCDDEEFF

//

// Server created using BleGattcTblDiscPrimSvc.sub invoked in _OpenMcp.scr

// using Nordic Usb Dongle PC10000

DIM rc,at$,conHndl,uHndl,uuid$

//==

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

145 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

// Initialise and instantiate service, characteristic, start adverts

//==

FUNCTION OnStartup()

 DIM rc, adRpt$, addr$, scRpt$

 rc=BleAdvRptInit(adRpt$, 2, 0, 10)

 IF rc==0 THEN : rc=BleScanRptInit(scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvRptsCommit(adRpt$,scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvertStart(0,addr$,50,0,0) : ENDIF

 //open the gatt client with default notify/indicate ring buffer size

 IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF

ENDFUNC rc

//==

// Close connections so that we can run another app without problems

//==

SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

ENDSUB

//==

// Ble event handler

//==

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 DIM uu$

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n- Disconnected"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n- Connected, so scan remote Gatt Table for ALL services"

 rc = BleDiscServiceFirst(conHndl,0,0)

 IF rc==0 THEN

 //HandlerPrimSvc() will exit with 0 when operation is complete

 WAITEVENT

 PRINT "\nScan for service with uuid = 0xDEAD"

 uHndl = BleHandleUuid16(0xDEAD)

 rc = BleDiscServiceFirst(conHndl,0,uHndl)

 IF rc==0 THEN

 //HandlerPrimSvc() will exit with 0 when operation is complete

 WAITEVENT

 uu$ = "112233445566778899AABBCCDDEEFF00"

 PRINT "\nScan for service with custom uuid ";uu$

 uu$ = StrDehexize$(uu$)

 uHndl = BleHandleUuid128(uu$)

 rc = BleDiscServiceFirst(conHndl,0,uHndl)

 IF rc==0 THEN

 //HandlerPrimSvc() will exit with 0 when operation is complete

 WAITEVENT

 ENDIF

 ENDIF

 ENDIF

 CloseConnections()

 ENDIF

ENDFUNC 1

//==

// EVDISCPRIMSVC event handler

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

146 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

//==

FUNCTION HandlerPrimSvc(cHndl,svcUuid,sHndl,eHndl) AS INTEGER

 PRINT "\nEVDISCPRIMSVC :"

 PRINT " cHndl=";cHndl

 PRINT " svcUuid=";integer.h' svcUuid

 PRINT " sHndl=";sHndl

 PRINT " eHndl=";eHndl

 IF sHndl == 0 THEN

 PRINT "\nScan complete"

 EXITFUNC 0

 ELSE

 rc = BleDiscServiceNext(cHndl)

 IF rc != 0 THEN

 PRINT "\nScan abort"

 EXITFUNC 0

 ENDIF

 ENDIF

endfunc 1

//==

// Main() equivalent

//==

ONEVENT EVBLEMSG CALL HndlrBleMsg

OnEvent EVDISCPRIMSVC call HandlerPrimSvc

//Register base uuids with the underlying stack, otherwise the services with the

//128bit uuid's will be delivered with a uuid handle == FF000000 == UNKNOWN

uuid$ = "112233445566778899AABBCCDDEEFF00"

uuid$ = StrDehexize$(uuid$)

uHndl = BleHandleUuid128(uuid$)

uuid$ = "1122DEAD5566778899AABBCCDDBEEF00"

uuid$ = StrDehexize$(uuid$)

uHndl = BleHandleUuid128(uuid$)

IF OnStartup()==0 THEN

 PRINT "\nAdvertising, and Gatt Client is open\n"

ELSE

 PRINT "\nFailure OnStartup"

ENDIF

WAITEVENT

PRINT "\nExiting..."

Expected Output:

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

147 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Advertising, and Gatt Client is open

- Connected, so scan remote Gatt Table for ALL services

EVDISCPRIMSVC : cHndl=2804 svcUuid=FE01FE01 sHndl=1 eHndl=3

EVDISCPRIMSVC : cHndl=2804 svcUuid=FC033344 sHndl=4 eHndl=6

EVDISCPRIMSVC : cHndl=2804 svcUuid=FE01DEAD sHndl=7 eHndl=9

EVDISCPRIMSVC : cHndl=2804 svcUuid=FB04BEEF sHndl=10 eHndl=12

EVDISCPRIMSVC : cHndl=2804 svcUuid=FC033344 sHndl=13 eHndl=15

EVDISCPRIMSVC : cHndl=2804 svcUuid=FE01DEAD sHndl=16 eHndl=18

EVDISCPRIMSVC : cHndl=2804 svcUuid=FE01FE03 sHndl=19 eHndl=21

EVDISCPRIMSVC : cHndl=2804 svcUuid=FE01DEAD sHndl=22 eHndl=24

EVDISCPRIMSVC : cHndl=2804 svcUuid=00000000 sHndl=0 eHndl=0

Scan complete

Scan for service with uuid = 0xDEAD

EVDISCPRIMSVC : cHndl=2804 svcUuid=FE01DEAD sHndl=7 eHndl=9

EVDISCPRIMSVC : cHndl=2804 svcUuid=FE01DEAD sHndl=16 eHndl=18

EVDISCPRIMSVC : cHndl=2804 svcUuid=FE01DEAD sHndl=22 eHndl=65535

Scan abort

Scan for service with custom uuid 112233445566778899AABBCCDDEEFF00

EVDISCPRIMSVC : cHndl=2804 svcUuid=FC033344 sHndl=4 eHndl=6

EVDISCPRIMSVC : cHndl=2804 svcUuid=FC033344 sHndl=13 eHndl=15

EVDISCPRIMSVC : cHndl=2804 svcUuid=00000000 sHndl=0 eHndl=0

Scan complete

- Disconnected

Exiting...

BLEDISCSERVICEFIRST and BLEDISCSERVICENEXT are both extension functions.

BleDiscCharFirst / BleDiscCharNext

FUNCTIONS

These pair of functions are used to scan the remote GATT server for characteristics in a service

with the help of the EVDISCCHAR message event and when called, a handler for the event

message must be registered as the discovered characteristics information is passed back in that

message

A generic or UUID-based scan can be initiated. The former scans for all characteristics and the

latter scans for a characteristic with a particular UUID, the handle of which must be supplied and

is generated by using either BleHandleUuid16() or BleHandleUuid128().

If instead it is known that a GATT table has a specific service and a specific characteristic, then a

more efficient method for locating details of that characteristic is to use the function

BleGattcFindChar() which is described later.

While the scan is in progress and waiting for the next piece of data from a GATT server the

module enters low power state as the WAITEVENT statement is used as normal to wait for events

and messages.

Depending on the size of the remote GATT server table and the connection interval, the scan of

all characteristics may take many 100s of milliseconds, and while this is in progress it is safe to do

other non-GATT related operations such as servicing sensors and displays or any of the onboard

peripherals.

Note: It is not currently possible to scan for characteristics in included services. This is a

future enhancement.

EVDISCCHAR event message

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

148 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

This event message is thrown if either BleDiscCharFirst() or BleDiscCharNext() returns a success.

The message contains 5 INTEGER parameters:

 Connection Handle

 Characteristic Uuid Handle

 Characteristic Properties

 Handle for the Value Attribute of the Characteristic

 Included Service Uuid Handle

If no more characteristics were discovered because the end of the table was reached, then all

parameters contain 0 apart from the Connection Handle.

‘Characteristic Uuid Handle’ contains the UUID of the characteristic and supplied as a handle.

‘Characteristic Properties’ contains the properties of the characteristic and is a bit mask as

follows:

Bit 0 Set if BROADCAST is enabled

Bit 1 Set if READ is enabled

Bit 2 Set if WRITE_WITHOUT_RESPONSE is enabled

Bit 3 Set if WRITE is enabled

Bit 4 Set if NOTIFY is enabled

Bit 5 Set if INDICATE is enabled

Bit 6
Set if AUTHENTICATED_SIGNED_WRITE is
enabled

Bit 7 Set if RELIABLE_WRITE is enabled

Bit 15
Set if the characteristic has extended

properties

‘Handle for the Value Attribute of the Characteristic’ is the handle for the value attribute and is

the value to store to keep track of important characteristics in a gatt server for later read/write

operations.

‘Included Service Uuid Handle’ is for future use and will always be 0.

BLEDISCCHARFIRST (connHandle, charUuidHandle, startAttrHandle,endAttrHandle)

A typical pseudo code for discovering characteristic involves first calling BleDiscCharFirst() with

information obtained from a primary services scan and then waiting for the EVDISCCHAR event

message and depending on the information returned in that message calling BleDiscCharNext()

which in turn results in another EVDISCCHAR event message and typically is as follows:

Register a handler for the EVDISCCHAR event message

On EVDISCCHAR event message

 If Char Value Handle == 0 then scan is complete

 Else Process information then

 call BleDiscCharNext()

 if BleDiscCharNext() not OK then scan complete

Call BleDiscCharFirst(--information from EVDISCPRIMSVC)

If BleDiscCharFirst() ok then Wait for EVDISCCHAR

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

149 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Returns

INTEGER, a result code.

Typical value – 0x0000, indicating a successful operation and it means an

EVDISCCHAR event message is thrown by the smartBASIC runtime engine

containing the results. A non-zero return value implies an EVDISCCHAR
message is not thrown.

Arguments

connHandle byVal nConnHandle AS INTEGER

This is the connection handle as returned in the on-connect event for the

connection on which the remote Gatt Server can be accessed. This will have

been returned in the EVBLEMSG event message with msgId == 0 and msgCtx
will have been the connection handle.

charUuidHandle byVal charUuidHandle AS INTEGER

Set this to 0 if you want to scan for any characteristic in the service, otherwise

this value will have been generated either by BleHandleUuid16() or
BleHandleUuid128() or BleHandleUuidSibling().

startAttrHandle byVal startAttrHandle AS INTEGER

This is the attribute handle from where the scan for characteristic will be

started and will have been acquired by doing a primary services scan, which
returns the start and end handles of services.

endAttrHandle byVal endAttrHandle AS INTEGER

This is the end attribute handle for the scan and will have been acquired by

doing a primary services scan, which returns the start and end handles of
services.

Interactive

Command
No

BLEDISCCHARNEXT (connHandle)

Calling this assumes that BleDiscCharFirst() has been called at least once to set up the internal

characteristics scanning state machine. It scans for the next characteristic.

Returns

INTEGER, a result code.

Most typical value – 0x0000, indicating a successful operation and it means an

EVDISCCHAR event message is thrown by the smartBASIC runtime engine

containing the results. A non-zero return value implies an EVDISCCHAR message
is not thrown.

Arguments

connHandle byVal nConnHandle AS INTEGER

This is the connection handle as returned in the on-connect event for the

connection on which the remote Gatt Server can be accessed. This will have

been returned in the EVBLEMSG event message with msgId == 0 and msgCtx will
have been the connection handle.

Interactive

Command
No

//Example :: BleDiscCharFirst.Next.sb (See in BL620CodeSnippets.zip)

//

//Remote server has 1 prim service with 16 bit uuid and 8 characteristics where

// 5 uuids are 16 bit and 3 are 128 bit

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

150 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

// 3 of the 16 bit uuid are the same value 0xDEAD and

// 2 of the 128 bit uuids are also the same 112233445566778899AABBCCDDEEFF

//

// Server created using BleGattcTblDiscChar.sub invoked in _OpenMcp.scr

// using Nordic Usb Dongle PC10000

DIM rc,at$,conHndl,uHndl,uuid$,sAttr,eAttr

//==

// Initialise and instantiate service, characteristic, start adverts

//==

FUNCTION OnStartup()

 DIM rc, adRpt$, addr$, scRpt$

 rc=BleAdvRptInit(adRpt$, 2, 0, 10)

 IF rc==0 THEN : rc=BleScanRptInit(scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvRptsCommit(adRpt$,scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvertStart(0,addr$,50,0,0) : ENDIF

 //open the gatt client with default notify/indicate ring buffer size

 IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF

ENDFUNC rc

//==

// Close connections so that we can run another app without problems

//==

SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

ENDSUB

//==

// Ble event handler

//==

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 DIM uu$

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n- Disconnected"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n- Connected, so scan remote Gatt Table for first service"

 PRINT "\n- and a characeristic scan will be initiated in the event"

 rc = BleDiscServiceFirst(conHndl,0,0)

 IF rc==0 THEN

 //wait for start and end handles for first primary service

 WAITEVENT

 PRINT "\n\nScan for characteristic with uuid = 0xDEAD"

 uHndl = BleHandleUuid16(0xDEAD)

 rc = BleDiscCharFirst(conHndl,uHndl,sAttr,eAttr)

 IF rc == 0 THEN

 //HandlerCharDisc() will exit with 0 when operation is complete

 WAITEVENT

 uu$ = "112233445566778899AABBCCDDEEFF00"

 PRINT "\n\nScan for service with custom uuid ";uu$

 uu$ = StrDehexize$(uu$)

 uHndl = BleHandleUuid128(uu$)

 rc = BleDiscCharFirst(conHndl,uHndl,sAttr,eAttr)

 IF rc==0 THEN

 //HandlerCharDisc() will exit with 0 when operation is complete

 WAITEVENT

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

151 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 ENDIF

 ENDIF

 ENDIF

 CloseConnections()

 ENDIF

ENDFUNC 1

//==

// EVDISCPRIMSVC event handler

//==

FUNCTION HandlerPrimSvc(cHndl,svcUuid,sHndl,eHndl) AS INTEGER

 PRINT "\nEVDISCPRIMSVC :"

 PRINT " cHndl=";cHndl

 PRINT " svcUuid=";integer.h' svcUuid

 PRINT " sHndl=";sHndl

 PRINT " eHndl=";eHndl

 IF sHndl == 0 THEN

 PRINT "\nPrimary Service Scan complete"

 EXITFUNC 0

 ELSE

 PRINT "\nGot first primary service so scan for ALL characteristics"

 sAttr = sHndl

 eAttr = eHndl

 rc = BleDiscCharFirst(conHndl,0,sAttr,eAttr)

 IF rc != 0 THEN

 PRINT "\nScan characteristics failed"

 EXITFUNC 0

 ENDIF

 ENDIF

endfunc 1

'//==

// EVDISCCHAR event handler

'//==

function HandlerCharDisc(cHndl,cUuid,cProp,hVal,isUuid) as integer

 print "\nEVDISCCHAR :"

 print " cHndl=";cHndl

 print " chUuid=";integer.h' cUuid

 print " Props=";cProp

 print " valHndl=";hVal

 print " ISvcUuid=";isUuid

 IF hVal == 0 THEN

 PRINT "\nCharacteristic Scan complete"

 EXITFUNC 0

 ELSE

 rc = BleDiscCharNext(conHndl)

 IF rc != 0 THEN

 PRINT "\nCharacteristics scan abort"

 EXITFUNC 0

 ENDIF

 ENDIF

endfunc 1

//==

// Main() equivalent

//==

ONEVENT EVBLEMSG CALL HndlrBleMsg

OnEvent EVDISCPRIMSVC call HandlerPrimSvc

OnEvent EVDISCCHAR call HandlerCharDisc

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

152 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

//Register base uuids with the underlying stack, otherwise the services with the

//128bit uuid's will be delivered with a uuid handle == FF000000 == UNKNOWN

uuid$ = "112233445566778899AABBCCDDEEFF00"

uuid$ = StrDehexize$(uuid$)

uHndl = BleHandleUuid128(uuid$)

uuid$ = "1122DEAD5566778899AABBCCDDBEEF00"

uuid$ = StrDehexize$(uuid$)

uHndl = BleHandleUuid128(uuid$)

IF OnStartup()==0 THEN

 PRINT "\nAdvertising, and Gatt Client is open\n"

ELSE

 PRINT "\nFailure OnStartup"

ENDIF

WAITEVENT

PRINT "\nExiting..."

Expected Output:

BLEDISCCHARFIRST and BLEDISCCHARNEXT are both extension functions.

BleDiscDescFirst / BleDiscDescNext

FUNCTIONS

Advertising, and Gatt Client is open

- Connected, so scan remote Gatt Table for first service

- and a characeristic scan will be initiated in the event

EVDISCPRIMSVC : cHndl=3549 svcUuid=FE01FE02 sHndl=1 eHndl=17

Got first primary service so scan for ALL characteristics

EVDISCCHAR : cHndl=3549 chUuid=FE01FC21 Props=2 valHndl=3 ISvcUuid=0

EVDISCCHAR : cHndl=3549 chUuid=FC033344 Props=2 valHndl=5 ISvcUuid=0

EVDISCCHAR : cHndl=3549 chUuid=FE01DEAD Props=2 valHndl=7 ISvcUuid=0

EVDISCCHAR : cHndl=3549 chUuid=FB04BEEF Props=2 valHndl=9 ISvcUuid=0

EVDISCCHAR : cHndl=3549 chUuid=FC033344 Props=2 valHndl=11 ISvcUuid=0

EVDISCCHAR : cHndl=3549 chUuid=FE01FC23 Props=2 valHndl=13 ISvcUuid=0

EVDISCCHAR : cHndl=3549 chUuid=FE01DEAD Props=2 valHndl=15 ISvcUuid=0

EVDISCCHAR : cHndl=3549 chUuid=FE01DEAD Props=2 valHndl=17 ISvcUuid=0

EVDISCCHAR : cHndl=3549 chUuid=00000000 Props=0 valHndl=0 ISvcUuid=0

Characteristic Scan complete

Scan for characteristic with uuid = 0xDEAD

EVDISCCHAR : cHndl=3549 chUuid=FE01DEAD Props=2 valHndl=7 ISvcUuid=0

EVDISCCHAR : cHndl=3549 chUuid=FE01DEAD Props=2 valHndl=15 ISvcUuid=0

EVDISCCHAR : cHndl=3549 chUuid=FE01DEAD Props=2 valHndl=17 ISvcUuid=0

EVDISCCHAR : cHndl=3549 chUuid=00000000 Props=0 valHndl=0 ISvcUuid=0

Characteristic Scan complete

Scan for service with custom uuid 112233445566778899AABBCCDDEEFF00

EVDISCCHAR : cHndl=3549 chUuid=FC033344 Props=2 valHndl=5 ISvcUuid=0

EVDISCCHAR : cHndl=3549 chUuid=FC033344 Props=2 valHndl=11 ISvcUuid=0

EVDISCCHAR : cHndl=3549 chUuid=00000000 Props=0 valHndl=0 ISvcUuid=0

Characteristic Scan complete

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

153 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

These functions are used to scan the remote GATT server for descriptors in a characteristic with

the help of the EVDISCDESC message event and when called, a handler for the event message

must be registered as the discovered descriptor information is passed back in that.

A generic or UUID-based scan can be initiated. The former scans for all descriptors and the latter

scans for a descriptor with a particular UUID, the handle of which must be supplied and is

generated by using either BleHandleUuid16() or BleHandleUuid128().

If a GATT table has a specific service, characteristic and a specific descriptor, then a more

efficient method for locating details of that characteristic is to use the function

BleGattcFindDesc() which is described later.

While the scan is in progress and waiting for the next piece of data from a GATT server, the

module enters low power state as the WAITEVENT statement is used as normal to wait for events

and messages.

Depending on the size of the remote GATT server table and the connection interval, the scan of

all descriptors may take many 100s of milliseconds, and while this is in progress it is safe to do

other non-GATT related operations like for example servicing sensors and displays or any of the

onboard peripherals.

EVDISCDESC event message

This event message is thrown if either BleDissDescFirst() or BleDiscDescNext() returns a success.

The message contains the following three INTEGER parameters:

 Connection Handle

 Descriptor UUID Handle

 Handle for the Descriptor in the remote GATT table

If no more descriptors were discovered because the end of the table was reached, then all

parameters contain 0 except the Connection Handle.

‘Descriptor Uuid Handle’ contains the UUID of the descriptor and supplied as a handle.

‘Handle for the Descriptor in the remote GATT table’ is the handle for the descriptor, and also is

the value to store to keep track of important characteristics in a GATT server for later read/write

operations.

BLEDISCDESCFIRST (connHandle, descUuidHandle, charValHandle)

A typical pseudo code for discovering descriptors involves first calling BleDiscDescFirst() with

information obtained from a characteristics scan and then waiting for the EVDISCDESC event

message and depending on the information returned in that message calling BleDiscDescNext()

which in turn will result in another EVDISCDESC event message and typically is as follows:-

Register a handler for the EVDISCDESC event message

On EVDISCDESC event message

 If Descriptor Handle == 0 then scan is complete

 Else Process information then

 call BleDiscDescNext()

 if BleDiscDescNext() not OK then scan complete

Call BleDiscDescFirst(--information from EVDISCCHAR)

If BleDiscDescFirst() ok then Wait for EVDISCDESC

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

154 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Returns

INTEGER, a result code.

Most typical value – 0x0000, indicating a successful operation it means an

EVDISCDESC event message is thrown by the smartBASIC runtime engine

containing the results. A non-zero return value implies an EVDISCDESC
message is not thrown.

Arguments

connHandle byVal nConnHandle AS INTEGER

This is the connection handle as returned in the on-connect event for the

connection on which the remote Gatt Server can be accessed. This is

returned in the EVBLEMSG event message with msgId == 0 and msgCtx is the
connection handle.

descUuidHandle byVal descUuidHandle AS INTEGER

Set this to 0 if you want to scan for any descriptor in the characteristic,

otherwise this value is generated either by BleHandleUuid16() or
BleHandleUuid128() or BleHandleUuidSibling().

charValHandle byVal charValHandle AS INTEGER

This is the value attribute handle of the characteristic on which the

descriptor scan is to be performed. It is acquired from an EVDISCCHAR
event.

Interactive

Command
No

BLEDISCDESCNEXT (connHandle)

Calling this assumes that BleDiscCharFirst() has been called at least once to set up the internal

characteristics scanning state machine and that BleDiscDescFirst() has been called at least

once to start the descriptor discovery process.

Returns

INTEGER, a result code.

Most typical value – 0x0000, indicating a successful operation it means an

EVDISCDESC event message is thrown by the smartBASIC runtime engine

containing the results. A non-zero return value implies an EVDISCDESC message
is not thrown.

Arguments

connHandle byVal nConnHandle AS INTEGER

This is the connection handle as returned in the on-connect event for the

connection on which the remote Gatt Server can be accessed. This is returned

in the EVBLEMSG event message with msgId == 0 and msgCtx is the
connection handle.

Interactive

Command
No

//Example :: BleDiscDescFirst.Next.sb (See in BL620CodeSnippets.zip)

//

//Remote server has 1 prim service with 16 bit uuid and 1 characteristics

// which contains 8 descriptors, that are ...

// 5 uuids are 16 bit and 3 are 128 bit

// 3 of the 16 bit uuid are the same value 0xDEAD and

// 2 of the 128 bit uuids are also the same 112233445566778899AABBCCDDEEFF

//

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

155 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

// Server created using BleGattcTblDiscDesc.sub invoked in _OpenMcp.scr

// using Nordic Usb Dongle PC10000

DIM rc,at$,conHndl,uHndl,uuid$,sAttr,eAttr,cValAttr

//==

// Initialise and instantiate service, characteristic, start adverts

//==

FUNCTION OnStartup()

 DIM rc, adRpt$, addr$, scRpt$

 rc=BleAdvRptInit(adRpt$, 2, 0, 10)

 IF rc==0 THEN : rc=BleScanRptInit(scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvRptsCommit(adRpt$,scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvertStart(0,addr$,50,0,0) : ENDIF

 //open the gatt client with default notify/indicate ring buffer size

 IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF

ENDFUNC rc

//==

// Close connections so that we can run another app without problems

//==

SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

ENDSUB

//==

// Ble event handler

//==

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 DIM uu$

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n- Disconnected"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n- Connected, so scan remote Gatt Table for first service"

 PRINT "\n- and a characeristic scan will be initiated in the event"

 rc = BleDiscServiceFirst(conHndl,0,0)

 IF rc==0 THEN

 //wait for start and end handles for first primary service

 WAITEVENT

 PRINT "\n\nScan for descritors with uuid = 0xDEAD"

 uHndl = BleHandleUuid16(0xDEAD)

 rc = BleDiscDescFirst(conHndl,uHndl,cValAttr)

 IF rc == 0 THEN

 //HandlerDescDisc() will exit with 0 when operation is complete

 WAITEVENT

 uu$ = "112233445566778899AABBCCDDEEFF00"

 PRINT "\n\nScan for service with custom uuid ";uu$

 uu$ = StrDehexize$(uu$)

 uHndl = BleHandleUuid128(uu$)

 rc = BleDiscDescFirst(conHndl,uHndl,cValAttr)

 IF rc==0 THEN

 //HandlerDescDisc() will exit with 0 when operation is complete

 WAITEVENT

 ENDIF

 ENDIF

 ENDIF

 CloseConnections()

 ENDIF

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

156 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

ENDFUNC 1

//==

// EVDISCPRIMSVC event handler

//==

FUNCTION HandlerPrimSvc(cHndl,svcUuid,sHndl,eHndl) AS INTEGER

 PRINT "\nEVDISCPRIMSVC :"

 PRINT " cHndl=";cHndl

 PRINT " svcUuid=";integer.h' svcUuid

 PRINT " sHndl=";sHndl

 PRINT " eHndl=";eHndl

 IF sHndl == 0 THEN

 PRINT "\nPrimary Service Scan complete"

 EXITFUNC 0

 ELSE

 PRINT "\nGot first primary service so scan for ALL characteristics"

 sAttr = sHndl

 eAttr = eHndl

 rc = BleDiscCharFirst(conHndl,0,sAttr,eAttr)

 IF rc != 0 THEN

 PRINT "\nScan characteristics failed"

 EXITFUNC 0

 ENDIF

 ENDIF

endfunc 1

'//==

// EVDISCCHAR event handler

'//==

function HandlerCharDisc(cHndl,cUuid,cProp,hVal,isUuid) as integer

 print "\nEVDISCCHAR :"

 print " cHndl=";cHndl

 print " chUuid=";integer.h' cUuid

 print " Props=";cProp

 print " valHndl=";hVal

 print " ISvcUuid=";isUuid

 IF hVal == 0 THEN

 PRINT "\nCharacteristic Scan complete"

 EXITFUNC 0

 ELSE

 PRINT "\nGot first characteristic service at handle ";hVal

 PRINT "\nScan for ALL Descs"

 cValAttr = hVal

 rc = BleDiscDescFirst(conHndl,0,cValAttr)

 IF rc != 0 THEN

 PRINT "\nScan descriptors failed"

 EXITFUNC 0

 ENDIF

 ENDIF

endfunc 1

'//==

// EVDISCDESC event handler

'//==

function HandlerDescDisc(cHndl,cUuid,hndl) as integer

 print "\nEVDISCDESC"

 print " cHndl=";cHndl

 print " dscUuid=";integer.h' cUuid

 print " dscHndl=";hndl

 IF hndl == 0 THEN

 PRINT "\nDescriptor Scan complete"

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

157 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 EXITFUNC 0

 ELSE

 rc = BleDiscDescNext(cHndl)

 IF rc != 0 THEN

 PRINT "\nDescriptor scan abort"

 EXITFUNC 0

 ENDIF

 ENDIF

endfunc 1

//==

// Main() equivalent

//==

ONEVENT EVBLEMSG CALL HndlrBleMsg

OnEvent EVDISCPRIMSVC call HandlerPrimSvc

OnEvent EVDISCCHAR call HandlerCharDisc

OnEvent EVDISCDESC call HandlerDescDisc

//Register base uuids with the underlying stack, otherwise the services with the

//128bit uuid's will be delivered with a uuid handle == FF000000 == UNKNOWN

uuid$ = "112233445566778899AABBCCDDEEFF00"

uuid$ = StrDehexize$(uuid$)

uHndl = BleHandleUuid128(uuid$)

uuid$ = "1122DEAD5566778899AABBCCDDBEEF00"

uuid$ = StrDehexize$(uuid$)

uHndl = BleHandleUuid128(uuid$)

IF OnStartup()==0 THEN

 PRINT "\nAdvertising, and Gatt Client is open\n"

ELSE

 PRINT "\nFailure OnStartup"

ENDIF

WAITEVENT

PRINT "\nExiting..."

Expected Output:

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

158 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

BLEDISCDESCFIRST and BLEDISCDESCNEXT are both extension functions.

BleGattcFindChar

FUNCTION

This function facilitates a quick and efficient way of locating the details of a characteristic if the

UUID is known along with the UUID of the service containing it and the results are delivered in a

EVFINDCHAR event message. If the GATT server table has multiple instances of the same

service/characteristic combination then this function works because, in addition to the UUID

handles to be searched for, it also accepts instance parameters which are indexed from 0,

which means the 4th instance of a characteristic with the same UUID in the 3rd instance of a

service with the same UUID is located with index values 3 and 2 respectively.

Given that the results are returned in an event message, a handler must be registered for the

EVFINDCHAR event.

Depending on the size of the remote GATT server table and the connection interval, the search

of the characteristic may take many 100s of milliseconds, and while this is in progress, it is safe to

do other non-GATT-related operations such as servicing sensors and displays or any of the

onboard peripherals.

Advertising, and Gatt Client is open

- Connected, so scan remote Gatt Table for first service

- and a characeristic scan will be initiated in the event

EVDISCPRIMSVC : cHndl=3790 svcUuid=FE01FE02 sHndl=1 eHndl=11

Got first primary service so scan for ALL characteristics

EVDISCCHAR : cHndl=3790 chUuid=FE01FC21 Props=2 valHndl=3 ISvcUuid=0

Got first characteristic service at handle 3

Scan for ALL Descs

EVDISCDESC cHndl=3790 dscUuid=FE01FD21 dscHndl=4

EVDISCDESC cHndl=3790 dscUuid=FC033344 dscHndl=5

EVDISCDESC cHndl=3790 dscUuid=FE01DEAD dscHndl=6

EVDISCDESC cHndl=3790 dscUuid=FB04BEEF dscHndl=7

EVDISCDESC cHndl=3790 dscUuid=FC033344 dscHndl=8

EVDISCDESC cHndl=3790 dscUuid=FE01FD23 dscHndl=9

EVDISCDESC cHndl=3790 dscUuid=FE01DEAD dscHndl=10

EVDISCDESC cHndl=3790 dscUuid=FE01DEAD dscHndl=11

EVDISCDESC cHndl=3790 dscUuid=00000000 dscHndl=0

Descriptor Scan complete

Scan for descritors with uuid = 0xDEAD

EVDISCDESC cHndl=3790 dscUuid=FE01DEAD dscHndl=6

EVDISCDESC cHndl=3790 dscUuid=FE01DEAD dscHndl=10

EVDISCDESC cHndl=3790 dscUuid=FE01DEAD dscHndl=11

EVDISCDESC cHndl=3790 dscUuid=00000000 dscHndl=0

Descriptor Scan complete

Scan for service with custom uuid 112233445566778899AABBCCDDEEFF00

EVDISCDESC cHndl=3790 dscUuid=FC033344 dscHndl=5

EVDISCDESC cHndl=3790 dscUuid=FC033344 dscHndl=8

EVDISCDESC cHndl=3790 dscUuid=00000000 dscHndl=0

Descriptor Scan complete

- Disconnected

Exiting...

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

159 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Note: It is not currently possible to scan for characteristics in included services. This will be a

future enhancement.

EVFINDCHAR event message

This event message is thrown if BleGattcFindChar() returns a success. The message contains the

following four INTEGER parameters:

 Connection Handle

 Characteristic Properties

 Handle for the Value Attribute of the Characteristic

 Included Service UUID Handle

If the specified instance of the service/characteristic is not present in the remote GATT server

table then all parameters will contain 0 except for Connection Handle.

 ‘Characteristic Properties’ contains the properties of the characteristic and is a bit mask:

Bit 0 Set if BROADCAST is enabled

Bit 1 Set if READ is enabled

Bit 2 Set if WRITE_WITHOUT_RESPONSE is enabled

Bit 3 Set if WRITE is enabled

Bit 4 Set if NOTIFY is enabled

Bit 5 Set if INDICATE is enabled

Bit 6
Set if AUTHENTICATED_SIGNED_WRITE is

enabled

Bit 7 Set if RELIABLE_WRITE is enabled

Bit 15
Set if the characteristic has extended

properties

‘Handle for the Value Attribute of the Characteristic’ is the handle for the value attribute and is

the value to store to keep track of important characteristics in a GATT server for later read/write

operations.

‘Included Service Uuid Handle’ is for future use and is always 0.

BLEGATTCFINDCHAR (connHandle, svcUuidHndl, svcIndex,charUuidHndl, charIndex)

A typical pseudo code for finding a characteristic involves calling BleGattcFindChar() which in

turn results in the EVFINDCHAR event message and typically is as follows:

Register a handler for the EVFINDCHAR event message

On EVFINDCHAR event message

 If Char Value Handle == 0 then

 Characteristic not found

 Else

 Characteristic has been found

Call BleGattcFindChar()

If BleGattcFindChar () ok then Wait for EVFINDCHAR

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

160 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Returns

INTEGER, a result code.

Most typical value – 0x0000, indicating a successful operation and it means an

EVFINDCHAR event message is thrown by the smartBASIC runtime engine

containing the results. A non-zero return value implies an EVFINDCHAR message
is not thrown.

Arguments

connHandle byVal nConnHandle AS INTEGER

This is the connection handle as returned in the on-connect event for the

connection on which the remote Gatt Server can be accessed. This is returned

in the EVBLEMSG event message with msgId == 0 and msgCtx is the connection
handle.

svcUuidHndl byVal svcUuidHndl AS INTEGER

Set this to the service uuid handle which is generated either by
BleHandleUuid16() or BleHandleUuid128() or BleHandleUuidSibling().

svcIndex byVal svcIndex AS INTEGER

This is the instance of the service to look for with the UUID handle svcUuidHndl,
where 0 is the first instance, 1 is the second, etc.

charUuidHndl byVal charUuidHndl AS INTEGER

Set this to the characteristic uuid handle which are generated either by
BleHandleUuid16() or BleHandleUuid128() or BleHandleUuidSibling().

charIndex byVal charIndex AS INTEGER

This is the instance of the characteristic to look for with the UUID handle
charUuidHndl, where 0 is the first instance, 1 is the second, etc.

Interactive

Command
No

//Example :: BleGattcFindChar.sb (See in BL620CodeSnippets.zip)

//

//Remote server has 5 prim services with 16 bit uuid and 3 with 128 bit uuids

// 3 of the 16 bit uuid are the same value 0xDEAD and

// 2 of the 128 bit uuids are also the same 112233445566778899AABBCCDDEEFF

//

// Server created using BleGattcTblFindChar.sub invoked in _OpenMcp.scr

// using Nordic Usb Dongle PC10000

DIM rc,at$,conHndl,uHndl,uuid$,sIdx,cIdx

//==

// Initialise and instantiate service, characteristic, start adverts

//==

FUNCTION OnStartup()

 DIM rc, adRpt$, addr$, scRpt$

 rc=BleAdvRptInit(adRpt$, 2, 0, 10)

 IF rc==0 THEN : rc=BleScanRptInit(scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvRptsCommit(adRpt$,scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvertStart(0,addr$,50,0,0) : ENDIF

 //open the gatt client with default notify/indicate ring buffer size

 IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF

ENDFUNC rc

//==

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

161 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

// Close connections so that we can run another app without problems

//==

SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

ENDSUB

//==

// Ble event handler

//==

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 DIM uu$,uHndS,uHndC

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n- Disconnected"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n- Connected, so scan remote Gatt Table for an instance of char"

 uHndS = BleHandleUuid16(0xDEAD)

 uu$ = "112233445566778899AABBCCDDEEFF00"

 uu$ = StrDehexize$(uu$)

 uHndC = BleHandleUuid128(uu$)

 sIdx = 2

 cIdx = 1 //valHandle will be 32

 rc = BleGattcFindChar(conHndl,uHndS,sIdx,uHndC,cIdx)

 IF rc==0 THEN

 //BleDiscCharFirst() will exit with 0 when operation is complete

 WAITEVENT

 ENDIF

 sIdx = 1

 cIdx = 3 //does not exist

 rc = BleGattcFindChar(conHndl,uHndS,sIdx,uHndC,cIdx)

 IF rc==0 THEN

 //BleDiscCharFirst() will exit with 0 when operation is complete

 WAITEVENT

 ENDIF

 CloseConnections()

 ENDIF

ENDFUNC 1

'//==

'//==

function HandlerFindChar(cHndl,cProp,hVal,isUuid) as integer

 print "\nEVFINDCHAR "

 print " cHndl=";cHndl

 print " Props=";cProp

 print " valHndl=";hVal

 print " ISvcUuid=";isUuid

 IF hVal == 0 THEN

 PRINT "\nDid NOT find the characteristic"

 ELSE

 PRINT "\nFound the characteristic at handle ";hVal

 PRINT "\nSvc Idx=";sIdx;" Char Idx=";cIdx

 ENDIF

endfunc 0

//==

// Main() equivalent

//==

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

162 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

ONEVENT EVBLEMSG CALL HndlrBleMsg

OnEvent EVFINDCHAR call HandlerFindChar

//Register base uuids with the underlying stack, otherwise the services with the

//128bit uuid's will be delivered with a uuid handle == FF000000 == UNKNOWN

uuid$ = "112233445566778899AABBCCDDEEFF00"

uuid$ = StrDehexize$(uuid$)

uHndl = BleHandleUuid128(uuid$)

uuid$ = "1122DEAD5566778899AABBCCDDBEEF00"

uuid$ = StrDehexize$(uuid$)

uHndl = BleHandleUuid128(uuid$)

IF OnStartup()==0 THEN

 PRINT "\nAdvertising, and Gatt Client is open\n"

ELSE

 PRINT "\nFailure OnStartup"

ENDIF

WAITEVENT

PRINT "\nExiting..."

Expected Output:

BLEGATTCFINDCHAR is an extension function.

BleGattcFindDesc

FUNCTION

This function facilitates a quick and efficient way of locating the details of a descriptor if the

UUID is known along with the uuid of the service and the UUID of the characteristic containing it

and the results are delivered in a EVFINDDESC event message. If the GATT server table has

multiple instances of the same service/characteristic/descriptor combination then this function

works; in addition to the UUID handles to be searched for, it accepts instance parameters which

are indexed from 0. This means the following:

The second instance of a descriptor in the fourth instance of a characteristic in the third instance

of a service (all with the same UUID) are located with index values 1, 3, and 2 respectively.

Given that the results are returned in an event message, a handler must be registered for the

EVFINDDESC event.

Depending on the size of the remote GATT server table and the connection interval, the search

of the characteristic may take many 100s of milliseconds and, while this is in progress, it is safe to

Advertising, and Gatt Client is open

- Connected, so scan remote Gatt Table for an instance of char

EVFINDCHAR cHndl=866 Props=2 valHndl=32 ISvcUuid=0

Found the characteristic at handle 32

Svc Idx=2 Char Idx=1

EVFINDCHAR cHndl=866 Props=0 valHndl=0 ISvcUuid=0

Did NOT find the characteristic

- Disconnected

Exiting...

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

163 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

do other non GATT related operations such as servicing sensors and displays or any of the

onboard peripherals.

Note: It is not currently possible to scan for characteristics in included services. This will be a

future enhancement.

EVFINDDESC event message

This event message are thrown if BleGattcFindDesc()returned a success. The message contains

the following INTEGER parameters:

 Connection Handle

 Handle of the Descriptor

If the specified instance of the service/characteristic/descriptor is not present in the remote

GATT server table then all parameters will contain 0 apart from the Connection Handle.

‘Handle of the Descriptor’ is the handle for the descriptor and is the value to store to keep track

of important descriptors in a gatt server for later read/write operations – for example CCCD’s to

enable notifications and/or indications.

BLEGATTCFINDDESC (connHndl, svcUuHndl, svcIdx, charUuHndl, charIdx,descUuHndl, descIdx)

A typical pseudo code for finding a descrirptor involves calling BleGattcFindDesc() which in turn

will result in the EVFINDDESC event message and typically is as follows:-

Register a handler for the EVFINDDESC event message

On EVFINDDESC event message

 If Descriptor Handle == 0 then

 Descriptor not found

 Else

 Descriptor has been found

Call BleGattcFindDesc()

If BleGattcFindDesc() ok then Wait for EVFINDDESC

Returns

INTEGER, a result code.

Most typical value – 0x0000, indicating a successful operation and it means an

EVFINDDESC event message is thrown by the smartBASIC runtime engine

containing the results. A non-zero return value implies an EVFINDDESC message
is not thrown.

Arguments

connHndl byVal connHndl AS INTEGER

This is the connection handle as returned in the on-connect event for the

connection on which the remote GATT server can be accessed. This is returned

in the EVBLEMSG event message with msgId == 0 and msgCtx is the connection
handle.

svcUuHndl byVal svcUuHndl AS INTEGER

Set this to the service UUID handle which is generated either by
BleHandleUuid16() or BleHandleUuid128() or BleHandleUuidSibling().

svcIdx byVal svcIdx AS INTEGER

This is the instance of the service to look for with the UUID handle svcUuidHndl,

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

164 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

where 0 is the first instance, 1 is the second, etc.

charUuHndl byVal charUuHndl AS INTEGER

Set this to the characteristic UUID handle which is generated either by
BleHandleUuid16() or BleHandleUuid128() or BleHandleUuidSibling().

charIdx byVal charIdx AS INTEGER

This is the instance of the characteristic to look for with the UUID handle
charUuidHndl, where 0 is the first instance, 1 is the second, etc.

descUuHndl byVal descUuHndl AS INTEGER

Set this to the descriptor uuid handle which is generated either by
BleHandleUuid16() or BleHandleUuid128() or BleHandleUuidSibling().

descIdx byVal descIdx AS INTEGER

This is the instance of the descriptor to look for with the uuid handle charUuidHndl,

where 0

is the first instance, 1 is the second, etc.

Interactive

Command
No

//Example :: BleGattcFindDesc.sb (See in BL620CodeSnippets.zip)

//

//Remote server has 5 prim services with 16 bit uuid and 3 with 128 bit uuids

// 3 of the 16 bit uuid are the same value 0xDEAD and

// 2 of the 128 bit uuids are also the same 112233445566778899AABBCCDDEEFF

//

// Server created using BleGattcTblFindDesc.sub invoked in _OpenMcp.scr

// using Nordic Usb Dongle PC10000

DIM rc,at$,conHndl,uHndl,uuid$,sIdx,cIdx,dIdx

//==

// Initialise and instantiate service, characteristic, start adverts

//==

FUNCTION OnStartup()

 DIM rc, adRpt$, addr$, scRpt$

 rc=BleAdvRptInit(adRpt$, 2, 0, 10)

 IF rc==0 THEN : rc=BleScanRptInit(scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvRptsCommit(adRpt$,scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvertStart(0,addr$,50,0,0) : ENDIF

 //open the gatt client with default notify/indicate ring buffer size

 IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF

ENDFUNC rc

//==

// Close connections so that we can run another app without problems

//==

SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

ENDSUB

//==

// Ble event handler

//==

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

165 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 DIM uu$,uHndS,uHndC,uHndD

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n- Disconnected"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n- Connected, so scan remote Gatt Table for ALL services"

 uHndS = BleHandleUuid16(0xDEAD)

 uu$ = "112233445566778899AABBCCDDEEFF00"

 uu$ = StrDehexize$(uu$)

 uHndC = BleHandleUuid128(uu$)

 uu$ = "1122C0DE5566778899AABBCCDDEEFF00"

 uu$ = StrDehexize$(uu$)

 uHndD = BleHandleUuid128(uu$)

 sIdx = 2

 cIdx = 1

 dIdx = 1 // handle will be 37

 rc = BleGattcFindDesc(conHndl,uHndS,sIdx,uHndC,cIdx,uHndD,dIdx)

 IF rc==0 THEN

 //BleDiscCharFirst() will exit with 0 when operation is complete

 WAITEVENT

 ENDIF

 sIdx = 1

 cIdx = 3

 dIdx = 4 //does not exist

 rc = BleGattcFindDesc(conHndl,uHndS,sIdx,uHndC,cIdx,uHndD,dIdx)

 IF rc==0 THEN

 //BleDiscCharFirst() will exit with 0 when operation is complete

 WAITEVENT

 ENDIF

 CloseConnections()

 ENDIF

ENDFUNC 1

'//==

'//==

function HandlerFindDesc(cHndl,hndl) as integer

 print "\nEVFINDDESC "

 print " cHndl=";cHndl

 print " dscHndl=";hndl

 IF hndl == 0 THEN

 PRINT "\nDid NOT find the descriptor"

 ELSE

 PRINT "\nFound the descriptor at handle ";hndl

 PRINT "\nSvc Idx=";sIdx;" Char Idx=";cIdx;" desc Idx=";dIdx

 ENDIF

endfunc 0

//==

// Main() equivalent

//==

ONEVENT EVBLEMSG CALL HndlrBleMsg

OnEvent EVFINDDESC call HandlerFindDesc

//Register base uuids with the underlying stack, otherwise the services with the

//128bit uuid's will be delivered with a uuid handle == FF000000 == UNKNOWN

uuid$ = "112233445566778899AABBCCDDEEFF00"

uuid$ = StrDehexize$(uuid$)

uHndl = BleHandleUuid128(uuid$)

uuid$ = "1122DEAD5566778899AABBCCDDBEEF00"

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

166 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

uuid$ = StrDehexize$(uuid$)

uHndl = BleHandleUuid128(uuid$)

IF OnStartup()==0 THEN

 PRINT "\nAdvertising, and Gatt Client is open\n"

ELSE

 PRINT "\nFailure OnStartup"

ENDIF

WAITEVENT

PRINT "\nExiting..."

Expected Output:

BLEGATTCFINDDESC is an extension function.

BleGattcRead / BleGattcReadData

FUNCTIONS

If the handle for an attribute is known then these functions are used to read the content of that

attribute from a specified offset in the array of octets in that attribute value.

Given that the success or failure of this read operation is returned in an event message, a

handler must be registered for the EVATTRREAD event.

Depending on the connection interval, the read of the attribute may take many 100s of

milliseconds, and while this is in progress, it is safe to do other non GATT-related operations such

as servicing sensors and displays or any of the onboard peripherals.

BleGattcRead is used to trigger the procedure and BleGattcReadData is used to read the data

from the underlying cache when the EVATTRREAD event message is received with a success

status.

EVATTRREAD event message

This event message is thrown if BleGattcRead() returns a success. The message contains the

following INTEGER parameters:

 Connection Handle

 Handle of the Attribute

 GATT status of the read operation

‘Gatt status of the read operation’ is one of the following values, where 0 implies the read was

successfully expedited and the data can be obtained by calling BlePubGattClientReadData().

Advertising, and Gatt Client is open

- Connected, so scan remote Gatt Table for ALL services

EVFINDDESC cHndl=1106 dscHndl=37

Found the descriptor at handle 37

Svc Idx=2 Char Idx=1 desc Idx=1

EVFINDDESC cHndl=1106 dscHndl=0

Did NOT find the descriptor

- Disconnected

Exiting...

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

167 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

0x0000 Success

0x0001 Unknown or not applicable status

0x0100 ATT Error: Invalid Error Code

0x0101 ATT Error: Invalid Attribute Handle

0x0102 ATT Error: Read not permitted

0x0103 ATT Error: Write not permitted

0x0104 ATT Error: Used in ATT as Invalid PDU

0x0105 ATT Error: Authenticated link required

0x0106 ATT Error: Used in ATT as Request Not Supported

0x0107 ATT Error: Offset specified was past the end of the attribute

0x0108 ATT Error: Used in ATT as Insufficient Authorisation

0x0109 ATT Error: Used in ATT as Prepare Queue Full

0x010A ATT Error: Used in ATT as Attribute not found

0x010B ATT Error: Attribute cannot be read or written using read/write blob requests

0x010C ATT Error: Encryption key size used is insufficient

0x010D ATT Error: Invalid value size

0x010E ATT Error: Very unlikely error

0x010F ATT Error: Encrypted link required

0x0110 ATT Error: Attribute type is not a supported grouping attribute

0x0111 ATT Error: Encrypted link required

0x0112 ATT Error: Reserved for Future Use range #1 begin

0x017F ATT Error: Reserved for Future Use range #1 end

0x0180 ATT Error: Application range begin

0x019F ATT Error: Application range end

0x01A0 ATT Error: Reserved for Future Use range #2 begin

0x01DF ATT Error: Reserved for Future Use range #2 end

0x01E0 ATT Error: Reserved for Future Use range #3 begin

0x01FC ATT Error: Reserved for Future Use range #3 end

0x01FD ATT Common Profile and Service Error: Client Characteristic Configuration Descriptor

 (CCCD)improperly configured

0x01FE ATT Common Profile and Service Error:Procedure Already in Progress

0x01FF ATT Common Profile and Service Error: Out Of Range

BLEGATTCREAD (connHndl, attrHndl, offset)

A typical pseudo code for reading the content of an attribute calling BleGattcRead() which in

turn will result in the EVATTRREAD event message and typically is as follows:-

Register a handler for the EVATTRREAD event message

On EVATTREAD event message

 If Gatt_Status == 0 then

 BleGattcReadData() //to actually get the data

 Else

 Attribute could not be read

Call BleGattcRead()

If BleGattcRead() ok then Wait for EVATTRREAD

Returns
INTEGER, a result code.

Most typical value – 0x0000, indicating a successful operation and it means an

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

168 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

EVATTRREAD event message is thrown by the smartBASIC runtime engine

containing the results. A non-zero return value implies an EVATTRREAD message
is not thrown.

Arguments

connHndl byVal connHndl AS INTEGER

This is the connection handle as returned in the on-connect event for the

connection on which the remote Gatt Server can be accessed. This will have

been returned in the EVBLEMSG event message with msgId == 0 and msgCtx will
have been the connection handle.

attrHndl byVal attrHndl AS INTEGER

Set this to the handle of the attribute to read and is a value in the range 1 to
65535.

offset byVal offset AS INTEGER
This is the offset from which the data in the attribute is to be read.

Interactive

Command
No

BLEGATTCREADDATA (connHndl, attrHndl, offset, attrData$)

This function is used to collect the data from the underlying cache when the EVATTRREAD event

message has a success gatt status code.

Returns
INTEGER, a result code.

Most typical value – 0x0000, indicating a successful read.

Arguments

connHndl byVal connHndl AS INTEGER

This is the connection handle as returned in the on-connect event for the

connection on which the remote Gatt Server can be accessed. This will have

been returned in the EVBLEMSG event message with msgId == 0 and msgCtx will
have been the connection handle.

attrHndl byVal attrHndl AS INTEGER

Set this to the handle of the attribute to read and is a value in the range 1 to
65535.

offset byVal offset AS INTEGER
This is the offset from which the data in the attribute is to be read.

attrData$ byRef attrData$ AS STRING
The attribute data which was read is supplied in this parameter.

Interactive

Command
No

//Example :: BleGattcRead.sb (See in BL620CodeSnippets.zip)

//

//Remote server has 3 prim services with 16 bit uuid. First service has one

//characteristic whose value attribute is at handle 3 and has read/write props

//

// Server created using BleGattcTblRead.sub invoked in _OpenMcp.scr

// using Nordic Usb Dongle PC10000

DIM rc,at$,conHndl,uHndl,nOff,atHndl

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

169 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

//==

// Initialise and instantiate service, characteristic, start adverts

//==

FUNCTION OnStartup()

 DIM rc, adRpt$, addr$, scRpt$

 rc=BleAdvRptInit(adRpt$, 2, 0, 10)

 IF rc==0 THEN : rc=BleScanRptInit(scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvRptsCommit(adRpt$,scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvertStart(0,addr$,50,0,0) : ENDIF

 //open the gatt client with default notify/indicate ring buffer size

 IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF

ENDFUNC rc

//==

// Close connections so that we can run another app without problems

//==

SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

ENDSUB

//==

// Ble event handler

//==

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 DIM uHndA

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n- Disconnected"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n- Connected, so read attibute handle 3"

 atHndl = 3

 nOff = 0

 rc=BleGattcRead(conHndl,atHndl,nOff)

 IF rc==0 THEN

 WAITEVENT

 ENDIF

 PRINT "\nread attibute handle 300 which does not exist"

 atHndl = 300

 nOff = 0

 rc=BleGattcRead(conHndl,atHndl,nOff)

 IF rc==0 THEN

 WAITEVENT

 ENDIF

 CloseConnections()

 ENDIF

ENDFUNC 1

'//==

'//==

function HandlerAttrRead(cHndl,aHndl,nSts) as integer

 dim nOfst,nAhndl,at$

 print "\nEVATTRREAD "

 print " cHndl=";cHndl

 print " attrHndl=";aHndl

 print " status=";integer.h' nSts

 if nSts == 0 then

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

170 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 print "\nAttribute read OK"

 rc = BleGattcReadData(cHndl,nAhndl,nOfst,at$)

 print "\nData = ";StrHexize$(at$)

 print " Offset= ";nOfst

 print " Len=";strlen(at$)

 print "\nhandle = ";nAhndl

 else

 print "\nFailed to read attribute"

 endif

endfunc 0

//==

// Main() equivalent

//==

ONEVENT EVBLEMSG CALL HndlrBleMsg

OnEvent EVATTRREAD call HandlerAttrRead

IF OnStartup()==0 THEN

 PRINT "\nAdvertising, and Gatt Client is open\n"

ELSE

 PRINT "\nFailure OnStartup"

ENDIF

WAITEVENT

PRINT "\nExiting..."

Expected Output:

BLEGATTCREAD and BLEGATTREADDATA are extension functions.

BleGattcWrite

FUNCTION

If the handle for an attribute is known then this function is used to write into an attribute starting

at offset 0. The acknowledgement is returned via a EVATTRWRITE event message.

Given that the success or failure of this write operation is returned in an event message, a

handler must be registered for the EVATTRWRITE event.

Depending on the connection interval, the write to the attribute may take many 100s of

milliseconds, and while this is in progress, it is safe to do other non GATT related operations such

as servicing sensors and displays or any of the onboard peripherals.

Advertising, and Gatt Client is open

- Connected, so read attibute handle 3

EVATTRREAD cHndl=2960 attrHndl=3 status=00000000

Attribute read OK

Data = 00000000 Offset= 0 Len=4

handle = 3

read attibute handle 300 which does not exist

EVATTRREAD cHndl=2960 attrHndl=300 status=00000101

Failed to read attribute

- Disconnected

Exiting...

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

171 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

EVATTRWRITE event message

The EVATTRWRITE event message WILL be thrown if BleGattcWrite() returns a success. It is

described in the Events & Message section above.

BLEGATTCWRITE (connHndl, attrHndl, attrData$)

A typical pseudo code for writing to an attribute which will result in the EVATTRWRITE event

message and typically is as follows:

Register a handler for the EVATTRWRITE event message

On EVATTWRITE event message

 If Gatt_Status == 0 then

 Attribute was written successfully

 Else

 Attribute could not be written

Call BleGattcWrite()

If BleGattcWrite() ok then Wait for EVATTRWRITE

Returns
INTEGER, a result code.

Most typical value – 0x0000, indicating a successful read.

Arguments

connHndl byVal connHndl AS INTEGER

This is the connection handle as returned in the on-connect event for the

connection on which the remote GATT server can be accessed. This is returned

in the EVBLEMSG event message with msgId == 0 and msgCtx is the connection
handle.

attrHndl byVal attrHndl AS INTEGER
The handle for the attribute that is to be written to.

attrData$ byRef attrData$ AS STRING
The attribute data to write.

Interactive

Command
No

//Example :: BleGattcWrite.sb (See in BL620CodeSnippets.zip)

//

//Remote server has 3 prim services with 16 bit uuid. First service has one

//characteristic whose value attribute is at handle 3 and has read/write props

//

// Server created using BleGattcTblWrite.sub invoked in _OpenMcp.scr

// using Nordic Usb Dongle PC10000

DIM rc,at$,conHndl,uHndl,atHndl

//==

// Initialise and instantiate service, characteristic, start adverts

//==

FUNCTION OnStartup()

 DIM rc, adRpt$, addr$, scRpt$

 rc=BleAdvRptInit(adRpt$, 2, 0, 10)

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

172 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 IF rc==0 THEN : rc=BleScanRptInit(scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvRptsCommit(adRpt$,scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvertStart(0,addr$,50,0,0) : ENDIF

 //open the gatt client with default notify/indicate ring buffer size

 IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF

ENDFUNC rc

//==

// Close connections so that we can run another app without problems

//==

SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

ENDSUB

//==

// Ble event handler

//==

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 DIM uHndA

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n- Disconnected"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n- Connected, so write to attibute handle 3"

 atHndl = 3

 at$="\01\02\03\04"

 rc=BleGattcWrite(conHndl,atHndl,at$)

 IF rc==0 THEN

 WAITEVENT

 ENDIF

 PRINT "\nwrite to attibute handle 300 which does not exist"

 atHndl = 300

 rc=BleGattcWrite(conHndl,atHndl,at$)

 IF rc==0 THEN

 WAITEVENT

 ENDIF

 CloseConnections()

 ENDIF

ENDFUNC 1

'//==

'//==

function HandlerAttrWrite(cHndl,aHndl,nSts) as integer

 dim nOfst,nAhndl,at$

 print "\nEVATTRWRITE "

 print " cHndl=";cHndl

 print " attrHndl=";aHndl

 print " status=";integer.h' nSts

 if nSts == 0 then

 print "\nAttribute write OK"

 else

 print "\nFailed to write attribute"

 endif

endfunc 0

//==

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

173 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

// Main() equivalent

//==

ONEVENT EVBLEMSG CALL HndlrBleMsg

OnEvent EVATTRWRITE call HandlerAttrWrite

IF OnStartup()==0 THEN

 PRINT "\nAdvertising, and Gatt Client is open\n"

ELSE

 PRINT "\nFailure OnStartup"

ENDIF

WAITEVENT

PRINT "\nExiting..."

Expected Output:

BLEGATTCWRITE is an extension function.

BleGattcWriteCmd

FUNCTION

If the handle for an attribute is known then this function is used to write into an attribute starting

at offset 0 when no acknowledgment response is expected. The signal that the command has

actually been transmitted and that the remote link layer has acknowledged is by the

EVNOTIFYBUF event.

Note: The acknowledgement received for the BleGattcWrite() command is from the

higher level GATT layer, not to be confused with the link layer ack in this case.

All packets are acknowledged at link layer level. If a packet fails to get through then

that condition will manifest as a connection drop due to the link supervision timeout.

Given that the transmission and link layer ack of this write operation is indicated in an event

message, a handler must be registered for the EVNOTIBUF event.

Depending on the connection interval, the write to the attribute may take many 100s of

milliseconds, and while this is in progress it is safe to do other non GATT-related operations like for

example servicing sensors and displays or any of the onboard peripherals.

EVNOTIFYBUF event

Advertising, and Gatt Client is open

- Connected, so read attibute handle 3

EVATTRWRITE cHndl=2687 attrHndl=3 status=00000000

Attribute write OK

Write to attibute handle 300 which does not exist

EVATTRWRITE cHndl=2687 attrHndl=300 status=00000101

Failed to write attribute

- Disconnected

Exiting...

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

174 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

This event message is thrown if BleGattcWriteCmd() returned a success. The message contains

no parameters.

BLEGATTCWRITECMD (connHndl, attrHndl, attrData$)

A typical pseudo code for writing to an attribute which will result in the EVNOTIFYBUF event is as

follows:-

Register a handler for the EVNOTIFYBUF event message

On EVNOTIFYBUF event message

 Can now send another write command

Call BleGattcWriteCmd()

If BleGattcWrite() ok then Wait for EVNOTIFYBUF

Returns
INTEGER, a result code.

Most typical value – 0x0000, indicating a successful read.

Arguments

connHndl byVal connHndl AS INTEGER

This is the connection handle as returned in the on-connect event for the

connection on which the remote GATT server can be accessed. This is returned

in the EVBLEMSG event message with msgId == 0 and msgCtx is the connection
handle.

attrHndl byVal attrHndl AS INTEGER

The handle for the attribute that is to be written to.

attrData$ byRef attrData$ AS STRING
The attribute data to write.

Interactive

Command
No

//Example :: BleGattcWriteCmd.sb (See in BL620CodeSnippets.zip)

//

//Remote server has 3 prim services with 16 bit uuid. First service has one

//characteristic whose value attribute is at handle 3 and has read/write props

//

// Server created using BleGattcTblWriteCmd.sub invoked in _OpenMcp.scr

// using Nordic Usb Dongle PC10000

DIM rc,at$,conHndl,uHndl,atHndl

//==

// Initialise and instantiate service, characteristic, start adverts

//==

FUNCTION OnStartup()

 DIM rc, adRpt$, addr$, scRpt$

 rc=BleAdvRptInit(adRpt$, 2, 0, 10)

 IF rc==0 THEN : rc=BleScanRptInit(scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvRptsCommit(adRpt$,scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvertStart(0,addr$,50,0,0) : ENDIF

 //open the gatt client with default notify/indicate ring buffer size

 IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF

ENDFUNC rc

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

175 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

//==

// Close connections so that we can run another app without problems

//==

SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

ENDSUB

//==

// Ble event handler

//==

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 DIM uHndA

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n- Disconnected"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n- Connected, so write to attribute handle 3"

 atHndl = 3

 at$="\01\02\03\04"

 rc=BleGattcWriteCmd(conHndl,atHndl,at$)

 IF rc==0 THEN

 WAITEVENT

 ENDIF

 PRINT "\n- write again to attribute handle 3"

 atHndl = 3

 at$="\05\06\07\08"

 rc=BleGattcWriteCmd(conHndl,atHndl,at$)

 IF rc==0 THEN

 WAITEVENT

 ENDIF

 PRINT "\n- write again to attribute handle 3"

 atHndl = 3

 at$="\09\0A\0B\0C"

 rc=BleGattcWriteCmd(conHndl,atHndl,at$)

 IF rc==0 THEN

 WAITEVENT

 ENDIF

 PRINT "\nwrite to attribute handle 300 which does not exist"

 atHndl = 300

 rc=BleGattcWriteCmd(conHndl,atHndl,at$)

 IF rc==0 THEN

 PRINT "\nEven when the attribute does not exist an event will occur"

 WAITEVENT

 ENDIF

 CloseConnections()

 ENDIF

ENDFUNC 1

'//==

'//==

function HandlerNotifyBuf() as integer

 print "\nEVNOTIFYBUF Event"

endfunc 0 '//need to progress the WAITEVENT

//==

// Main() equivalent

//==

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

176 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

ONEVENT EVBLEMSG CALL HndlrBleMsg

OnEvent EVNOTIFYBUF call HandlerNotifyBuf

IF OnStartup()==0 THEN

 PRINT "\nAdvertising, and Gatt Client is open\n"

ELSE

 PRINT "\nFailure OnStartup"

ENDIF

WAITEVENT

PRINT "\nExiting..."

Expected Output:

BLEGATTCWRITECMD is an extension function.

BleGattcNotifyRead

FUNCTION

A GATT Server has the ability to notify or indicate the value attribute of a characteristic when

enabled via the Client Characeristic Configuration Descriptor (CCCD). This means data arrives

from a GATT server at any time and has to be managed so that it can synchronised with the

smartBASIC runtime engine.

Data arriving via a notification does not require GATT acknowledgements, however indications

require them. This GATT client manager saves data arriving via a notification in the same ring

buffer for later extraction using the command BleGattcNotifyRead() and for indications an

automatic gatt acknowledgement is sent when the data is saved in the ring buffer. This

acknowledgment happens even if the data was discarded because the ring buffer was full. If,

however, it is required that the data NOT be acknowledged when it is discarded on a full buffer,

then set the flags parameter in the BleGattcOpen() function where the GATT client manager is

opened.

In the case when an ack is NOT sent on data discard, the GATT server is throttled and so no

further data is notified or indicated by it until BleGattNotifyRead() is called to extract data from

the ring buffer to create space and it triggers a delayed acknowledgement.

When the GATT client manager is opened using BleGattcOpen() it is possible to specify the size

of the ring buffer. If a value of 0 is supplied then a default size is created. SYSINFO(2019) in a

Advertising, and Gatt Client is open

- Connected, so write to attribute handle 3

EVNOTIFYBUF Event

- write again to attribute handle 3

EVNOTIFYBUF Event

- write again to attribute handle 3

EVNOTIFYBUF Event

write to attribute handle 300 which does not exist

Even when the attribute does not exist an event will occur

EVNOTIFYBUF Event

- Disconnected

Exiting...

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

177 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

smartBASIC application or the interactive mode command AT I 2019 returns the default size.

Likewise SYSINFO(2020) or the command AT I 2020 returns the maximum size.

Data that arrives via notifications or indications get stored in the ring buffer and at the same time

a EVATTRNOTIFY event is thrown to the smartBASIC runtime engine. This is an event, in the same

way an incoming UART receive character generates an event, that is, no data payload is

attached to the event.

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

178 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

EVATTRTOTIFY event message

This event is thrown when an notification or an indication arrives from a GATT server. The event

contains no parameters. Please note that if one notification/indication arrives or many, like in the

case of UART events, the same event mask bit is asserted. The paradigm being that the

smartBASIC application is informed that it needs to go and service the ring buffer using the

function BleGattcNotifyRead.

BLEGATTCNOTIFYREAD (connHndl, attrHndl, attrData$, discardCount)

A typical pseudo code for handling and accessing notification/indication data is as follows:-

Register a handler for the EVATTRNOTIFY event message

On EVATTRNOTIRY event

 BleGattcNotifyRead() //to actually get the data

 Process the data

Enable notifications and/or indications via CCCD descriptors

Returns
INTEGER, a result code.

Most typical value – 0x0000, indicating a successful read.

Arguments

connHndl byVal connHndl AS INTEGER

This is the connection handle as returned in the on-connect event for the

connection on which the remote GATT server can be accessed. This is

returned in the EVBLEMSG event message with msgId == 0 and msgCtx is the
connection handle.

attrHndl byVal attrHndl AS INTEGER
The handle for the attribute that is to be written to.

attrData$ byRef attrData$ AS STRING
The attribute data to write.

discardedCount byRef discardedCount AS INTEGER

On exit this should contain 0 and it signifies the total number of notifications

or indications that got discared because the ring buffer in the GATT client

manager is full.

If non-zero values are encountered, it is recommended that the ring buffer

size be increased by using BleGattcClose() when the GATT client is opened
using BleGattcOpen().

Interactive

Command
No

//Example :: BleGattcNotifyRead.sb (See in BL620CodeSnippets.zip)

//

// Server created using BleGattcTblNotifyRead.sub invoked in _OpenMcp.scr

// using Nordic Usb Dongle PC10000

//

// Charactersitic at handle 15 has notify (16==cccd)

// Charactersitic at handle 18 has indicate (19==cccd)

DIM rc,at$,conHndl,uHndl,atHndl

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

179 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

//==

// Initialise and instantiate service, characteristic, start adverts

//==

FUNCTION OnStartup()

 DIM rc, adRpt$, addr$, scRpt$

 rc=BleAdvRptInit(adRpt$, 2, 0, 10)

 IF rc==0 THEN : rc=BleScanRptInit(scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvRptsCommit(adRpt$,scRpt$) : ENDIF

 IF rc==0 THEN : rc=BleAdvertStart(0,addr$,50,0,0) : ENDIF

 //open the gatt client with default notify/indicate ring buffer size

 IF rc==0 THEN : rc = BleGattcOpen(0,0) : ENDIF

ENDFUNC rc

//==

// Close connections so that we can run another app without problems

//==

SUB CloseConnections()

 rc=BleDisconnect(conHndl)

 rc=BleAdvertStop()

ENDSUB

//==

// Ble event handler

//==

FUNCTION HndlrBleMsg(BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT "\n\n- Disconnected"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT "\n- Connected, so enable notification for char with cccd at 16"

 atHndl = 16

 at$="\01\00"

 rc=BleGattcWrite(conHndl,atHndl,at$)

 IF rc==0 THEN

 WAITEVENT

 ENDIF

 PRINT "\n- enable indication for char with cccd at 19"

 atHndl = 19

 at$="\02\00"

 rc=BleGattcWrite(conHndl,atHndl,at$)

 IF rc==0 THEN

 WAITEVENT

 ENDIF

 ENDIF

ENDFUNC 1

'//==

'//==

function HandlerAttrWrite(cHndl,aHndl,nSts) as integer

 dim nOfst,nAhndl,at$

 print "\nEVATTRWRITE "

 print " cHndl=";cHndl

 print " attrHndl=";aHndl

 print " status=";integer.h' nSts

 if nSts == 0 then

 print "\nAttribute write OK"

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

180 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 else

 print "\nFailed to write attribute"

 endif

endfunc 0

'//==

'//==

function HandlerAttrNotify() as integer

 dim chndl,aHndl,att$,dscd

 print "\nEVATTRNOTIFY Event"

 rc=BleGattcNotifyRead(cHndl,aHndl,att$,dscd)

 print "\n BleGattcNotifyRead()"

 if rc==0 then

 print " cHndl=";cHndl

 print " attrHndl=";aHndl

 print " data=";StrHexize$(att$)

 print " discarded=";dscd

 else

 print " failed with ";integer.h' rc

 endif

endfunc 1

//==

// Main() equivalent

//==

ONEVENT EVBLEMSG CALL HndlrBleMsg

OnEvent EVATTRWRITE call HandlerAttrWrite

OnEvent EVATTRNOTIFY call HandlerAttrNotify

IF OnStartup()==0 THEN

 PRINT "\nAdvertising, and Gatt Client is open\n"

ELSE

 PRINT "\nFailure OnStartup"

ENDIF

WAITEVENT

PRINT "\nExiting..."

Expected Output:

BLEGATTCNOTIFYREAD is an extension function.

Advertising, and Gatt Client is open

- Connected, so enable notification for char with cccd at 16

EVATTRWRITE cHndl=877 attrHndl=16 status=00000000

Attribute write OK

- enable indication for char with cccd at 19

EVATTRWRITE cHndl=877 attrHndl=19 status=00000000

Attribute write OK

EVATTRNOTIFY Event

 BleGattcNotifyRead() cHndl=877 attrHndl=15 data=BAADC0DE discarded=0

EVATTRNOTIFY Event

 BleGattcNotifyRead() cHndl=877 attrHndl=18 data=DEADBEEF discarded=0

EVATTRNOTIFY Event

 BleGattcNotifyRead() cHndl=877 attrHndl=15 data=BAADC0DE discarded=0

EVATTRNOTIFY Event

 BleGattcNotifyRead() cHndl=877 attrHndl=18 data=DEADBEEF discarded=0

BleGattcNotifyRead() cHndl=877 attrHndl=18 data=DEADBEEF discarded=0

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

181 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Attribute Encoding Functions

Data for characteristics are stored in Value attributes, arrays of bytes. Multibyte Characteristic

Descriptors content is stored similarly. Those bytes are manipulated in smart BASIC applications

using STRING variables.

The Bluetooth specification stipulates that multibyte data entities are stored communicated in

little endian format and so all data manipulation is done similarly. Little endian means that a

multibyte data entity is stored so that lowest significant byte is position at the lowest memory

address and likewise when transported, the lowest byte gets on the wire first.

This section describes all the encoding functions which allow those strings to be written to in

smaller bytewise subfields in a more efficient manner compared to the generic STRXXXX

functions that are made available in smart BASIC.

Note: CCCD and SCCD Descriptors are special cases; they have two bytes which are treated

as 16 bit integers. This is reflected in smartBASIC applications so that INTEGER variables

are used to manipulate those values instead of STRINGS.

BleEncode8

FUNCTION

This function overwrites a single byte in a string at a specified offset. If the string is not long

enough, then it is extended with the new extended block uninitialized and then the byte

specified is overwritten.

If the nIndex is such that the new string length exceeds the maximum attribute length, this

function fails. The maximum attribute length can be obtained using the function SYSINFO(n)

where n is 2013. The Bluetooth specification allows a length between 1 and 512.

BLEENCODE8 (attr$,nData, nIndex)

Returns
INTEGER, a result code.

Most typical value – 0x0000, indicating a successful operation.

Arguments

attr$ byRef attr$ AS STRING
This argument is the string that is written to an attribute

nData byVal nData AS INTEGER

The least significant byte of this integer is saved. The rest is ignored.

nIndex byVal nIndex AS INTEGER

This is the zero-based index into the string attr$ where the new fragment of data

is written. If the string attr$ is not long enough to accommodate the index plus

the length of the fragment, it is extended. If the extended length exceeds the
maximum allowable length of an attribute (see SYSINFO(2013)), this function fails.

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

182 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Interactive

Command
No

 //Example :: BleEncode8.sb (See in BL620CodeSnippets.zip)

 DIM rc

 DIM attr$

 attr$="Laird"

 PRINT "\nattr$=";attr$

 //Remember: - 4 bytes are used to store an integer on the BL620

 //write 'C' to index 2 -- '111' will be ignored

 rc=BleEncode8(attr$,0x11143,2)

 //write 'A' to index 0

 rc=BleEncode8(attr$,0x41,0)

 //write 'B' to index 1

 rc=BleEncode8(attr$,0x42,1)

 //write 'D' to index 3

 rc=BleEncode8(attr$,0x44,3)

 //write 'y' to index 7 -- attr$ will be extended

 rc=BleEncode8(attr$,0x67, 7)

 PRINT "\nattr$ now = ";attr$

Expected Output:

BLEENCODE8 is an extension function.

BleEncode16

FUNCTION

This function overwrites two bytes in a string at a specified offset. If the string is not long enough,

then it is extended with the new extended block uninitialized and then the bytes specified are

overwritten.

If the nIndex is such that the new string length exceeds the maximum attribute length, this

function fails. The maximum attribute length can be obtained using the function SYSINFO(n)

where n is 2013. The Bluetooth specification allows a length between 1 and 512.

BLEENCODE16 (attr$,nData, nIndex)

Returns
INTEGER, a result code.

Most typical value – 0x0000, indicating a successful operation.

Arguments

attr$ byRef attr$ AS STRING
This argument is the string that is written to an attribute.

nData byVal nData AS INTEGER

attr$=Laird

attr$ now = ABCDd\00\00g

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

183 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

The two least significant bytes of this integer is saved. The rest is ignored.

nIndex byVal nIndex AS INTEGER

This is the zero based index into the string attr$ where the new fragment of data

is written. If the string attr$ is not long enough to accommodate the index plus

the length of the fragment, it is extended. If the extended length exceeds the
maximum allowable length of an attribute (see SYSINFO(2013)), this function fails.

Interactive

Command
No

 //Example :: BleEncode16.sb (See in BL620CodeSnippets.zip)

 DIM rc, attr$

 attr$="Laird"

 PRINT "\nattr$=";attr$

 //write 'CD' to index 2

 rc=BleEncode16(attr$,0x4443,2)

 //write 'AB' to index 0 - '2222' will be ignored

 rc=BleEncode16(attr$,0x22224241,0)

 //write 'EF' to index 3

 rc=BleEncode16(attr$,0x4645,4)

 PRINT "\nattr$ now = ";attr$

Expected Output:

BLEENCODE16 is an extension function.

BleEncode24

FUNCTION

This function overwrites three bytes in a string at a specified offset. If the string is not long enough,

then it is extended with the new extended block uninitialized and then the bytes specified are

overwritten.

If the nIndex is such that the new string length exceeds the maximum attribute length, this

function fails. The maximum attribute length can be obtained using the function SYSINFO(n)

where n is 2013. The Bluetooth specification allows a length between 1 and 512.

BLEENCODE24 (attr$,nData, nIndex)

Returns
INTEGER, a result code.

Most typical value – 0x0000, indicating a successful operation.

Arguments

attr$ byRef attr$ AS STRING

This argument is the string that is written to an attribute.

nData byVal nData AS INTEGER

The three least significant bytes of this integer is saved. The rest is ignored.

attr$=Laird

attr$ now = ABCDEF

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

184 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

nIndex byVal nIndex AS INTEGER

This is the zero based index into the string attr$ where the new fragment of data

is written. If the string attr$ is not long enough to accommodate the index plus

the length of the fragment, it is extended. If the extended length exceeds the
maximum allowable length of an attribute (see SYSINFO(2013)), this function fails.

Interactive

Command
No

 //Example :: BleEncode24.sb (See in BL620CodeSnippets.zip)

 DIM rc

 DIM attr$: attr$="Laird"

 //write 'BCD' to index 1

 rc=BleEncode24(attr$,0x444342,1)

 //write 'A' to index 0

 rc=BleEncode8(attr$,0x41,0)

 //write 'EF'to index 4

 rc=BleEncode16(attr$,0x4645,4)

 PRINT "attr$=";attr$

Expected Output:

BLEENCODE24 is an extension function.

BleEncode32

FUNCTION

This function overwrites four bytes in a string at a specified offset. If the string is not long enough,

then it is extended with the new extended block uninitialized and then the bytes specified are

overwritten.

If the nIndex is such that the new string length exceeds the maximum attribute length, this

function fails. The maximum attribute length can be obtained using the function SYSINFO(n)

where n is 2013. The Bluetooth specification allows a length between 1 and 512.

BLEENCODE32(attr$,nData, nIndex)

Returns
INTEGER, a result code.

Most typical value – 0x0000, indicating a successful operation.

Arguments

attr$ byRef attr$ AS STRING
This argument is the string that is written to an attribute

nData byVal nData AS INTEGER
The four bytes of this integer is saved. The rest is ignored.

nIndex byVal nIndex AS INTEGER

This is the zero based index into the string attr$ where the new fragment of data

is written. If the string attr$ is not long enough to accommodate the index plus

the length of the fragment, it is extended. If the extended length exceeds the

attr$=ABCDEF

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

185 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

maximum allowable length of an attribute (see SYSINFO(2013)), this function fails.

Interactive

Command
No

 //Example :: BleEncode32.sb (See in BL620CodeSnippets.zip)

 DIM rc

 DIM attr$: attr$="Laird"

 //write 'BCDE' to index 1

 rc=BleEncode32(attr$,0x45444342,1)

 //write 'A' to index 0

 rc=BleEncode8(attr$,0x41,0)

 PRINT "attr$=";attr$

Expected Output:

BLEENCODE32 is an extension function.

BleEncodeFLOAT

FUNCTION

This function overwrites four bytes in a string at a specified offset. If the string is not long enough,

it is extended with the new extended block uninitialized and then the byte specified is

overwritten.

If the nIndex is such that the new string length exceeds the maximum attribute length, this

function fails. The maximum attribute length can be obtained using the function SYSINFO(n)

where n is 2013. The Bluetooth specification allows a length between 1 and 512.

BLEENCODEFLOAT (attr$, nMatissa, nExponent, nIndex)

Returns
INTEGER, a result code.

Most typical value – 0x0000, indicating a successful operation.

Arguments

attr$ byRef attr$ AS STRING

This argument is the string that is written to an attribute.

nMatissa byVal nMantissa AS INTEGER

This value must be in the range -8388600 to +8388600 or the function fails. The data

is written in little endian so that the least significant byte is at the lower memory

address. Note that the range is not +/- 2048 because after encoding the following

two byte values have special meaning:

0x07FFFFFF NaN (Not a Number)

0x08000000 NRes (Not at this resolution)

0x07FFFFFE + INFINITY

0x08000002 - INFINITY

0x08000001 Reserved for future use

nExponent byVal nExponent AS INTEGER

attr$=ABCDE

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

186 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

This value must be in the range -128 to 127 or the function fails.

nIndex byVal nIndex AS INTEGER

This is the zero based index into the string attr$ where the new fragment of data

is written. If the string attr$ is not long enough to accommodate the index plus

the length of the fragment, it is extended. If the extended length exceeds the
maximum allowable length of an attribute (see SYSINFO(2013)), this function fails.

Interactive

Command
No

 //Example :: BleEncodeFloat.sb (See in BL620CodeSnippets.zip)

 DIM rc

 DIM attr$: attr$=""

 //write 1234567 x 10^-54 as FLOAT to index 2

 PRINT BleEncodeFLOAT(attr$,123456,-54,0)

 //write 1234567 x 10^1000 as FLOAT to index 2 and it will fail

 //because the exponent is too large, it has to be < 127

 IF BleEncodeFLOAT(attr$,1234567,1000,2)!=0 THEN

 PRINT "\nFailed to encode to FLOAT"

 ENDIF

 //write 10000000 x 10^0 as FLOAT to index 2 and it will fail

 //because the mantissa is too large, it has to be < 8388600

 IF BleEncodeFLOAT(attr$,10000000,0,2)!=0 THEN

 PRINT "\nFailed to encode to FLOAT"

 ENDIF

Expected Output:

BLEENCODEFLOAT is an extension function.

BleEncodeSFLOATEX

FUNCTION

This function overwrites two bytes in a string at a specified offset as short 16 bit float value. If the

string is not long enough, it is extended with the extended block uninitialized. Then the bytes are

overwritten.

If the nIndex is such that the new string length exceeds the maximum attribute length, this

function fails. The maximum attribute length can be obtained using the function SYSINFO(n)

where n is 2013. The Bluetooth specification allows a length between 1 and 512.

BLEENCODESFLOATEX(attr$,nData, nIndex)

Returns
INTEGER, a result code.

Most typical value – 0x0000, indicating a successful operation.

Arguments

0

Failed to encode to FLOAT

Failed to encode to FLOAT

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

187 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

attr$ byRef attr$ AS STRING

This argument is the string that is written to an attribute.

nData byVal nData AS INTEGER

The 32 bit value is converted into a 2 byte IEEE-11073 16 bit SFLOAT consisting of

a 12 bit signed mantissa and a 4 bit signed exponent. This means a signed 32 bit

value always fits in such a FLOAT enitity, but there is loss in significance to 12 from
32.

nIndex byVal nIndex AS INTEGER

This is the zero based index into the string attr$ where the new fragment of data is

written. If the string attr$ is not long enough to accommodate the index plus the

length of the fragment, it is extended. If the new length exceeds the maximum

allowable length of an attribute (see SYSINFO(2013)), this function fails.

Interactive

Command
No

 //Example :: BleEncodeSFloatEx.sb (See in BL620CodeSnippets.zip)

 DIM rc, mantissa, exp

 DIM attr$: attr$=""

 //write 2,147,483,647 as SFLOAT to index 0

 rc=BleEncodeSFloatEX(attr$,2147483647,0)

 rc=BleDecodeSFloat(attr$,mantissa,exp,0)

 PRINT "\nThe number stored is ";mantissa;" x 10^";exp

Expected Output:

BLEENCODESFLOAT is an extension function.

BleEncodeSFLOAT

FUNCTION

This function overwrites two bytes in a string at a specified offset as short 16 bit float value. If the

string is not long enough, it is extended with the new block uninitialized. Then the byte specified

is overwritten.

If the nIndex is such that the new string length exceeds the maximum attribute length, this

function fails. The maximum attribute length can be obtained using the function SYSINFO(n)

where n is 2013. The Bluetooth specification allows a length between 1 and 512.

BLEENCODESFLOAT(attr$, nMatissa, nExponent, nIndex)

Returns
INTEGER, a result code.

Most typical value – 0x0000, indicating a successful operation.

Arguments

attr$ byRef attr$ AS STRING
This argument is the string that is written to an attribute.

nMatissa byVal nMantissa AS INTEGER

This value must be in the range -8388600 to +8388600 or the function fails. The data

is written in little endian so that the least significant byte is at the lower memory

The number stored is 214 x 10^7

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

188 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

address. Note that the range is not +/- 2048 because after encoding the following

two byte values have special meaning:

0x07FFFFFF NaN (Not a Number)

0x08000000 NRes (Not at this resolution)

0x07FFFFFE + INFINITY

0x08000002 - INFINITY

0x08000001 Reserved for future use

nExponent byVal n AS INTEGER

This value must be in the range -8 to 7 or the function fails.

nIndex byVal nIndex AS INTEGER

This is the zero based index into the string attr$ where the new fragment of data

is written. If the string attr$ is not long enough to accommodate the index plus

the length of the fragment, it is extended. If the new length exceeds the
maximum allowable length of an attribute (see SYSINFO(2013)), this function fails.

Interactive

Command
No

 //Example :: BleEncodeSFloat.sb (See in BL620CodeSnippets.zip)

 DIM rc

 DIM attr$: attr$=""

 SUB Encode(BYVAL mantissa, BYVAL exp)

 IF BleEncodeSFloat(attr$,mantissa,exp,2)!=0 THEN

 PRINT "\nFailed to encode to SFLOAT"

 ELSE

 PRINT "\nSuccess"

 ENDIF

 ENDSUB

 Encode(1234,-4) //1234 x 10^-4

 Encode(1234,10) //1234 x 10^10 will fail because exponent too large

 Encode(10000,0) //10000 x 10^0 will fail because mantissa too large

Expected Output:

BLEENCODESFLOAT is an extension function.

BleEncodeTIMESTAMP

FUNCTION

This function overwrites a 7 byte string into the string at a specified offset. If the string is not long

enough, it is extended with the new extended block uninitialized and then the byte specified is

overwritten.

The 7 byte string consists of a byte each for century, year, month, day, hour, minute and second.

If (year * month) is zero, it is taken as “not noted” year and all the other fields are set to zero (not

noted).

Success

Failed to encode to SFLOAT

Failed to encode to SFLOAT

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

189 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

For example, 5 May 2013 10:31:24 is represented as \14\0D\05\05\0A\1F\18

If the nIndex is such that the new string length exceeds the maximum attribute length, this

function fails. The maximum length of an attribute as implemented can be obtained using the

function SYSINFO(n) where n is 2013. The Bluetooth specification allows a length between 1 and

512.

Note: When the attr$ string variable is updated, the two byte year field is converted into a 16

bit integer. Hence \14\0D gets converted to \DD\07

BLEENCODETIMESTAMP (attr$, timestamp$, nIndex)

Returns
INTEGER, a result code.

Most typical value – 0x0000, indicating a successful operation.

Arguments

attr$ byRef attr$ AS STRING

This argument is the string that is written to an attribute.

timestamp$ byRef timestamp$ AS STRING

This is an exactly 7 byte string as described above. For example, 5 May 2013

10:31:24 is

entered \14\0D\05\05\0A\1F\18

nIndex byVal nIndex AS INTEGER

This is the zero based index into the string attr$ where the new fragment of data

is written. If the string attr$ is not long enough to accommodate the index plus

the length of the fragment it is extended. If the new length exceeds the
maximum allowable length of an attribute (see SYSINFO(2013)), this function fails.

Interactive

Command
No

 //Example :: BleEncodeTimestamp.sb (See in BL620CodeSnippets.zip)

 DIM rc, ts$

 DIM attr$: attr$=""

 //write the timestamp <5 May 2013 10:31:24>

 ts$="\14\0D\05\05\0A\1F\18"

 PRINT BleEncodeTimestamp(attr$,ts$,0)

Expected Output:

BLEENCODETIMESTAMP is an extension function.

BleEncodeSTRING

FUNCTION

This function overwrites a substring at a specified offset with data from another substring of a

string. If the destination string is not long enough, it is extended with the new block uninitialized.

Then the byte is overwritten.

0

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

190 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

If the nIndex is such that the new string length exceeds the maximum attribute length, this

function fails. The maximum length of an attribute as implemented can be obtained using the

function SYSINFO(n) where n is 2013. The Bluetooth specification allows a length between 1 and

512.

BleEncodeSTRING (attr$,nIndex1 str$, nIndex2,nLen)

Returns
INTEGER, a result code.

Most typical value – 0x0000, indicating a successful operation.

Arguments

attr$ byRef attr$ AS STRING

This argument is the string that is written to an attribute

nIndex1 byVal nIndex1 AS INTEGER

This is the zero based index into the string attr$ where the new fragment of data

is written. If the string attr$ is not long enough to accommodate the index plus

the length of the fragment it is extended. If the new length exceeds the
maximum allowable length of an attribute (see SYSINFO(2013)), this function fails.

str$ byRef str$ AS STRING

This contains the source data which is qualified by the nIndex2 and nLen
arguments that follow.

nIndex2 byVal nIndex2 AS INTEGER

This is the zero based index into the string str$ from which data is copied. No
data is copied if this is negative or greater than the string.

nLen byVal nLen AS INTEGER

This species the number of bytes from offset nIndex2 to be copied into the
destination string. It is clipped to the number of bytes left to copy after the index.

Interactive

Command
No

 //Example :: BleEncodeString.sb (See in BL620CodeSnippets.zip)
 DIM rc, attr$, ts$: ts$="Hello World"

 //write "Wor" from "Hello World" to the attribute at index 2

 rc=BleEncodeString(attr$,2,ts$,6,3)

 PRINT attr$

Expected Output:

BLEENCODESTRING is an extension function.

BleEncodeBITS

FUNCTION

This function overwrites some bits of a string at a specified bit offset with data from an integer

which is treated as a bit array of length 32. If the destination string is not long enough, it is

extended with the new extended block uninitialized. Then the bits specified are overwritten.

If the nIndex is such that the new string length exceeds the maximum attribute length, this

function fails. The maximum length of an attribute as implemented can be obtained using the

\00\00Wor

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

191 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

function SYSINFO(n) where n is 2013. The Bluetooth specification allows a length between 1 and

512; hence the (nDstIdx + nBitLen) cannot be greater than the max attribute length times 8.

BleEncodeBITS (attr$,nDstIdx, srcBitArr , nSrcIdx, nBitLen)

Returns
INTEGER, a result code.

Most typical value – 0x0000, indicating a successful operation.

Arguments

attr$ byRef attr$ AS STRING

This is the string written to an attribute. It is treated as a bit array.

nDstIdx byVal nDstIdx AS INTEGER

This is the zero based bit index into the string attr$, treated as a bit array, where

the new fragment of data bits is written. If the string attr$ is not long enough to

accommodate the index plus the length of the fragment it is extended. If the

new length exceeds the maximum allowable length of an attribute (see
SYSINFO(2013)), this function fails.

srcBitArr byVal srcBitArr AS INTEGER

This contains the source data bits which is qualified by the nSrcIdx and nBitLen
arguments that follow.

nSrcIdx byVal nSrcIdx AS INTEGER

This is the zero based bit index into the bit array contained in srcBitArr from where

the data bits are copied. No data is copied if this index is negative or greater
than 32.

nBitLen byVal nBitLen AS INTEGER

This species the number of bits from offset nSrcIdx to be copied into the

destination bit array represented by the string attr$. It is clipped to the number of
bits left to copy after the index nSrcIdx.

Interactive

Command
No

 //Example :: BleEncodeBits.sb (See in BL620CodeSnippets.zip)

 DIM attr$, rc, bA: bA=b'1110100001111

 rc=BleEncodeBits(attr$,20,bA,7,5) : PRINT attr$ //copy 5 bits from index 7 to attr$

Expected Output:

BLEENCODEBITS is an extension function.

Attribute Decoding Functions

Data in a characteristic is stored in a Value attribute, a byte array. Multibyte Characteristic

Descriptors content are stored similarly. Those bytes are manipulated in smartBASIC applications

using STRING variables.

Attibute data is stored in little endian format.

This section describes decoding functions that allow attribute strings to be read from smaller

bytewise subfields more efficiently than the generic STRXXXX functions that are made available

in smart BASIC.

\00\00\A0\01

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

192 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Note: CCCD and SCCD descriptors are special cases as they are defined as having just

two bytes which are treated as 16 bit integers mapped to INTEGER variables in

smartBASIC.

BleDecodeS8

FUNCTION

This function reads a single byte in a string at a specified offset into a 32bit integer variable with

sign extension. If the offset points beyond the end of the string then this function fails and returns

zero.

BLEDECODES8 (attr$,nData, nIndex)

Returns

INTEGER, the number of bytes extracted from the attribute string. Can be less

than the size expected if the nIndex parameter is positioned towards the end of
the string.

Arguments

attr$ byRef attr$ AS STRING

This references the attribute string from which the function reads.

nData byRef nData AS INTEGER

This references an integer to be updated with the 8 bit data from attr$, after sign
extension.

nIndex byVal nIndex AS INTEGER

This is the zero based index into the string attr$ from which the data is read. If the

string attr$ is not long enough to accommodate the index plus the number of
bytes to read, this function fails.

Interactive

Command
No

 //Example :: BleDecodeS8.sb (See in BL620CodeSnippets.zip)

 DIM chrHandle,v1,svcHandle,rc

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc)

 DIM attr$: attr$="\00\01\02\03\04\85\86\87\88\89"

 DIM uuid : uuid = 0x1853

 //create random service just for this example

 rc=BleSvcCommit(1, BleHandleUuid16(uuid),svcHandle)

 //create char and commit as part of service commited above

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0)

 rc=BleCharCommit(svcHandle,attr$,chrHandle)

 rc=BleCharValueRead(chrHandle,attr$)

 //read signed byte from index 2

 rc=BleDecodeS8(attr$,v1,2)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

 //read signed byte from index 6 - two's complement of -122

 rc=BleDecodeS8(attr$,v1,6)

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

193 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

Expected Output:

BLEDECODES8 is an extension function.

BleDecodeU8

FUNCTION

This function reads a single byte in a string at a specified offset into a 32bit integer variable

without sign extension. If the offset points beyond the end of the string, this function fails.

BLEDECODEU8 (attr$,nData, nIndex)

Returns

INTEGER, the number of bytes extracted from the attribute string. Can be less

than the size expected if the nIndex parameter is positioned towards the end of
the string.

Arguments

attr$ byRef attr$ AS STRING

This references the attribute string from which the function reads.

nData byRef nData AS INTEGER

This references an integer to be updated with the 8 bit data from attr$, without
sign extension.

nIndex byVal nIndex AS INTEGER

This is the zero based index into the string attr$ from which data is read. If the string

attr$ is not long enough to accommodate the index plus the number of bytes to

read, this function fails.

Interactive

Command
No

//Example :: BleDecodeU8.sb (See in BL620CodeSnippets.zip)

 DIM chrHandle,v1,svcHandle,rc

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc)

 DIM attr$: attr$="\00\01\02\03\04\85\86\87\88\89"

 DIM uuid : uuid = 0x1853

 rc=BleSvcCommit(1, BleHandleUuid16(uuid),svcHandle)

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0)

 rc=BleCharCommit(svcHandle,attr$,chrHandle)

 rc=BleCharValueRead(chrHandle,attr$)

 //read unsigned byte from index 2

 rc=BleDecodeU8(attr$,v1,2)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

data in Hex = 0x00000002

data in Decimal = 2

data in Hex = 0xFFFFFF86

data in Decimal = -122

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

194 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 //read unsigned byte from index 6

 rc=BleDecodeU8(attr$,v1,6)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

Expected Output:

BLEDECODEU8 is an extension function.

BleDecodeS16

FUNCTION

This function reads two bytes in a string at a specified offset into a 32bit integer variable with sign

extension. If the offset points beyond the end of the string then this function fails.

BLEDECODES16 (attr$,nData, nIndex)

Returns

INTEGER, the number of bytes extracted from the attribute string. Can be less

than the size expected if the nIndex parameter is positioned towards the end of
the string.

Arguments

attr$ byRef attr$ AS STRING
This references the attribute string from which the function reads.

nData byRef nData AS INTEGER

This references an integer to be updated with the two byte data from attr$,
after sign extension.

nIndex byVal nIndex AS INTEGER

This is the zero based index into the string attr$ from which data is read. If the

string attr$ is not long enough to accommodate the index plus the number of
bytes to read, this function fails.

Interactive

Command
No

 //Example :: BleDecodeS16.sb (See in BL620CodeSnippets.zip)

 DIM chrHandle,v1,svcHandle,rc

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc)

 DIM attr$: attr$="\00\01\02\03\04\85\86\87\88\89"

 DIM uuid : uuid = 0x1853

 rc=BleSvcCommit(1, BleHandleUuid16(uuid),svcHandle)

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0)

 rc=BleCharCommit(svcHandle,attr$,chrHandle)

 rc=BleCharValueRead(chrHandle,attr$)

 //read 2 signed bytes from index 2

data in Hex = 0x00000002

data in Decimal = 2

data in Hex = 0x00000086

data in Decimal = 134

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

195 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 rc=BleDecodeS16(attr$,v1,2)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

 //read 2 signed bytes from index 6

 rc=BleDecodeS16(attr$,v1,6)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

Expected Output:

BLEDECODES16 is an extension function.

BleDecodeU16

This function reads two bytes from a string at a specified offset into a 32bit integer variable

without sign extension. If the offset points beyond the end of the string then this function fails.

BLEDECODEU16 (attr$,nData, nIndex)

FUNCTION

Returns

INTEGER, the number of bytes extracted from the attribute string. Can be less

than the size expected if the nIndex parameter is positioned towards the end of
the string.

Arguments

attr$ byRef attr$ AS STRING
This references the attribute string from which the function reads.

nData byRef nData AS INTEGER

This references an integer to be updated with the 2 byte data from attr$,
without sign extension.

nIndex byVal nIndex AS INTEGER

This is the zero based index into the string attr$ from which data is read. If the

string attr$ is not long enough to accommodate the index plus the number of
bytes to read, this function fails.

Interactive

Command
No

 //Example :: BleDecodeU16.sb (See in BL620CodeSnippets.zip)

 DIM chrHandle,v1,svcHandle,rc

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc)

 DIM attr$: attr$="\00\01\02\03\04\85\86\87\88\89"

 DIM uuid : uuid = 0x1853

 rc=BleSvcCommit(1, BleHandleUuid16(uuid),svcHandle)

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0)

 rc=BleCharCommit(svcHandle,attr$,chrHandle)

data in Hex = 0x00000302

data in Decimal = 770

data in Hex = 0xFFFF8786

data in Decimal = -30842

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

196 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 rc=BleCharValueRead(chrHandle,attr$)

 //read 2 unsigned bytes from index 2

 rc=BleDecodeU16(attr$,v1,2)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

 //read 2 unsigned bytes from index 6

 rc=BleDecodeU16(attr$,v1,6)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

Expected Output:

BLEDECODEU16 is an extension function.

BleDecodeS24

FUNCTION

This function reads three bytes in a string at a specified offset into a 32bit integer variable with

sign extension. If the offset points beyond the end of the string, this function fails.

BLEDECODES24 (attr$,nData, nIndex)

Returns

INTEGER, the number of bytes extracted from the attribute string. Can be less

than the size expected if the nIndex parameter is positioned towards the end of
the string.

Arguments

attr$ byRef attr$ AS STRING

This references the attribute string from which the function reads.

nData byRef nData AS INTEGER

This references an integer to be updated with the 3 byte data from attr$, with
sign extension.

nIndex byVal nIndex AS INTEGER

This is the zero based index into the string attr$ from which data is read. If the

string attr$ is not long enough to accommodate the index plus the number of
bytes to read, this function fails.

Interactive

Command
No

 //Example :: BleDecodeS24.sb (See in BL620CodeSnippets.zip)

 DIM chrHandle,v1,svcHandle,rc

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc)

 DIM attr$: attr$="\00\01\02\03\04\85\86\87\88\89"

 DIM uuid : uuid = 0x1853

data in Hex = 0x00000302

data in Decimal = 770

data in Hex = 0x00008786

data in Decimal = 34694

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

197 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 rc=BleSvcCommit(1, BleHandleUuid16(uuid),svcHandle)

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0)

 rc=BleCharCommit(svcHandle,attr$,chrHandle)

 rc=BleCharValueRead(chrHandle,attr$)

 //read 3 signed bytes from index 2

 rc=BleDecodeS24(attr$,v1,2)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

 //read 3 signed bytes from index 6

 rc=BleDecodeS24(attr$,v1,6)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

Expected Output:

BLEDECODES24 is an extension function.

BleDecodeU24

FUNCTION

This function reads three bytes from a string at a specified offset into a 32 bit integer variable

without sign extension. If the offset points beyond the end of the string then this function fails.

BLEDECODEU24 (attr$,nData, nIndex)

Returns

INTEGER, the number of bytes extracted from the attribute string. Can be less

than the size expected if the nIndex parameter is positioned towards the end of
the string.

Arguments

attr$ byRef attr$ AS STRING
This references the attribute string from which the function reads.

nData byRef nData AS INTEGER

This references an integer to be updated with the 3 byte data from attr$,
without sign extension.

nIndex byVal nIndex AS INTEGER

This is the zero based index into the string attr$ from which data is read. If the

string attr$ is not long enough to accommodate the index plus the number of
bytes to read, this function fails.

Interactive

Command
No

 //Example :: BleDecodeU24.sb (See in BL620CodeSnippets.zip)

data in Hex = 0x00040302

data in Decimal = 262914

data in Hex = 0xFF888786

data in Decimal = -7829626

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

198 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 DIM chrHandle,v1,svcHandle,rc

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc)

 DIM attr$: attr$="\00\01\02\03\04\85\86\87\88\89"

 DIM uuid : uuid = 0x1853

 rc=BleSvcCommit(1, BleHandleUuid16(uuid),svcHandle)

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0)

 rc=BleCharCommit(svcHandle,attr$,chrHandle)

 rc=BleCharValueRead(chrHandle,attr$)

 //read 3 unsigned bytes from index 2

 rc=BleDecodeU24(attr$,v1,2)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

 //read 3 unsigned bytes from index 6

 rc=BleDecodeU24(attr$,v1,6)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

Expected Output:

BLEDECODEU24 is an extension function.

BleDecode32

FUNCTION

This function reads four bytes in a string at a specified offset into a 32 bit integer variable. If the

offset points beyond the end of the string, this function fails.

BLEDECODE32 (attr$,nData, nIndex)

Returns

I INTEGER, the number of bytes extracted from the attribute string. Can be less

than the size expected if the nIndex parameter is positioned towards the end of

the string.

Arguments

attr$ byRef attr$ AS STRING

This references the attribute string from which the function reads.

nData byRef nData AS INTEGER

This references an integer to be updated with the 3 byte data from attr$, after

sign extension.

nIndex byVal nIndex AS INTEGER

This is the zero based index into the string attr$ from which data is read. If the

string attr$ is not long enough to accommodate the index plus the number of

bytes to read, this function fails.

Interactive

Command
No

data in Hex = 0x00040302

data in Decimal = 262914

data in Hex = 0x00888786

data in Decimal = 8947590

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

199 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 //Example :: BleDecode32.sb (See in BL620CodeSnippets.zip)

 DIM chrHandle,v1,svcHandle,rc

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc)

 DIM attr$: attr$="\00\01\02\03\04\85\86\87\88\89"

 DIM uuid : uuid = 0x1853

 rc=BleSvcCommit(1, BleHandleUuid16(uuid),svcHandle)

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0)

 rc=BleCharCommit(svcHandle,attr$,chrHandle)

 rc=BleCharValueRead(chrHandle,attr$)

 //read 4 signed bytes from index 2

 rc=BleDecode32(attr$,v1,2)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

 //read 4 signed bytes from index 6

 rc=BleDecode32(attr$,v1,6)

 PRINT "\ndata in Hex = 0x"; INTEGER.H'v1

 PRINT "\ndata in Decimal = "; v1;"\n"

Expected Output:

BLEDECODE32 is an extension function.

BleDecodeFLOAT

FUNCTION

This function reads four bytes in a string at a specified offset into a couple of 32 bit integer

variables. The decoding results in two variables, the 24 bit signed mantissa and the 8 bit signed

exponent. If the offset points beyond the end of the string, this function fails.

BLEDECODEFLOAT (attr$, nMatissa, nExponent, nIndex)

Returns

INTEGER, the number of bytes extracted from the attribute string. Can be less

than the size expected if the nIndex parameter is positioned towards the end of
the string.

Arguments

attr$ byRef attr$ AS STRING

This references the attribute string from which the function reads.

nMatissa byRef nMantissa AS INTEGER

This is updated with the 24 bit mantissa from the 4 byte object.

If nExponent is 0, you MUST check for the following special values:

0x07FFFFFF NaN (Not a Number)

0x08000000 NRes (Not at this resolution)

data in Hex = 0x85040302

data in Decimal = -2063334654

data in Hex = 0x89888786

data in Decimal = -1987541114

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

200 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

0x07FFFFFE + INFINITY

0x08000002 - INFINITY

0x08000001 Reserved for future use

nExponent byRef nExponent AS INTEGER

This is updated with the 8 bit mantissa. If it is zero, check nMantissa for special
cases as stated above.

nIndex byVal nIndex AS INTEGER

This is the zero based index into the string attr$ from which data is read. If the

string attr$ is not long enough to accommodate the index plus the number of
bytes to read, this function fails.

Interactive

Command
No

 //Example :: BleDecodeFloat.sb (See in BL620CodeSnippets.zip)

 DIM chrHandle,v1,svcHandle,rc, mantissa, exp

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc)

 DIM attr$: attr$="\00\01\02\03\04\85\86\87\88\89"

 DIM uuid : uuid = 0x1853

 rc=BleSvcCommit(1, BleHandleUuid16(uuid),svcHandle)

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0)

 rc=BleCharCommit(svcHandle,attr$,chrHandle)

 rc=BleCharValueRead(chrHandle,attr$)

 //read 4 bytes FLOAT from index 2 in the string

 rc=BleDecodeFloat(attr$,mantissa,exp,2)

 PRINT "\nThe number read is ";mantissa;" x 10^";exp

 //read 4 bytes FLOAT from index 6 in the string

 rc=BleDecodeFloat(attr$,mantissa,exp,6)

 PRINT "\nThe number read is ";mantissa;"x 10^";exp

Expected Output:

BLEDECODEFLOAT is an extension function.

BleDecodeSFLOAT

FUNCTION

This function reads two bytes in a string at a specified offset into a couple of 32bit integer

variables. The decoding results in two variables, the 12 bit signed maintissa and the 4 bit signed

exponent. If the offset points beyond the end of the string then this function fails.

BLEDECODESFLOAT (attr$, nMatissa, nExponent, nIndex)

Returns
INTEGER, the number of bytes extracted from the attribute string. Can be less

than the size expected if the nIndex parameter is positioned towards the end of

The number read is 262914*10^-123

The number read is -7829626*10^-119

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

201 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

the string.

Arguments

attr$ byRef attr$ AS STRING

This references the attribute string from which the function reads.

nMatissa byRef nMantissa AS INTEGER

This is updated with the 12 bit mantissa from the 2 byte object.

If nExponent is 0, you MUST check for the following special values:

0x07FFFFFF NaN (Not a Number)

0x08000000 NRes (Not at this resolution)

0x07FFFFFE + INFINITY

0x08000002 - INFINITY

0x08000001 Reserved for future use

nExponent byRef nExponent AS INTEGER

This is updated with the 4 bit mantissa. If it is zero, check the nMantissa for
special cases as stated above.

nIndex byVal nIndex AS INTEGER

This is the zero based index into the string attr$ from which data is read. If the

string attr$ is not long enough to accommodate the index plus the number of
bytes to read, this function fails.

Interactive

Command
No

 //Example :: BleDecodeSFloat.sb (See in BL620CodeSnippets.zip)

 DIM chrHandle,v1,svcHandle,rc, mantissa, exp

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc)

 DIM attr$: attr$="\00\01\02\03\04\85\86\87\88\89"

 DIM uuid : uuid = 0x1853

 rc=BleSvcCommit(1, BleHandleUuid16(uuid),svcHandle)

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0)

 rc=BleCharCommit(svcHandle,attr$,chrHandle)

 rc=BleCharValueRead(chrHandle,attr$)

 //read 2 bytes FLOAT from index 2 in the string

 rc=BleDecodeSFloat(attr$,mantissa,exp,2)

 PRINT "\nThe number read is ";mantissa;" x 10^";exp

 //read 2 bytes FLOAT from index 6 in the string

 rc=BleDecodeSFloat(attr$,mantissa,exp,6)

 PRINT "\nThe number read is ";mantissa;"x 10^";exp

Expected Output:

BLEDECODESFLOAT is an extension function.

BleDecodeTIMESTAMP

The number read is 770 x 10^0

The number read is 1926x 10^-8

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

202 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

FUNCTION

This function reads seven bytes from string an offset into an attribute string. If the offset plus seven

bytes points beyond the end of the string then this function fails.

The seven byte string consists of a byte each for century, year, month, day, hour, minute and

second. If (year * month) is zero, it is taken as “not noted” year and all the other fields are set to

zero (not noted).

For example 5 May 2013 10:31:24 is represented in the source as \DD\07\05\05\0A\1F\18 and

the year is translated into a century and year so that the destination string is

\14\0D\05\05\0A\1F\18.

BLEDECODETIMESTAMP (attr$, timestamp$, nIndex)

Returns

INTEGER, the number of bytes extracted from the attribute string. Can be less

than the size expected if the nIndex parameter is positioned towards the end of
the string.

Arguments

attr$ byRef attr$ AS STRING
This references the attribute string from which the function reads.

timestamp$ byRef timestamp$ AS STRING

On exit this is an exact 7 byte string as described above. For example 5 May

2013 10:31:24 is stored as \14\0D\05\05\0A\1F\18.

nIndex byVal nIndex AS INTEGER

This is the zero based index into the string attr$ from which data is read. If the

string attr$ is not long enough to accommodate the index plus the number of
bytes to read, this function fails.

Interactive

Command
No

 //Example :: BleDecodeTimestamp.sb (See in BL620CodeSnippets.zip)

 DIM chrHandle,v1,svcHandle,rc, ts$

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc)

 //5th May 2013, 10:31:24

 DIM attr$: attr$="\00\01\02\DD\07\05\05\0A\1F\18"

 DIM uuid : uuid = 0x1853

 rc=BleSvcCommit(1, BleHandleUuid16(uuid),svcHandle)

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0)

 rc=BleCharCommit(svcHandle,attr$,chrHandle)

 rc=BleCharValueRead(chrHandle,attr$)

 //read 7 byte timestamp from the index 3 in the string

 rc=BleDecodeTimestamp(attr$,ts$,3)

 PRINT "\nTimestamp = "; StrHexize$(ts$)

Expected Output:

BLEENCODETIMESTAMP is an extension function.

Timestamp = 140D05050A1F18

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

203 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

BleDecodeSTRING

FUNCTION

This function reads a maximum number of bytes from an attribute string at a specified offset into

a destination string. This function doesn’t fail because the output string can take truncated

strings.

BLEDECODESTRING (attr$, nIndex, dst$, nMaxBytes)

Returns

INTEGER, the number of bytes extracted from the attribute string. Can be less

than the size expected if the nIndex parameter is positioned towards the end of
the string.

Arguments

attr$ byRef attr$ AS STRING

This references the attribute string from which the function reads.

nIndex byVal nIndex AS INTEGER

This is the zero based index into string attr$ from which data is read.

dst$ byRef dst$ AS STRING

This argument is a reference to a string that is updated with up to nMaxBytes of

data from the index specified. A shorter string is returned if there are not enough
bytes beyond the index.

nMaxBytes byVal nMaxBytes AS INTEGER
This specifies the maximum number of bytes to read from attr$.

Interactive

Command
No

 //Example :: BleDecodeString.sb (See in BL620CodeSnippets.zip)

 DIM chrHandle,v1,svcHandle,rc, ts$,decStr$

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc)

 //"ABCDEFGHIJ"

 DIM attr$: attr$="41\42\43\44\45\46\47\48\49\4A"

 DIM uuid : uuid = 0x1853

 rc=BleSvcCommit(1, BleHandleUuid16(uuid),svcHandle)

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0)

 rc=BleCharCommit(svcHandle,attr$,chrHandle)

 rc=BleCharValueRead(chrHandle,attr$)

 //read max 4 bytes from index 3 in the string

 rc=BleDecodeSTRING(attr$,3,decStr$,4)

 PRINT "\nd$=";decStr$

 //read max 20 bytes from index 3 in the string - will be truncated

 rc=BleDecodeSTRING(attr$,3,decStr$,20)

 PRINT "\nd$=";decStr$

 //read max 4 bytes from index 14 in the string - nothing at index 14

 rc=BleDecodeSTRING(attr$,14,decStr$,4)

 PRINT "\nd$=";decStr$

Expected Output:

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

204 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

BLEDECODESTRING is an extension function.

BleDecodeBITS

FUNCTION

This function reads bits from an attribute string at a specified offset (treated as a bit array) into a

destination integer object (treated as a bit array of fixed size of 32). This implies a maximum of 32

bits can be read. This function doesn’t fail because the output bit array can take truncated bit

blocks.

BLEDECODEBITS (attr$, nSrcIdx, dstBitArr, nDstIdx,nMaxBits)

Returns

INTEGER, the number of bits extracted from the attribute string. Can be less than

the size expected if the nSrcIdx parameter is positioned towards the end of the
source string or if nDstIdx will not allow more to be copied.

Arguments

attr$ byRef attr$ AS STRING

This references the attribute string from which to read, treated as a bit array.

Hence a string of 10 bytes will be an array of 80 bits.

nSrcIdx byVal nSrcIdx AS INTEGER

This is the zero based bit index into the string attr$ from which data is read. For
example: the third bit in the second byte is index number 10.

dstBitArr byRef dstBitArr AS INTEGER

This argument references an integer treated as an array of 32 bits into which data

is copied.

Only the written bits are modified.

nDstIdx byVal nDstIdx AS INTEGER

This is the zero based bit index into the bit array dstBitArr where the data is
written to.

nMaxBits byVal nMaxBits AS INTEGER

This argument specifies the maximum number of bits to read from attr$. Due to

the destination being an integer variable, it cannot be greater than 32.
Negative values are treated as zero.

Interactive

Command
No

 //Example :: BleDecodeBits.sb (See in BL620CodeSnippets.zip)

 DIM chrHandle,v1,svcHandle,rc, ts$,decStr$

 DIM ba : ba=0

 DIM mdVal : mdVal = BleAttrMetadata(1,1,50,0,rc)

 //"ABCDEFGHIJ"

 DIM attr$: attr$="41\42\43\44\45\46\47\48\49\4A"

 DIM uuid : uuid = 0x1853

 rc=BleSvcCommit(1, BleHandleUuid16(uuid),svcHandle)

 rc=BleCharNew(0x07,BleHandleUuid16(0x2A1C),mdVal,0,0)

 rc=BleCharCommit(svcHandle,attr$,chrHandle)

d$=CDEF

d$=CDEFGHIJ

d$=

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

205 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 rc=BleCharValueRead(chrHandle,attr$)

 //read max 14 bits from index 20 in the string to index 10

 rc=BleDecodeBITS(attr$,20,ba,10,14)

 PRINT "\nbit array = ", INTEGER.B' ba

 //read max 14 bits from index 20 in the string to index 10

 ba=0x12345678

 PRINT "\n\nbit array = ",INTEGER.B' ba

 rc=BleDecodeBITS(attr$,14000,ba,0,14)

 PRINT "\nbit array now = ", INTEGER.B' ba

 //ba will not have been modified because index 14000

 //doesn't exist in attr$

Expected Output:

BLEDECODEBITS is an extension function.

Pairing/Bonding Functions

This section describes all functions related to the pairing and bonding manager which manages

trusted devices. The database stores information like the address of the trusted device along

with the security keys. At the time of writing this manual a maximum of 16 devices can be stored

in the database and the command AT I 2012 or at runtime SYSINFO(2012) returns the maximum

number of devices that can be saved in the database

The type of information that can be stored for a trusted device is:

 The MAC address of the trusted device (and it will be the non-resolvable address if the

connection was originally established by the central device using its resolvable key – like iOS

devices).

 A 16 byte key, eDIV and eRAND for the long term key, called LTK. Up to 2 instances of this

LTK can be stored. One which is supplied by the central device and the other is the one

supplied by the peripheral. This means in a connection, the device will check which role

(peripheral or central) it is connected as and pick the appropriate key for subsequent

encryption requests. For example, the BL600 is aleays a peripheral device so it will not store

the key supplied by the central device after a bonding. This means in BL600 when invoking

the function BleBondingIsTrusted() the parameter ‘fAsCentral’ must be set to non-zero.

 The size of the long term key.

 A flag to indictate if the LTK is authenticated – Man-In-The-Middle (MITM) protection.

 A 16 byte Indentity Resolving Key (IRK).

 A 16 byte Connection Signature Resolving Key (CSRK)

Bonding Table Types: Rolling & Persist

bit array = 00000000000100001101000000000000

bit array = 00010010001101000101011001111000

bit array now = 00010010001101000101011001111000

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

206 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

The bonding database contains two tables of bonds where both tables have the same structure

in terms of what each record can store and from a BLE perspective are equal in meaning.

For the purpose of clarity both in this manual and in smartBASIC, one table is called the ‘Rolling’

table and the other is called ‘Persist’ table.

When a new bonding occurs the information is ALWAYS guaranteed to be saved in the ‘Rolling’

table, and if it is full, then the oldest ‘Rolling’ bond is automatically deleted to make space for

the new one.

The ‘Persist’ table can only be populated by transferring a bond from the ‘Rolling’ table using

the function BleBondingPersistKey.

Use the function BleBondingEraseKey to delete a key and the function will look for it in both

tables and when found delete it. There is no need to know which table it belongs to when

deleting. The database manager ensures there is only one instance of a bond and so a device

cannot occur in both.

The total number of bonds in the ‘Rolling’ and ‘Persist’ tables will always be less than or equal to

the capacity of the database which is returned as explained above using AT I 2012 or

SYSINFO(2012).

The number of ‘Rolling’ or ‘Persist’ bonds (or maximum capacity) at any time can be obtained

by calling the function BleBondingStats. The ‘Persist’ total is the difference between the ‘total’

and ‘rolling’ variables returned by that routine.

At any time, the capacity of the ‘Rolling’ table is the difference between the absolute total

capacity and the number of bonds in the ‘Persist’ table. See the function BleBondingStats which

returns information that can be used to determine this.

Bonds in the ‘Rolling’ table can be transferred to ‘Persist’ unless the ‘Persist’ table is full. The

capacity of the ‘Persist’ table is returned by AT I 2043 or SYSINFO(2043) and at the time of writing

this manual it is 12, which corresponds to 75% of the total capacity.

If a bond exists and it happens to be in the ‘Persist’ table and new bonding provides new

information then the record is updated.

If a bond exists and it happens to be in the ‘Rolling’ table and new bonding provides new

information then the record is updated and in addition, the age list is updated to that the

device is marked the ‘youngest’ in the age list.

It is expected that a smartBASIC application wanting to manage trusted device will use a

combination of the functions :- BleBondMngrGetInfo, BleBondingIsTrusted, BleBondingPersistKey

and BleBondingEraseKey.

Whisper Mode Pairing

BLE provides for simple secure pairing with or without man-in-the-middle attack protection. To

enhance security while a pairing is in progress the specification has provided for Out-of-Band

pairing where the shared secret information is exchanged by means other than the Bluetooth

connection. That mode of pairing is currently not exposed.

Laird have provided an additional mechanism for bonding using the standard inbuilt simple

secure pairing which is called Whisper Mode pairing. In this mode, when a pairing is detected to

be in progress, the transmit power is automatically reduced so that the ‘bubble’ of influence is

reduced and thus a proximity based enhanced security is achieved.

To take advantage of this pairing mechanism, use the function BleTxPwrWhilePairing() to reduce

the transmit power for the short duration that the pairing is in progress.

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

207 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Tests have shown that setting a power of -55 using BleTxPwrWhilePairing() will create a ‘bubble’

of about 30cm radius, outside which pairing will not succeed. This will be reduced even further if

the BL600 module is in a case which affects radio transmissions.

BleBondingStats

FUNCTION

This function retrieves statistics of the bonding manager which consists of the total capacity as

the return value and the rolling and total bonds via the arguments. By implication, the number of

persistent bonds is the difference between nTotal and nRolling.

BLEBONDINGSTATS (nRolling, nTotal)

Returns INTEGER; The maximum capacity of the bonding manager

Arguments

nRolling
byRef nRolling AS INTEGER

On exit this will contain the number of rolling bonds in the database.

nTotal
byRef nTotal AS INTEGER

On exit this will contain the total number of bonds in the database.

Interactive

Command
No

 //Example

 DIM rolling, capacity, total

 capacity = BleBondingStats(rolling,total)

 PRINT "\nCapacity :";capacity

 PRINT "\nRolling :";rolling

 PRINT "\nTotal :";total

Expected Output:

BLEBONDINGSTATS is an extension function.

BleBondingEraseKey

FUNCTION

This function is used to erase the bonding information for a device identified by a Bluetooth

address.

If the device does not exist in the database, the function will return a success result code.

BLEBONDINGERASEKEY (addr$)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Capacity : 16

Rolling : 2

Total : 5

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

208 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Arguments

addr$
byRef addr$ AS STRING

This is the address of the device for which the bonding information is to be erased

Interactive

Command
No

 //Example

 DIM rc, addr$

 addr$=”\00\00\16\A4\12\34\56”

 rc = BleBondingEraseKey(addr$)

BLEBONDINGERASEKey is an extension function.

BleBondingEraseAll

FUNCTION

This function deletes the entire trusted device database. Other values of the parameter are

reserved for future use.

Note: In Interactive Mode, the command AT+BTD* can also be used to delete the

database.

BLEBONDMNGRERASEALL ()

Arguments : None

Interactive

Command
No

 //Example :: BleBondMngrErase.sb (See in BL600CodeSnippets.zip)

 DIM rc

 rc=BleBondMngrErase()

BLEBONDINGERASEALL is an extension function.

BleBondMngrErase

This subroutine has been deprecated and remains for old apps. New apps should use the

function BleBondingEraseAll.

BleBondingPersistKey

FUNCTION

This function is used to mark a device in the bonding manager as persistent which means it is not

automatically deleted if there is no space to store a new bonding. This device can only be

delated using BleBondingEraseAll() ot BleBondingEraseKey().

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

209 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

BLEBONDINGPERSISTKEY (addr$)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

addr$

byRef addr$ AS STRING

This is the address of the device for which the bonding information is to be

marked as presistent

Interactive

Command
No

 //Example

 DIM rc, addr$

 addr$=”\00\00\16\A4\12\34\56”

 rc = BleBondingPersistKey(addr$)

BLEBONDINGPERISTKEY is an extension function.

BleBondingIsTrusted

FUNCTION

This function is used to check if a device identified by the address is a trusted device which

means it exists in the bonding database.

BLEBONDINGISTRUSTED (addr$, fAsCentral, keyInfo, rollingAge, rollingCount)

Returns INTEGER: Is 0 if not trusted, otherwise it is the length of the long term key (LTK)

Arguments

addr$
byRef addr$ AS STRING

This is the address of the device for which the bonding information is to be checked.

fAsCentral

Set to 0 if the device is to be trusted as a peripheral and non-zero if to be trusted

as central. In the BL600 module which is always a peripheral device, supply 1 for

this parameter.

keyInfo

This is a bit mask with bit meanings as follows:

This specifies the write rights and shall have one of the following values:

Bit 0 Set if MITM is authenticated

Bit 1
Set if it is a rolling bond and can be automatically deleted if the

database is full and a new bonding occurs

Bit 2 Set if an IRK (identity resolving key) exists

Bit 3 Set if a CSRK (connection signing resolving key) exists

Bit 4 Set if LTK as slave exists

Bit 5 Set if LTK as master exists

rollingAge

If the value is <= 0 then this is not a rolling device

1 implies it is the newest bond

2 implies it is the second newest bond etc

rollingCount
On exit this will contain the total number of rolling bonds. Which give a a sense

of how old this device is compared to other bonds in the rolling group.

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

210 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Interactive

Command
No

 //Example

 DIM rc, addr$

 addr$=”\00\00\16\A4\12\34\56”

 rc = BleBondingPersistKey(addr$)

BLEBONDINGISTRUSTED is an extension function.

BleBondMngrGetInfo

FUNCTION

This function retrieves the MAC address and other information from the trusted device database

via an index.

Note: Do not rely on a device in the database mapping to a static index. New bondings

change the position in the database.

BLEBONDMNGRGETINFO (nIndex, addr$, nExtraInfo)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

nIndex
byVal nIndex AS INTEGER

This is an index in the range 0 to 1, less than the value returned by SYSINFO(2012).

addr$

byRef addr$ AS STRING

On exit ,if nIndex points to a valid entry in the database, this variable contains a

MAC address exactly seven bytes long. The first byte identifies public or private

random address. The next six bytes are the address.

nExtraInfo

byRef nExtraInfo AS INTEGER

On exit if nIndex points to a valid entry in the database, this variable contains a
bitmask where the bits indicate as follows:

Bit 0.. 15 Opaque value and no meaning is to be attached to this

Bit 16 Set if the IRK (identity resolving key) exists

Bit 17 Set if the CSRK (Connection signing resolution key) exists

Bit 18 Set if the LTK ‘as slave’ exists

Bit 19 Set if the LTK ‘as master’ exists

Bit 20 Set if this is rolling bond

Interactive

Command
No

 //Example :: BleBondMngrGetInfo.sb (See in BL600CodeSnippets.zip)

 #define BLE_INV_INDEX 24619

 DIM rc, addr$, exInfo

 rc = BleBondMngrGetInfo(0,addr$,exInfo) //Extract info of device at index 1

 IF rc==0 THEN

 PRINT "\nMAC address: ";addr$

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

211 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 PRINT "\nInfo: ";exInfo

 ELSEIF rc==BLE_INV_INDEX THEN

 PRINT "\nInvalid index"

 ENDIF

Expected Output when valid entry present in database:

Expected Output with invalid index:

BLEBONDMNGRGETINFO is an extension function.

Virtual Serial Port Service – Managed test when dongle and application availbable

This section describes all the events and routines used to interact with a managed virtual serial

port service.

Managed means there is a driver consisting of transmit and receive ring buffers that isolate the

BLE service from the smartBASIC application. This in turn provides easy to use API functions.

Note: The driver makes the same assumption that the driver in a PC makes: If the on-air

connection equates to the serial cable, there is no assumption that the cable is from

the same source as prior to the disconnection. This is analogous to the way that a PC

cannot detect such in similar cases.

The module can present a serial port service in the local GATT Table consisting of two mandatory

characteristics and two optional characteristics. One mandatory characteristic is the TX FIFO

and the other is the RX FIFO, both consisting of an attribute taking up to 20 bytes. Of the optional

characteristics, one is the ModemIn which consists of a single byte and only bit 0 is used as a CTS

type function. The other is ModemOut, also a single byte, which is notifiable only and is used to

convey an RTS flag to the client.

By default, (configurable via AT+CFG 112), Laird’s serial port service is exposed with UUID’s as

follows:-

The UUID of the service is: 569a1101-b87f-490c-92cb-11ba5ea5167c

The UUID of the rx fifo characteristic is: 569a2001-b87f-490c-92cb-11ba5ea5167c

The UUID of the tx fifo characteristic is: 569a2000-b87f-490c-92cb-11ba5ea5167c

The UUID of the ModemIn characteristic is: 569a2003-b87f-490c-92cb-11ba5ea5167c

The UUID of the ModemOut characteristic is: 569a2002-b87f-490c-92cb-11ba5ea5167c

Note: Laird’s Base 128bit UUID is 569aXXXX-b87f-490c-92cb-11ba5ea5167c where XXXX is

a 16 bit offset. We recommend, to save RAM, that you create a 128 bit UUID of your

own and manage the 16 bit space accordingly, akin to what the Bluetooth SIG does

with their 16 bit UUIDs.

If command AT+CFG 112 1 is used to change the value of the config key 112 to 1 then Nordic’s

serial port service is exposed with UUID’s as follows:

MAC address: \00\BC\B1\F3x3\AB

Info: 97457

Invalid index

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

212 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

The UUID of the service is: 6e400001-b5a3-f393-e0a9-e50e24dcca9e

The UUID of the rx fifo characteristic is: 6e400002-b5a3-f393-e0a9-e50e24dcca9e

The UUID of the tx fifo characteristic is: 6e400003-b5a3-f393-e0a9-e50e24dcca9e

Note: The first byte in the UUID’s above is the most significant byte of the UUID.

The ‘rx fifo characteristic’ is for data that comes to the module and the ‘tx fifo characteristic’ is

for data that goes out from the module. This means a GATT client using this service sends data by

writing into the ‘rx fifo characteristic’ and receives data from the module via a value

notification.

The ‘rx fifo characteristic’ is defined with no authentication or encryption requirements, a

maximum of 20 bytes value attribute. The following properties are enabled:

 WRITE

 WRITE_NO_RESPONSE

The ‘tx fifo characteristic’ value attribute is with no authentication or encryption requirements, a

maximum of 20 bytes value attribute. The following properties are enabled:

 NOTIFY (The CCCD descriptor also requires no authentication/encryption)

The ‘ModemIn characteristic’ is defined with no authentication or encryption requirements, a

single byte attribute. The following properties are enabled:

 WRITE

 WRITE_NO_RESPONSE

The ‘ModemOut characteristic’ value attribute is with no authentication or encryption

requirements, a single byte attribute. The following properties are enabled:

 NOTIFY (The CCCD descriptor also requires no authentication/encryption)

For ModemIn, only bit zero is used, which is set by 1 when the client can accept data and 0

when it cannot (inverse logic of CTS in UART functionality). Bits 1 to 7 are for future use and should

be set to 0.

For ModemOut, only bit zero is used which is set by 1 when the client can send data and 0 when

it cannot (inverse logic of RTS in UART functionality). Bits 1 to 7 are for future use and should be

set to 0.

Note: Both flags in ModemIn and ModemOut are suggestions to the peer, just as in a UART

scenario. If the peer decides to ignore the suggestion and data is kept flowing, the only

coping mechanism is to drop new data as soon as internal ring buffers are full.

Given that the outgoing data is notified to the client, the ‘tx fifo characteristic’ has a Client

Configuration Characteristic (CCCD) which must be set to 0x0001 to allow the module to send

any data waiting to be sent in the transmit ring buffer. While the CCCD value is not set for

notifications, writes by the smart BASIC application result in data being buffered. If the buffer is

full the appropriate write routine indicates how many bytes actually got absorbed by the driver.

In the background, the transmit ring buffer is emptied with one or more indicate or notify

messages to the client. When the last bytes from the ring buffer are sent, EVVSPTXEMPTY is thrown

to the smart BASIC application so that it can write more data if it chooses.

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

213 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

When GATT client sends data to the module by writing into the ‘rx fifo characteristic’ the

managing driver will immediately save the data in the receive ring buffer if there is any space. If

there is no space in the ring buffer, data is discarded. After the ring buffer is updated, event

EVVSPRX is thrown to the smart BASIC runtime engine so that an application can read and

process the data.

Similarly, given that ModemOut is notified to the client, the ModemOut characteristic has a

Client Configuration Characteristic (CCCD) which must be set to 0x0001. By default, in a

connection the RTS bit in ModemOut is set to 1 so that the VSP driver assumes there is buffer

space in the peer to send data. The RTS flag is affected by the thresholds of 80 and 120 which

means the when opening the VSP port the rxbuffer cannot be less than 128 bytes.

It is intended that in a future release it will be possible to register a ‘custom’ service and bind that

with the virtual service manager to allow that service to function in the managed environment.

This allows the application developer to interact with any GATT client implementing a serial port

service, whether one currently deployed or one that the Bluetooth SIG adopts.

VSP Configuration

Given that VSP operation can happen in command mode the ability to configure it and save

the new configuration in non-volatile memory is available. For example, in bridge mode, the

baudrate of the uart can be specified to something other than the default 9600. Configuration is

done using the AT+CFG command and refer to the section describing that command for further

details. The configuration id pertinent to VSP are 100 to 116 inclusive

Command Mode Operation

Just as the physical UART is used to interact with the module when it is not running a smart BASIC

application, it is also possible to have limited interaction with the module in interactive mode.

The limitation applies to NOT being able to launch smart BASIC applications using the AT+RUN

command.

The main purpose of interactive mode operation is to facilitate the download of an autorun

smart BASIC application. This allows the module to be soldered into an end product without

preconfiguration and then the application can be downloaded over the air once the product

has been pre-tested. It is the smart BASIC application that is downloaded over the air, NOT the

firmware. Due to this principle reason for use in production, to facilitate multiple programming

stations in a locality the transmit power is limited to -12dBm. It can be changed by changing the

109 config key using the command AT+CFG.

The default operation of this virtual serial port service is dependent on one of the digital input

lines being pulled high externally. Consult the hardware manual for more information on the

input pin number. By default it is SIO7 on the module, but it can be changed by setting the

config key 100 via AT+CFG.

You can interact with the BL620 over the air via the Virtual Serial Port Service using the iOS “BL620

Serial” app, available free on the Apple App Store.

You may download smart BASIC applications using a Windows application, which will be

available for free from Laird. The PC must be BLE enabled using a Laird supplied adapter.

Contact your local FAE for details.

As most of the AT commands are functional, you may obtain information such as version

numbers by sending the command AT I 3 to the module over the air.

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

214 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Note: The module enters interactive mode only if there is no autorun application or if the

autorun application exits to interactive mode by design. Hence in normal operation

where a module is expected to have an autorun application the virtual serial port

service will not be registered in the GATT table.

If the application requires the virtual serial port functionality then it must be registered

programmatically using the functions that follow in subsequent subsections. These are easy to

use high level functions such as OPEN/READ/WRITE/CLOSE.

6. OTHER EXTENSION BUILT-IN ROUTINES

This chapter describes non BLE-related extension routines that are not part of the core smart

BASIC language.

System Configuration Routines

SystemStateSet

FUNCTION

This function is used to alter the power state of the module as per the input parameter.

SYSTEMSTATESET (nNewState)

Returns
INTEGER, a result code.

Most typical value – 0x0000, indicating a successful operation.

Arguments

nNewState byVal nNewState AS INTEGER

New state of the module as follows:

 0 System OFF (Deep Sleep Mode)

Note: You may also enter this state when UART is open and a BREAK condition

is asserted. Deasserting BREAK makes the module resume through reset

i.e. power cycle.

Interactive

Command
No

 //Example :: SystemStateSet.sb (See in BL620CodeSnippets.zip)

 //Put the module into deep sleep

 PRINT "\n"; SystemStateSet(0)

SYSTEMSTATESET is an extension function.

Miscellaneous Routines

ReadPwrSupplyMv

FUNCTION

This function is used to read the power supply voltage and the value will be returned in millivolts.

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

215 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

READPWRSUPPLYMV ()

Returns INTEGER, the power supply voltage in millivolts.

Arguments None

Interactive

Command
No

 //Example :: ReadPwrSupplyMv.sb (See in BL620CodeSnippets.zip)

 //read and print the supply voltage

 PRINT "\nSupply voltage is "; ReadPwrSupplyMv();"mV"

Expected Output:

READPWRSUPPLYMV is an extension function.

SetPwrSupplyThreshMv

FUNCTION

This function sets a supply voltage threshold. If the supply voltage drops below this then the

BLE_EVMSG event is thrown into the run time engine with a MSG ID of

BLE_EVBLEMSGID_POWER_FAILURE_WARNING (19) and the context data will be the current

voltage in millivolts.

Events & Messages

MsgId Description

19 The supply voltage has dropped below the value specified as the argument to this

function in the most recent call. The context data is the current reading of the supply

voltage in millivolts

SETPWRSUPPLYTHRESHMV(nThresh)

Returns
INTEGER, 0 if the threshold is successfully set, 0x6605 if the value cannot be
implemented.

Arguments

nThreshMv byVal nThresMv AS INTEGER

The BLE_EVMSG event is thrown to the engine if the supply voltage drops below

this value. Valid values are 2100, 2300, 2500 and 2700.

Interactive

Command
No

 //Example :: SetPwrSupplyThreshMv.sb (See in BL620CodeSnippets.zip)

 DIM rc

 DIM mv

 //==

Supply voltage is 3343mV

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

216 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 // Handler for generic BLE messages

 //==

 FUNCTION HandlerBleMsg(BYVAL nMsgId, BYVAL nCtx) AS INTEGER

 SELECT nMsgId

 CASE 19

 PRINT "\n --- Power Fail Warning ",nCtx

 //mv=ReadPwrSupplyMv()

 PRINT "\n --- Supply voltage is "; ReadPwrSupplyMv();"mV"

 CASE ELSE

 //ignore this message

 ENDSELECT

 ENDFUNC 1

 //==

 // Handler to service button 0 pressed

 //==

 FUNCTION HndlrBtn0Pr() AS INTEGER

 //just exit and stop waiting for events

 ENDFUNC 0

 ONEVENT EVBLEMSG CALL HandlerBleMsg

 ONEVENT EVGPIOCHAN1 CALL HndlrBtn0Pr

 rc=GpioBindEvent(1,16,1) //Channel 1, bind to low transition on GPIO pin 16

 PRINT "\nSupply voltage is "; ReadPwrSupplyMv();"mV\n"

 mv=2700

 rc=SetPwrSupplyThreshMv(mv)

 PRINT "\nWaiting for power supply to fall below ";mv;"mV"

 //wait for events and messages

 WAITEVENT

 PRINT "\nExiting..."

Expected Output:

SETPWRSUPPLYTHRESHMV is an extension function.

7. EVENTS AND MESSAGES

smart BASIC is designed to be event driven, which makes it suitable for embedded platforms

where it is normal to wait for something to happen and then respond.

To ensure that access to variables and resources ends up in race conditions, the event handling

is done synchronously, meaning the smart BASIC runtime engine has to process a WAITEVENT

statement for any events or messages to be processed. This guarantees that smart BASIC will

never need the complexity of locking variables and objects.

There are many subsystems which generate events and messages as follows:

Supply voltage is 3343mV

Waiting for power supply to fall below 2700mV

Exiting...

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

217 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 Timer events, which generate timer expiry events and are described here.

 Messages thrown from within the user’s BASIC application as described here.

 Events related to the UART interface as described here.

 GPIO input level change events as described here.

 BLE events and messages as described here.

 Generic Characteristics events and messages as described here.

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

218 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

8. MODULE CONFIGURATION

There are many features of the module that cannot be modified programmatically which relate

to interactive mode operation or alter the behaviour of the smartBASIC runtime engine. These

configuration objects are stored in non-volatile flash and are retained until the flash file system is

erased via AT&F* or AT&F 1.

To write to these objects, which are identified by a positive integer number, the module must be

in interactive mode and the command AT+CFG must be used which is described in detail here.

To read current values of these objects use the command AT+CFG, described here.

Predefined configuration objects are as listed under details of the AT+CFG command.

9. MISCELLANEOUS

Bluetooth Result Codes

There are some operations and events that provide a single byte Bluetooth HCI result code, e.g.

the EVDISCON message. The meaning of the result code is as per the list reproduced from the

Bluetooth Specifications below. No guarantee is supplied as to its accuracy. Consult the

specification for more.

Result codes in grey are not relevant to Bluetooth Low Energy operation and are unlikely to

appear.

BLE_HCI_STATUS_CODE_SUCCESS 0x00

BLE_HCI_STATUS_CODE_UNKNOWN_BTLE_COMMAND 0x01

BLE_HCI_STATUS_CODE_UNKNOWN_CONNECTION_IDENTIFIER 0x02

BLE_HCI_HARDWARE_FAILURE 0x03

BLE_HCI_PAGE_TIMEOUT 0x04

BLE_HCI_AUTHENTICATION_FAILURE 0x05

BLE_HCI_STATUS_CODE_PIN_OR_KEY_MISSING 0x06

BLE_HCI_MEMORY_CAPACITY_EXCEEDED 0x07

BLE_HCI_CONNECTION_TIMEOUT 0x08

BLE_HCI_CONNECTION_LIMIT_EXCEEDED 0x09

BLE_HCI_SYNC_CONN_LIMI_TO_A_DEVICE_EXCEEDED 0x0A

BLE_HCI_ACL_COONECTION_ALREADY_EXISTS 0x0B

BLE_HCI_STATUS_CODE_COMMAND_DISALLOWED 0x0C

BLE_HCI_CONN_REJECTED_DUE_TO_LIMITED_RESOURCES 0x0D

BLE_HCI_CONN_REJECTED_DUE_TO_SECURITY_REASONS 0x0E

BLE_HCI_BLE_HCI_CONN_REJECTED_DUE_TO_BD_ADDR 0x0F

BLE_HCI_CONN_ACCEPT_TIMEOUT_EXCEEDED 0x10

BLE_HCI_UNSUPPORTED_FEATURE_ONPARM_VALUE 0x11

BLE_HCI_STATUS_CODE_INVALID_BTLE_COMMAND_PARAMETERS 0x12

BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION 0x13

BLE_HCI_REMOTE_DEV_TERMINATION_DUE_TO_LOW_RESOURCES 0x14

BLE_HCI_REMOTE_DEV_TERMINATION_DUE_TO_POWER_OFF 0x15

BLE_HCI_LOCAL_HOST_TERMINATED_CONNECTION 0x16

BLE_HCI_REPEATED_ATTEMPTS 0x17

BLE_HCI_PAIRING_NOTALLOWED 0x18

BLE_HCI_LMP_PDU 0x19

BLE_HCI_UNSUPPORTED_REMOTE_FEATURE 0x1A

BLE_HCI_SCO_OFFSET_REJECTED 0x1B

BLE_HCI_SCO_INTERVAL_REJECTED 0x1C

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

219 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

BLE_HCI_SCO_AIR_MODE_REJECTED 0x1D

BLE_HCI_STATUS_CODE_INVALID_LMP_PARAMETERS 0x1E

BLE_HCI_STATUS_CODE_UNSPECIFIED_ERROR 0x1F

BLE_HCI_UNSUPPORTED_LMP_PARM_VALUE 0x20

BLE_HCI_ROLE_CHANGE_NOT_ALLOWED 0x21

BLE_HCI_STATUS_CODE_LMP_RESPONSE_TIMEOUT 0x22

BLE_HCI_LMP_ERROR_TRANSACTION_COLLISION 0x23

BLE_HCI_STATUS_CODE_LMP_PDU_NOT_ALLOWED 0x24

BLE_HCI_ENCRYPTION_MODE_NOT_ALLOWED 0x25

BLE_HCI_LINK_KEY_CAN_NOT_BE_CHANGED 0x26

BLE_HCI_REQUESTED_QOS_NOT_SUPPORTED 0x27

BLE_HCI_INSTANT_PASSED 0x28

BLE_HCI_PAIRING_WITH_UNIT_KEY_UNSUPPORTED 0x29

BLE_HCI_DIFFERENT_TRANSACTION_COLLISION 0x2A

BLE_HCI_QOS_UNACCEPTABLE_PARAMETER 0x2C

BLE_HCI_QOS_REJECTED 0x2D

BLE_HCI_CHANNEL_CLASSIFICATION_UNSUPPORTED 0x2E

BLE_HCI_INSUFFICIENT_SECURITY 0x2F

BLE_HCI_PARAMETER_OUT_OF_MANDATORY_RANGE 0x30

BLE_HCI_ROLE_SWITCH_PENDING 0x32

BLE_HCI_RESERVED_SLOT_VIOLATION 0x34

BLE_HCI_ROLE_SWITCH_FAILED 0x35

BLE_HCI_EXTENDED_INQUIRY_RESP_TOO_LARGE 0x36

BLE_HCI_SSP_NOT_SUPPORTED_BY_HOST 0x37

BLE_HCI_HOST_BUSY_PAIRING 0x38

BLE_HCI_CONN_REJ_DUETO_NO_SUITABLE_CHN_FOUND 0x39

BLE_HCI_CONTROLLER_BUSY 0x3A

BLE_HCI_CONN_INTERVAL_UNACCEPTABLE 0x3B

BLE_HCI_DIRECTED_ADVERTISER_TIMEOUT 0x3C

BLE_HCI_CONN_TERMINATED_DUE_TO_MIC_FAILURE 0x3D

BLE_HCI_CONN_FAILED_TO_BE_ESTABLISHED 0x3E

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

220 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

10. ACKNOWLEDGEMENTS

The following are required acknowledgements to address our use of open source code on the

BL600 to implement AES encryption.

 Laird’s implementation includes the following files: aes.c and aes.h.

Copyright (c) 1998-2008, Brian Gladman, Worcester, UK. All rights reserved.

LICENSE TERMS

The redistribution and use of this software (with or without changes) is allowed without the

payment of fees or royalties providing the following:

 Source code distributions include the above copyright notice, this list of conditions and

the following disclaimer;

 Binary distributions include the above copyright notice, this list of conditions and the

following disclaimer in their documentation;

 The name of the copyright holder is not used to endorse products built using this

software without specific written permission.

DISCLAIMER

This software is provided 'as is' with no explicit or implied warranties in respect of its properties,

including, but not limited to, correctness and/or fitness for purpose.

Issue 09/09/2006

This is an AES implementation that uses only 8-bit byte operations on the cipher state (there

are options to use 32-bit types if available).

The combination of mix columns and byte substitution used here is based on that developed

by Karl Malbrain. His contribution is acknowledged.

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

221 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

INDEX OF SMARTBASIC COMMANDS

AT + BTD * ... 12, 13

AT + MAC ... 12

AT I .. 7
AT&F ... 11

AT+RUN .. 9

ATI ... 7

BLEADVERTSTART .. 48

BLEADVERTSTOP .. 50

BLEADVRPTADDUUID128 54

BLEADVRPTADDUUID16 53

BLEADVRPTAPPENDAD 55

BLEADVRPTINIT .. 51

BLEADVRPTSCOMMIT 56

BLEATTRMETADATA ... 106

BLECHARCOMMIT .. 114

BLECHARDESCADD .. 112

BLECHARDESCPRSTNFRMT 110

BLECHARDESCREAD 123

BLECHARDESCUSERDESC 109

BLECHARNEW .. 107

BLECHARVALUEINDICATE 121

BLECHARVALUENOTIFY 118

BLECHARVALUEREAD 115

BLECHARVALUEWRITE 117

BLECONFIGDCDC .. 46

BLECONNECT .. 74

BLECONNECTCANCEL 76

BLECONNECTCONFIG 78

BleDecode32 ... 185

BleDecodeBITS ... 190

BleDecodeFLOAT .. 186

BleDecodeS16 ... 180

BleDecodeS24 ... 182

BleDecodeS8 .. 178

BleDecodeSFLOAT .. 187

BleDecodeSTRING ... 189

BleDecodeTIMESTAMP 188

BLEDECODEU16.. 181

BleDecodeU24 ... 184

BleDecodeU8 ... 179

BLEDISCCHARFIRST ... 136

BLEDISCCHARNEXT .. 137

BLEDISCDESCFIRST .. 141

BLEDISCDESCNEXT ... 142

BLEDISCONNECT .. 79

BLEDISCSERVICEFIRST 132

BLEDISCSERVICENEXT 132

BleEncode16 .. 169

BleEncode24 .. 170

BleEncode32 ... 171

BleEncode8 ... 168

BleEncodeBITS... 177

BLEENCODEBITS .. 178

BleEncodeFLOAT .. 172

BleEncodeSFLOAT .. 174

BleEncodeSFLOATEX 173

BleEncodeSTRING .. 176

BleEncodeTIMESTAMP 175

BLEGAPSVCINIT ... 95

BLEGATTCCLOSE ... 131

BLEGATTCFINDCHAR 147

BLEGATTCFINDDESC 151

BLEGATTCNOTIFYREAD 165

BLEGATTCOPEN ... 130

BLEGATTCREAD ... 155

BLEGATTCREADDATA 156

BLEGATTCWRITE ... 158

BLEGATTCWRITECMD 161

BLEGETADBYINDEX ... 66

BLEGETADBYTAG ... 68

BLEGETCURCONNPARMS 83

BLEGETDEVICENAME$ 97

BLEHANDLEUUID128 .. 100

BLEHANDLEUUID16 .. 99

BLEHANDLEUUIDSIBLING 101

BLESCANABORT .. 59

BLESCANCONFIG ... 62

BLESCANGETADVREPORT 64

BLESCANGETPAGERADDR 69

BLESCANRPTINIT .. 52

BLESCANSTART .. 58

BLESCANSTOP ... 61, 62

BLESECMNGRBONDREQ 88

BLESECMNGRIOCAP .. 87

BLESECMNGRKEYSIZES 74, 85, 95, 127

BLESECMNGRPASSKEY 85

BLESERVICECOMMIT 103

BLESERVICENEW .. 102

BLESETCURCONNPARMS 80

BLESVCCOMMIT ... 102

BLESVCREGDEVINFO 97

BLETXPOWERSET .. 44

BLETXPWRWHILEPAIRING 45

BLEWHITELISTADDADDR 72

BLEWHITELISTCREATE ... 71

BLEWHITELISTDESTROY 73

Bluetooth Result Codes 204

Decoding Functions 178

http://ews-support.lairdtech.com/

smart BASIC – BL620

Extension Functionality User Manual

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/wireless

222 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Encoding Functions....................................... 168

EVATTRNOTIFY ... 164

EVATTRREAD ... 154

EVATTRWRITE ... 127, 158

EVBLE_ADV_REPORT .. 30

EVBLE_ADV_TIMEOUT 30

EVBLE_CONN_TIMEOUT 74

EVBLE_FAST_PAGED .. 30

EVBLE_SCAN_TIMEOUT 30

EVBLEMSG ... 30

EVBLEMSG ... 30

EVCHARCCCD ... 36

EVCHARDESC ... 40

EVCHARHVC .. 35

EVCHARSCCD .. 38

EVCHARVAL .. 34

EVDISCCHAR .. 135, 136

EVDISCDESC .. 141

EVDISCON ... 33

EVDISCPRIMSVC ... 132

EVFINDCHAR .. 146, 147

EVFINDDESC .. 150

EVGATTCTOUT ... 128

EVNOTIFYBUF ... 41

FICR register .. 15

GPIO Events .. 19

GPIOUNBINDEVENT .. 26

GPIOWRITE ... 24
READPWRSUPPLYMV .. 201

SETPWRSUPPLYTHRESHMV 201

SYSINFO .. 15

SYSINFO$.. 17

SYSTEMSTATESET .. 200

VSP (Virtual Serial Port) Events 199

http://ews-support.lairdtech.com/

	Revision History
	Contents
	1. Introduction
	Documentation Overview
	What Does a BLE Module Contain?

	2. Interactive Mode Commands
	AT I or ATI
	AT+CFG
	AT&F
	AT + BTD *
	AT + MAC “12 hex digit mac address”
	AT + BLX

	3. Core Language Built-in Routines
	Result Codes
	Information Routines
	SYSINFO
	SYSINFO$

	UART (Universal Asynchronous Receive Transmit)
	UartOpen
	UartCloseEx
	UartSetRTS
	UartBREAK

	I2C – Two Wire Interface (TWI)
	SPI Interface

	4. Core Extensions Built-in Routines
	Miscellaneous Routines
	AssertBL620
	SUBROUTINE

	Input/Output Interface Routines
	GPIO Events
	GpioSetFunc
	GpioConfigPwm
	GpioRead
	GpioWrite
	GpioBindEvent
	GpioUnbindEvent
	GpioAssignEvent
	GpioUnAssignEvent

	5. BLE Extensions Built-in Routines
	MAC Address
	Events and Messages
	EVBLE_CONN_TIMEOUT
	EVBLE_ADV_REPORT
	EVBLE_FAST_PAGED
	EVBLE_SCAN_TIMEOUT
	EVBLEMSG
	EVDISCON
	EVCHARVAL
	EVCHARHVC
	EVCHARCCCD
	EVCHARSCCD
	EVCHARDESC
	EVNOTIFYBUF

	Miscellaneous Functions
	BleTxPowerSet
	BleTxPwrWhilePairing
	BleConfigDcDc

	Advertising Functions
	BleAdvertStart
	FUNCTION

	BleAdvertStop
	BleAdvRptInit
	BleScanRptInit
	BleAdvRptAddUuid16
	BleAdvRptAddUuid128
	BleAdvRptAppendAD
	BleAdvRptsCommit

	Scanning Functions
	BleScanStart
	BleScanAbort
	BleScanStop
	BleScanFlush
	BleScanConfig
	BleScanGetAdvReport
	BleGetADbyIndex
	BleGetADbyTag
	BleScanGetPagerAddr

	Whitelist Management Functions
	BleWhiteListCreate
	BleWhiteListAddAddr
	BleWhiteListDestroy

	Connection Functions
	Events and Messages
	BleConnect
	BleConnectCancel
	BleConnectConfig
	BleDisconnect
	BleSetCurConnParms
	BleGetCurConnParms
	BleGetConnHandleFromAddr
	BleGetAddrFromConnHandle

	Security Manager Functions
	Events and Messages
	BleSecMngrPasskey
	BleSecMngrKeySizes
	BleSecMngrIoCap
	BleSecMngrBondReq
	BlePair
	BleAuthenticate

	GATT Server Functions
	Events and Messages
	BleGapSvcInit
	BleGetDeviceName$
	BleSvcRegDevInfo
	BleHandleUuid16
	BleHandleUuid128
	BleHandleUuidSibling
	BleSvcCommit
	BleServiceNew
	BleServiceCommit
	BleSvcAddIncludeSvc
	BleAttrMetadata
	BleCharNew
	BleCharDescUserDesc
	BleCharDescPrstnFrmt
	BleCharDescAdd
	BleCharCommit
	BleCharValueRead
	BleCharValueWrite
	BleCharValueNotify
	BleCharValueIndicate
	BleCharDescRead

	GATT Client Functions
	Events and Messages
	EVATTRWRITE event message
	EVGATTCTOUT event message

	BleGattcOpen
	BleGattcClose
	BleDiscServiceFirst / BleDiscServiceNext
	EVDISCPRIMSVC event message

	BleDiscCharFirst / BleDiscCharNext
	EVDISCCHAR event message

	BleDiscDescFirst / BleDiscDescNext
	EVDISCDESC event message

	BleGattcFindChar
	EVFINDCHAR event message

	BleGattcFindDesc
	EVFINDDESC event message

	BleGattcRead / BleGattcReadData
	EVATTRREAD event message

	BleGattcWrite
	EVATTRWRITE event message

	BleGattcWriteCmd
	EVNOTIFYBUF event

	BleGattcNotifyRead
	EVATTRTOTIFY event message

	Attribute Encoding Functions
	BleEncode8
	BleEncode16
	BleEncode24
	BleEncode32
	BleEncodeFLOAT
	BleEncodeSFLOATEX
	BleEncodeSFLOAT
	BleEncodeTIMESTAMP
	BleEncodeSTRING
	BleEncodeBITS

	Attribute Decoding Functions
	BleDecodeS8
	BleDecodeU8
	BleDecodeS16
	BleDecodeU16
	BleDecodeS24
	BleDecodeU24
	BleDecode32
	BleDecodeFLOAT
	BleDecodeSFLOAT
	BleDecodeTIMESTAMP
	BleDecodeSTRING
	BleDecodeBITS

	Pairing/Bonding Functions
	Bonding Table Types: Rolling & Persist
	Whisper Mode Pairing
	BleBondingStats
	BleBondingEraseKey
	BleBondingEraseAll
	BleBondMngrErase
	BleBondingPersistKey
	BleBondingIsTrusted
	BleBondMngrGetInfo

	Virtual Serial Port Service – Managed test when dongle and application availbable
	VSP Configuration
	Command Mode Operation

	6. Other Extension Built-in Routines
	System Configuration Routines
	SystemStateSet

	Miscellaneous Routines
	ReadPwrSupplyMv
	SetPwrSupplyThreshMv
	Events & Messages

	7. Events and Messages
	8. Module Configuration
	9. Miscellaneous
	Bluetooth Result Codes

	10. Acknowledgements
	License Terms
	Disclaimer

	Index of smartBASIC Commands

