
BL620 MODULE

Americas: +1-800-492-2320 Option 2 1 Laird Technologies

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

www.lairdtech.com/bluetooth

THE FIRST BLE CONNECTION AS CENTRAL
Application Note v1.0

INTRODUCTION

This document provides a step by step guide to your first connection from the BL620 central mode

device to a BL600 BLE peripheral which is exposing a heart rate service. It will be expedited using a

couple of sample smartBASIC applications.

REQUIREMENTS

The following equipment and utilities are required:

 Either

 BL620-US Adapter (firmware 12.4.10.0 or newer)

 BL600 devkit (firmware 1.5.70.0 or newer)

 Or

 2 x BL600 devkit (firmware 1.5.70.0 or newer in one)

 BL620 Firmware Zip file (12.4.10.0 or newer)

 Windows PC

 UwTerminal (Available as a free download from Laird)

 Mini USB Cable (included in BL600 devkits)

 SEGGER J-Link LITE debugger (included in BL600 devkits)

 10-way ribbon cable (included with the SEGGER J-Link LITE debugger)

 Sample smartBASIC application called “cmd.central.bl620.sb” (provided in the smartBASIC folder

of the BL620 firmware zip file)

 Sample smartBASIC application called “hrs.heartrate.bl600.sb” ” (provided in the smartBASIC

folder of the BL620 firmware zip file)

If you do not also have a BL600 development kit to follow this step-by-step guide

then you can purchase one by accessing the following Digikey, Mouser or Farnell

distributor websites:-

http://www.digikey.co.uk/product-detail/en/DVK-BL600-SA/DVK-BL600-SA-ND/3995739

http://uk.mouser.com/ProductDetail/Laird-Technologies-Wireless-M2M/DVK-BL600-
SA/?qs=sGAEpiMZZMu%252b6ulL5WffptndcUOx9D%252bg

http://uk.farnell.com/laird-technologies/dvk-bl600-sa/bl600-sa-class2-bluetooth-dev-
kit/dp/2321472

ASSUMPTIONS

It is assumed you are familiar with interacting with a Laird BL600 or BL620 module and AT commands

using the UwTerminal terminal emulation utility which is available for free from Laird.

http://www.lairdtech.com/bluetooth
http://www.digikey.co.uk/product-detail/en/DVK-BL600-SA/DVK-BL600-SA-ND/3995739
http://uk.mouser.com/ProductDetail/Laird-Technologies-Wireless-M2M/DVK-BL600-SA/?qs=sGAEpiMZZMu%252b6ulL5WffptndcUOx9D%252bg
http://uk.mouser.com/ProductDetail/Laird-Technologies-Wireless-M2M/DVK-BL600-SA/?qs=sGAEpiMZZMu%252b6ulL5WffptndcUOx9D%252bg
http://uk.farnell.com/laird-technologies/dvk-bl600-sa/bl600-sa-class2-bluetooth-dev-kit/dp/2321472
http://uk.farnell.com/laird-technologies/dvk-bl600-sa/bl600-sa-class2-bluetooth-dev-kit/dp/2321472

Flash Cloning for the BL600
Application Note

Americas: +1-800-492-2320 Option 2 2 Laird Technologies

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

www.lairdtech.com/bluetooth

It is assumed you are familiar with downloading a smartBASIC application into a device using the

UwTerminal utility.

FIRMWARE CHECK

If you have a BL620-US usb adapter and a BL600 Devkit, then ensure that the former has version

12.4.10.0 or newer and the BL600 DevKit has firmware version 1.5.70.0 or newer. Using exactly those

versions will ensure an exact replication of the responses in this step by step guide.

If you have two BL600 devkits, ensure one has BL620 firmware which is version 12.4.10.0 or newer and

the other has BL600 firmware v1.5.70.0 or newer. Again using exactly those versions will ensure an exact

replication of the responses in this step by step guide.

The command AT I 3 terminated by a carriage return will result in the module responding with its

firmware version number.

If the firmware versions are older please refer to appropriate application notes for instructions for

upgrading the firmware.

DOWNLOAD SMARTBASIC APPLICATIONS

In the BL620 device download the smartBASIC sample application called “cmd.central.bl620.sb” and

in the BL600 download the smartBASIC sample application called “hrs.heartrate.bl600.sb”

HANDS ON STEP BY STEP GUIDE

This section describes a step by step guide to performing various actions like scanning for adverts,

connecting and performing GATT Client operations such as discovery, read and writes.

Start Applications

First start from a known reset state, so close any UwTerminal applications currently running and then

power cycle the BL620 and BL600 devices. Unplugging and then re-plugging from the PC’s USB port

will achieve that.

Launch two instances of UwTerminal and connect to the appropriate comports for the BL620 and the

BL600 (You can determine the comport numbers from device manager). To make this guide easier to

follow, position the UwTerminal connected to the BL620 to the left of the screen and the other one to

the right. When a connection is made, view it as from left to right. The narrative that follows will also

make references to ‘left’ and ‘right’ screens.

Hit enter in both UwTerminal screens and confirm that you see the 00 response. If not close UwTerminal,

power cycle the device and reconnect. If it is still does not respond with 00 then it is possible you have

opened UwTerminal on an incorrect comport. Do not proceed until you see 00 in both screens.

On the left screen (BL620 device) enter the command
AT I 0

and ensure you see the response
10 0 BL620

00

then enter the command

http://www.lairdtech.com/bluetooth

Flash Cloning for the BL600
Application Note

Americas: +1-800-492-2320 Option 2 3 Laird Technologies

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

www.lairdtech.com/bluetooth

AT I 3

and ensure you see the response (you may have newer firmware)
10 3 12.4.10.0

00

On the right screen (BL600 device) enter the command
AT I 0

and ensure you see the response
10 0 BL600r2

00

then enter the command
AT I 3

and ensure you see the response (you may have newer firmware)
10 3 1.5.70.0

00

then enter the command
AT I 4

and ensure you see the response
10 4 00 0016A40B1620

00

where 00 000016A40B1620 is the mac address and make a note of that address starting from 01 (or

00 if you have modified the address using the AT+MAC command, as is the case for this module) and

the rest of the 12 hex digits. The noted address will be a 14 hex digit string without any spaces and you

will be using that string in this guided tour whenever you see the text <<14HexDigitAddr>> .

As a general rule in this guided handson tour whenever you see <<sometext>> it means you need to

replace it with a value that you may have made a note off earlier.

Then finally start the applications in both devices by entering the command cmd in the left screen and

the command hrs in the right screen.

On the left screen confirm that you see
LAIRD BL620

OK

>

On the right screen confirm that you see
Start Adverts 0

LAIRD_HRM

OK

>

At this stage if you have a smartphone and are familiar with BLE apps that allow you to scan for

devices, then you will see that the BL600 is advertising. It is worth doing that as a sanity check if you

have used such apps before.

Scan for Adverts

This section shows how to scan for all devices that are advertising. We will scan for 1 second.

On the left screen, enter the command
scan start 1000 0 0

http://www.lairdtech.com/bluetooth

Flash Cloning for the BL600
Application Note

Americas: +1-800-492-2320 Option 2 4 Laird Technologies

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

www.lairdtech.com/bluetooth

and you will see received adverts displayed as follows:-
ADV:000016A40B1620 AD:020106031940030A094C414952445F48524D07030A180D180F18 XX:0 RS:-43

ADV:000016A40B1620 AD:020106031940030A094C414952445F48524D07030A180D180F18 XX:0 RS:-43

ADV:000016A40B1620 AD:020106031940030A094C414952445F48524D07030A180D180F18 XX:0 RS:-43

ADV:000016A40B1620 AD:020106031940030A094C414952445F48524D07030A180D180F18 XX:0 RS:-43

ADV:000016A40B1620 AD:020106031940030A094C414952445F48524D07030A180D180F18 XX:0 RS:-43

Scanning stopped via timeout, advert count = 0

Each line is an advert and as per the example above you see that the same device with address

000016A40B1620 has been picked up 5 times. Ignore the advert count = 0 as that is not the count of

the adverts but the max that was requested in the scan command (the last 0 in scan start 1000 0

0). In your scan the address will be the same as the one noted in the previous startup section. If you

do not see the same address, it is very possible that you have many other BLE devices advertising in

the vicinity. The last value RS:-43 is the rssi value and the smaller the number the further away it is. As

general rule empirical evidence has shown that with Laird BL600 modules, when in open space, an rssi

value of -60 roughly corresponds to it being about 1 meter away from the scanning device. In this

case -43 means a stronger signal and in reality the devices are about 10 cm apart.

Then to limit the number of adverts displayed to just 3, on the left screen enter command
scan start 1000 0 3

and you will see 3 received adverts displayed as follows:-
ADV:000016A40B1620 AD:020106031940030A094C414952445F48524D07030A180D180F18 XX:0 RS:-43

ADV:000016A40B1620 AD:020106031940030A094C414952445F48524D07030A180D180F18 XX:0 RS:-43

ADV:000016A40B1620 AD:020106031940030A094C414952445F48524D07030A180D180F18 XX:0 RS:-43

Scanning stopped via timeout, advert count = 3

The BL620 has limited memory and so the memory used for scanning has to be released, so enter the

command
scan stop

and confirm you get the OK response.

To prepare for GATT Client operations while in a connection, enter the command
gattc open 0 0

and confirm you get an OK response.

Make Connection

This section shows how to connect to the BL600 device so that you can interact with its GATT table.

You will need the Bluetooth address of the BL600 that was noted above.

On the left screen , enter the command
connect <<14HexDigitAddr>> 4000 90000 120000 2000000

where <<14HexDigitAddr>> is replaced by what was noted above, as an example the command

could be
connect 000016A40B1620 4000 90000 120000 2000000

You will see a connection established such that on the left screen you will see

--- Connect: (0001FF00) handle=1

Conn Interval 120000

Conn Supervision Timeout 2000000

Conn Slave Latency 0

and on the right screen you will see

http://www.lairdtech.com/bluetooth

Flash Cloning for the BL600
Application Note

Americas: +1-800-492-2320 Option 2 5 Laird Technologies

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

www.lairdtech.com/bluetooth

--- Connect : 3731 (in your case you will see a different number, for a later firmware like above)
Conn Interval 120000

Conn Supervision Timeout 2000000

Conn Slave Latency 0

 --- Hrs Notification : 0

Note that the application is saying that at the BL620 end you can refer to the connection with the

handle 1. At the BL600 end the Heart Rate service is confirming that notification are disabled :
Hrs Notification : 0

Extract the GATT Table Map

This section shows how to obtain the GATT table map so that you can interact with individual

characteristics and have a feel for the entire table in the peripheral.

The GATT Client at the BL620 has already been opened above (gattc open 0 0) so submit the

command
gattc tablemap 1

and you will see the remote Gatt Table displayed as below.

Note: If you see ERROR 00006059 that means the gatt client manager has not been

opened, so submit gattc open 0 0 and if you get ERROR 00000201 it means ram memory is

running low and that is most likely because the advert scan manager is using it, so submit

the command scan stop and then gattc open 0 0 again

S:1 ,(7) ,FE011800

 C:3 ,0000000A ,FE012A00 ,0

 C:5 ,00000002 ,FE012A01 ,0

 C:7 ,00000002 ,FE012A04 ,0

S:8 ,(11) ,FE011801

 C:10 ,00000020 ,FE012A05 ,0

 D:11 ,FE012902

S:12 ,(30) ,FE01180A

 C:14 ,00000002 ,FE012A29 ,0

 C:16 ,00000002 ,FE012A24 ,0

 C:18 ,00000002 ,FE012A25 ,0

 C:20 ,00000002 ,FE012A27 ,0

 C:22 ,00000002 ,FE012A26 ,0

 C:24 ,00000002 ,FE012A28 ,0

 C:26 ,00000002 ,FE012A23 ,0

 C:28 ,00000002 ,FE012A2A ,0

 C:30 ,00000002 ,FE012A50 ,0

S:31 ,(36) ,FE01180D

 C:33 ,00000010 ,FE012A37 ,0

 D:34 ,FE012902

 C:36 ,00000002 ,FE012A38 ,0

S:37 ,(65535) ,FE01180F

 C:39 ,00000002 ,FE012A19 ,0

Each line starting with S:n is a start of a service definition and n is the starting handle and then the next

number is the end handle value. The last hex value is the UUID handle for that service.

Each line starting with C:n is the definition of a characteristic where n is the handle value for it, the next

number is the characteristic properties (see user manual for details), the third number is the UUID for

http://www.lairdtech.com/bluetooth

Flash Cloning for the BL600
Application Note

Americas: +1-800-492-2320 Option 2 6 Laird Technologies

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

www.lairdtech.com/bluetooth

that characteristic. The last value (0 in the example above is a uuid handle and will be nonzero if the

characteristic is part of an included secondary service)

Each line starting with D:nis the definition of a descriptor where n is the handle value and the last

number is the UUID handle for he descriptor. For the one instance above, you see D:34 , FE012902.

The 2902 is the UUID for a CCCD descriptor for the heart rate service.

UUIDs in smartBASIC Explained

In the Bluetooth Low Energy specification up to v4.0 all Service, Characteristic and Descriptor

types are either 16 bit (2 bytes) or 128 bit (16 byes). In specification 4.1 and newer they can also

be 32 bit (4 bytes). The non 128 bit values are just offsets from a known published 128 bit base.

In smartBASIC there are 2 types of variables (using DIM statement) : INTEGER and STRING. The

former are 4 byte entities and the later can be arbitrary length. This means 16bit and 32bit UUIDs

can be manipulated using INTEGERs and 128bit UUIDs have to be defined using STRING

variables.

Given smartBASIC does not offer polymorphism (as in object oriented languages where the

same function or method name can accept different variable types) all smartBASIC functions

that take a UUID as a parameter are designed to take a UUID handle which is always a 32 bit (4

byte) entity. Conversely it has been arranged that when gatt table responses arrive any 16 bit or

128 bit UUIDs are first internally converted to a 32 bit UUID and then presented (there are only a

few exception when this does not happen and this will be clearly obvious). For example, in the

tablemap example above, virtually all lines have a hex value starting with FE01, for example the

characteristic beginning with C:39 has the value FE012A19.

For this firmware release if you encounter a handle starting with FE01, then that means the

handle is for an adopted UUID that is 16 bit (2 bytes). So for the example in FE012A19 the 16 bit

UUID is 2A19 and according to the Bluetooth specification that is allocated for Battery Level

Characteristic.

Note that a 16 bit UUID as published by the Bluetooth SIG is just an offset into a predefined 128

bit base UUID which has the value 00000000-0000-1000-8000-00805F9B34FB.

If you encounter FF00, then means a 128 bit UUID with an unknown base has been encountered

and the lower 16 bit of that handle is the offset into that unknown base. At that point the

underlying stack momentarily knows the actual 128 bit UUID but it only provides a 4 byte handle.

To enable the underlying stack to provide you with a handle that does not have the unknown

FF00 ‘prefix’, there is mechanism to register 128 bit base UUID values. In smartBASIC this is done

using the function BleHandleUuid128() which takes a 16 byte string and returns the handle.

Given that a typical gatt client is only interested in services and characteristics that it knows

about and WILL ignore all that it does not care about, the process of interacting with a gatt

server with custom services and characteristic is to first register the 28 bit UUIDs using

BleHandleUuid128() which will enable the underlying stack to use that base to provide you with

appropriate UUID handles.

http://www.lairdtech.com/bluetooth

Flash Cloning for the BL600
Application Note

Americas: +1-800-492-2320 Option 2 7 Laird Technologies

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

www.lairdtech.com/bluetooth

Find Specific Services

In most Gatt client to server interactions, the client is not interested in knowing the map of the gatt

server (as described above) but will be interested to just locate a specific service identified by a UUID.

This section describes how to find specific services using UUID handles. This means the starting point will

either be a 16 bit or a 128 bit uuid which has to be first converted into a UUID handle. The sample

application enables that conversion and also makes it easier by storing the handle in an integer array

and then returning an index value in the range 1 to N. Therefore for the purpose of this tour there is no

need to remember and type the actual 8 hex digit number.

For this example, assume that the client wishes to locate the Heart Rate Service, for which the

Bluetooth SIG has allocated the 16 bit UUID value 0x180D. This means the starting point for this exercise

is the value 0x180D.

First convert 0x180D into a handle and associate it with the index value 1 to be used in successive

operations and to do that submit the command
uuid new 1 180D

It will respond with OK and now ‘1’ can be used in commands requiring UUID handles to mean the 16

bit UUID corresponding to 180D (until you associate a new handle for that index).

Recall that when the connection was established a connection handle of ‘1’ was provided and

note that the ‘1’ is an artefact of this sample application and again like the UUID example

above the actual connection handle is a 32 bit integer. The ‘contrived’ index values 1..N are just

for human typing convenience in this particular sample application. A developer is free to invent

other schemes to manage the 32 bit integer handles that are the ‘base currency’ for

connections and uuids. It is expected that for applications where human interaction is not

required there will be no need to cache handles in INTEGER arrays.

To locate the service 0x180D, submit the command
gattc svc first 1 0 1

Where the first 1 is the connection handle index and the last 1 is the UUID handle index obtained using

the command uuid new 1 180D

You will see the response
EVDISCPRIMSVC(hConn=0001FF00,hUuid=FE01180D,hStart=31,hEnd=36)

where you see the confirmation hUuid=FE01180D that a service with UUID 0x180D has been located

and the hStart=31,hEnd=36 means that the service starts at gatt table attribute handle 31 and ends at

gatt table attribute handle 36.

It is possible that a gatt table contains multiple instance of a service and it is possible to iterate through

them all. To look for more instances of the service with UUID 0x180D, enter the command
gattc svc next 1

You will see the response
EVDISCPRIMSVC(hConn=0001FF00,hUuid=00000000,hStart=0,hEnd=0)

Note that the start and end handles are 0 and the uuid handle is also 0. This implies that another

instance of the service was not found.

The BL600 does not have a service with uuid of say 0xDEAD, so create a handle in index 2 for it using
uuid new 2 DEAD

and then search for it using the command
gattc svc first 1 0 2

http://www.lairdtech.com/bluetooth

Flash Cloning for the BL600
Application Note

Americas: +1-800-492-2320 Option 2 8 Laird Technologies

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

www.lairdtech.com/bluetooth

You will see the response
EVDISCPRIMSVC(hConn=0001FF00,hUuid=00000000,hStart=0,hEnd=0)

Note that the start and end handles are 0 and the uuid handle is also 0. This implies the service was not

found.

You can perform a wildcard search for any service by specifying a 0 as the index for the UUID handle

(in the sample application index 0 is populated with the value -1 which is an invalid uuid handle) by

entering the command
gattc svc first 1 0 0

You will see the response
EVDISCPRIMSVC(hConn=0001FF00,hUuid=FE011800,hStart=1,hEnd=7)

Compare that with what was received for the tablemap command above and the information

matches with S:1 ,(7) ,FE011800

Now get the next service by entering the command
gattc svc next 1

You will see the response
EVDISCPRIMSVC(hConn=0001FF00,hUuid=FE011801,hStart=8,hEnd=11)

Again this matches with the next service in the tablemap example above, that is S:8 ,(11) ,FE011801

You can carry on submitting gattc svc next 1 to iterate through the entire gatt table until the entre

Gatt Table is traversed and then you will eventually get an ERROR response when the command is

submitted.

Find Specific Characteristic in a Service

Once you have obtained the start and end attribute handles for a service using say the gattc svc

first command you can iterate through all characteristic (or look for specific ones identified by a

UUID handle).

For example, from the tablemap example above, the heart rate service is starts at handle 31 and ends

at handle 36 (S:31 ,(36) ,FE01180D)

Find the first characteristic in that service using the command
gattc char first 1 0 31 36

You will see the response
EVDISCCHAR(hConn=0001FF00,hCharUuid=FE012A37,hIncUuid=0,hVal=33,Props=00000010)

which means a characteristic with 16 bit UUID 0x2A37 has been located and the value for that is in

attribute handle 33 and that characteristic has properties 0x00000010

Use the command gattc char next 1 to locate the next characteristic and carry on doing so until

there are no more.

Find Specific Descriptor in a Characteristic

Once you have obtained the attribute handle for a characteristic using say the gattc char first

command you can iterate through all descriptors (or look for specific ones identified by a UUID

handle) belonging to that characteristic.

http://www.lairdtech.com/bluetooth

Flash Cloning for the BL600
Application Note

Americas: +1-800-492-2320 Option 2 9 Laird Technologies

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

www.lairdtech.com/bluetooth

For example, the heart rate characteristic at handle 33 has a CCCD descriptor, locate the details for it

by submitting the command
gattc desc first 1 0 33

You will see the response
EVDISCDESC(hConn=0001FF00,hDescUuid=FE012902,hDesc=34)

which means a descriptor with 16 bit UUID 0x2902 has been located and the value for that is in

attribute handle 34.

You can look for the next descriptor in that characteristic by submitting the command
gattc desc next 1

Find a Specific Characteristic in Entire GATT Table

In most use cases a client will want to quickly locate a specific instance of a characteristic without

having to first look for the service it is contained in and then look for that characteristic in that service.

This section shows how that is done and it will show how to look for the heart rate characteristic with 16

bit uuid 0x2A37 in the heart rate service with 16 bit uuid 0x180D

First create the uuid handle for the service 0x180D in handle index 1 and in index 2 create the uuid

handle for the characteristic uuid 0x2A37 by submitting the following 2 commands
uuid new 1 180D

uuid new 2 2A37

Then to locate for the first instance of the characteristic 0x2A37 in the first instance of the service

0x180D submit the command
gattc findchar 1 1 0 2 0

where the two 0’s specify the first instance given the indexing starts at 0

You will see the response
EVFINDCHAR(hConn=0001FF00,hIncUuid=00000000,hVal=33,Props=00000010)

which means the characteristic was found at attribute handle 22 and has the property 0x00000010

which matches that found earlier.

You could look for the first instance of the same characteristic in the second instance of the service

(which does not exist) by submitting the command
gattc findchar 1 2 1 2 0

and the response will be
EVFINDCHAR(hConn=0001FF00,hIncUuid=00000000,hVal=0,Props=00000000)

and as you can see the hVal is 0 which means it was not found.

Find a Specific Descriptor in Entire GATT Table

In many use cases a client will be interested in say a heart rate service and want notifications to be

enabled by writing 0x0001 to the CCCD descriptor and wants to do that with minimal interaction. In

this case all it wants is to locate the first instance of a CCCD in the first instance of a heart rate

characteristic inside the first instance of a heart rate service.

This can done by first creating UUID handles in indices 1,2 and 3 as follows:
uuid new 1 180D

uuid new 2 2A37

http://www.lairdtech.com/bluetooth

Flash Cloning for the BL600
Application Note

Americas: +1-800-492-2320 Option 2 10 Laird Technologies

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

www.lairdtech.com/bluetooth

uuid new 3 2902

Then submitting the command
gattc finddesc 1 1 0 2 0 3 0

You will get the response
EVFINDDESC(hConn=0001FF00,hDesc=34)

which shows that the attribute handle for the descriptor is 34, which matches the information

extracted using the tablemap command D:34 ,FE012902 .

Then with the handle 34 one can quickly enable notifications by writing to that descriptor using

commands as described in the next section.

Enabling Notifications From Heart Rate Service using a Write command

This section will show notifications for heart rate and sending of sample heart rate data from the BL600

device and will involve a write operation.

From the tablemap response above (or the gattc finddesc command above), we know that the

CCCD has the handle 34 so we need to write to it so that notifications are enabled which means we

need to use the gatt client write operation.

To enable notification we need to write 0x0001 to the CCCD which is the attribute with handle 34 and

to do that enter the following command on the left screen
gattc write 1 34 0100

(note the value is written in little endian format so the 16 bit value 0x0001 is sent as a 2 byte array in

little endian format 0100)

Confirm you see the response
EVATTRWRITE(hConn=0001FF00,handle=34,status=0)

On the right screen confirm that you see the line
--- Hrs Notification : 1

which is confirmation that heart rate measurements will now be notified when it is modified.

To notify a heart rate of 72 (which is hex 0x48) on the right screen enter the command
hr 72

and then the command
send

Confirm that on the left screen you see the notification come through as follows:-
EVATTRNOTIFY()

 >BleGattcNotifyRead(hConn=0001FF00,handle=33,Dumped=0,data=0648)

Note the data=0648 and the 48 corresponds to the heart rate of 72 that was sent. You can try other

values to confirm that this was not a coincidence.

You may wonder why the data came through as 0648. This is because heart rate is a Bluetooth SIG

adopted service and that is how the data format has been defined. For more details of the heart rate

measurement characteristic see

https://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicViewer.aspx?u=org.bluetoo

th.characteristic.heart_rate_measurement.xml.

Reading BL600 Gatt Server Attributes

This section will show how to read attributes from the GATT server in the BL600.

http://www.lairdtech.com/bluetooth
https://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicViewer.aspx?u=org.bluetooth.characteristic.heart_rate_measurement.xml
https://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicViewer.aspx?u=org.bluetooth.characteristic.heart_rate_measurement.xml

Flash Cloning for the BL600
Application Note

Americas: +1-800-492-2320 Option 2 11 Laird Technologies

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

www.lairdtech.com/bluetooth

The Heart Rate application has installed a battery service in addition to the heart rate service. The

Bluetooth SIG has defined a UUID of 0x2A19 for battery characteristic. Have a look at the table map

and note that the last line is C:39 ,00000002 ,FE012A19 ,0 which means that the handle to read to

get the battery level is 39 given that the UUIS is FE012A19.

At the BL600 end, on the right screen make it so that the battery level is 50% (0x32) by entering the

following command
bl 50

Then on the left screen, to read the battery level, enter the command
gattc read 1 39 0

and in the left screen you will see the response
EVATTRREAD(hConn=196352,handle=39,status=0)

 >BleGattcReadData(data=32,offset=0)

 (data=2)

The data=32 is the confirmation that the data entered on the right screen has come though. Try other

values to see it change.

Please note that the second line with (data=2) is just the data redisplayed as printable string. For

example the ascii value 0x32 is the character ‘2’.

Disconnect

This section shows how to drop the connection. This can be done from either end and for this guide

the disconnect will be initiated from the BL620 end.

On the left screen enter the command
disconnect 1

and confirm that on the left screen you see
--- Disconnect: (0001FF00) handle=1 reason=22

and on the right screen (at the BL600 end) you see
--- Disconnect : 3731

The number 3731 in this case is the connection handle that was displayed above on the right screen

when the connection was established.

Finally

Please refer to the source for the smartBASIC application “cmd.central.bl620.sb” for the full list of all

the commands that have been exposed by that application and which smartBASIC functions they

invoke. For example, pairing can be initiated using the ‘pair’ group of commands.

In the source code please search for #CMD# to locate all the commands that are recognised.

Feel free to enhance and modify the application as you see fit.

http://www.lairdtech.com/bluetooth

