

smart BASIC
Core Funtionality

User Guide
Version 2.0-r5

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Embedded Wireless Solutions Support Center: http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

2 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

© 2014 Laird Technologies

All Rights Reserved. No part of this document may be photocopied, reproduced, stored in a

retrieval system, or transmitted, in any form or by any means whether, electronic, mechanical, or

otherwise without the prior written permission of Laird Technologies.

No warranty of accuracy is given concerning the contents of the information contained in this

publication. To the extent permitted by law no liability (including liability to any person by reason

of negligence) will be accepted by Laird Technologies, its subsidiaries or employees for any

direct or indirect loss or damage caused by omissions from or inaccuracies in this document.

Laird Technologies reserves the right to change details in this publication without notice.

Windows is a trademark and Microsoft, MS-DOS, and Windows NT are registered trademarks of

Microsoft Corporation. BLUETOOTH is a trademark owned by Bluetooth SIG, Inc., U.S.A. and

licensed to Laird Technologies and its subsidiaries.

Other product and company names herein may be the trademarks of their respective owners.

Laird Technologies

Saturn House,

Mercury Park,

Wooburn Green,

Bucks HP10 0HH,

UK.

Tel: +44 (0) 1628 858 940

Fax: +44 (0) 1628 528 382

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

3 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

REVISION HISTORY

Version Revisions Date Change History

2.0-r1 1 Feb 2013 Created by splitting from BL600 user manual

2.0-r2 14 Aug 2014 Fix typo errors

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

4 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

CONTENTS

Revision History ... 3

Contents .. 4

1. smartBASIC Documentation ... 6

2. Introduction to smartBASIC .. 6
Why Do We Need smart BASIC? ... 8
Why Write Applications? .. 8
What Does a BLE Module Contain? .. 9
smart BASIC Essentials .. 10
Developing with smart BASIC ... 10
smart BASIC Operating Modes ... 10
Types of Applications .. 12
Non Volatile Memory .. 12
Using the Module’s Flash File System ... 14

3. Getting Started ... 14
Requirements.. 14
Connecting Things Up ... 14
UWTerminal .. 15
Your First smart BASIC Application ... 20

4. Interactive Mode Commands .. 33
AT .. 34

5. smart BASIC Commands ... 48
Syntax.. 48
Functions ... 48
Subroutines ... 48
Statements .. 49
Exceptions ... 49
Language Definitions .. 50
Command .. 50
Variables ... 50
Constants .. 55
Compiler Related Commands and Directives ... 56
Arithmetic Expressions ... 57
Conditionals .. 59
Error Handling ... 67
Event Handling .. 68
Miscellaneous Commands .. 72

6. Core Language Built-in Routines .. 77
Result Codes ... 77
Information Routines .. 78
Event & Messaging Routines .. 82
Arithmetic Routines .. 84
String Routines .. 86
Table Routines .. 110
Miscellaneous Routines .. 114
Random Number Generation Routines .. 114

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

5 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Timer Routines .. 117
Circular Buffer Management Functions .. 126
Serial Communications Routines .. 132
I2C (Two Wire Interface or TWI) .. 151
SPI Interface .. 165
Cryptographic Functions ... 171
File I/O Functions .. 176
Non-Volatile Memory Management Routines .. 182
Input/Output Interface Routines .. 188
User Routines .. 192

7. Events and Messages .. 195

8. Module Configuration ... 195

9. Acknowledgements .. 195

Index .. 198

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

6 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

1. SMARTBASIC DOCUMENTATION

This Core Functionality user guide provides detailed information on the core aspects of Laird

Technologies’ smart BASIC language which is embedded inside Laird modules. This guide,

designed to make handling BLE-enabled end products a straightforward process, includes the

following:

 An explanation of the language’s core functionality

 Instructions on how to start using the tools

 A detailed description of all language components and examples of their use

A module-specific user guide is also available to provide detailed information on applicable

smartBASIC extensions relating to Bluetooth, BLE, and so on. Both the Core Functionality and the

module-specific smartBASIC extensions user guides are included in the firmware .zip file.

2. INTRODUCTION TO SMARTBASIC

For those with programming experience, smart BASIC is easy to use because it is derived from the

BASIC language. BASIC, which stands for Beginners All-Purpose Symbolic Instruction Code, was

developed in the early 1960s as a tool for teaching computer programming to undergraduates

at Dartmouth College in the United States. From the early 70s to the mid-80s, BASIC, in various

forms, was one of the most popular programming languages and the only user programming

language in the first IBM PC to be sold in the early 80s. Prior to that, the first Apple computers

were also deployed with BASIC.

Both BASIC and smart BASIC are interpreted languages – but in the interest of run-time speed on

an embedded platform which has limited resources, smart BASIC’s program text is parsed and

saved as bytecodes which are subsequently interpreted by the run-time engine to execute the

application. On some module platforms which have limited code flash space, the parsing from

source code to bytecode is done on a Windows PC using a free cross-compiler supplied by

Laird. Other platforms with more firmware code space also offer on-board compiling capabilities

in addition to the external cross-compilation utility.

The early BASIC implementations were based on source code statements which, because they

were line numbered, resulted in non-structured applications that liberally used ‘GOTO’

statements.

At the outset, smart BASIC was developed by Laird to offer structured programming constructs. It

is not line number based and it offers the usual modern constructs like subroutines, functions,

while, if and for loops.

smart BASIC offers further enhancement which acknowledges the fact that user applications are

always in unattended use cases. It forces the development of applications that have an event

driven structure as opposed to the classical sequential processing for which many BASIC

applications were written. This means that a typical smart BASIC application source code consists

of the following:

 Variable declarations and initialisations

 Subroutine definitions

 Event handler routines

 Startup code

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

7 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

The source code ends with a final statement called WAITEVENT, which never returns. Once the

run-time engine reaches the WAITEVENT statement, it waits for events to happen and, when they

do, the appropriate handlers written by the user are called to service them.

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

8 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Why Do We Need smart BASIC?

Programming languages are mostly designed for arithmetic operations, data processing, string

manipulation, and flow control. Where a program needs to interact with the outside world, like in

a BLE device, it becomes more complex due to the diversity of different input and output

options. When wireless connections are involved, the complexity increases. To compound the

problem, almost all wireless standards are different, requiring a deep knowledge of the

specification and silicon implementations in order to make them work.

We believe that if wireless connectivity is going to be widely accepted, there must be an easier

way to manage it. smart BASIC was developed and designed to extend a simple BASIC-like

programming language with all of the tokens that control a wireless connection using modern

language programming constructs.

smart BASIC differs from an object oriented language in that the order of execution is generally

the same as the order of the text commands. This makes it simpler to construct and understand,

particularly if you’re not using it every day.

Our other aim in developing smart BASIC from the ground up is to make wireless design of

products both simple and similar in look and feel for all platforms. To do this we are embedding

smart BASIC within our wireless modules along with all of the embedded drivers and protocol

stacks that are needed to connect and transfer data. A run-time engine interprets the customer

applications (reduced to bytecode) that are stored there, allowing a complete product design

to be implemented without the need for any additional external processing capability.

Why Write Applications?

smart BASIC for BLE has been designed to make wireless development quick and simple, vastly

cutting down time to market. There are three good reasons for writing applications in smart

BASIC:

 Since the module can auto launch the application each time it powers up, you can

implement a complete design within the module. At one end, the radio connects and

communicates while, at the other end, external interactions are available through the

physical interfaces such as GPIOs, ADCs, I2C, SPI, and UART.

 If you want to add a range of different wireless options to an existing product, you can

load applications into a range of modules with different wireless functionality. This presents

a consistent API interface defined to your host system and allows you to select the wireless

standard at the final stage of production.

 If you already have a product with a wired communications link, such as a modem, you

can write a smart BASIC application for one of our wireless modules that copies the

interface for your wired module. This provides a fast way for you to upgrade your product

range with a minimum number of changes to any existing end user firmware.

In many cases, the example applications on our website and the specific user manual for the

module can be modified to speed up the development process.

http://ews-support.lairdtech.com/
http://www.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

9 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

What Does a BLE Module Contain?

Our smart BASIC-based BLE modules are designed to provide a complete wireless processing

solution. Each module contains the following:

 A highly integrated radio with an integrated antenna (external antenna options are also

available)

 BLE Physical and Link Layer

 Higher level stack

 Multiple GPIO and ADC

 Wired communication interfaces like UART, I2C, and SPI

 A smart BASIC run-time engine

 Program accessible flash memory which contains a robust flash file system exposing a

conventional file system and a database for storing user configuration data

 Voltage regulators and brown-out detectors

For simple end devices, these modules can completely replace an embedded processing

system.

The following block diagram (Figure 1) illustrates the structure of the BLE smart BASIC module from

a hardware perspective on the left and a firmware/software perspective on the right.

smartBASIC

run-time engine
(provides safe access to
BLE stack, drivers and

non-vol stores)

Non-Vol

File

System

for

smartBASIC

Apps

Non-Vol

Data

Store

I/
O

,
U

A
R

T
,I
2
C

,S
P

I
D

ri
v
e
rs

Bluetooth Low Energy Stack

User smartBASIC Application

Example App

 PRINT "Laird BL600 Module"

 WaitEvent

44 connection pads

UART GPIO ADC I2C SPI

16K RAM

256K Flash

BLE Radio

OR UFL
Internal

Antenna

ARM Cortex M0

(smartBASIC)

Figure 1: BLE smart BASIC module block diagram

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

10 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

smart BASIC Essentials

smart BASIC is based upon the BASIC language. It has been designed to be highly efficient in

terms of memory use, making it ideal for low cost embedded systems with limited RAM and

code memory.

The core language, which is common throughout all smart BASIC implementations, provides the

standard functionality of any program, such as:

 Variables (integer and string)

 Arithmetic functions

 Binary operators

 Conditionals

 Looping

 Functions and subroutines

 String processing functions

 Arrays (single dimension only)

 I/O functions

 Memory management

 Event handling

The language on the various platforms differs by having a sophisticated set of target-specific

extensions, such as BLE for the module described in this manual.

These extensions have been implemented as additional program functions that control the

wireless connectivity of the module including, but not limited to, the following:

 Advertising

 Connecting

 Security – encryption and authentication

 Power management

 Wireless status

Developing with smart BASIC

smart BASIC is one of the simplest embedded environments on which to develop because much

of the functionality comes prepackaged. The compiler, which can be internal or external on a

Windows PC, compiles source text on a line-by-line basis into a stream of bytes (or bytecode)

that can be stored to a custom-designed flash file system. Following that, the run-time engine

interprets the application bytecode in-situ from flash.

To further simplify development, Laird provides its own custom developed application called

UWTerminal which is a full blown customised terminal emulator for Windows, available upon

request at no cost. See Chapter 2 – UWTerminal for information on writing smart BASIC

applications using UWTerminal.

UWTerminal also embeds smart BASIC to automate its own functionality; the extension smart

BASIC functions facilitate the automation of terminal emulation functionality.

smart BASIC Operating Modes

Any platform running smart BASIC has up to three modes of operation:

 Interactive Mode – In this mode, commands are sent via a streaming interface which is

usually a UART, and are executed immediately. This is similiar to the behavior of a modem

using AT commands. Interactive mode can be used by a host processor to directly

configure the module. It is also used to manage the download and storage of smart BASIC

applications in the flash file system subsequently used in run-time mode.

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

11 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 Application Load Mode – This mode is only available if the platform includes the compiler

in the firmware image. The BLE module has limited firmware space and so compilation is

only possible outside the module using a smart BASIC cross-compiler (provided for free).

If this feature is available, then the platform switches into Load mode when the compile

(AT+CMP) command is sent by the host.

In this mode the relevant application is checked for syntax correctness on a line-by-line

basis, tokenised to minimise storage requirements, and then stored in a non-volatile file

system as the compiled application. This application can then be run at any time and can

even be designated as the application to be automatically launched upon power up.

 Run-time Mode – In Run-time mode, pre-compiled smart BASIC applications are read from

program memory and executed in-situ from flash. The ability to run the application from

flash ensures that as much RAM memory as possible is available to the user application for

use as data variables.

On startup, an external GPIO input pin is checked. If the state of the input pin is asserted (high or

low, depending on the platform) and $autorun$ exists in the file system, the device enters

directly into Run-time mode and the application is automatically launched. If that input pin is not

asserted, then regardless of the existence of the autorun file, it enters Interactive mode.

If the auto-run application completes or encounters a STOP or END statement, then the module

returns to Interactive mode.

It is therefore possible to write autorun applications that continue to run and control the

module’s behavior until power-down, which provides a complete embedded application.

The modes of the module and transitions are illustrated in Figure 2.

Power Up/Start

autorun input

asserted

AND

$autorun$ app

exists

autorun input

deasserted

OR

$autorun$ app

missing

Interactive

mode
Run mode

command

' AT+RUN "file" '

STOP or

END statement or

runtime error and no ONERROR handler

Figure 2: Module modes and transitions

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

12 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Types of Applications

There are two types of applications used within a smart BASIC module. In terms of composition,

they are the same but they run at different times.

 Autorun – This is a normal application named $autorun$ (case insensitive). When a smart

BASIC module powers up, it looks for the $autorun$ application. If it finds it and if the

nAutoRUN pin of the module is at 0v, then it executes it. Autorun applications may be used

to initialise the module to a customer’s desired state, make a wireless connection, or

provide a complete application program. At the completion of the autorun application,

which is when the last statement returns or a STOP or END statement is encountered, a

smart BASIC module reverts to Interactive mode.

In unattended use cases, the autorun application is expected to never terminate. It is

typical for the last statement in an application to be the WAITEVENT statement.

Be aware that an autorun application does not need to complete and exit to Interactive

mode. The application can be a complete program that runs within the smart BASIC

module, removing the requirement for an external processor.

Applications can access the GPIOs and ADCs and use ports (UART, I2C, and SPI, for

example) to interface with peripherals such as displays and sensors.

Note: By default, when the autorun application starts up and if the STDOUT is the UART,

then it will be in a closed state. If a PRINT statement is encountered which results

in output, then the UART is automatically opened using default comms

paramaters.

 Other – Applications can be loaded into the BASIC module and run under the control of

an external host processor using the AT+RUN command. The flash memory supports the

storage of multiple applications.

Note: The storage space is module-dependent. Check the individual module data

sheet.

Non Volatile Memory

All smart BASIC modules contain user-accessible flash memory. The quantity of memory varies

between modules; check the appliable datasheet.

The flash memory is available for three purposes:

 File storage – Files which are not applications can also be stored in flash memory (for

example X.501 certificates). The most common non-application files are data files for

application.

 Application storage – Storage of user applications and the AT+RUN command is used to

select which application runs.

 Non-volatile records – Individual blocks of data can be stored in non-volatile memory in a

flat database where each record consists of a 16 bit user defined ID and data consisting of

variable length. This is useful for cases where program specific data needs to be preserved

across power cycles. For example, passwords.

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

13 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

14 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Using the Module’s Flash File System

All smart BASIC modules hold data and application files in a simple flash file system which was

developed by Laird and has some similarity to a DOS file system. Unlike DOS, it consists of a single

directory in which all of the files are stored.

Note: When files are deleted from the flash file system, the flash memory used by that file is

not released. Therefore, repeated downloads and deletions eventually fill the file

system, requiring it to be completely emptied using the AT&F1 command.

The command AT I 6 returns statistics related to the flash file system when in interactive mode.

From within a smart BASIC application, the function SYSINFO(x), where x is 601 to 606 inclusive,

returns similar information.

Note: Non-volatile records are stored in a special flash segment that is capable of coping

with cases where there is no free unwritten flash but there are many deleted records.

3. GETTING STARTED

This section is a quick start guide for using smart BASIC to program an application. It shows the

key elements of the BASIC language as implemented in the module and guides you through the

use of UWTerminal (a free Laird Terminal Emulation utility available) and Laird’s Development Kit

to test and debug your application.

The examples in this section are based upon Laird’s BL600, a BLE module. However, the principles

apply to any smart BASIC-enabled module.

Requirements

To replicate this example, you need the following items:

 A BL600 series development kit

 UWTerminal application (contact Laird for the latest version). The UWTerninal must be at

least v6.50.

Save the application to a suitable directory on your PC.

 A cross-compiler application with a name typically formatted as

XComp_dddddddd_aaaa_bbbb.exe, where dddddddd is the first non-space eight

characters from the response to the AT I 0 command and aaaa/bbbb is the hexadecimal

output to the command AT I 13.

Note: aaaa/bbbb is a hash signature of the module so that the correct cross-compiler is

used to generate the bytecode for download. When an application is launched

in the module, the hash value is compared against the signature in the run-time

engine and, if there is a mismatch, the application is aborted.

Connecting Things Up

The simplest way to power the development board and module is to connect a USB cable to

the PC. The development board regulates the USB power rail and feeds it to the module.

http://ews-support.lairdtech.com/
http://contact/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

15 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Note: The current requirement is typically a few mA with peak currents not exceeding 20 mA.

We recommend connecting to a powered USB hub or a primary USB port.

UWTerminal

UWTerminal is a terminal emulation application with additional GUI extensions to allow easy

interactions with a smart BASIC-enabled module. It is similar to other well-known terminal

applications such as Hyperterminal. As well as a serial interface, it can also open a TCP/IP

connection either as a client or as a server. This aspect of UWTerminal is more advanced and is

covered in the UWTerminal User’s Guide. The focus of this chapter is its serial mode.

In addition to its function as a terminal emulator it also has smart BASIC embedded so you can

locally write and run smart BASIC applications. This allows you to write smart BASIC applications

which use the terminal emulation extensions that enable you to automate the functionality of

the terminal emulator.

It may be possible in the future to add BLE extensions so that when UWTerminal is running on a

Windows 8 PC with Bluetooth 4.0 hardware, an application that runs on a BLE module also runs in

the UwTerminal environment.

Before starting UWTerminal, note the serial port number to which the development kit is

connected.

Note: The USB to serial chipset driver on the development kit generates a virtual COM port.

Check the port by selecting My Computer > Properties > Hardware > Device Manager

> Ports (COM & LPT).

To use UWTerminal, follow the steps below. Note that the screen shots may differ slightly as it is a

continually evolving Windows application:

1. Switch on the development board, if applicable.

2. Start the UWTerminal application on your PC to access the opening screen (Figure 3).

Figure 3: UWTerminal opening screen

3. Click Accept to open the configuration screen.

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

16 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Figure 4: UWTerminal Configuration screen

4. Enter the COM port that you have used to connect the development board. The other

default parameters should be:

Baudrate 9600

Parity None

Stop Bits 1

Data Bits 8

Handshaking CTS/RTS

Note: Comport (not Tcp Socket) should be selected on the left.

5. Select Poll for port to enable a feature that attempts to re-open the comport in the event

that the devkit is unplugged from the PC causing the virtual comport to disappear.

6. In Line Terminator, select the characters that are sent when you type ENTER.

7. Once these settings are correct, click OK to bring up the main terminal screen.

Navigating UWTerminal

Figure 5: UWTerminal tabs and status lights

The following tabs are located at the top of the UWTerminal:

 Terminal – Main terminal window. Used to communicate with the serial module.

 BASIC – smart BASIC window. Can be used to run BASIC applications locally without a

device connected to the serial port.

Note: You can use any text editor, such as notepad, for writing your smart BASIC

applications. However, if you use an advanced text editor or word processor you

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

17 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

need to take care that non-standard formatting characters are not incorporated

into your smartBASIC application.

 Config – Configuration window. Used to set up various parameters within UWTerminal.

 About – Information window that displays when you start UWTerminal. It contains

command line arguments and information that can facilitate the creation of a shortcut to

the application and launch the emulator directly into the terminal screen.

The four LED-type indicators below the tabs display the status of the RS-232 control lines that are

inputs to the PC. The colors are red, green, or white. White signifies that the serial port is not

open.

Note: According to RS-232 convention, these are inverted from the logic levels at the GPIO

pin outputs on the module. A 0v on the appropriate pin at the module signifies an

asserted state

 CTS – Clear to Send. Green indicates that the module is ready to receive data.

 DSR – Data Set Ready. Typically connected to the DTR output of a peripheral.

 DCD – Data Carrier Detect.

 RI – Ring Indicate.

If the module is operating correctly and there is no radio activity, then CTS should be asserted

(green), while DSR, DCD, and RI are deasserted (red). Again note that if all four are white (Figure

6), it means that the serial port of the PC has not been opened and the button labelled

OpenPort can be used to open the port.

Figure 6: White lights

Note: At the time of this manual being written, the DSR line on the BL600 DevKit is connected

to the SIO25 signal on the module which has to be configured as an output in a smart

BASIC application so that it drives the PC’s DSR line. The DCD line (input on a PC) is

connected to SIO29 and should be configured as an output in an application and

finally the RI line (again an input on a PC) is connected to SIO30. Please request a

schematic of the BL600 development kit to ensure that these SIO lines on the modules

are correct.

Figure 7: Control options

Next to the indicators are a number of control options (Figure 7) which can be used to set the

signals that appear on inputs to the module.

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

18 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 RTS and DTR – The two additional control lines for the RS-232 interface.

Note: If CTS/RTS handshaking is enabled, the RTS checkbox has no effect on the actual

physical RTS output pin as it is automatically controlled via the underlying

Windows driver. To gain manual control of the RTS output, disable Handshaking in

the Configuration window.

 BREAK – Used to assert a break condition over the Rx line at the module. It must be

deasserted after use. A Tx pin is normally at logic high (> 3v for RS232 voltage levels) when

idle; a BREAK condition is where the Tx output pin is held low for more than the time it takes

to transmit 10 bits.

If the BREAK checkbox is ticked then the Tx output is at non-idle state and no

communication is possible with the UART device connected to the serial port.

 LocalEcho – Enables local echoing of any characters typed at the terminal. In default

operation, this option box should be selected because modules do not reflect back

commands entered in the terminal emulator.

 LineMode – Delays transmission of characters entered into UWTerminal until you press Enter.

Enabling LineMode means that Backspace can be used to correct mistakes. We

recommend that you select this option.

 Clear – Removes all characters from the terminal screen.

 ClosePort – Closes the serial port. This is useful when a USB to serial adaptor is being used to

drive the development board which has been briefly disconnected from the PC.

 OpenPort – Re-opens the serial port after it has been manually closed.

Useful Shortcuts

There are a number of shortcuts that can speed up the use of UWTerminal.

Each time UWTerminal starts, it asks you to acknowledge the Accept screen and to enter the

COM port details. If you are not going to change these, you can skip these screens by entering

the applicable command line parameters in a shortcut link.

Follow these steps to create a shortcut to UWTerminal on your desktop:

1. Locate and right-click the UwTerminal.exe file, and then drag and drop it onto your

desktop. In the dialog box, select Create Shortcut.

2. Right-click the newly created shortcut.

3. Select Properties.

4. Edit the Target line to add the following commands (Figure 8):

accept com=n baud=bbb linemode

(where n is the COM port that is connected to the dev kit and bbb is the baudrate)

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

19 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Figure 8: Shortcut properties

Starting UWTerminal from this shortcut launches it directly into the terminal screen. At any time,

the status bar on the bottom left (Figure 9) shows the comms parameters being used at that

time. The two counts on the bottom right (Tx and Rx) display the number of characters

transmitted and received.

The information within { } denotes the characters sent when you hit ENTER on the keyboard.

Figure 9: Terminal screen status bar

Using UWTerminal

The first thing to do is to check that the module is communicating with UWTerminal. To do this,

follow these steps:

1. Check that the CTS light is green (DSR, DCD, and RI should be red).

2. Type at.

3. Press Enter. You should get a 00 response (Figure 10).

Figure 10: Interactive command access

UWTerminal supports a range of interactive commands to interact directly with the

module. The following ones are typical:

 AT – Returns 00 if the module is working correctly.

 AT I 3 – Shows the revision of module firmware. Check to see that it is the latest version.

 AT I 13 – Shows the hash value of the smart BASIC build.

 AT I 4 – Shows the MAC address of the module.

 AT+DIR – Lists all of the applications loaded on the module.

 AT+DEL “filename” – Deletes an application from the module.

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

20 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 AT+RUN “filename” – Runs an application that is already loaded on the module.

Please be aware that if a filename does not contain any spaces, it is possible to

launch an application by just entering the filename as the command.

The next chapter lists all of the Interactive commands.

First, check to see what is loaded on the module by typing AT+DIR and Enter:

If the module has not been used before, then you should not see any lines starting with the two

digit 06 sequence.

Your First smart BASIC Application

Create ‘Hello World’ App

Let’s start where every other programming manual starts… with a simple program to display

“Hello World” on the screen. We use Notepad to write the smart BASIC application.

To write this smart BASIC application, follow these steps:

1. Open Notepad.

2. Enter the following text:

print "\nHello World\n"

3. Save the file with single line test1.sb.

Note the following:

smart BASIC files can have any extension. UWTerminal, which is used to download an application

to the module, strips all letters including and after the first ‘.’ when the file is downloaded to the

module.

For example, a file called “this.is.my.first.file.sb” will be downloaded as “this” and so will

“this.is.my.second.file.sb”, but “that.is.my.other.file.sb” will get downloaded as “that”. This has

special significance when you want to manage the special smartBASIC file called “$autorun$”

which is run automatically on power up.

It means that you can have files called “$autorun$.heart.rate.sb” and

“$autorun$.blood.pressure.sb” in a single folder and yet ensure that when downloaded they get

saved as “$autorun$”

We recommend always using the extension .sb to make it easier to distinguish between smart

BASIC files and other files. You can also associate this extension with your favorite editor and

enable appropriate syntax highlighting. You may also encounter files with extension .sblib which

are library source files provided by Laird to make developing code easier. They are included in

your application using the #include statement which is is described later in this manual.

at+dir

06 $factory$
00

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

21 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

As you start to develop more complex applications, you may want to use a more fully-featured

editor such as TextPad (trial version downloadable from www.textpad.com) or Notepad++ (free

and downloadable from http://notepad-plus.sourceforge.net).

Tip: Laird recommends using TextPad or Notepad++ because appropriate color syntax

highlighting files are available for each build of the firmware which means all tokens

recognised by smartBASIC are highlighted in various colors.

If you use Notepad++, do the following:

1. Copy the file smartBASIC(notepad++).xml to the Notepad++ install folder.

2. Launch Notepad++.

3. From the menu, select Language > Define your Language.

4. In the new dialog box, click Import… and select the smartBASIC(notepad++).xml file

from the folder you saved it to. A confirmation dialog box displays stating that the

import was successful.

5. Close the User defined Language dialog box and then the Notepad++ application.

6. Reopen Notepad++ and select Language > smartBASIC from the menu.

If you use TextPad, do the following:

1. Copy the smartBASIC(Textpad).syn file from the firmware upgrade zip file to the

Textpad install folder (specifically, the system subfolder).

2. As a one-time procedure, start TextPad.

3. Ensure no documents are currently open.

4. From the menu, select Configure > Preferences.

5. Select Document Classes.

6. In the User defined classes list box, add smartBASIC.

7. Click the plus sign (+) to expand Document Classes and select smartBASIC.

8. In the new Files in class smartBASIC list box, add the following two lines:

 *.sb

 *.sblib

9. Click + to expand smartBASIC and select Syntax.

10. Select Enable syntax highlighting to enable it.

11. In the Syntax definition file dropdown menu, enter or select the

smartBASIC(textpad).syn file.

12. Click OK.

You should now have TextPad configured so that any file with file extension .sb or .sblib

will be displayed with color syntax highlighting. To change the colors of the syntax

highlighting, do the following:

1. From the Configure/Preferences dialog box, select the Document Classes plus sign (+)

(next to smartBASIC) and select Colors.

2. Change the color of any of the items as necessary.

For example, smartBASIC FUNCTIONs are ‘Keywords 2’, smartBASIC SUBs are

‘Keywords 3’ and smartBASIC Event and Message IDs (as used in the ONEVENT

statement) are ‘Keywords 4’

Figure 11 displays a sample of what a smartBASIC code fragment looks like in

TextPad.

http://ews-support.lairdtech.com/
http://www.textpad.com/
http://notepad-plus.sourceforge.net/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

22 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Figure 11: Example of a smartBASIC code fragment in TextPad

Download ‘Hello World’ App

You must now load the compiled output of this file into the smart BASIC module’s File System so

that you can run it. To do this, follow these steps:

1. To manage file downloads, right click on any part of the black UWTerminal screen to

display the drop-down menu (Figure 12).

Figure 12: Right-click UWTerminal screen

2. Click XCompile+Load and navigate to the directory where you’ve stored your test1.sb file.

Note: Do not select Compile+Load.

3. Click Open. In UWTerminal, you should see the following display:

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

23 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 Behind the scenes, the shortcut uses Interactive Commands to load the file onto the

module. The first two AT I commands are used to identify the module so that the correct

cross compiler can be invoked resulting in the text <<Cross Compiling [test1.sb]>>.

In this example, since the compilation is successful, the generated binary file must be

downloaded and the AT+DEL “filename” + deletes any previous file with the same name

that might already be on the module. The new file is downloaded using the AT+FOW,

AT+FWRH, and AT+FCL commands. The strings following AT+FWRH consist of the binary data

generated by the cross compiler. The +++ DONE +++ signifies that the process of compiling

and downloading was successfully accomplished.

There may be a possible failure in this process if the cross compiler cannot be located. In

this case, the following window displays:

To fix this issue, locate the cross compiler application mentioned in between the [] brackets

and save it to either the folder containing UWTerminal.exe or the folder that contains the

smart BASIC application test1.sb

A compilation error may be another cause of failure. For example, if the print statement

contains an error in the form of a missing “ delimiter, then the following should display in a

separate window:

AT I 0

10 0 Bl600Med

AT I 13

10 13 9E56 5F81

<<Cross Compiling [test1.sb]>>

AT+DEL "test1" +

AT+FOW "test1"

AT+FWRH "FE900002250000000000FFFFFFFF569E815FFC10"

AT+FWRH "FB70090054455354312E555743000110CE211000"

AT+FWRH "FB0009000D000A48656C6C6F20576F726C640A00"

AT+FWRH "CC211400A52000000110FD10F510"

AT+FCL

+++ DONE +++

AT I 0

10 0 Bl600Med

AT I 13

10 13 9E56 5F81

??? Cross Compiler [XComp_Bl600Med_9E56_5F81.exe] not found ???

??? Please save a copy to the same folder as UwTerminal.exe ???

??? If you cannot locate the file, please contact the supplier ???

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

24 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Figure 13: Compilation error window

Now that the application has been downloaded into the module, run it by issuing test1 or

AT+RUN “test1”.

Note: smart BASIC commands, variables, and filenames are not case sensitive;

smart BASIC treats Test1, test1 and TEST1 as the same file.

The screen should display the following results (when both forms of the command are

entered):

You can check the file system on the module by typing AT+DIR and pressing Enter, you

should see:

You have just written and run your first smart BASIC program.

To make it a little more complex, try printing “Hello World” ten times. For this we can use the

conditional functions within smart BASIC. We also introduce the concept of variables and print

formatting. Later chapters go into much more detail, but this gives a flavor of the way they work.

Before we do that, it’s worth laying out the rules of the application source syntax.

smart BASIC Statement Format

The format of any line of smart BASIC is defined in the following manner:

{ COMMENT | COMMAND | STATEMENT | DIRECTIVE } < COMMENT > { TERMINATOR }

at+run "test1"

Hello World

00

Test1

Hello World

00

06 test1

00

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

25 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Anything in { } is mandatory and anything in < > is optional. Within each set of { } or < > brackets,

the character | is used to denote a choice of values.

The various elements of each line are:

 COMMENT – A COMMENT token is a ‘ or // followed by any sequence of characters. Any

text after the token is ignored by the parser. A comment can occupy its own line or be

placed at the end of a STATEMENT or COMMAND.

COMMAND – An Interactive command; one of the commands that can be executed from

Interactive mode.

 STATEMENT – A valid BASIC statement(s) separated by the : character if there are more

than one statement.

Note: When compiling an application, a line can be made of several statements which

are separated by the : character.

 DIRECTIVE – A line starting with the # character. It is used as an instruction to the parser to

modify its behavior. For example, #DEFINE and #INCLUDE.

 TERMINATOR – The \r character which corresponds to the Enter key on the keyboard.

The smart BASIC implementation consists of a command parser and a single line/single pass

compiler. It takes each line of text (a series of tokens) and does one of the following (depending

on its content and operating mode):

 Acts on them immediately (such as with AT commands).

 If the build includes the compiler, generates a compiled output which is stored and

processed at a later time by the run-time engine. This capability is not present in the BL600

due to flash memory constraint.

smart BASIC has been designed to work on embedded systems where there is often a very

limited amount of RAM. To make it efficient, you must declare every variable that you intend to

use by using the DIM statement. The compiler can then allocate the appropriate amount of

memory space.

In the following example program, we are using the variable “i” to count how many times we

print “Hello World”. smart BASIC allows a couple of different variable types, numbers (32 bit

signed integers) and strings.

Our program (stored in a file called HelloWorld.sb’) looks like the following:

//Example :: HelloWorld.sb

DIM i as integer //declare our variable

for i=1 to 10 //Perform the print ten times

 print "Hello World \n" //The \n forces a new line each time

next

Some notes regarding the previous program:

 Any line that starts with an apostrophe (‘) is a comment and is ignored by the compiler

from the token onwards. In other words, the opening line is ignored. You can also add a

comment to a program line by adding an apostrophe proceeded by a space to start the

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

26 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

comment.

If you have C++ language experience, you can also use the // token to indicate that the

rest of the line is a comment.

 The second item of interest is the line feed character ‘\n’ which we’ve added after Hello

World in the print statement. This tells the print command to start a new line. If left out, the

ten Hello World’s would have been concatenated together on the screen. You can try

removing it to see what would happen.

Compile and download the file HelloWorld.sb to the module (using XCompile+Load in

UwTerminal) and then run the application in the usual way:

AT+RUN “helloworld”

The following output displays:

If you now change the print statement in the application to

print "Hello World ";i;"\n" //The \n forces a new line each time

… the following output displays:

If you run AT+DIR, you will see that both of these programs are now loaded in memory. They

remain there until you remove them with AT+DEL.

Hello World 1

Hello World 2

Hello World 3

Hello World 4

Hello World 5

Hello World 6

Hello World 7

Hello World 8

Hello World 9

Hello World 10

Hello World

Hello World

Hello World

Hello World

Hello World

Hello World

Hello World

Hello World

Hello World

Hello World

06 test1

06 HelloWorld

00

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

27 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Note: All responses to interactive commands are of the format

\nNN\tOptionalText1\tOptionalText2…\r

where NN is always a two digit number and \t is the tab character and is terminated

by \r.

This format has been provided to assist with developing host algorithms that can parse

these responses in a stateless fashion. The NN will always allow the host to attach

meaning to any response from the module.

Autorun

One of the major features of a smart BASIC module is its ability to launch an application

autonomously when power is applied. To demonstrate this we will use the same HelloWorld

example.

An autorun application is identical to any other BASIC application except for its name, which

must be called $autorun$. Whenever a smart BASIC module is powered up, it checks its

nAutoRUN input line (see your module’s pinout) and, if it is asserted (at 0v), it looks for and

executes the autorun application.

In our development kits, the nAutoRUN input pin of the module is connected to the DTR output

pin of the USB to UART chip. This means the DTR checkbox in UWTerminal can be used to affect

the state of that pin on the module. The DTR checkbox is always selected by default (in asserted

state), which translates to a 0v at the nAutoRUN input of the module. This means if an autorun

application exists in the module’s file system, it is automatically launched on power up.

Copy the smart BASIC source file HelloWorld.sb to $autorun$.sb and then cross-compile and

download to the module. After it is downloaded, enter the AT+DIR command and the following

displays:

TIP: A useful feature of UWTerminal is that the download function strips off the filename

extension when it downloads a file into the module file system. This means that you can

store a number of different autorun applications on your PC by giving them longer,

more descriptive extension names. For example:

$autorun$.HelloWorld

By doing this, each $autorun$ file on your PC is unique and the list is simpler to manage.

Note: If Windows adds a text extension, rename the file to remove it. Do not use multiple

extensions in filenames (such as filename.ext1.ext2). The resulting files (after being

stripped) may overwrite other files.

at+dir

06 test1

06 HelloWorld

06 $autorun$

00

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

28 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Clear the UWTerminal screen by clicking the Clear button on the toolbar and then enter the

command ATZ to force the module to reset itself. You could also click Reset on the development

kit to achieve the same outcome.

Warning: If the JLINK debugger is connected to the development kit via the ribbon, then the

reset button has no effect.

The following output displays:

In UWTerminal, next clear the screen using the Clear button and then unselect the checkbox

labelled DTR so that the nAutoRUN input of the module is not asserted. After a reset (ATZ or the

button), the screen remains blank which signifies that the autorun application was NOT invoked

automatically.

The reason for providing this capability (suppressing the launching of the autorun application) is

to ensure that if your autorun application has the WAITEVENT as the last statement. This allows

you to regain control of the module’s command interpreter for further development work.

Debugging Applications

One difference with smart BASIC is that it does not have program labels (or line numbers).

Because it is designed for a single line compilation in a memory constrained embedded

environment, it is more efficient to work without them.

Because of the absence of labels, smart BASIC provides facilities for debugging an application

by inserting breakpoints into the source code prior to compilation and execution. Multiple

breakpoints can be inserted and each breakpoint can have a unique identifier associated with

it. These IDs can be used to aid the developer in locating which breakpoint resulted in the break.

It is up to the programmer to ensure that all IDs are unique. The compiler does not check for

repeated values.

Each breakpoint statement has the following syntax: BP nnnn

Where nnnn should be a unique number which is echoed back when the breakpoint is

encountered at runtime. It is up to the developer to keep all the nnnn’s unique as they are not

validated when the source is compiled.

Breakpoints are ignored if the application is launched using the command AT+RUN (or name

alone). This allows the application to be run at full speed with breaks, if required. However, if the

command AT+DBG is used to run the application, then all of the debugging commands are

enabled.

When the breakpoint is encountered, the runtime engine is halted and the command line

interface becomes active. At this point, the response seen in UWTerminal is in the following form:

Hello World 1

Hello World 2

Hello World 3

Hello World 4

Hello World 5

Hello World 6

Hello World 7

Hello World 8

Hello World 9

Hello World 10

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

29 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

<linefeed>21 BREAKPOINT nnnn<carriage return>

Where nnnn is the identifier associated with the BP nnnn statement that caused the halt in

execution. As the nnnn identifier is unique, this allows you to locate the breakpoint line in the

source code.

For example, if you create an application called test2.sb with the following content:

//Example :: test2.sb (See in BL600CodeSnippets)

 DIM i as integer

 for i=1 to 10

 print "Hello World”;i;”\n"

 if i==3 then

 bp 3333

 endif

 next

When you launch the application using AT+RUN, the following displays:

If you launch the application using AT+DBG, the following displays:

Having been returned to Interactive mode, the command ? varname can be used to

interrogate the value of any of the application variables, which are preserved during the break

from execution. The command = varname newvalue can then be used to change the value of

a variable, if required. For example:

Hello World 1

Hello World 2

Hello World 3

Hello World 4

Hello World 5

Hello World 6

Hello World 7

Hello World 8

Hello World 9

Hello World 10

Hello World 1

Hello World 2

Hello World 3

21 BREAKPOINT 3333

? i

08 3

00

= I 42

? i

08 42

00

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

30 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

The single step command SO (Step Over) can then be invoked to step through the next

statements individually (note the first SO reruns the BP statement).

When required, the command RESUME can be used to resume the run-time engine from the

current application position as shown below:

Structuring an Application

Applications must follow smart BASIC syntax rules. However, the single pass compiler places some

restrictions on how the application needs to be arranged. This section explains these rules and

suggests a structure for writing applications which should adhere to the event driven paradigm.

Typically, do something only when something happens. This smart BASIC implementation has

been designed from the outset to feed events into the user application to facilitate that

architecture and, while waiting for events, the module is designed to remain in the lowest power

state.

smart BASIC uses a single pass compiler which can be extremely efficient in systems with limited

memory. They are called “single pass” as the source application is only passed through the

parser line by line once. That means that it has no knowledge of any line which it has not yet

encountered and it forgets any previous line as soon as the first character of the next line arrives.

The implication is that variables and subroutines need to be placed in position before they are

first referenced by any function which dictates the structure of a typical application.

In practice, this results in the following structure for most applications:

 Opening Comments – Any initial text comments to help document the application.

 Includes – The cross compiler which is automatically invoked by UWTerminal allows the use

of #DEFINE and #INCLUDE directives to bring in additional source files and data elements.

Variable Declarations – Declare any global variables. Local variables can be declared

within subroutines and functions.

 Subroutines and Functions – These should be cited here, prior to any program references. If

any of them refer to other subroutines or functions, these referred ones should be placed

first. The golden rule is that nothing on any line of the application should be “new”. Either it

should be an inbuilt

smart BASIC function or it should have been defined higher up within the application.

 Event and error handlers – Normally these reference subroutines, so they should be placed

here.

 Main program – The final part of the application is the main program. In many cases this

may be as simple as an invocation of one of the user functions or subroutines and then

finally the WAITEVENT statement.

Hello World 1

Hello World 2

Hello World 3

21 BREAKPOINT 3333

= I 8

resume

Hello World 8

Hello World 9

Hello World 10

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

31 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

The following is an example of an application (btn.button.led.test.sb) which monitors button

presses and reflects them to leds on the BL600 development kit:

//**

// Laird Technologies (c) 2013

//

// +++

// +++++ ++

// +++++ When UwTerminal downloads the app it will store it as a filenname ++

// +++++ which consists of all characters up to the first . and excluding it ++

// +++++ ++

// +++

//

//

// Simple development board button and LED test

// Tests the functionality of button 0, button 1, LED 0 and LED 1 on the development

board

// DVK-BL600-V01

//

// 24/01/2013 Initial version

//

//**

//**

// Definitions

//**

//**

// Library Import

//**

//#include "$.lib.ble.sb"

//**

// Global Variable Declarations

//**

dim rc // declare rc as integer variable

//**

// Function and Subroutine definitions

//**

//==

//==

function button0release() //this function is called when the button

0 is released"

gpiowrite(18,0) // turns LED 0 off

print "Button 0 has been released \n" //these lines are printed to the UART when

the button is released

print "LED 0 should now go out \n\n"

endfunc 1

//==

//==

function button0press() //this function is called when the button

0 is pressed"

gpiowrite(18,1) // turns LED 0 on

print "Button 0 has been pressed \n" //these lines are printed to the UART when

the button is pressed

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

32 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

print "LED 0 will light while the button is pressed \n"

endfunc 1

//==

//==

function button1release() //this function is called when the button

1 is released"

gpiowrite(19,0) //turns LED 1 off

print "Button 1 has been released \n" //these lines are printed to the UART when

the button is released

print "LED 1 should now go out \n\n"

endfunc 1

//==

//==

function button1press() //this function is called when the button

1 is pressed"

gpiowrite(19,1) // turns LED 1 on

print "Button 1 has been pressed \n" //these lines are printed to the UART when

the button is pressed

print "LED 1 will light while the button is pressed \n"

endfunc 1

//**

// Handler definitions

//**

//**

// Equivalent to main() in C

//**

rc = gpiosetfunc(16,1,2) //sets sio16 (Button 0) as a digital in

with a weak pull up resistor
rc = gpiosetfunc(17,1,2) //sets sio17 (Button 1) as a digital in

with a weak pull up resistor
rc = gpiosetfunc(18,2,0) //sets sio18 (LED0) as a digital out

rc = gpiosetfunc(19,2,0) //sets sio19 (LED1) as a digital out

rc = gpiobindevent(0,16,0) //binds a gpio transition high to an

event. sio16 (button 0)

rc = gpiobindevent(1,16,1) //binds a gpio transition low to an event.

sio16 (button 0)

rc = gpiobindevent(2,17,0) //binds a gpio transition high to an

event. sio17 (button 1)

rc = gpiobindevent(3,17,1) //binds a gpio transition low to an event.

sio17 (button 1)

onevent evgpiochan0 call button0release //detects when button 0 is released and

calls the function

onevent evgpiochan1 call button0press //detects when button 0 is pressed and

calls the function

onevent evgpiochan2 call button1release //detects when button 1 is released and

calls the function

onevent evgpiochan3 call button1press //detects when button 1 is pressed and

calls the function

print "Ready to begn button and LED test \n" //these lines are printed to the UART

when the program is run

print "Please press button 0 or button 1 \n\n"

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

33 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

//--

// Wait for a synchronous event.

// An application can have multiple <WaitEvent> statements

//--

waitevent //when program is run it waits here until

an event is detected

When this application is launched and appropriate buttons are pressed and released, the

output is as follows:

4. INTERACTIVE MODE COMMANDS

Interactive mode commands allow a host processor or terminal emulator to interrogate and

control the operation of a smart BASIC based module. Many of these emulate the functionality

of AT commands. Others add extra functionality for controlling the filing system and compilation

process.

Syntax Unlike commands for AT modems, a space character must be inserted between AT, the

command, and subsequent parameters. This allows the smart BASIC tokeniser to

efficiently distinguish between AT commands and other tokens or variables starting with

the letters “at”.

‘Example:

AT I 3

The response to every Interactive mode command has the following form:

<linefeed character> response text <carriage return>

This format simplifies the parsing within the host processor. The response may be one or multiple

lines. Where more than one line is returned, the last line has one of the following formats:

<lf>00<cr> for a successful outcome, or

<lf>01<tab> hex number <tab> optional verbose explanation <cr> for failure.

Note: Inthe case of the 01 response, the “<tab>optional_verbose_explanation” will be missing

in resource constrained platforms like the BL600 modules. The ‘verbose explanation’ is a

Ready to begin button and LED test

Please press button 0 or button 1

Button 0 has been pressed

LED 0 will light while the button is pressed

Button 0 has been released

LED 0 should now go out

Button 1 has been pressed

LED 1 will light while the button is pressed

Button 1 has been released

LED 1 should now go out

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

34 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

constant string and since there are over 1000 error codes, these verbose strings can

occupy more than 10 kilobytes of flash memory.

The hex number in the response is the error result code consisting of two digits which can be

used to help investigate the problem causing the failure. Rather than provide a list of all the error

codes in this manual, you can use UWTerminal to obtain a verbose description of an error when

it is not provided on a platform.

To get the verbose description, click on the BASIC tab (in UWTerminal) and, if the error value is

hhhh, enter the command ER 0xhhhh and note the 0x prefix to ‘hhhh’. This is illustrated in Figure

14.

Figure 14: Optional verbose explanation

You can also obtain a verbose description of an error by highlighting the error value, right-

clicking and selecting “Lookup Selected ErrorCode” in the Terminal window.

If you get the text “UNKNOWN RESULT CODE 0xHHHH”, please contact Laird for the latest version

of UWterminal.

AT

AT is an Interactive mode command. It must be terminated by a carriage return for it to be

processed.

It performs no action other than to respond with “\n00\r”. It exists to emulate the behaviour of a

device which is controlled using the AT protocol. This is a good command to use to check if the

UART has been correctly configured and connected to the host.

AT I or ATI

COMMAND

Provides compatibility with the AT command set of Laird’s standard Bluetooth modules.

AT i num

Returns \n10\tMM\tInformation\r

\n00\r

Where

\n = linefeed character 0x0A

\t = horizontal tab character 0x09

MM = a number (see below)

Information = string consisting of information requested associated with MM

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

35 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

\r = carriage return character 0x0D

Arguments

num Integer Constant

A number in the range of 0 to 65,535. Currently defined numbers are:

0 Name of device

3 Version number of module firmware

4 MAC address in the form TT AAAAAAAAAAAA

5 Chipset name

6
Flash File System size stats (data segment):

Total/Free/Deleted

7
Flash File System size stats (FAT segment) :

Total/Free/Deleted

12 Last error code

13 Language hash value

16 NvRecord Memory Store stats: Total/Free/Deleted

33 BASIC core version number

601 Flash File System: Data Segment: Total Space

602 Flash File System: Data Segment: Free Space

603 Flash File System: Data Segment: Deleted Space

604 Flash File System: FAT Segment: Total Space

605 Flash File System: FAT Segment: Free Space

606 Flash File System: FAT Segment: Deleted Space

631 NvRecord Memory Store Segment: Total Space

632 NvRecord Memory Store Segment: Free Space

633 NvRecord Memory Store Segment: Deleted Space

1000..1999 See SYSINFO() function definition

2000..2999 See SYSINFO() function definition

All other numbers currently return the manufacturer’s name.

For ATi4 the TT in the response is the type of address as follows:

00 Public IEEE format address

01 Random static address (default as shipped)

02 Random Private Resolvable (used with bonded devices) –

03 Random Private Non-Resolvable (used for reconnections) –

Please refer to the Bluetooth specification for a further description of the types.

Interactive

Comman

d

Yes

This is an Interactive mode command and must be terminated by a carriage return for it to be

processed.

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

36 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

‘Example:

AT i 3

10 3 2.0.1.2

00

AT I 4

10 4 01 D31A920731B0

AT i is a core command.

Note: The information returned by this Interactive command can be useful from within a

running application; a built-in function called SYSINFO(cmdId) can be used to return

exactly the same information and cmdid is the same value as used in the list above.

AT+DIR

COMMAND

Lists all application or data files in the module’s flash file system.

AT+DIR <“string”>

Returns \n06\tFILENAME1\r

\n06\tFILENAME2\r

\n06\tFILENAMEn\r

\n00\r

If there are no files within the module memory, then only \n00\r is sent.

Arguments:

string string_constant An optional pattern match string.

If included AT+DIR will only return application names which include this

string.

Note: The match string is not case sensitive.

Interactive

Command
Yes

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be

processed.

‘Examples:

AT+DIR

AT+DIR “new”

AT+DIR is a core command.

AT+DEL

COMMAND

This command deletes a file from the module’s flash file system.

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

37 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

When the file is deleted, the space it occupied does not get marked as free for use again.

Eventually, after many deletions, the file system does not have free space for new files. When this

happens, the module responds with an appropriate error code when a new file write is

attempted. Use the command AT&F 1 to completely erase and reformat the file system.

At any time you can use the command AT I 6 to get information about the file system. It respond

with the following:

10 6 aaaa,bbbb,cccc

Where aaaa is the total size of the file system, bbbb is the free space available, and cccc is the

deleted space.

From within a smart BASIC application you can get aaaa by calling SYSINFO(601), bbbb by

calling SYSINFO(602), and cccc by calling SYSINFO(603).

Note: After AT&F 1 is processed, because the file system manager context is unstable, there

will be an automatic self-reboot.

AT+DEL “filename” (+)

Returns OK

If the file does not exist or if it was successfully erased, it will

respond with \n00\r.

Arguments:

filename string_constant.

The name of the file to be deleted. The maximum length

of filename is 24 characters and should not include the

following characters :*?"<>|

Interactive

Command
Yes

This is an Interactive Mode command and must be terminated by a carriage return for it to be

processed.

Adding the “+” sign to an AT+DEL command can be used to force the deletion of an open file.

For example, use AT+DEL “filename” + to delete an application which you have just exited after

running it.

‘Examples:

AT+DEL “data”

AT+DEL “myapp” +

AT+DEL is a core command.

AT+RUN

COMMAND

AT+RUN runs a precompiled application that is stored in the module’s flash file system.

Debugging statements in the application are disabled when it is launched using AT+RUN.

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

38 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

AT+RUN “filename”

Returns If the filename does not exists the AT+RUN will respond with an error response

starting with a 01 and a hex value describing the type of error. When the

application aborts or if the application reaches its end, a deferred \n00\r response

is sent.

If the compiled file was generated with a non-matching language hash then it will

not run with an error value of 0707 or 070C

Arguments:

filename string_constant.

The name of the file to be run. The maximum length of filename is 24

characters and should not include the following characters :*?"<>|

Interactive

Command
Yes

This is an Interactive mode command and must be terminated by a carriage return for it to be

processed.

Note: Debugging is disabled when using AT+RUN, hence all BP nnnn statements are inactive.

To run an application with debugging active, use AT+DBG.

If any variables exist from a previous run, they are destroyed before the specified application is

serviced.

Note: The application “filename” can also be invoked by entering the name if it does not

contain any spaces.

‘Examples:

AT+RUN “NewApp”

 or

 NewApp

AT+RUN is a core command.

AT+DBG

COMMAND

AT+DBG runs a precompiled application that is stored in the flash file system. In contrast to

AT+RUN, debugging is enabled.

AT+DBG “filename”

Returns If the filename does not exists the AT+DBG will respond with an error response.

When the application aborts or if the application reaches its end, a deferred

\n00\r response is sent.

Arguments:

filename string_constant.

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

39 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

The name of the file to be run. The maximum length of filename is 24 characters

and should not include the following characters :*?"<>|

Interactive

Command
Yes

This is an Interactive mode command and must be terminated by a carriage return for it to be

processed.

Debugging is enabled when using AT+DBG, which means that all BP nnnn statements are active.

To launch an application without the debugging capability, use AT+RUN. You do not need to

recompile the application, but this is at the expense of using more memory to store the

application.

If any variables exist from a previous run, they are destroyed before the specified application is

serviced.

‘Examples:

AT+DBG “NewApp”

AT+DBG is a core command.

AT+SET

This command has been deprecated, please use the new presentation command AT+CFG num

value instead.

AT+GET

This command has been deprecated, please use the new command AT+CFG num ? instead.

AT+CFG

COMMAND

AT+CFG is used to set a non-volatile configuration key. Configuration keys are are comparable to

S registers in modems. Their values are kept over a power cycle but are deleted if the AT&F*

command is used to clear the file system.

If a configuration key that you need isn’t listed below, use the functions NvRecordSet() and

NvRecordGet() to set and get these keys respectively.

The ‘num value’ syntax is used to set a new value and the ‘num ?’ syntax is used to query the

current value. When the value is read the syntax of the response is

27 0xhhhhhhhh (dddd)

…where 0xhhhhhhhh is an eight hexdigit number which is 0 padded at the left and ‘dddd’ is the

decimal signed value.

AT+CFG num value or AT+CFG num ?

Returns If the config key is successfully updated or read, the response is \n00\r.

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

40 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Arguments:

num Integer Constant

The ID of the required configuration key. All of the configuration keys

are stored as an array of 16 bit words.

value Integer_constant

This is the new value for the configuration key and the syntax allows

decimal, octal, hexadecimal or binary values.

Interactice

Command
Yes

This is an Interactive mode command and MUST be terminated by a carriage return for it to be

processed.

The following Configuration Key IDs are defined.

40 Maximum size of locals simple variables

41 Maximum size of locals complex variables

42 Maximum depth of nested user defined functions and subroutines

43 The size of stack for storing user functions simple variables

44 The size of stack for storing user functions complex variables

45 The size of the message argument queue length

AT+CFG is a core command.

Note: These values revert to factory default values if the flash file system is deleted using the

“AT & F *” interactive command.

AT+FOW

COMMAND

AT+FOW opens a file to allow it to be written with raw data. The group of commands (AT+FOW,

AT+FWR, AT+FWRH and AT+FCL) are typically used for downloading files to the module’s flash

filing system. For example, web pages, x.509 certificates, or BLE data.

AT+FOW “filename”

Returns If the filename is valid, AT+FOW responds with \n00\r.

Arguments:

filename string_constant.

The name of the file to be opened. The maximum length of filename is

24 characters and should not include the following characters

:*?"<>|

Interactive

Command
Yes

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be

processed.

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

41 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

‘Examples:

AT+FOW “myapp”

AT+FOW is a core command.

AT+FWR

COMMAND

AT+FWR writes a string to a file that has previously been opened for writing using AT+FOW. The

group of commands (AT+FOW, AT+FWR, AT+FWRH and AT+FCL) are typically used for

downloading files to the module’s flash filing system. For example, web pages, x.509 certificates,

or BLE data.

AT+FWR “string”

Returns If the string is successfully written, AT+FWR will respond with \n00\r.

Arguments:

string string_constant – A string that is appended to a previously opened file.

Any \NN or \r or \n characters present within the string are de-

escaped before they are written to the file.

Interactive

Command
Yes

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be

processed.

‘Examples:

AT+FWR “\nhelloworld\r”

AT+FWR “\00\01\02”

AT+FWR is a core command.

AT+FWRH

COMMAND

AT+FWRH writes a string to a file that has previously been opened for writing using AT+FOW. The

group of commands (AT+FOW, AT+FWR, AT+FWRH and AT+FCL) are typically used for

downloading files to the module’s flash filing system. For example, web pages, x.509 certificates,

or BLE data.

AT+FWRH “string”

Returns If the string is successfully written, AT+FWRH will respond with \n00\r.

Arguments

string string_constant – A string that is appended to a previously opened file. Only

hexadecimal characters are allowed and the string is first converted to binary and

then appended to the file.

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

42 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Interactive

Command
Yes

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be

processed.

‘Examples:

AT+FWRH “FE900002250DEDBEEF”

AT+FWRH “000102”

‘Invalid example

AT+FWRH “hello world” ‘because not a valid hex string

AT+FWRH is a core command.

AT+FCL

COMMAND

AT+FCL closes a file that has previously been opened for writing using AT+FOW. The group of

commands; AT+FOW, AT+FWR, AT+FWRH and AT+FCL are typically used for downloading files to

the module’s flash filing system.

AT+FCL

Returns If the filename exists, AT+FCL responds with \n00\r.

Arguments:

None

Interactive

Command
Yes

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be

processed.

‘Examples:

AT+FCL

AT+FCL is a core command.

? (Read Variable)

COMMAND

When an application encounters a STOP, BPnnn, or END statement, it falls into the Interactive

mode of operation and does not discard any global variables created by the application. This

allows them to be referenced in Interactive mode.

? var <[index]>

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

43 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Returns Displays the value of the variable if it had been created by the application. If the

variable is an array then the element index MUST be specified using the [n] syntax.

If the variable exists and it is a simple type then the response to this command is

\n08\tnnnnnn\r

\n00\r

If the variable is a string type, then the response is

\n08\t"Hello World"\r

\n00\r

If the variable does not exist then the response to this command is

\n01\tE023\r

Where \n = linefeed, \t = horizontal tab and \r = carriage return

Note: If the optional type prefix is present, the output value, when it is an integer

constant, is displayed in that base. For example:

 ? h’ var returns

 \n08\tH'nnnnnn\r

 \n00\r

Arguments:

Var <[n]> Any valid variable with mandatory [n] if the variable is an array.

For integer variables, the display format can be selected by prefixing

the variable with one of the integer type prefixes:

D' := Decimal

H' := Hexadecimal

O' := Octal

B' := Binary

Interactive

Command
Yes

This is an Interactive mode command and MUST be terminated by a carriage return for it to be

processed.

‘Examples:

? argc

08 11

00

? h’argc

08 H’0000000B

00

? B’argc

08 B’000000000000000000000001011

? argv[0]

08 “hello”

00

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

44 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

? is a core command.

= (Set Variable)

COMMAND

When an application encounters a STOP, BPnnn, or END statement, it falls into the Interactive

mode of operation and does not discard the global variables so that they can be referenced in

Interactive Mode. The = command is used to change the content of a known variable. When

the application is RESUMEd, the variable contains the new value. It is useful when debugging

applications.

= var<[n]> value

Returns If the variable exists and the value is of a compatible type then the variable value is

overwritten and the response to this command is:

\n00\r

If the variable exists and it is NOT of compatible type then the response to this

command is

\n01\tE027\r

If the variable does not exist then the response to this command is

\n01\tE023\r

If the variable exists but the new value is missing, then the response to this

command is

 \n01\tE26\r

Where \n = linefeed, \t = horizontal tab and \r = carriage return

Arguments:

Var<[n]> The variable whose value is to be changed

value A string_constant or integer_constant of appropriate form for the

variable.

Interactive

Command
Yes

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be

processed.

Examples: (after an app exits which had DIM’d a global variable called ‘argc’)

? argc

08 11

00

= argc 23

00

? argc

08 23

00

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

45 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

= is a core command.

SO

SO (Step Over) is used to execute the next line of code in Interactive Mode after a break point

has been encountered when an application had been launched using the AT+DBG command.

Use this command after a breakpoint is encountered in an application to process the next

statement. SO can then be used repeatedly for single line execution

SO is normally used as part of the debugging process after examining variables using the ?

Interactive Command and possibly the = command to change the value of a variable.

See also the BP nnnn, AT+DBG, ABORT, and RESUME commands for more details to aid

debugging.

SO is a core function.

RESUME

COMMAND

RESUME is used to continue operation of an application from Interactive Mode which had been

previously halted. Normally this occurs as a result of execution of a STOP or BP statement within

the application. On execution of RESUME, application operation continues at the next statement

after the STEP or BP statement.

If used after a SO command, application execution commences at the next statement.

RESUME

Returns If there is nothing to resume (e.g. immediately after reset or if there are no more

statements within the application), then an error response is sent.

\n01\tE029\r

Interactive

Command
Yes

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be

processed

‘Examples:

RESUME

RESUME is a core function.

ABORT

COMMAND

Abort is an Interactive Mode command which is used to abandon an application, whose

execution has halted because it has processed a STOP or BP statement.

ABORT

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

46 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Returns Abort is an Interactive Mode command which is used to abandon an application,

whose execution has halted because it had processed a STOP or BP statement. If

there is nothing to abort then it will return a success 00 response.

Interactive

Command
Yes

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be

processed.

‘Examples:

‘(Assume the application someapp.sb has a STOP statement somewhere which will

invoke interactive mode)

AT+RUN “someapp”

ABORT

ABORT is a core command.

AT+REN

COMMAND

Renames an existing file.

AT+REN “oldname” “newname”

Returns OK if the file is successfully renamed.

Arguments

oldname string_constant. The name of the file to be renamed.

Newname string_constant. The new name for the file.

The maximum length of filename is 24 characters.

Interactive

Command
Yes

oldname and newname must contain a valid filename, which cannot contain the following

seven characters

: * ? " < > |

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be

processed.

‘Examples:

AT+REN “oldscript.txt” “newscript.txt”

AT+REN is a core command.

AT&F

COMMAND

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

47 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

AT&F provides facilities for erasing various portions of the module’s non-volatile memory.

AT&F integermask

Returns OK if file successfully erased.

Arguments

Integermask Integer corresponding to a bit mask or the “*” character

Interactive

Command
Yes

The mask is an additive integer mask, with the following meaning:

1 Erases normal file system and system config keys

(see AT+CFG for examples of config keys)

16 Erases the User config keys only

* Erases all data segments

Else Not applicable to current modules

If an asterisk is used in place of a number, then the module is configured back to the factory

default state by erasing all flash file segments.

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be

processed.

AT&F 1 ‘delete the file system

AT&F 16 ‘delete the user config keys

AT&F * ‘delete all data segments

AT&F is a core command.

AT Z or ATZ

Resets the CPU.

AT Z

Returns \n00\r

Arguments: None

Interactive

Command
Yes

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be

processed.

‘Examples:

AT Z

AT Z is a core command.

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

48 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

5. SMART BASIC COMMANDS

smart BASIC contains a wide variety of commands and statements. These include a core set of

programming commands found in most languages and extension commands, found in your

module’s extention manual, that are designed to expose specific functionality of the platform.

For example, Bluetooth Low Energy’s GATT, GAP, and security functions.

Because smart BASIC is designed to be a very efficient embedded language, you must take

care of command syntax.

Syntax

smart BASIC commands are classified as one of the following:

 Functions

 Subroutines

 Statements

Functions

A function is a command that generates a return value and is normally used in an expression.

For example:

newstr$ = LEFT$ (oldstring$, num)

In other words, functions cannot appear on the left side of an assignment statement (which has

the equals sign). However, a function may affect the value of variables used as parameters if it

accepts them as references rather than as values. This subtle difference is described further in

the next section.

Subroutines

A subroutine does not generate a return value and is generally used as the only command on a

line. Like a function, it may affect the value of variables used as parameters if it accepts them as

references rather than values. For example:

STRSHIFTLEFT (string$, num)

This brings us to the definition of the different forms an argument can take, both for a function

and a subroutine. When a function is defined, its arguments are also defined in the form of how

they are passed – either as byVal or byRef.

Passing Aruments as byVal If an argument is passed as byVal, then the function or subroutine

only sees a copy of the value. While it is able to change the copy

of the variable upon exit, all changes are lost.

Passing Arguments as

byRef

If an argument is passed as byRef, then the function or subroutine

can modify the variable and, upon exit, the variable that was

passed to the routine contains the new value.

To understand, look at the smart BASIC subroutine STRSHIFTLEFT. It takes a string and shifts the

characters to the left by a specified number of places:

STRSHIFTLEFT (string$, num)

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

49 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

It is used as a command on string$, which is defined as being passed as byRef. This means that

when the rotation is complete, string$ is returned with its new value. num defines the number of

places that the string is shifted and is passed as byVal; the original variable num is unchanged

by this subroutine.

Note: Throughout the definition of the following commands, arguments are explicitly stated

as being byVal or byRef.

Functions, as opposed to subroutines, always return a value. Arguments may be either byVal or

byRef. In general and by default, string arguments are passed byRef. The reason for this is

twofold:

 It saves valuable memory space because a copy of the string (which may be long) does

not need to be copied to the stack.

 A string copy operation is lengthy in terms of CPU execution time. However, in some cases

the valuables are passed byVal and in that case, when the function or subroutine is

invoked, a constant string in the form “string” can be passed to it.

Note: For arguments specified as byRef, it is not possible to pass a constant value – whether

number or string.

Statements

Statements do not take arguments, but instead take arithmetic or string expression lists. The only

Statements in smart BASIC are PRINT and SPRINT.

Exceptions

Developing a software application that is error free is virtually an impossible task. All functions

and subroutines act on the data that is passed to them and there are occasions when the

values do not make sense. For example, when a divide operation is requested and the divisor

passed to the function is the value zero. In these types of cases it is impossible to generate a

return of meaningful value, but the event needs to be trapped so that the effects of doing that

operation can be lessened.

The mitigation process is via the inclusion of an ONERROR handler as explained in detail later in

this manual. If the application does not provide an ONERROR handler and if an exception is

encountered at run-time, then the application aborts to Interactive mode.

Note: This is disastrous for unattended use cases. A good catchall ONERROR is to invoke a

handler in which the module is reset; then at least the module resets from a known

condition.

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

50 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Language Definitions

Throughout the rest of this manual, the following convention is used to describe smart BASIC

commands and statements:

Command

FUNCTION / SUBROUTINE / STATEMENT

Description of the command.

COMMAND (<byRef | byval> arg1 <AS type>,..)

Returns

TYPE Description. Value that a function returns (always byVal).

Exceptions

ERRVAL Description of the error.

Arguments (a list of the arguments for the command)

arg1 byRef TYPE A description, with type, of the variable.

argn byVal TYPE A description, with type, of the variable.

Interactive Command Whether the command can be run in Interactive Mode using
the ! token.

‘Examples:

Examples using the command.

Note: Always consult the release notes for a particular firmware release when using this

manual. Due to continual firmware development, there may be limitations or known

bugs in some commands that cause them to differ from the descriptions given in the

following chapters.

Variables

One of the important rules is that variables used within an application MUST be declared before

they are referenced within the application. In most cases the best place is at the start of the

application. Declaring a variable can be thought of as reserving a portion of memory for it.

smart BASIC does not support forward declarations. If an application references a variable that

has not been declared, the parser reports an ERROR and aborts the compilation.

Variables are characterised by two attributes:

 Variable Scope

 Variable Class

DIM

The Declare statement is used to declare a number of variables of assorted types to be defined

in a single statement.

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

51 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

If it is used within a FUNCTION or SUB block of code, then those variables will only have local

scope. Otherwise they will have validity throughout the application. If a variable is declared

within a FUNCTION or SUB and a variable of the same name already exists with global scope,

then this declaration will take over whilst inside the FUNCTION or SUB. However, this practice

should be avoided.

DIM var<,var<,…>>

Arguments

Var A complete variable definition with the syntax varname <AS type>. Multiple

variables can be defined in any order with each definition being separated by a

comma.

Each variable (var) consists of one mandatory element varname and one optional

element AS type separated by whitespaces and described as follows:

- Varname – A valid variable name.

- AS type – Where ‘type’ is INTEGER or STRING. If this element is missing, then

varname is used to define the type of the variable so that if the name ends

with a $ character, then it defaults to a STRING; otherwise an INTEGER .

A variable can be declared as an array, although only one dimension is allowed.

Arrays must always be defined with their size, e.g.

array [20] – The (20) with round brackets is also allowed.

The size of an array cannot be changed after it is declared and the maximum size

of an array is 256.

Interactive

Command
No

//Example :: DimEx1.sb (See in Firmware Zip file)

DIM temp1 AS INTEGER

DIM temp2 //Will be an INTEGER by default

DIM temp3$ AS STRING

DIM temp4$ //Will be a STRING by default

DIM temp5$ AS INTEGER //Allowed but not recommended practice as there

//is a $ at end of name

DIM temp6 AS STRING //Allowed but not recommended practice as no $

//at end of name

DIM a1,a2,a3$,a4 //3 INTEGER variables and 1 STRING variable

print "We will now print each varaible on screen \n"

print temp1, temp2, temp3$, temp4$, temp5$, temp6, a1, a2, a3$, a4

//Since the variables have not been instantiated, they hold default values

//The comma inserts a TAB

Expected Output:

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

52 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Variable Scope

The scope of a variable defines where it can be used within an application.

 Local Variable – The most restricted scope. These are used within functions or subroutines

and are only valid within the function or subroutine. They are declared within the function

or subroutine.

 Global Variable – Any variables not declared in the body of a subroutine or a function and

are valid from the place they are declared within an application. Global Variables remain

in scope at the end of an application, which allows the user or host processor to

interrogate and modify them using the ? and = commands respectively.

As soon as a new application is run, they are discarded.

Note: If a local variable has the same name as a global variable, then within a function or a

subroutine, that global variable cannot be accessed.

Variable Class

smart BASIC supports two generic classes of variables:

 Simple – Numeric variables. There are currently two types of simple variables: INTEGER, a

signed 32-bit variable (which also has the alias LONG), and ULONG, an unsigned 32-bit

variable.

Simple variables are scalar and can be used within arithmetic expressions as described

later.

 Complex – Non-numeric variables. There is currently only one type STRING.

STRING is an object of concatenated byte characters of any length up to a maximum of

65280 bytes but for platforms with limited memory, it is further limited and that value can be

obtained by submitting the AT I 1004 command when in Interactive mode and using the

SYSINFO(1004) function from within an application.

For example, in the BL600 module, the limit is 512 bytes since it is always the largest data

length for any attribute.

Complex variables can be used in expressions which are dedicated for that type of

variable. In the current implementation of smart BASIC, the only general purpose operator

that can be used with strings is the '+' operator which is used to concatenate strings.

 //Example :: DimEx2.sb (See in Firmware Zip file)

 DIM i$ as STRING

 DIM a$ as STRING

 a$ = "Laird"

 i$ = a$ + "Rocks!" //Here we are concatenating the two strings

 print i$

Expected Output:

We will now print each varaible on screen

0 0 0 0 0 0

 0 0 0 0

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

53 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Note: To preserve memory, smart BASIC only allocates memory to string variables when they

are first used and not when they are declared. If too many variables and strings are

declared in a limited memory environment it is possible to run out of memory at run

time. If this occurs an ERROR is generated and the module will return to Interactive

Mode. The point at which this happens depends on the free memory so will vary

between different modules.

 This return to Interactive Mode is NOT desirable for unattended embedded systems. To

prevent this, every application MUST have an ONERROR handler which is described

later in this user manual.

Note: Unlike in the “C” programming language, strings are not null terminated.

Arrays

Variables can be created as arrays of single dimensions; their size (number of elements) must be

explicitly stated when they are first declared using the nomenclature [x] or (x) after the variable

name, e.g.

DIM array1 [10] AS STRING

DIM array2(10) AS STRING

 //Example :: ArraysEx1.sb (See in Firmware Zip file)

 DIM nCmds AS INTEGER

 DIM stCmds[20] AS STRING //declare an array as a string with 20 elements

 //Not recommended because we are only using 7 elements as you will see below

 //Setting the values for 7 of the elements

 stCmds[0]="\rATS0=1\r"

 stCmds[1]="ATS512=4\r"

 stCmds[2]="ATS501=1\r"

 stCmds[3]="ATS502=1\r"

 stCmds[4]="ATS503=1\r"

 stCmds[5]="ATS504=1\r"

 stCmds[6]="AT&W\r"

 nCmds=6

 //Print the 7 elements above in order

 DIM i AS INTEGER

 for i=0 to nCmds step 1

 print stCmds[i]

 next

Expected Output:

LairdRocks!

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

54 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

ATS0=1

ATS512=4

ATS501=

ATS502=1

ATS503=1

ATS504=1

AT&W

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

55 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

General Comments on Variables

Variable Names begin with 'A' to 'Z' or '_' and can have any combination of 'A' to 'Z', '0' to '9' ‘$’

and '_'.

Note: Variable names are not case sensitive (for example, test$ and TEST$ are the same

variable).

smart BASIC is a strongly typed language and so if the compiler encounters an incorrect variable

type then the compilation will fail.

Declaring Variables

Variables are normally declared individually at the start of an application or within a function or

subroutine.

 DIM string$ AS STRING

 DIM str1$ // the $ at the end of the name implies a string

 // so AS STRING not necessary

 DIM temp1 AS INTEGER

 DIM alarmstate // no $ at the of the name implies an integer

 // so AS INTEGER not necessary

 DIM array [10] AS STRING

Constants

Numeric Constants

Numeric Constants can be defined in decimal, hexadecimal, octal, or binary using the following

nomenclature:

Decimal D’1234 or 1234

(default)

Hex H’1234 or 0x1234

Octal O’1234

Binary B’01010101

Note: By default, all numbers are assumed to be in decimal format.

The maximum decimal signed constant that can be entered in an application is 2147483647 and

the minimum is -2147483648.

A hexadecimal constant consists of a string consisting of characters 0 to 9, and A to F (a to f). It

must be prefixed by the two character token H' or h' or 0x.

H'1234

h'DEADBEEF

0x1234

An octal constant consists of a string consisting of characters 0 to 7. It must be prefixed by the

two character token O' or o'.

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

56 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

O'1234

o'5643

A binary constant consists of a string consisting of characters 0 and 1. It must be prefixed by the

two character token B' or b'.

B'11011100

b'11101001

A binary constant can consist of 1 to 32 bits and is left padded with 0s.

String Constants

A string constant is any sequence of characters starting and ending with the " character. To

embed the " character inside a string constant specify it twice.

"Hello World"

"Laird_""Rocks""" // in this case the string is stored as Laird_”Rocks”

Non-printable characters and print format instructions can be inserted within a constant string by

escaping using a starting ‘\’ character and two hexadecimal digits. Some characters are

treated specially and only require a single character after the ‘\’ character.

The table below lists the supported characters and the corresponding string.

Character
Escaped

String
Character

Escaped

String

Linefeed \n “ \22 or “”

Carriage

return
\r A \41

Horizontal

Tab
\t B \42

\ \5C etc…

Compiler Related Commands and Directives

#SET

The smart BASIC complier converts applications into an internally compiled program on a line by

line basis. It has strict rules regarding how it interprets commands and variable types. In some

cases, it is useful to modify this default behaviour, particularly within user defined functions and

subroutines. To allow this, a special directive is provided - #SET.

#SET is a special directive which instructs the complier to modify the way that it interprets

commands and variable types. In normal usage you should never have to modify any of the

values.

#SET must be asserted before the source code that it affects, or the compiler behaviour will not

be altered.

#SET can be used multiple times to change the tokeniser behaviour throughout a compilation.

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

57 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

#SET commandID, commandValue

Arguments

cmdID Command ID and valid range is 0..10000

cmdValue Any valid integer value

Currently smart BASIC supports the following cmdIDs:

CmdID MinVal MaxVal Default Comments

1 0
1 0 Default Simple Arguments type for routines. 0 = ByVal,

1=ByRef

2 0
1 1 Default Complex Arguments type for routines. 0 = ByVal,

1=ByRef

3 8 256 32 Stack length for Arithmetic expression operands

4 4 256 8 Stack length for Arithmetic expression constants

5 16
65535 1024 Maximum number of simple global variables per

application

6 16
65535 1024 Maximum number of complex global variables per

application

7 2
65535 32 Maximum number of simple local variables per routine in

an application

8 2
65535 32 Maximum number of complex local variables per routine

in an application

9 2 32767 256 Max array size for simple variables in DIM

10 2 32767 256 Max array size for complex variables in DIM

Note: Unlike other commands, #SET may not be combined with any other commands on a

line.

‘Example

#set 1 1 ‘change default simple args to byRef
#set 2 0 ‘change default complex args to byVal

Arithmetic Expressions

Arithmetic expressions are a sequence of integer constants, variables, and operators. At runtime

the arithmetic expression, which is normally the right hand side of an = sign, is evaluated. Where

it is set to a variable, then the variable takes the value and class of the expression (such as

INTEGER).

If the arithmetic expression is invoked in a conditional statement, its default type is an INTEGER.

Variable types should not be mixed.

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

58 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 //Example :: Arithmetic.sb (See in Firmware Zip file)

 DIM sum1,bit1,bit2

 bit1 = 2

 bit2 = 3

 DIM volume,height,area

 height = 5

 area = 20

 sum1 = bit1 + bit2

 volume = height * area

 print "\nSum1 = ";sum1

 print "\nVolume = ";volume;"\n"

Expected Output:

Arithmetic operators can be unitary or binary. A unitary operator acts on a variable or constant

which follows it, whereas a binary operator acts on the two entities on either side.

Operators in an expression observe a precedence which is used to evaluate the final result using

reverse polish notation. An explicit precedence order can be forced by using (and) in the usual

manner.

The following is the order of precedence within operators:

 Unitary operators have the highest precedence

! logical NOT

~ bit complement

- negative (negate the variable or number – multiplies it by -1)

+ positive (make positive – multiplies it by +1)

 Precedence then devolves to the binary operators in the following order:

* Multiply

/ Divide

% Modulus

+ Addition

- Subtraction

<< Arithmetic Shift Left

>> Arithmetic Shift Right

< Less Than (results in a 0 or 1 value in the expression)

<= Less Than Or Equal (results in a 0 or 1 value in the expression)

Sum1 = 5

Volume = 100

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

59 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

> Greater Than (results in a 0 or 1 value in the expression)

>= Greater Than Or Equal (results in a 0 or 1 value in the expression)

== Equal To (results in a 0 or 1 value in the expression)

!= Not Equal To (results in a 0 or 1 value in the expression)

& Bitwise AND

^ Bitwise XOR (exclusive OR)

| Bitwise OR

&& Logical AND (results in a 0 or 1 value in the expression)

^^ Logical XOR (results in a 0 or 1 value in the expression)

|| Logical OR (results in a 0 or 1 value in the expression)

Conditionals

Conditional functions are used to alter the sequence of program flow by providing a range of

operations based on checking conditions.

Note: smart BASIC does not support program flow functionality based on unconditional

statements, such as JUMP or GOTO. In most cases where a GOTO or JUMP might be

employed, ONERROR conditions are likely to be more appropriate.

Conditional blocks can be nested. This applies to combinations of DO, UNTIL, DOWHILE, FOR, IF,

WHILE, and SELECT. The depth of nesting depends on the build of smart BASIC but in general,

nesting up to 16 levels is allowed and can be modified using the AT+CFG command.

DO / UNTIL

This DO/UNTIL construct allows a block of one or more statements to be processed until a

condition becomes true.

DO

statement block

UNTIL arithmetic expr

 Statement block – A valid set of program statements. Typically several lines of application.

 Arithmetic expression – A valid arithmetic or logical expression. Arithmetic precedence is

defined in the section ‘Arithmetic Expressions’.

For DO / UNTIL, if the arithmetic expression evaluates to zero, then the statement block is

executed again. Care should be taken to ensure this does not result in infinite loops.

Interactive Command: NO

 //Example :: DoUntil.sb (See in Firmware Zip file)

 DIM a AS INTEGER //don’t really need to supply AS INTEGER

 a=1

 DO

 a = a+1

 PRINT a

 UNTIL a==10 //loop will end when A gets to the value 10

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

60 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Expected Output:

DO / UNTIL is a core function.

DO / DOWHILE

This DO / DOWHILE construct allows a block of one or more statements to be processed while

the expression in the DOWHILE statement evaluates to a true condition.

DO

statement block

DOWHILE arithmetic expr

 Statement block – A valid set of program statements. Typically several lines of application

 Arithmetic expression – A valid arithmetic or logical expression. Arithmetic precedence is

defined in the section ‘Arithmetic Expressions’.

For DO / DOWHILE, if the arithmetic expression evaluates to a non-zero value, then the

statement block is executed again. Care should be taken to ensure this does not result in infinite

loops.

Interactive Command: NO

 //Example :: DoWhile.sb (See in Firmware Zip file)

 DIM a AS INTEGER //don’t really need to supply AS INTEGER

 a=1

 DO

 a = a+1

 PRINT a

 DOWHILE a<10 //loop will end when A gets to the value 10

Expected Output:

DO / DOWHILE is a core function.

FOR / NEXT

The FOR / NEXT composite statement block allows program execution to be controlled by the

evaluation of a number of variables. Using the tokens TO or DOWNTO determines the order of

execution. An optional STEP condition allows the conditional function to step at other than unity

steps. Given the choice of either TO/DOWNTO and the optional STEP, there are four variants:

FOR var = arithexpr1 TO arithexpr2

statement block

NEXT

2345678910

2345678910

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

61 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

FOR var = arithexpr1 TO arithexpr2 STEP arithexpr3

statement block

NEXT

FOR var = arithexpr1 DOWNTO arithexpr2

statement block

NEXT

FOR var = arithexpr1 DOWNTO arithexpr2 STEP arithexpr3

statement block

NEXT

 Statement block – A valid set of program statements. Typically several lines of application

which can include nested conditional statement blocks.

 Var – A valid INTEGER variable which can be referenced in the statement block

 Arithexpr1 – A valid arithmetic or logical expression. arithexpr1 is enumerated as the

starting point for the FOR NEXT loop.

 Arithexpr2 – A valid arithmetic or logical expression. arithexpr2 is enumerated as the

finishing point for the FOR NEXT loop.

 Arithexpr3 – A valid arithmetic or logical expression. arithexpr3 is enumerated as the step

in variable values in processing the FOR NEXT loop. If STEP and arithexpr3 are omitted, then

a unity step is assumed.

Note: Arithmetic precedence, is as defined in the section ‘Arithmetic Expressions’

The lines of code comprising the statement block are processed with var starting with the value

calculated or defined by arithexpr1. When the NEXT command is reached and processed, the

STEP value resulting from arithexpr3 is added to var if TO is specified, or subtracted from var if

DOWNTO is specified.

The function continues to loop until the variable var contains a value less than or equal to

arithexpr2 in the case where TO is specified, or greater than or equal to arithexpr2 in the

alternative case where DOWNTO is specified.

Note: In smart BASIC the Statement Block is ALWAYS executed at least once.

Interactive Command: NO

 //Example :: ForNext.sb (See in Firmware Zip file)

 DIM a

 FOR a=1 TO 2

 PRINT "Hello"

 NEXT

 print "\n"

 FOR a=2 DOWNTO 1

 PRINT "Hello"

 NEXT

 print "\n"

 FOR a=1 TO 4 STEP 2

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

62 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 PRINT "Hello"

 NEXT

Expected Output:

FOR / NEXT is a core function.

HelloHello

HelloHello

HelloHello

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

63 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

IF THEN / ELSEIF / ELSE / ENDIF

The IF statement construct allows a block of code to be processed depending on the

evaluation of a condition expression. If the statement is true (equates to non-zero), then the

following block of application is processed until an ENDIF, ELSE, or ELSEIF command is reached.

Each ELSEIF allows an alternate statement block of application to be executed if that

conditional expression is true and any preceding conditional expressions were untrue.

Multiple ELSEIF commands may be added, but only the statement block immediately following

the first true conditional expression encountered is processed within each IF command.

The final block of statements is of the form ELSE and is optional.

IF arithexpr_1 THEN

statement block A

ENDIF

IF arithexpr_1 THEN

statement block A

ELSE

statement block B

ENDIF

IF arithexpr_1 THEN

statement block A

ELSEIF arithexpr_2 THEN

statement block B

ELSE

statement block C

ENDIF

 Statement block A|B|C – A valid set of zero or more program statements.

 Arithexpr_n – A valid arithmetic or logical expression. A valid arithmetic or logical

expression. Arithmetic precedence, is as defined in the section ‘Arithmetic Expressions’.

All IF constructions must be terminated with an ENDIF statement.

Note: As the arithmetic expression in an IF statement is making a comparison, rather than

setting a variable, the double == operator MUST be used, e.g.

 IF i==3 THEN : SLEEP(200)

 See the Arithmetic Expressions section for more options.

Interactive Command: NO

 //Example :: IfThenElse.sb (See in Firmware Zip file)

 DIM n

 n=1

 IF n>0 THEN

 PRINT "Laird Rocks\n"

 ENDIF

 IF n==0 THEN

 PRINT "n is 0"

 ELSEIF n==1 THEN

 PRINT "n is 1"

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

64 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 ELSE

 PRINT "n is not 0 nor 1"

 ENDIF

Expected Output:

IF is a core function.

WHILE / ENDWHILE

The WHILE command tests the arithmetic expression that follows it. If it equates to non-zero then

the following block of statements is executed until an ENDWHILE command is reached. If it is

zero, then execution continues after the next ENDWHILE.

WHILE arithexpr

statement block

ENDWHILE

 Statement block – A valid set of zero or more program statements.

 Arithexpr – A valid arithmetic or logical expression. Arithmetic precedence, is as defined in

the section ‘Arithmetic Expressions’.

All WHILE commands must be terminated with an ENDWHILE statement.

Interactive Command: NO

 //Example :: While.sb (See in Firmware Zip file)

 DIM n

 n=0

 //now print “Hello” ten times

 WHILE n<10

 PRINT " Hello " ;n

 n=n+1

 ENDWHILE

Expected Output:

WHILE is a core function.

SELECT / CASE / CASE ELSE / ENDSELECT

SELECT is a conditional command that uses the value of an arithmetic expression to pass

execution to one of a number of blocks of statements which are identified by an appropriate

CASE nnn statement, where nnn is an integer constant. After completion of the code, which is

marked by a CASE nnn or CASE ELSE statement, execution of the application moves to the line

Hello 0 Hello 1 Hello 2 Hello 3 Hello 4 Hello 5 Hello 6 Hello 7 Hello 8

Hello 9

Laird Rocks

N is 1

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

65 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

following the ENDSELECT command. In a sense, it is a more efficient implementation of an IF

block with many ELSEIF statements.

An initial block of code can be included after the SELECT statement. This is always processed.

When the first CASE statement is encountered, execution moves to the CASE statement

corresponding to the computed value of the arithmetic expression in the SELECT command.

After selection of the appropriate CASE, the relevant statement block is executed until a CASE,

BREAK or ENDSELECT command is encountered. If a match is not found, then the CASE ELSE

statement block is run.

It is mandatory to include a final CASE ELSE statement as the final CASE in a SELECT operation.

SELECT arithexpr

 unconditional statement block

CASE integerconstA

 statement block A

CASE integerconstB

 statement block B

CASE integerconstc,integerconstd, integerconste, integerconstf, …

 statement block C

CASE ELSE

 statement block

ENDSELECT

 Unconditional statement block – An optional set of program statements, which are always

executed.

 Statement block – A valid set of zero or more program statements.

 Arithexpr – A valid arithmetic or logical expression. Arithmetic precedence, is as defined in

the section ‘Arithmetic Expressions’.

 IntegerconstX – One or more comma seperated integer constants corresponding to one

of the possible values of arithexpr which identifies the block that will get processed.

Interactive Command: NO

 //Example :: SelectCase.sb (See in Firmware Zip file)

 DIM a,b,c

 a=3 : b=4 //Use ":" to write multiple commands on one line

 SELECT a*b

 CASE 10

 c=10

 CASE 12 //this block will get processed

 c=12

 CASE 14,156,789,1022

 c=-1

 CASE ELSE

 c=0

 ENDSELECT

 PRINT c

Expected Output:

12

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

66 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

SELECT is a core function.

BREAK

BREAK is relevant in a WHILE/ENDWHILE, DO/UNTIL, DO/DOWHILE, FOR/NEXT, or

SELECT/ENDSELECT compound construct. It forces the program counter to exit the currently

processing block of statements.

For example, in a WHILE/ENDWHILE loop, the statement BREAK stops the loop and forces the

command immediately after the ENDWHILE to be processed. Similarly, in a DO/UNTIL, the

statement immediately after the UNTIL is processed.

BREAK

Interactive Command: NO

 //Example :: Break.sb (See in Firmware Zip file)

 DIM n

 n=0

 WHILE n<10

 n=n+1

 IF n==5 THEN

 BREAK

 ENDIF

 PRINT "Hello " ;n

 ENDWHILE

 PRINT "\nFinished\n"

Expected Output:

BREAK is a core function.

CONTINUE

CONTINUE is used within a WHILE/ENDWHILE, DO/UNTIL, DO/DOWHILE, or FOR/NEXT compound

construct, where it forces the program counter to jump to the beginning of the loop.

CONTINUE

Interactive

Command
Yes

 //Example :: Continue.sb (See in Firmware Zip file)

 DIM n

 n=0

 WHILE n<10

 n=n+1

 IF n==5 THEN

Hello 1Hello 2Hello 3Hello 4

Finished

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

67 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 CONTINUE

 ENDIF

 PRINT "Hello " ;n

 ENDWHILE

 PRINT "\nFinished\n"

Expected Output:

CONTINUE is a core function.

Error Handling

Error handling functions are provided to allow program control for instances where exceptions

are generated for errors. These allow graceful continuation after an error condition is

encountered and are recommended for robust operation in an unattended embedded use

case scenario.

In an embedded environment, it is recommended to include at least one ONERROR and one

ONFATALERROR statement within each application. This ensures that if the module is running

unattended, then it can reset and restart itself without the need for operator intervention.

ONERROR

ONERROR is used to redirect program flow to a handler function that can attempt to modify

operation or correct the cause of the error. Three different options are provided in conjunction

with ONERROR: REDO, NEXT, and EXIT.

The GETLASTERROR() command should be used in the handler routine to determine the type of

error that was generated.

ONERROR REDO

routine

On return from the routine, the statement that originally caused

the error is reprocessed.

ONERROR NEXT routine On return from the routine, the statement that originally caused

the error is skipped and the following statement is processed.

ONERROR EXIT If an error is encountered, the application will exit and return

operation to Interactive Mode.

Arguments:

Routine – The handler SUB that is called when the error is detected. This must be a SUB routine

which takes no parameters. It must not be a function. It must exist within the application PRIOR to

this ONERROR command being compiled.

Interactive Command: NO

Hello 1Hello 2Hello 3Hello 4Hello 6Hello 7Hello 8Hello 9Hello 10

Finished

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

68 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 //Example :: OnError.sb (See in Firmware Zip file)

 DIM a,b,c

 SUB HandlerOnErr() //Do this when an error occurs

 DIM le

 le = GetLastError()

 PRINT "Error code 0x";le;" denotes a Divide by zero error.\n"

 PRINT "Let's make b equal 25 instead of 0\n\n"

 b=25

 ENDSUB

 a=100 : b=0

 ONERROR REDO HandlerOnErr //Calls the "HandlerOnErr" routine.

 //After that, the error causing statement

 //(below) is reprocessed

 c=a/b

 print "c now equals ";c

Expected Output:

ONERROR is a core function.

ONFATALERROR

ONFATALERROR is used to redirect program flow to a subroutine that can attempt to modify

operation or correct the cause of a fatal error. Three different options are provided – REDO,

NEXT, and EXIT.

The GETLASTERROR() command should be used in the subroutine to determine the

 type of error that was generated.

ONFATALERROR REDO

routine

On return from the routine, the statement that originally

caused the error is reprocessed.

ONFATALERROR NEXT routine On return from the routine, the statement that originally

caused the error is skipped and the following statement is

processed.

ONFATALNERROR EXIT If an error is encountered, the application will exit and return

the operation to Interactive Mode.

ONFATALERROR is a core function.

Event Handling

An application written for an embedded platform is left unattended and in most cases waits for

something to happen in the real world, which it detects via an appropriate interface. When

something happens it needs to react to that event. This is unlike sequential processing where the

program code order is written in the expectation of a series of preordained events. Real world

interaction is not like that and so this implementation of smart BASIC has been optimised to force

Error code 0x1538 denotes a Divide by zero error.

Let's make b equal 25 instead of 0

c now equals 4

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

69 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

the developer of an application to write applications as a group of handlers used to process

events in the order as and when those events occur.

This section describes the statements used to detect and manage those events.

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

70 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

WAITEVENT

WAITEVENT is used to wait for an event, at which point an event handler is called. The event

handler must be a function that takes no arguments and returns an INTEGER.

If the event handler returns a zero value, then the next statement after WAITEVENT is processed.

Otherwise WAITEVENT continues to wait for another event.

WAITEVENT

Interactive

Command
Yes

 FUNCTION Func0()

 PRINT "\nEV0"

 ENDFUNC 1

 FUNCTION Func1()

 PRINT "\nEV1"

 ENDFUNC 0

 ONEVENT EV0 CALL Func0

 ONEVENT EV1 CALL Func1

 WAITEVENT //wait for an event to occur

 PRINT "\n Got here because EV1 happened"

WAITEVENT is a core function.

ONEVENT

ONEVENT is used to redirect program flow to a predefined FUNCTION that can respond to a

specific event when that event occurs. This is commonly an external event, such as an I/O pin

change or a received data packet, but can be a software generated event too.

ONEVENT symbolic_name CALL

routine

When a particular event is detected, program execution

is directed to the specified function.

ONEVENT symbolic_name DISABLE

A previously declared ONEVENT for an event is unbound

from the specified subroutine. This allows for complex

applications that need to optimise runtime processing by

allowing an alternative to using a SELECT statement.

Events are detected from within the run-time engine – in most cases via interrupts - and are only

processed by an application when a WAITEVENT statement is processed.

Until the WAITEVENT, all events are held in a queue.

Note: When WAITEVENT services an event handler, if the return value from that routine is non-

zero, then it continues to wait for more events. A zero value forces the next statement

after WAITEVENT to be processed.

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

71 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Arguments

Routine The FUNCTION that is called when the event is detected. This must be a

function which returns an INTEGER and takes no parameters. It must not be

a SUB routine. It must exist within the application PRIOR to this ONEVENT

command.

Symbolic_Name A symbolic event name which is predefined for a specific smart BASIC

module.

Some Symbolic Event Names:

A partial list of symbolic event names are as follows:-

EVTMRn Timer n has expired (see Timer Events)

EVUARTRX Data has arrived in UART interface

EVUARTTXEMPTY The UART TX ring buffer is empty

Note: Some symbolic names are specific to a particular hardware

implementation.

Interactive

Command
No

Note: This example was written for the BL600 module so the signal numbers used in the

GpioBindEvent() statements may be different depending on your module.

 //Example :: OnEvent.sb (See in BL600CodeSnippets)

 DIM rc

 FUNCTION Btn0press()

 PRINT "\nButton 0 has been pressed"

 ENDFUNC 1 //Will continue waiting for an event

 FUNCTION Btn0rel()

 PRINT "\nButton 0 released. Resume waiting for an event\n"

 ENDFUNC 1

 FUNCTION Btn1press()

 PRINT "\nButton 1 has been pressed"

 ENDFUNC 1

 FUNCTION Btn1rel()

 PRINT "\nButton 1 released. No more waiting for events\n"

 ENDFUNC 0

 rc = gpiobindevent(0,16,0) //binds gpio transition high on sio16 (button 0)

to event 0

 rc = gpiobindevent(1,16,1) //binds gpio transition low on sio16 (button 0)

to event 1

 rc = gpiobindevent(2,17,0) //binds gpio transition high on sio16 (button 1)

to event 2

 rc = gpiobindevent(3,17,1) //binds gpio transition low on sio16 (button 2)

to event 3

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

72 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 onevent evgpiochan0 call Btn0rel //detects when button 0 is released and calls

the function

 onevent evgpiochan1 call Btn0press //detects when button 0 is pressed and calls the

function

 onevent evgpiochan2 call Btn1rel //detects when button 1 is released and calls

the function

 onevent evgpiochan3 call Btn1press //detects when button 1 is pressed and calls the

function

 PRINT "\nWaiting for an event...\n"

 WAITEVENT //wait for an event to occur

 PRINT "\nGot here because evgpiochan2 happened"

Expected Output:

ONEVENT is a core function.

Miscellaneous Commands

PRINT

The PRINT statement directs output to an output channel which may be the result of multiple

comma or semicolon separated arithmetic or string expressions. The output channel is a UART

interface most platforms.

PRINT exprlist

Arguments

exprlist An expression list which defines the data to be printed consisting of comma or

semicolon separated arithmetic or string expressions.

Interactive

Command
Yes

Formatting with PRINT – Expression Lists

Expression lists are used for outputting data – principally with the PRINT and the SPRINT

command. Two types of Expression lists are allowed – arithmetic and string. Multiple valid

Expression lists may be concatenated with a comma or a semicolon to form a complex

Expression list.

Waiting for an event...

Button 0 has been pressed

Button 0 released. Resume waiting for an event

Button 1 has been pressed

Button 1 released. No more waiting for events

Got here because evgpiochan3 happened

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

73 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

The use of a comma forces a TAB character between the Expression lists it separates and a

semicolon generates no output. The latter results in the output of two expressions being

concatenated without any white space.

Numeric Expression Lists

Numeric variables are formatted in the following form:

<type.base> arithexpr <separator>

Where,

 Type – Must be INTEGER for integer variables

 base – Integers can be forced to print in decimal, octal, binary, or hexadecimal by

prefixing with D’, O’, B’, or H’ respectively.

For example, INTEGER.h’ somevar will result in the content of somevar being output as a

hexadecimal string.

 Arithexpr – A valid arithmetic or logical expression.

 Separator – One of the characters , or ; which have the following meaning:

, Insert a tab before the next variable.

; Print the next variable without a space.

String Expression Lists

String variables are formatted in the following form:

<type . minchar> strexpr< separator>

 Type – Must be STRING for string variables. The type must be followed by a full stop to

delineate it from the width field that follows.

 Minchar – An optional parameter which specifies the number of characters to be printed

for a string variable or expression. If necessary, leading spaces are filled with spaces.

 strexpr – A valid string or string expression.

 Separator – One of the characters , or ; which have the following meaning:

, Insert a tab before the next variable.

; Print the next variable without a space.

 //Example :: Print.sb (See in Firmware Zip file)

 PRINT "Hello \n"

 DIM a

 a=100

 PRINT a

 PRINT "\nIn Hex", "0x"; INTEGER.H' 100 ;"\n"

 PRINT "In Octal ", INTEGER.O' 100 ;"\n"

 PRINT "In Binary ", INTEGER.B' 100 ;"\n"

Expected Output:

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

74 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

PRINT is a core function.

SPRINT

The SPRINT statement directs output to a string variable, which may be the result of multiple

comma or semicolon separated arithmetic or string expressions.

It is very useful for creating strings with formatted data.

SPRINT #stringvar, exprlist

Arguments

Stringvar A pre-declared string variable.

Exprlist An expression list which defines the data to be printed; consisting of comma or

semicolon separated arithmetic or string expressions.

Interactive

Command
Yes

Formatting with SPRINT – Expression Lists

Expression lists are used for outputting data – principally with the PRINT command and the SPRINT

command. Two types of Expression lists are allowed – arithmetic and string. Multiple valid

Expression lists may be concatenated with a comma or a semicolon to form a complex

Expression list.

The use of a comma forces a TAB character between the Expression lists it separates and a

semicolon generates no output. The latter results in the output of two expressions being

concatenated without any whitespace.

Numeric Expression Lists

Numeric variables are formatted in the following form:

<type.base> arithexpr <separator>

Where,

 Type – Must be INTEGER for integer variables

 base – Integers can be forced to print in decimal, octal, binary, or hexadecimal by

prefixing with D’, O’, B’, or H’ respectively.

For example, INTEGER.h’ somevar will result in the content of somevar being output as a

hexadecimal string.

 Arithexpr – A valid arithmetic or logical expression.

 Separator – One of the characters , or ; which have the following meaning:

, Insert a tab before the next variable.

Hello

100

In Hex 0x00000064

In Octal 00000000144

In Binary 00000000000000000000000001100100

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

75 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

; Print the next variable without a space.

String Expression Lists

String variables are formatted in the following form:

<type . minchar> strexpr< separator>

 Type – Must be STRING for string variables. The type must be followed by a full stop to

delineate it from the width field that follows.

 minchar - An optional parameter which specifies the number of characters to be printed

for a string variable or expression. If necessary, leading spaces are filled with spaces.

 strexpr – A valid string or string expression.

 separator – One of the characters , or ; which have the following meaning:

, Insert a tab before the next variable.

; Print the next variable without a space.

 //Example :: SPrint.sb (See in Firmware Zip file)

 DIM a,s$: a=100

 //Note: SPRINT replaces the content of s$ with exprlist each time it is used

 SPRINT #s$,a //s$ now contains 100

 PRINT "\n";s$;"\n"

 SPRINT #s$,INTEGER.H'a //s$ now contains 64

 PRINT s$;"\n"

 SPRINT #s$,INTEGER.O'a //s$ now contains 144

 PRINT s$;"\n"

 SPRINT #s$,INTEGER.B'a //s$ now contains 1100100

 PRINT s$;"\n"

Expected Output:

SPRINT is a core function.

STOP

STOP is used within an application to stop it running so that the device falls back into Interactive

Command line mode.

STOP

It is normally limited to use in the prototyping and debugging phases.

Once in Interactive Mode, the command RESUME is used to restart the application from the next

statement after the STOP statement.

100

00000064

00000000144

00000000000000000000000001100100

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

76 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Interactive

Command
No

 //Example :: Stop.sb (See in Firmware Zip file)

 DIM a, s$

 a=100

 //Note: SPRINT replaces the content of s$ with exprlist each time it is used

 SPRINT #s$,a //s$ now contains 100

 PRINT "\n";s$;"\n"

 SPRINT #s$,INTEGER.H'a //s$ now contains 64

 STOP

 PRINT s$;"\n"

 SPRINT #s$,INTEGER.O'a //s$ now contains 144

 PRINT s$;"\n"

 SPRINT #s$,INTEGER.B'a //s$ now contains 1100100

 PRINT s$;"\n"

Expected Output:

STOP is a core function.

BP

COMMAND

The BP (Breakpoint) statement is used to place a BREAKPOINT in the body of an application. The

integer constant that is associated with each breakpoint is a developer supplied identifier which

gets echoed to the standard output when that breakpoint is encountered. This allows the

application developer to locate which breakpoint resulted in the output. Execution of the

application is then paused and operation passed back to Interactive mode.

BP nnnn

After execution is returned to Interactive mode, either RESUME can be used to continue

execution or the Interactive mode command SO can be used to step through the next

statements.

Note: The next state is the BP statement itself, hence multiple SO commands may need to be

issued.

Arguments

100

01 0702

resume

00000064

00000000144

00000000000000000000000001100100

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

77 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

nnnn A constant integer identifier for each breakpoint in the range 0 to 65535. The

integers should normally be unique to allow the breakpoint to be determined,

but this is the responsibility of the programmer. There is no limit to the number of

breakpoints that can be inserted into an application other than ensuring that

the maximum size of the compiled code does not exceed the 64 Kword limit.

Interactive

Command
No

Note: It is helpful to make the integer identifiers relevant to the program structure to help the

debugging process. A useful tip is to set them to the program line.

 //Example :: BP.sb (See in Firmware Zip file)

 PRINT "hello"

 BP 1234

 PRINT "world"

 PRINT "Laird"

 PRINT "Rocks"

 BP 5678

 PRINT "the"

 PRINT "world"

Expected Output (Depending on what order you use the commands SO and RESUME):

BP is a core function.

6. CORE LANGUAGE BUILT-IN ROUTINES

Core Language built-in routines are present in every implementation of smart BASIC. These

routines provide the basic programming functionality. They are augmented with target specific

routines for different platforms which are described in the extention manual for the target

platform.

Result Codes

hello

21 BREAKPOINT 1234

resume

worldLairdRocks

21 BREAKPOINT 5678

so

the

21 BREAKPOINT 5678

so

world

21 BREAKPOINT 5678

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

78 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Some of these built-in routines are subroutines, and some are functions. Functions always return a

value, and for some of these functions the value returned is a result code, indicating success or

failure in executing that function. A failure may not necessarily result in a run-time error (see

GetLastError() and ResetLastError()), but may lead to an unexpected output.

Being able to see what causes a failure greatly helps with the debugging process. If you declare

an integer variable e.g. ‘rc’ and set it’s value to your function call, after the function is executed

you can print rc and see the result code. For it to be useful, it has to be in Hexadecimal form, so

prefix your result code variable with “ INTEGER.H’ ” when printing it. You can also save a bit of

memory by printing the return value from the function directly, without the use of a variable.

 //Example :: ResultCodes.sb (See in Firmware Zip file)

 DIM cB,nItems,rc,s$

 rc=CircBufItems(cB,nItems)

 PRINT INTEGER.H'rc

 PRINT "\n"; //New line

 //Printing return value directly

 PRINT INTEGER.H'CircBufItems(cB,nItems)

 //To remove the leading zeros

 SPRINT #s$, INTEGER.H'CircBufItems(cB,nItems)

 StrShiftLeft(s$,4) : PRINT s$

Now highlight the last 4 characters of the result code in UwTerminal and select “Lookup Selected

ErrorCode”:

Expected Output:

Information Routines

GETLASTERROR

FUNCTION

//smartBASIC Error Code: 073D -> "RUN_INV_CIRCBUF_HANDLE"

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

79 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

GETLASTERROR is used to find the value of the most recent error and is most useful in an error

handler associated with ONERROR and ONFATALERROR statements which were described in the

previous section.

You can get a verbose error description by printing the error value, then highliting it in

UwTerminal, and selecting ‘Lookup Selected ErrorCode’.

GETLASTERROR ()

Returns INTEGER Last error that was generated.

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments None

Interactive

Command
No

 //Example :: GetLastError.sb (See in Firmware Zip file)

 DIM err

 err = GETLASTERROR()

 PRINT "\nerror = 0x" ; INTEGER.H'err

Expected Output (If no errors from last application run):

GETLASTERROR is a core function.

RESETLASTERROR

SUBROUTINE

Resets the last error, so that calling GETLASTERROR() returns a success.

RESETLASTERROR ()

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments None

Interactive

Command
No

 //Example :: ResetLastError.sb (See in Firmware Zip file)

 DIM err : err = GETLASTERROR()

 RESETLASTERROR()

 PRINT "\nerror = 0x" ; INTEGER.H'err

Expected Result:

error = 0x00000000

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

80 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

RESETLASTERROR is a core function.

SYSINFO

FUNCTION

Returns an informational integer value depending on the value of varId argument.

SYSINFO(varId)

Returns INTEGER. Value of information corresponding to integer ID requested.

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

varId byVal varId AS INTEGER

An integer ID which is used to determine which information is to be

returned as described below.

0 ID of device, for the BL600 module the value will be

0x42460600. Each platform type has a unique identifier

3 Version number of Module Firmware. For example W.X.Y.Z will

be returned as a 32 bit value made up as follows:

 (W<<26) + (X<<20) + (Y<<6) + (Z)

 where Y is the Build number and Z is the ‘Sub-Build’ number

33 BASIC core version number

601 Flash File System: Data Segment: Total Space

602 Flash File System: Data Segment: Free Space

603 Flash File System: Data Segment: Deleted Space

611 Flash File System: FAT Segment: Total Space

612 Flash File System: FAT Segment: Free Space

613 Flash File System: FAT Segment: Deleted Space

631 NvRecord Memory Store Segment: Total Space

632 NvRecord Memory Store Segment: Free Space

633 NvRecord Memory Store Segment: Deleted Space

1000 BASIC compiler HASH value as a 32 bit decimal value

1001 How RAND() generates values: 0 for PRNG and 1 for hardware

assist

1002 Minimum baudrate

1003 Maximum baudrate

1004 Maximum STRING size`

1005 Will be 1 for run-time only implementation, 3 for compiler

included

2000 Reset Reason

 8 : Self-Reset due to Flash Erase

 9 : ATZ

error = 0x00000000

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

81 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 10 : Self-Reset due to smart BASIC app invoking function

RESET()

2002 Timer resolution in microseconds

2003 Number of timers available in a smart BASIC Application

2004 Tick timer resolution in microseconds

Interactive

Command
No

 //Example :: SysInfo.sb (See in Firmware Zip file)
 PRINT "\nSysInfo 1000 = ";SYSINFO(1000) // BASIC compiler HASH value

 PRINT "\nSysInfo 2003 = ";SYSINFO(2003) // Number of timers

 PRINT "\nSysInfo 0x8010 = ";SYSINFO(0x8010) // Code memory page size from FICR

Expected Output (For BL600):

SYSINFO is a core language function.

SYSINFO$

FUNCTION

Returns an informational string value depending on the value of varId argument.

SYSINFO$(varId)

Returns STRING. Value of information corresponding to integer ID requested.

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

varId byVal varId AS INTEGER

An integer ID which is used to determine which information is to be

returned as described below.

4 The Bluetooth address of the module. It is seven bytes long.

First byte is 00 for IEEE public address and 01 for random

public address. Next six bytes are the address.

14 A random public address unique to this module. May be the

same value as in 4 above unless AT+MAC was used to set an

IEEE mac address. It is seven bytes long. First byte is 00 for IEEE

public address and 01 for random public address. Next six

bytes are the address.

Interactive No

SysInfo 1000 = 1315489536

SysInfo 2003 = 8

SysInfo 0x8010 = 1024

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

82 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Command

 //Example :: SysInfo$.sb (See in Firmware Zip file)

 PRINT "\nSysInfo$(4) = ";SYSINFO$(4) // address of module

 PRINT "\nSysInfo$(14) = ";SYSINFO$(14) // public random address

 PRINT "\nSysInfo$(0) = ";SYSINFO$(0)

Expected Output:

SYSINFO$ is a core language function.

Event & Messaging Routines

SENDMSGAPP

FUNCTION

This function is used to send an EVMSGAPP message to your application so that it can be

processed by a handler from the WAITEVENT framework. It is useful for serialised processing.

For messages to be processed, the following statement must be processed so that a handler is

associated with the message.

ONEVENT EVMSGAPP CALL HandlerMsgApp

Where a handler such as the following has been defined prior to the ONEVENT statement as

follows:

 FUNCTION HandlerMsgApp(BYVAL nMsgId AS INTEGER, BYVAL nMsgCtx AS INTEGER) AS INTEGER

 //do something with nMsgId and nMsgCtx

 ENDFUNC 1

SENDMSGAPP(msgId, msgCtx)

Returns INTEGER 0000 if successfully sent.

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

msgId byVal msgId AS INTEGER

Will be presented to the EVMSGAPP handler in the msgId field

msgCtx byVal msgCtx AS INTEGER

Will be presented to the EVMSGAPP handler in the msgCtx field.

SysInfo$(4) = \01\FA\84\D7H\D9\03

SysInfo$(14) = \01\FA\84\D7H\D9\03

SysInfo$(0) =

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

83 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Interactive

Command
No

 //Example :: SendMsgApp.sb (See in Firmware Zip file)

 DIM rc

 FUNCTION HandlerMsgApp(BYVAL nMsgId AS INTEGER, BYVAL nMsgCtx AS INTEGER) AS INTEGER

 PRINT "\nId=";nMsgId;" Ctx=";nMsgCtx
 ENDFUNC 1

 ONEVENT EVMSGAPP CALL HandlerMsgApp

 rc = SendMsgApp(100,200)

 WAITEVENT

Expected Output:

SENDMSGAPP is a core function.

Id=100 Ctx=200

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

84 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Arithmetic Routines

ABS

FUNCTION

Returns the absolute value of its INTEGER argument.

ABS (var)

Returns INTEGER Absolute value of var.

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

 If the value of var is 0x80000000 (decimal -2,147,483,648) then

an exception is thrown as the absolute value for that value

causes an overflow as 33 bits are required to convey the

value.

Arguments:

var byVal var AS INTEGER

The variable whose absolute value is required.

Interactive

Command
No

 //Example :: ABS.sb (See in Firmware Zip file)

 DIM s1 as INTEGER,s2 as INTEGER

 s1 = -2 : s2 = 4

 PRINT s1, ABS(s1);"\n";s2, Abs(s2)

Expected Output:

ABS is a core language function.

MAX

FUNCTION

Returns the maximum of two integer values.

MAX (var1, var2)

Returns INTEGER The returned variable is the arithmetically larger of var1 and var2.

Exceptions
 Local Stack Frame Underflow

 Local Stack Frame Overflow

-2 2

4 4

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

85 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Arguments:

var1
byVal var1 AS INTEGER

The first of two variables to be compared.

var2 byVal var2 AS INTEGER

The second of two variables to be compared.

Interactive

Command
No

 //Example :: MAX.sb (See in Firmware Zip file)

 DIM s1,s2

 s1=-2 : s2=4

 PRINT s1,s2

 PRINT "\n The Maximum of these two integers is "; MAX(s1,s2)

Expected Output:

MAX is a core language function.

MIN

FUNCTION

Returns the minimum of two integer values.

MIN (var1, var2)

Returns INTEGER The returned variable is the arithmetically smaller of var1 and var2.

Exceptions
 Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

var1
byVal var1 AS INTEGER

The first of two variables to be compared.

var2
byVal var2 AS INTEGER

The second of two variables to be compared.

Interactive

Command
No

 //Example :: MIN.sb (See in Firmware Zip file)

 DIM s1,s2

 s1=-2 : s2=4

 PRINT s1,s2

 PRINT "\nThe Minimum of these two integers is "; MIN(s1,s2)

Expected Output:

-2 4

The Maximum of these two integers is 4

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

86 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

MIN is a core language function.

String Routines

When data is displayed to a user or a collection of octets need to be managed as a set, it is

useful to represent them as strings. For example, in BLE modules there is a concept of a

database of ‘attributes’ which are just a collection of octets of data up to 512 bytes in length.

To provide the ability to deal with strings, smart BASIC contains a number of commands that can

operate on STRING variables.

LEFT$

FUNCTION

Retrieves the leftmost n characters of a string.

LEFT$(string,length)

Returns STRING The leftmost ‘length’ characters of string as a STRING object.

Exceptions

 Local Stack Frame Underflow

 Local Stack Frame Overflow

 Memory Heap Exhausted

Arguments:

string
byRef string AS STRING

The target string which cannot be a const string.

length
byVal length AS INTEGER

The number of leftmost characters that are returned.

Interactive

Command
No

If ‘length’ is larger than the actual length of string then the entire string is returned

Notes: string cannot be a string constant, e.g. “the cat”, but must be a string variable and so

if you must use a const string then first save it to a temp string variable and then pass it

to the function

 //Example :: LEFT$.sb (See in Firmware Zip file)

 DIM newstring$

 DIM s$

 s$="Arsenic"

 newstring$ = LEFT$(s$,2)
 print newstring$; "\n"

-2 4

The Maximum of these two integers is -2

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

87 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Expected Output:

LEFT$ is a core language function.

MID$

FUNCTION

Retrieves a string of characters from an existing string. The starting position of the extracted characters

and the length of the string are supplied as arguments.

If ‘pos’ is positive then the extracted string starts from offset ‘pos’. If it is negative then the extracted

string starts from offset ‘length of string – abs(pos)’

MID$(string, pos, length)

Returns STRING The ‘length’ characters starting at offset ‘pos’ of string.

Exceptions

 Local Stack Frame Underflow

 Local Stack Frame Overflow

 Memory Heap Exhausted

Arguments:

string byRef string AS STRING

The target string which cannot be a const string.

pos byVal pos AS INTEGER

The position of the first character to be extracted. The leftmost character position is 0

(see examples).

length byVal length AS INTEGER

The number of characters that are returned

Interactive

Command
NO

If ‘length’ is larger than the actual length of string then the entire string is returned from the

position specified. Hence pos=0, length=65535 returns a copy of string.

Note: string cannot be a string constant, e.g. “the cat”, but must be a string variable and so

if you must use a const string then first save it to a temp string variable and then pass it

to the function.

Interactive Command: NO

//Example :: MID.sb (See in Firmware Zip file)

DIM s$: s$="Arsenic"

DIM new$: new$ = MID$(s$,2,4)

PRINT new$; "\n"

Ar

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

88 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Expected Output:

MID$ is a core language function.

seni

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

89 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

RIGHT$

FUNCTION

Retrieves the rightmost n characters from a string.

RIGHT$(string, len)

Returns STRING The rightmost segment of length len from string.

Exceptions

 Local Stack Frame Underflow

 Local Stack Frame Overflow

 Memory Heap Exhausted

Arguments:

string
byRef string AS STRING

The target string which cannot be a const string.

length
byVal length AS INTEGER

The rightmost number of characters that are returned.

Interactive

Command
NO

Note: string cannot be a string constant, e.g. “the cat”, but must be a string variable and so

if you must use a const string then first save it to a temp string variable and then pass it

to the function

If ‘length’ is larger than the actual length of string then the entire string is returned.

 //Example :: RIGHT$.sb (See in Firmware Zip file)

 DIM s$: s$="Parse"

 DIM new$: new$ = RIGHT$(s$,3)

 PRINT new$; "\n"

Expected Output:

RIGHT$ is a core function.

STRLEN

FUNCTION

STRLEN returns the number of characters within a string.

STRLEN (string)

Returns INTEGER The number of characters within the string.

Exceptions
 Local Stack Frame Underflow

 Local Stack Frame Overflow

rse

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

90 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Arguments:

string
byRef string AS STRING

The target string which cannot be a const string.

Interactive

Command
NO

 //Example :: StrLen$.sb (See in Firmware Zip file)

 DIM s$: s$="HelloWorld"

 PRINT "\n";s$;" is ";StrLen(S$);" bytes long"

Expected Output:

STRLEN is a core function.

STRPOS

FUNCTION

STRPOS is used to determine the position of the first instance of a string within another string. If the

string is not found within the target string a value of -1 is returned.

STRPOS (string1, string2, startpos)

Returns

INTEGER Zero indexed position of string2 within string1.

>=0 If string2 is found within string1 and specifies the location where found

-1 If string2 is not found within string1

Exceptions
 Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

string1
byRef string AS STRING

The target string in which string2 is to be searched for.

string2

byRef string AS STRING

The string that is being searched for within string1. This may be a single

character string.

startpos
byVAL startpos AS INTEGER

Where to start the position search.

Interactive

Command
NO

Note: STRPOS does a case sensitive search.

Note: string1and string2 cannot be a string constant, e.g. “the cat”, but must be a string

variable and so if you must use a const string then first save it to a temp string variable

and then pass it to the function

HelloWorld is 10 bytes long

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

91 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 //Example :: StrPos.sb (See in Firmware Zip file)
 DIM s1$,s2$

 s1$="Are you there"

 s2$="there"

 PRINT "\nIn '";S1$;"' the word '";S2$;"' occurs at position ";StrPos(S1$,S2$,0)

Expected Output:

STRPOS is a core function.

STRSETCHR

FUNCTION

STRSETCHR allows a single character within a string to be replaced by a specified value.

STRSETCHR can also be used to append characters to an existing string by filling it up to a

defined index.

If the nIndex is larger than the existing string then it is extended.

The use of STRSETCHR and STRGETCHR, in conjunction with a string variable allows an array of

bytes to be created and manipulated.

STRSETCHR (string, nChr, nIndex)

Returns

INTEGER Represents command execution status.

0 If the block is successfully updated

-1 If nChr is greater than 255 or less than 0

-2 If the string length cannot be extended to accommodate nIndex

-3 If the resultant string is longer than allowed.

Exceptions

 Local Stack Frame Underflow

 Local Stack Frame Overflow

 Memory Heap Exhausted

Arguments:

string
byRef string AS STRING

The target string.

nChr

byVal nCHr AS INTEGER

The character that will overwrite the existing characters. nChr must

be within the range 0 and 255.

nindex

byVal nIndex AS INTEGER

The position in the string of the character that will be overwritten,

referenced to a zero index.

In 'Are you there' the word 'there' occurs at position 8

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

92 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

000

@ello@@@@

Interactive

Command
NO

Note: string cannot be a string constant, e.g. “the cat”, but must be a string variable and so

if you must use a const string then first save it to a temp string variable and then pass it

to the function

 //Example :: StrSetChar.sb (See in Firmware Zip file)

 DIM s$: s$="Hello"

 PRINT StrSetChr(s$,64,0) //64 is the ASCII decimal code for the char '@'

 PRINT StrSetChr(s$,64,8) //s$ will be extended

 PRINT "\n";s$

Expected Output:

STRSETCHR is a core function.

STRGETCHR

FUNCTION

STRGETCHR is used to return the single character at position nIndex within an existing string.

STRGETCHR (string, nIndex)

Returns

INTEGER The ASCII value of the character at position nIndex within string, where

nIndex is zero based. If nIndex is greater than the number of characters in the

string or <=0 then an error value of -1 is returned.

Exceptions
 Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

string
byRef string AS STRING

The string from which the character is to be extracted.

nindex

byVal nIndex AS INTEGER

The position of the character within the string (zero based – see

example).

Interactive

Command
NO

Note: string cannot be a string constant, e.g. “the cat”, but must be a string variable and so

if you must use a const string then first save it to a temp string variable and then pass it

to the function

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

93 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 //Example :: StrGetChar.sb (See in Firmware Zip file)

 DIM s$: s$="Hello"

 PRINT s$;"\n"

 PRINT StrGetChr(s$,0), "-> ASCII value for 'H' \n"

 PRINT StrGetChr(s$,1), "-> ASCII value for'e' \n"

 PRINT StrGetChr(s$,-100), "-> error \n"

 PRINT StrGetChr(s$,6), "-> error \n"

Expected Output:

STRGETCHR is a core function.

STRSETBLOCK

FUNCTION

STRSETBLOCK allows a specified number of characters within a string to be filled or overwritten

with a single character. The fill character, starting position and the length of the block are

specified.

STRSETBLOCK (string, nChr, nIndex, nBlocklen)

Function

Returns

INTEGER Represents command execution status.

0 If the block is successfully updated

-1 If nChr is greater than 255

-2 If the string length cannot be extended to accommodate nBlocklen

-3 if the resultant string will be longer than allowed
-4 If nChr is greater than 255 or less than 0

-5 if the nBlockLen value is negative

Exceptions
 Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

string
byRef string AS STRING

The target string to be modified

nChr

byVal nChr AS INTEGER

The character that will overwrite the existing characters.

nChr must be within the range 0 – 255

nindex
byVal nIndex AS INTEGER

The starting point for the filling block, referenced to a zero index.

nBlocklen
byVal nBlocklen AS INTEGER

The number of characters to be overwritten

Hello

72 -> ASCII value for 'H'

101 -> ASCII value for'e'

-1 -> error

-1 -> error

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

94 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Interactive

Command
NO

Note: string cannot be a string constant, e.g. “the cat”, but must be a string variable and so

if you must use a const string then first save it to a temp string variable and then pass it

to the function

 //Example :: StrSetBlock.sb (See in Firmware Zip file)
 DIM s$: s$="HelloWorld"

 PRINT s$;"\n"
 PRINT StrSetBlock(s$,64,4,2) : PRINT "\n";s$;"\n"

 PRINT StrSetBlock(s$,300,4,200) : PRINT "\n";s$

Expected Output:

STRSETBLOCK is a core function.

STRFILL

FUNCTION

STRFILL is used to erase a string and then fill it with a number of identical characters.

STRFILL (string, nChr, nCount)

Returns

INTEGER Represents command execution status.

 0 If successful

-1 If nChr is greater than 255 or less than 0

-2 If the string length cannot be extended due to lack of memory

-3 If the resultant string is longer than allowed or nCount is <0.

STRING

string contains the modified string

Exceptions

 Local Stack Frame Underflow

 Local Stack Frame Overflow

 Memory Heap Exhausted

Arguments:

string
byRef string AS STRING

The target string to be filled

nChr

byVal nChr AS INTEGER

ASCII value of the character to be inserted. The value of nChr should

be between 0 and 255 inclusive.

HelloWorld

0

Hell@@orld

-4

Hell@@orld

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

95 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

nCount
byVal nCount AS INTEGER

The number of occurrences of nChr to be added.

Interactive

Command
NO

The total number of characters in the resulting string must be less than the maximum allowable

string length for that platform.

Note: string cannot be a string constant, e.g. “the cat”, but must be a string variable and so

if you must use a const string then first save it to a temp string variable and then pass it

to the function

 //Example :: StrFill.sb (See in Firmware Zip file)

 DIM s$: s$="hello"

 PRINT s$;"\n"

 PRINT StrFill(s$,64,7);"\n"

 PRINT s$;"\n"

 PRINT StrFill(s$,-23,7)

Expected Output:

STRFILL is a core function.

STRSHIFTLEFT

SUBROUTINE

STRSHIFTLEFT shifts the characters of a string to the left by a specified number of characters and

drops the leftmost characters. It is a useful subroutine to have when managing a stream of

incoming data, as for example, a UART, I2C or SPI and a string variable is used as a cache and

the oldest N characters need to be dropped.

STRSHIFTLEFT (string, numChars)

Exceptions
 Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

string
byRef string AS STRING

The string to be shifted left.

numChrs

byVal numChrs AS INTEGER

The number of characters that the string is shifted to the left.

If numChrs is greater than the length of the string, then the

returned string will be empty.

Interactive

Command
NO

hello

7

@@@@@@@

-1

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

96 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Note: string cannot be a string constant, e.g. “the cat”, but must be a string variable and so

if you must use a const string then first save it to a temp string variable and then pass it

to the function

 //Example :: StrShiftLeft.sb (See in Firmware Zip file)

 DIM s$: s$="123456789"

 PRINT s$;"\n"

 StrShiftLeft(s$,4) //drop leftmost 4 characters

 PRINT s$

Expected Output:

STRSHIFTLEFT is a core function.

STRCMP

FUNCTION

Compares two string variables.

STRCMP(string1, string2)

Returns

INTEGER A value indicating the comparison result:

0 – if string1 exactly matches string2 (the comparison is case sensitive)

1 – if the ASCII value of string1 is greater than string2

-1 - if the ASCII value of string1 is less than string2

Exceptions
 Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

string1
byRef string1 AS STRING

The first string to be compared.

string2
byRef string2 AS STRING

The second string to be compared.

Interactive

Command
NO

Note: string1and string2 cannot be a string constant, e.g. “the cat”, but must be a string

variable. If you must use a const string then first save it to a temp string variable and

then pass it to the function.

 //Example :: StrCmp.sb (See in Firmware Zip file)

 DIM s1$,s2$

 s1$="hello"

123456789

56789

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

97 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 s2$="world"

 PRINT StrCmp(s1$,s2$);"\n"

 PRINT StrCmp(s2$,s1$);"\n"

 PRINT StrCmp(s1$,s1$);"\n"

Expected Output:

STRCMP is a core function.

STRHEXIZE$

FUNCTION

This function is used to convert a string variable into a string which contains all the bytes in the

input string converted to 2 hex characters. It will therefore result in a string which is exactly

double the length of the original string.

STRHEXIZE$ (string)

Returns
STRING A printable version of string which contains only hexadecimal characters

and exactly double the length of the input string.

Exceptions

 Local Stack Frame Underflow

 Local Stack Frame Overflow

 Memory Heap Exhausted

Arguments:

String
byRef string AS STRING

The string to be converted into hex characters.

Interactive

Command
NO

Note: string cannot be a string constant, e.g. “the cat”, but must be a string variable and so

if you must use a const string then first save it to a temp string variable and then pass it

to the function

Associated Commands: STRHEX2BIN

 //Example :: StrHexize$.sb (See in Firmware Zip file)

 DIM s$,t$

 s$="Laird"

 PRINT s$;"\n"

 t$=StrHexize$(s$)

 PRINT StrLen(s$);"\n"

 PRINT t$;"\n"

 PRINT StrLen(t$);"\n"

-1

1

0

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

98 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Expected Output:

STRHEXIZE$ is a core function.

Laird

5

4C61697264

10

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

99 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

STRDEHEXIZE$

STRDEHEXISE$ is used to convert a string consisting of hex digits to a binary form. The conversion

stops at the first non hex digit character encountered.

STRDEHEXIZE$ (string)

FUNCTION

Returns STRING A dehexed version of string

Exceptions
 Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

string
byRef string AS STRING

The string to be converted in-situ.

Interactive

Command
NO

If a parsing error occurs, a nonfatal error is generated which must be handled or the application

aborts.

Note: string cannot be a string constant, e.g. “the cat”, but must be a string variable and so

if you must use a const string then first save it to a temp string variable and then pass it

to the function

 //Example :: StrDehexize$.sb (See in Firmware Zip file)

 DIM s$: s$="40414243"

 PRINT "\nHex data: ";s$

 PRINT "\nDehexized: "; StrDehexize$(s$)

 //Will stop at first non hex digit 'h'

 s$="4041hello4243"

 PRINT "\n";s$;" Dehexized: "; StrDehexize$(s$)

Expected Output:

STRDEHEXIZE$ is a core function.

Hex data: 40414243

Dehexized: @ABC

4041hello4243 Dehexized: @A

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

100 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

STRHEX2BIN

This function is used to convert up to 2 hexadecimal characters at an offset in the input string

into an integer value in the range 0 to 255.

STRHEX2BIN (string,offset)

FUNCTION

Returns
INTEGER A value in the range 0 to 255 which corresponds to the (up to) 2 hex

characters at the specified offset in the input string.

Exceptions
 Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

string
byRef string AS STRING

The string to be converted into hex characters.

offset

byVal offset AS INTEGER

This is the offset from where up to 2 hex characters will be

converted into a binary number.

Interactive

Command
NO

Note: string cannot be a string constant, e.g. “the cat”, but must be a string variable and so

if you must use a const string then first save it to a temp string variable and then pass it

to the function

Associated Commands: STRHEXIZE

 //Example :: StrHex2Bin.sb (See in Firmware Zip file)
 DIM s$

 s$="0102030405"

 PRINT StrHex2Bin(s$,4);"\n"

 s$="4C61697264"

 PRINT StrHex2Bin(s$,2);"\n"

Expected Output:

STRHEX2BIN is a core function.

3

97

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

101 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

STRESCAPE$

FUNCTION

STRESCAPE$ is used to convert a string variable into a string which contains only printable

characters using a 2 or 3 byte sequence of escape characters using the \NN format.

STRESCAPE$ (string)

Returns

STRING A printable version of string which means at best the returned string is of

the same length and at worst not more than three times the length of the input

string.

The following input characters are escaped as follows:

carriage return \r

linefeed \n

horizontal tab \t

\ \\

" \"

chr < ' ' \HH

chr >= 0x7F \HH

Exceptions

 Local Stack Frame Underflow

 Local Stack Frame Overflow

 Memory Heap Exhausted

Arguments:

string
byRef string AS STRING

The string to be converted.

Interactive

Command
NO

If a parsing error is encountered a nonfatal error will be generated which needs to be handled

otherwise the script will abort.

Note: string cannot be a string constant, e.g. “the cat”, but must be a string variable and so

if you must use a const string then first save it to a temp string variable and then pass it

to the function

Associated Commands: STRDEESCAPE

 //Example :: StrEscape$.sb (See in Firmware Zip file)

 DIM s$,t$

 s$="Hello\00world"

 t$=StrEscape$(s$)

 PRINT StrLen(s$);"\n" : PRINT StrLen(t$);"\n"

Expected Output:

11

13

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

102 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

STRESCAPE$ is a core function.

STRDEESCAPE

SUBROUTINE

STRDEESCAPE is used to convert an escaped string variable in the same memory space that the

string exists in. Given all 3 byte escape sequences are reduced to a single byte, the result is

never longer than the original.

STRDEESCAPE (string)

Returns

None

string now contains de-escaped characters converted as follows:

\r carriage return

\n linefeed

\t horizontal tab

\\ \

“” “

\HH ascii byte HH

Exceptions

 Local Stack Frame Underflow

 Local Stack Frame Overflow

 String De-Escape Error (E.g chrs after the \ are not recognized)

Arguments:

string
byRef string AS STRING

The string to be converted in-situ.

Interactive

Command
NO

If a parsing error occurs, a nonfatal error is generated which must be handled or the application

will abort.

Note: string cannot be a string constant, e.g. “the cat”, but must be a string variable and so

if you must use a const string then first save it to a temp string variable and then pass it

to the function

 //Example :: StrDeescape.sb (See in Firmware Zip file)

 DIM s$,t$

 s$="Hello\5C40world"

 PRINT s$;"\n"; StrLen(s$);"\n"

 StrDeescape(s$)

 PRINT s$;"\n"; StrLen(s$);"\n"

Expected Output:

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

103 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

STRDEESCAPE is a core function.

Hello\40world

13

Hello@world

11

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

104 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

STRVALDEC

FUNCTION

STRVALDEC converts a string of decimal numbers into the corresponding INTEGER signed value.

All leading whitespaces are ignored and then conversion stops at the first non-digit character

STRVALDEC (string)

FUNCTION

Returns INTEGER Represents the decimal value that was contained within string.

Exceptions
 Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

string
byRef string AS STRING

The target string

Interactive

Command
NO

If STRVALDEC encounters a non-numeric character within the string it will return the value of the

digits encountered before the non-decimal character.

Any leading whitespace within the string is ignored.

Note: string cannot be a string constant, e.g. “the cat”, but must be a string variable and so

if you must use a const string then first save it to a temp string variable and then pass it

to the function

 //Example :: StrValDec.sb (See in Firmware Zip file)

 DIM s$

 s$=" 1234"

 PRINT "\n";StrValDec(s$)

 s$=" -1234"

 PRINT "\n";StrValDec(s$)

 s$=" +1234"

 PRINT "\n";StrValDec(s$)

 s$=" 2345hello"

 PRINT "\n";StrValDec(s$)

 s$=" hello"

 PRINT "\n";StrValDec(s$)

Expected Output:

1234

-1234

1234

2345

0

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

105 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

STRVALDEC is a core function.

STRSPLITLEFT$

FUNCTION

STRSPLITLEFT$ returns a string which consists of the leftmost n characters of a string object and

then drops those characters from the input string.

STRSPLITLEFT$ (string, length)

Returns
STRING The leftmost ‘length’ characters are returned, and then those characters

are dropped from the argument list.

Exceptions

 Local Stack Frame Underflow

 Local Stack Frame Overflow

 Memory Heap Exhausted

Arguments:

string
byRef string AS STRING

The target string which cannot be a const string.

length

byVal length AS INTEGER

The number of leftmost characters that are returned before being

dropped from the target string.

Interactive

Command
NO

Note: string cannot be a string constant, e.g. “the cat”, but must be a string variable and so

if you must use a const string then first save it to a temp string variable and then pass it

to the function

 //Example :: StrSplitLeft$.sb (See in Firmware Zip file)

 DIM origStr$

 origStr$ = "12345678"

 PRINT StrSplitLeft$ (origStr$, 3);"\n"

 PRINT origStr$

Expected Output:

STRSPLITLEFT$ is a core function.

STRSUM

This function identifies the substring starting from a specified offset and specified length and then

does an arithmetic sum of all the unsigned bytes in that substring and then finally adds the signed

123

45678

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

106 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

initial value supplied.

For example, if the string is “\01\02\03\04\05” and offset is 1 and length is 2 and initial value is

1000, then the output will be 1000+2+3=1005.

STRSUM (string, nIndex, nBytes, initVal)

FUNCTION

Returns
INTEGER The result of the arithmetic sum operation over the bytes in the substring. If

nIndex or nBytes are negative, then the initVal will be returned.

Exceptions
 Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

string

byRef string AS STRING

String that contains the unsigned bytes which need to be arithmetically a

dded

nIndex
byVal nIndex AS INTEGER

Index of first byte into the string

nBytes
ByVal nBytes AS INTEGER

Number of bytes to process

initVal
ByVal initVal AS INTEGER

Initial value of the sum

Interactive

Command
NO

Note: string cannot be a string constant, e.g. “the cat”, but must be a string variable and so

if you must use a const string then first save it to a temp string variable and then pass it

to the function

 //Example :: StrSum.sb (See in Firmware Zip file)

 DIM s$

 s$="0aA%<"

 PRINT StrSum(s$,0,5,0);"\n" //48+97+65+37+60+0

 PRINT StrSum(s$,0,5,10);"\n" //48+97+65+37+60+10

 PRINT StrSum(s$,4,1,100);"\n" //60+100

Expected Output:

STRSUM is a core function.

307

317

160

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

107 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

STRXOR

This function identifies the substring starting from a specified offset and specified length and then

does an arithmetic exclusive-or (XOR) of all the unsigned bytes in that substring and then finally

XORs the signed initial value supplied.

For example, if the string is “\01\02\03\04\05” and offset is 1 and length is 2 and initial value is

1000, then the output will be 1000 ^ 2 ^ 3=1001.

STRXOR (string, nIndex, nBytes, initVal)

FUNCTION

Returns
INTEGER The result of the xor operation over the bytes in the substring. If nIndex or

nBytes are negative, then the initVal will be returned.

Exceptions
 Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

string
byRef string AS STRING

String that contains the unsigned bytes which need to be XOR’d

nIndex
byVal nIndex AS INTEGER

Index of first byte into the string

nBytes
ByVal nBytes AS INTEGER

Number of bytes to process

initVal
ByVal initVal AS INTEGER

Initial value of the XOR

Interactive

Command
NO

Note: string cannot be a string constant, e.g. “the cat”, but must be a string variable and so

if you must use a const string then first save it to a temp string variable and then pass it

to the function

 //Example :: StrXOR.sb (See in Firmware Zip file)

 DIM number$

 number$="01234"

 PRINT StrXOR(number$,0,5,0) //XOR: 48,49,50,51,52,0

 PRINT StrXOR(number$,0,5,10) //XOR: 48,49,50,51,52,10

 PRINT StrXOR(number$,0,5,1000) //XOR: 48,49,50,51,52,1000

Expected Output:

STRXOR is a core function.

52

62

988

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

108 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

EXTRACTSTRTOKEN

This function takes a sentence in the first parameter and extracts the leftmost string token from it

and passes it back in the second parameter. The token is removed from the sentence and is not

post processed in any way. The function will return the length of the string in the token. This

means if 0 is returned then there are no more tokens in the sentence.

It makes it easy to create custom protocol for commands send by a host over the uart for your

application.

For example, if the sentence is “My name is BL600, from Laird” then the first call of this function

will return “My” and the sentence will be adjusted to “name is BL600, from Laird”. Note that

“BL600,” will result in “BL600” and then “,”

The parser logic is exactly the same as when in the command mode. If you are not sure which

alphabet character is a token in its own right, then the quickest way to get an answer is to

actually try it.

Note: Any text after either ‘ or // is taken as a comment just like the behavior in the

command mode.

EXTRACTSTRTOKEN (sentence$,token$)

FUNCTION

Returns

INTEGER

The length of the extracted token. Will be 0 of there are no more tokens to

extract.

Exceptions
 Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

sentence$
byRef sentence$ AS STRING

String that contains the sentence containing the tokens to be extracted

token$

byRef token$ AS STRING

The leftmost token from the sentence and will have been removed from the

sentence.

Interactive

Command
NO

Note: string cannot be a string constant, e.g. “the cat”, but must be a string variable and so

if you must use a const string then first save it to a temp string variable and then pass it

to the function

 //Example :: ExtractStrToken.sb (See in Firmware Zip file)

 DIM sentence$, token$, tknlen

 sentence$="My name is BL600, from Laird"

 PRINT "\nSentence is :";sentence$

 DO

 tknlen = ExtractStrToken(sentence$,token$)

 PRINT "\nToken (len ";tknlen;") = :";token$

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

109 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 UNTIL tknlen==0

Expected Output:

ExtractStrToken is a core function.

EXTRACTINTTOKEN

This function takes a sentence in the first parameter and extracts the leftmost set of

tokens that make an integer number (hex or binary or octal or decimal) from it and

passes it back in the second parameter. The tokens are removed from the sentence. The

function will return the number of characters extracted from the left side of the

sentence. This means if 0 is returned then there are no more tokens in the sentence.

For example, if the sentence is “0x100 is a hex,value” then the first call of this function will

return 256 in the second parameter and the sentence will be adjusted to “is a hex

value”. Note that “hex,value,” will result in “hex” then “,” and then “value”

The parser logic is exactly the same as when in the command mode. If you are not sure

which alphabet character is a token in its own right, then the quickest way to get an

answer is to actually try it.

Note: Any text after either ‘ or // is taken as a comment just like the behavior in the

command mode.

EXTRACTINTTOKEN (sentence$,intValue)

FUNCTION

Returns
INTEGER

The length of the extracted token. Will be 0 of there are no more tokens to extract.

Exceptions
 Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

sentence$

byRef sentence$ AS STRING

String that contains the sentence containing the tokens to be

extracted

intValue

byRef intValue AS STRING

The leftmost set of tokens constituting a legal integer value is

extracted from the sentence and will be removed from the

sentence.

Sentence is :My name is BL600, from Laird

Token (len 2) = :My

Token (len 4) = :name

Token (len 2) = :is

Token (len 5) = :BL600

Token (len 1) = :,

Token (len 4) = :from

Token (len 5) = :Laird

Token (len 0) = :

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

110 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Interactive

Command
NO

Note: string cannot be a string constant, e.g. “the cat”, but must be a string variable and so

if you must use a const string then first save it to a temp string variable and then pass it

to the function

 //Example :: ExtractIntToken.sb (See in Firmware Zip file)

 DIM sentence$

 DIM intValue, bytes

 DIM token$, tknlen

 sentence$="0x100 is a hex,value"

 PRINT "\nSentence is :";sentence$

 bytes = ExtractIntToken(sentence$,intValue)

 PRINT "\nintValue (bytes ";bytes;") = :";intValue

 DO

 tknlen = ExtractStrToken(sentence$,token$)

 PRINT "\nToken (len ";tknlen;") = :";token$

 UNTIL tknlen==0

Expected Output:

EXTRACTINTTOKEN is a core function.

Table Routines

Tables provide associative array (or in other words lookup type) functionality within smart BASIC

programs. They are typically used to allow lookup features to be implemented efficiently so that,

for example, parsers can be implemented.

Tables are one dimensional string variables, which are configured by using the TABLEINIT

command.

Tables should not be confused with Arrays. Tables provide the ability to perform pattern

matching in a highly optimised manner. As a general rule, use tables where you want to perform

efficient pattern matching and arrays where you want to automate setup strings or send data

using looping variables.

TABLEINIT

FUNCTION

Sentence is :0x100 is a hex,value

intValue (bytes 5) = :256

Token (len 2) = :is

Token (len 1) = :a

Token (len 3) = :hex

Token (len 1) = :,

Token (len 5) = :value

Token (len 0) = :

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

111 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

TABLEINIT initialises a string variable so that it can be used for storage of multiple TLV tokens,

allowing a lookup table to be created.

TLV = Tag, Length, Value

TABLEINIT (string)

Returns

INTEGER Indicates success of command:

0 Successful initialisation

<>0 Failure

Exceptions
 Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

string

byRef string AS STRING

String variable to be used for the Table. Since it is byRef the

compiler will not allow a constant string to be passed as an

argument. On entry the string can be non-empty, on exit the string

will be empty.

Interactive

Command
NO

Note: string cannot be a string constant, e.g. “the cat”, but must be a string variable and so

if you must use a const string then first save it to a temp string variable and then pass it

to the function

Associated Commands: TABLEADD, TABLELOOKUP

 //Example :: TableInit.sb (See in Firmware Zip file)

 DIM t$:t$="Hello"

 PRINT "\n";"[";t$;"]"

 PRINT "\n";TableInit(t$)

 PRINT "\n";"[";t$;"]" //String now blank after being initialised as a table

Expected Output:

TABLEINIT is a core function.

TABLEADD

FUNCTION

TABLEADD adds the token specified to the lookup table in the string variable and associates the

index specified with it. There is no validation to check if nIndex has been duplicated as it is

[Hello]

0

[]

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

112 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

entirely valid that more than one token generate the same ID value

TABLEADD (string, strtok, nID)

Returns

INTEGER Indicates success of command:

0 Signifies that the token was successfully added

1 Indicates an error if nID > 255 or < 0

2 Indicates no memory is available to store token

3 Indicates that the token is too large

4 Indicates the token is empty

Exceptions
 Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

string
byRef string AS STRING

A string variable that has been initialised as a table using TABLEINIT.

strtok
byVal strtok AS STRING

The string token to be added to the table.

nID

byVal nID AS INTEGER

The identifier number that is associated with the token and should

be in the range 0 to 255.

Interactive

Command
NO

Note: string cannot be a string constant, e.g. “the cat”, but must be a string variable and so

if you must use a const string then first save it to a temp string variable and then pass it

to the function

Associated Commands: TABLEINIT, TABLELOOKUP

 //Example :: TableAdd.sb (See in Firmware Zip file)
 DIM t$: PRINT TableInit(t$);"\n"

 PRINT TableAdd(t$,"Hello",1);"\n"

 PRINT TableAdd(t$,"everyone",2);"\n"

 PRINT TableAdd(t$,"to",300);"\n"

 PRINT TableAdd(t$,"",3);"\n"

 PRINT t$

 //Tokens are stored in TLV format: \Tag\LengthValue

Expected Output:

0

0

0

1

4

\01\05Hello\02\08everyone

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

113 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

TABLEADD is a core function.

TABLELOOKUP

FUNCTION

TABLELOOKUP searches for the specified token within an existing lookup table which was

created using TABLEINIT and multiple TABLEADDs and returns the ID value associated with it.

It is especially useful for creating a parser, for example, to create an AT style protocol over a uart

interface.

TABLELOOKUP (string, strtok)

Returns

INTEGER Indicates success of command:

>=0 signifies that the token was successfully found and the value is the ID

-1 if the token is not found within the table

-2 if the specified table is invalid

-3 if the token is empty or > 255 characters

Exceptions
 Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

string
byRef string AS STRING

The lookup table that is being searched

strtok
byRef strtok AS STRING

The token whose position is being found

Interactive

Command
NO

Note: string cannot be a string constant, e.g. “the cat”, but must be a string variable and so

if you must use a const string then first save it to a temp string variable and then pass it

to the function

Associated Commands: TABLEINIT, TABLEADD

 //Example :: TableLookup.sb (See in Firmware Zip file)

 DIM t$

 PRINT TableInit(t$);"\n\n"

 PRINT TableAdd(t$,"Hello",1);"\n"

 PRINT TableAdd(t$,"world",2);"\n"

 PRINT TableAdd(t$,"to",3);"\n"

 PRINT TableAdd(t$,"you",4);"\n\n"

 PRINT TableLookup(t$,"to");"\n"

 PRINT TableLookup(t$,"Hello");"\n"

 PRINT TableLookup(t$,"you");"\n"

Expected Output:

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

114 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

TABLELOOKUP is a core function.

Miscellaneous Routines

This section describes all miscellaneous functions and subroutines

RESET

SUBROUTINE

This routine is used to force a reset of the module.

RESET (nType)

Exceptions
 Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

nType byVal nType AS INTEGER.

Interactive

Command
NO

This is for future use. Set to 0.

 //Example :: RESET.sb (See in Firmware Zip file)

 RESET(0) //force a reset of the module

Expected Output:

Like when you reset the module using the interactive

command ‘ATZ’, the CTS indicator will momenterally change

from green to red, then back to green.

RESET is a core subroutine.

Random Number Generation Routines

0

0

0

0

0

3

1

4

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

115 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Random numbers are either generated using pseudo random number generator algorithms or

using thermal noise or equivalent in hardware. The routines listed in this section provide the

developer with the capability of generating random numbers.

The Interactive Mode command “AT I 1001” or at runtime SYSINFO(1001) will return 1 if the system

generates random numbers using hardware noise or 0 if a pseudo random number generator.

RAND

FUNCTION

The RAND function returns a random 32 bit integer. Use the command ‘AT I 1001’ or from within

an application the function SYSINFO(1001), to determine whether the random number is pseudo

random or generated in hardware via a thermal noise generator. If 1001 returns 0 then it is

pseudo random and 1 if generated using hardware.

RAND ()

Returns INTEGER A 32 bit integer.

Exceptions
 Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments: None

Interactive

Command
NO

Associated

Commands
RANDSEED

Depending on the platform, the RAND function can be seeded using the RANDSEED function to

seed the pseudo random number generator. If used, RANDSEED must be called before using

RAND. If the platform has a hardware Random Number Generator, then RANDSEED has no

effect.

 //Example :: RAND.sb (See in Firmware Zip file)

 PRINT "\nRandom number is ";RAND()

Expected Output:

RAND is a core language function.

RANDEX

FUNCTION

The RANDEX function returns a random 32 bit positive integer in the range 0 to X where X is the

input argument. Use the command ‘AT I 1001’ or from within an application the function

SYSINFO(1001) to determine whether the random number is pseudo random or generated in

hardware via a thermal noise generator. If 1001 returns 0 then it is pseudo random and 1 if

generated using hardware.

Random number is -2088208507

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

116 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

RANDEX (maxval)

Returns INTEGER A 32 bit integer.

Exceptions
 Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

maxval
byVal maxval AS INTEGER

The return value will not exceed the absolute value of this variable

Interactive

Command
NO

Associated

Commands
RANDSEED

Depending on the platform, the RANDEX function can be seeded using the RANDSEED function

to seed the pseudo random number generator. If used, RANDSEED must be called before using

RANDEX. If the platform has a hardware Random Number Generator, then RANDSEED has no

effect.

 //Example :: RANDEX.sb (See in Firmware Zip file)

 DIM x : x=500

 PRINT "\nRandom number between 0 and ";x;" is ";RANDEX(x)

Expected Output:

RAND is a core language function.

Random number between 0 and 500 is 193

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

117 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

RANDSEED

SUBROUTINE

On platforms without a hardware random number generator, the RANDSEED function sets the

starting point for generating a series of pseudo random integers. To reinitialize the generator, use

1 as the seed argument. Any other value for seed sets the generator to a random starting point.

RAND retrieves the pseudo random numbers that are generated.

It has no effect on platforms with a hardware random number generator.

RANDSEED (seed)

Exceptions
 Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

Seed

byVal seed AS INTEGER

The starting seed value for the random number generator function

RAND.

Interactive

Command
NO

Associated

Commands
RAND

 RandSeed(1234)

Note: This subroutine has no effect on modules that have a hardware random number

generator..

RANDSEED is a core language subroutine.

Timer Routines

In keeping with the event driven paradigm of smart BASIC, the timer subsystem enables smart

BASIC applications to be written which allow future events to be generated based on timeouts.

To make use of this feature up to N timers, where N is platform dependent, are made available

and that many event handlers can be written and then enabled using the ONEVENT statement

so that those handlers are automatically invoked. The ONEVENT statement is described in detail

elsewhere in this manual.

Briefly the usage is, select a timer, register a handler for it, and start it with a timeout value and a

flag to specify whether it is recurring or single shot. Then when the timeout occurs AND when the

application is processing a WAITEVENT statement, the handler will be automatically called.

It is important to understand the significance of the WAITEVENT statement. In a nutshell, a timer

handler callback will NOT happen if the runtime engine does not encounter a WAITEVENT

statement. Events are synchronous not asynchronous like say interrupts.

All this is illustrated in the sample code fragment below where timer 0 is started so that it will recur

automatically every 500 milliseconds and timer 1 is a single shot 1000ms later.

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

118 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Note, as explained in the WAITEVENT section of this manual, if a handler function returns a non-

zero value then the WAITEVENT statement is reprocessed, otherwise the smart BASIC runtime

engine will proceed to process the next statement after the WAITEVENT statement – not after the

handlers ENDFUNC or EXITFUNC statement. This means that if the WAITEVENT is the very last

statement in an application and a timer handler returns a 0 value, then the application will exit

the module from Run Mode into Interactive Mode which will be disastrous for unattended

operation.

Timer Events

EVTMRn Where n=0 to N, where N is platform dependent, it is generated when timer n

expires. The number of timers (that is, N+1) is returned by the command AT I 2003 or

at runtime by SYSINFO(2003)

 //Example :: EVTMRn.sb (See in Firmware Zip file)

 FUNCTION HandlerTimer0()

 PRINT "\nTimer 0 has expired"

 ENDFUNC 1 //remain blocked in WAITEVENT

 FUNCTION HandlerTimer1()

 PRINT "\nTimer 1 has expired"

 ENDFUNC 0 //exit from WAITEVENT

 ONEVENT EVTMR0 CALL HandlerTimer0

 ONEVENT EVTMR1 CALL HandlerTimer1

 TimerStart(0,500,1) //start a 500 millisecond recurring timer

 PRINT "\nWaiting for Timer 0"

 TimerStart(1,1000,0) //start a 1000 millisecond timer

 PRINT "\nWaiting for Timer 1"

 WAITEVENT

 PRINT "\nGot here because TIMER 1 expired and handler returned 0"

Expected Output:

TimerStart

This subroutine starts one of the built-in timers.

The command AT I 2003 will return the number of timers and AT I 2002 will return the resolution of

the timer in microseconds.

When the timer expires, an appropriate event is generated, which can be acted upon by a

handler registered using the ONEVENT command.

TIMERSTART (number,interval_ms,recurring)

Waiting for Timer 0

Waiting for Timer 1

Timer 0 has expired

Timer 0 has expired

Timer 1 has expired

Got here because TIMER 1 expired and handler returned 0

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

119 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

SUBROUTINE

Arguments:

number

byVal number AS INTEGER

The number of the timer. 0 to N where N can be determined by

submitting the command AT I 2003 or at runtime returned via

SYSINFO(2003).

If the value is not valid, then a runtime error will be thrown with code

INVALID_TIMER.

interval_ms

byVal interval AS INTEGER

A valid time in milliseconds, between 1 and 1,000,000,000 (11.6 days).

Note although the time is specified in milliseconds, the resolution of

the hardware timer may have more granularity than that. Submit the

command AT I 2002 or at runtime SYSINFO(2002) to determine the

actual granularity in microseconds.

If longer timeouts are required, start one of the timers with 1000 and

make it repeating and then implement the longer timeout using

smart BASIC code.

If the interval is negative or > 1,000,000,000 then a runtime error will be

thrown with code INVALID_INTERVAL. An error will be thrown for lesser

values dependent on the platform and the hardware constraints. For

example, the BL600 module has a maximum time of 8192000 (2 hrs 16

min).

If the recurring argument is set to non-zero, then the minimum value

of the interval is 10ms

recurring
byVal recurring AS INTEGER

Set to 0 for a once-only timer, or non-0 for a recurring timer.

Interactive

Command
NO

Associated

Commands
ONEVENT, TIMERCANCEL

When the timer expires, it will set the corresponding EVTMRn event. That is, timer number 0 sets

EVTMR0, timer number 3 sets EVTMR3. The ONEVENT statement should be used to register

handlers that will capture and process these events.

If the timer is already running, calling TIMERSTART will reset it to count down from the new value,

which may be greater or smaller than the remaining time.

If either number or interval is invalid an Error is thrown.

 //Example :: EVTMRn.sb (See in Firmware Zip file)

 SUB HandlerOnErr()

 PRINT "Timer Error: ";GetLastError()

 ENDSUB

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

120 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 FUNCTION HandlerTimer1()

 PRINT "\nTimer 1 has expired"

 ENDFUNC 1 //remain blocked in WAITEVENT

 FUNCTION HandlerTimer2()

 PRINT "\nTimer 2 has expired"

 ENDFUNC 0 //exit from WAITEVENT

 ONERROR NEXT HandlerOnErr

 ONEVENT EVTMR1 CALL HandlerTimer1

 ONEVENT EVTMR2 CALL HandlerTimer2

 TimerStart(0,-500,1) //start a -500 millisecond recurring timer

 PRINT "\nStarted Timer 0 with invalid inerval"

 TimerStart(1,500,1) //start a 500 millisecond recurring timer

 PRINT "\nWaiting for Timer 1"

 TimerStart(2,1000,0) //start a 1000 millisecond timer

 PRINT "\nWaiting for Timer 2"

 WAITEVENT

 PRINT "\nGot here because TIMER 2 expired and Handler returned 0"

Expected Output:

TIMERSTART is a core subroutine.

TimerRunning

FUNCTION

This function determines if a timer identified by an index number is still running. The command AT

I 2003 will return the valid range of Timer index numbers. It returns 0 to signify that the timer is not

running and a non-zero value to signify it is still running and the value is the number of

milliseconds left for it to expire.

TIMERRUNNING (number)

FUNCTION

Returns 0 if the timer has expired, otherwise the time in milliseconds left to expire.

Arguments:

Timer Error: 1770

Started Timer 0 with invalid inerval

Waiting for Timer 1

Waiting for Timer 2

Timer 1 has expired

Timer 1 has expired

Timer 2 has expired

Got here because TIMER 2 expired and Handler returned 0

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

121 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

maxval

byVal number AS INTEGER

The number of the timer. 0 to N where N can be determined by

submitting the command AT I 2003 or at runtime returned via

SYSINFO(2003).

If the value is not valid, then a runtime error will be thrown with code

INVALID_TIMER.

Interactive

Command
NO

Associated

Commands
ONEVENT, TIMERCANCEL

 //Example :: TimerRunning.sb (See in Firmware Zip file)

 SUB HandlerOnErr()

 PRINT "Timer Error ";GetLastError()

 ENDSUB

 FUNCTION HandlerTimer0()

 PRINT "\nTimer 0 has expired"

 PRINT "\nTimer 1 has ";TimerRunning(1);" milliseconds to go"

 ENDFUNC 1 //remain blocked in WAITEVENT

 FUNCTION HandlerTimer1()

 PRINT "\nTimer 1 has expired"

 ENDFUNC 0 //exit from WAITEVENT

 ONERROR NEXT HandlerOnErr

 ONEVENT EVTMR0 CALL HandlerTimer0

 ONEVENT EVTMR1 CALL HandlerTimer1

 TIMERSTART(0,500,1) //start a 500 millisecond recurring timer

 PRINT "\nWaiting for Timer 0"

 TIMERSTART(1,2000,0) //start a 1000 millisecond timer

 PRINT "\nWaiting for Timer 1"

 WAITEVENT

Expected Output:

Waiting for Timer 0

Waiting for Timer 1

Timer 0 has expired

Timer 1 has 1500 milliseconds to go

Timer 0 has expired

Timer 1 has 1000 milliseconds to go

Timer 0 has expired

Timer 1 has 500 milliseconds to go

Timer 0 has expired

Timer 1 has 0 milliseconds to go

Timer 1 has expired

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

122 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

TIMERRUNNING is a core function.

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

123 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

TimerCancel

SUBROUTINE

This subroutine stops one of the built-in timers so that it will not generate a timeout event.

TIMERCANCEL (number)

Arguments:

number

byVal number AS INTEGER

The number of the timer. 0 to N where N can be determined by

submitting the command AT I 2003 or at runtime returned via

SYSINFO(2003).

If the value is not valid, then a runtime error will be thrown with code

INVALID_TIMER.

Interactive

Command
NO

Associated

Commands
ONEVENT, TIMERCANCEL,TIMERRUNNING

 //Example :: TimerCancel.sb (See in Firmware Zip file)

 DIM i,x

 i=0 : x=1 //'x' is HandlerTimer0's return value

 //Will switch to 0 when timer0 has expired so that the application can

stop

 FUNCTION HandlerTimer0()

 PRINT "\nTimer 0 has expired, starting again"

 IF i==4 THEN

 PRINT "\nCancelling Timer 0"

 TimerCancel(0)

 PRINT "\nTimer 0 ran ";i+1;" times"

 x=0

 ENDIF

 i=i+1

 ENDFUNC x

 ONEVENT EVTMR0 CALL HandlerTimer0

 TimerStart(0,800,1)

 PRINT "\nWaiting for Timer 0. Should run 5 times"

 WAITEVENT

Expected Output:

Waiting for Timer 0. Should run 5 times

Timer 0 has expired, starting again

Timer 0 has expired, starting again

Timer 0 has expired, starting again

Timer 0 has expired, starting again

Timer 0 has expired, starting again

Cancelling Timer 0

Timer 0 ran 5 times

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

124 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

TIMERCANCEL is a core subroutine.

GetTickCount

FUNCTION

There is a 31 bit free running counter that increments every 1 millisecond. The resolution of this

counter in microseconds can be determined by submitting the command AT I 2004 or at runtime

SYSINFO(2004) . This function returns that free running counter. It wraps to 0 when the counter

reaches 0x7FFFFFFF.

GETTICKCOUNT ()

Returns
INTEGER A value in the range 0 to 0x7FFFFFFF (2,147,483,647) in units of

milliseconds.

Arguments: None

Interactive

Command
No

Associated

Commands
GETTICKSINCE

 //Example :: GetTickCount.sb (See in Firmware Zip file)

 FUNCTION HandlerTimer0()

 PRINT "\n\nTimer 0 has expired"

 ENDFUNC 0

 PRINT "\nThe value on the counter is ";GetTickCount()

 ONEVENT EVTMR0 CALL HandlerTimer0

 TimerStart(0,1000,0)

 PRINT "\nWaiting for Timer 0"

 WAITEVENT

 PRINT "\nThe value on the counter is now ";GetTickCount();

Expected Output:

GETTICKCOUNT is a core subroutine.

GetTickSince

FUNCTION

This function returns the time elapsed since the ‘startTick’ variable was updated with the return

value of GETTICKCOUNT(). It signifies the time in milliseconds. If ‘startTick’ is less than 0 which is a

value that GETTICKCOUNT() will never return, then a 0 will be returned.

The value on the counter is 159297

Waiting for Timer 0

Timer 0 has expired

The value on the counter is now 160299

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

125 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

GETTICKSINCE (startTick)

Returns

INTEGER A value in the range 0 to 0x7FFFFFFF (2,147,483,647) in units of

milliseconds.

startTickr byVal startTick AS INTEGER

This is a variable that was updated using the return value from

GETTICKCOUNT() and it is used to calculate the time elapsed since

that update.

Arguments: None

Interactive

Command
No

Associated

Commands
GETTICKCOUNT

 //Example :: GetTickSince.sb (See in Firmware Zip file)

 DIM startTick, elapseMs, x

 x=1

 startTick = GetTickCount()

 DO

 PRINT x;" x 2 = "

 x=x*2

 PRINT x;"\n"

 UNTIL x==32768

 elapseMs = GetTickSince(startTick)

 PRINT "\n\nThe Do Until loop took ";elapseMS; " msec to process"

Expected Output:

GETTICKCOUNT is a core subroutine.

1 x 2 = 2

2 x 2 = 4

4 x 2 = 8

8 x 2 = 16

16 x 2 = 32

32 x 2 = 64

64 x 2 = 128

128 x 2 = 256

256 x 2 = 512

512 x 2 = 1024

1024 x 2 = 2048

2048 x 2 = 4096

4096 x 2 = 8192

8192 x 2 = 16384

16384 x 2 = 32768

The Do Until loop took 21 msec to process

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

126 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Circular Buffer Management Functions

It is a common requirement in applications that deal with communications to require circular

buffers that can act as first-in, first-out queues or to create a stack that can store data in a

push/pop manner.

This section describes functions that allow these to be created so that they can be expedited as

fast as possible without the speed penalty inherited in any interpreted language. The basic entity

that is managed is the INTEGER variable in smartBASIC. Hence be aware that for a buffer size of

N, 4 times N is the memory that will be taken from the internal heap.

These buffers are referenced using handles provided at creation time.

CircBufCreate

FUNCTION

This function is used to create a circular buffer with a maximum capacity set by the caller. Most

often it will be used as a first-in, first-out queue.

CIRCBUFCREATE (nItems, circHandle)

Returns

INTEGER

An integer result code. The most typical value is 0x0000, which indicates a

successful operation.

Arguments:

nItems

byVal nItems AS INTEGER

This specifies the maximum number of INTEGER values that can be stored in the

buffer. If there isn’t enough free memory in the heap, then this function will fail and

return an appropriate result code.

circHandle

byRef circHandle AS INTEGER

If the circular buffer is successfully created, then this variable will return a handle

that should be used to interact with it.

Interactive

Command
No

 //Example :: CircBufCreate.sb (See in Firmware Zip file)

 DIM circHandle, circHandle2, rc

 rc = CircBufCreate(16,circHandle)

 PRINT "\n";rc

 IF rc!=0 THEN

 PRINT "\nThe circular buffer ";circHandle; "was not created"

 ENDIF

 rc = CircBufCreate(32000,circHandle2)

 PRINT "\n\n";rc

 IF rc!=0 THEN

 PRINT "\n---> The circular buffer 'circHandle2' was not created"

 ENDIF

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

127 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Expected Output:

CIRCBUFCREATE is an extension function.

CircBufDestroy

SUBROUTINE

This function is used to destroy a circular buffer previously created using CircBufCreate.

CIRCBUFDESTROY (circHandle)

Arguments:

circHandle

byRef circHandle AS INTEGER

A handle referencing the circular buffer that needs to be deleted. On exit an

invalid handle value will be returned

Interactive

Command
No

 //Example :: CircBufDestroy.sb (See in Firmware Zip file)

 DIM circHandle, circHandle2, rc

 rc = CircBufCreate(16,circHandle)

 PRINT "\n";rc

 IF rc!=0 THEN

 PRINT "\nThe circular buffer ";circHandle; " was not created"

 ENDIF

 CircBufDestroy(circHandle)

 PRINT "\nThe handle value is now ";circHandle; " so it has been destroyed"

Expected Output:

CIRCBUFDESTROY is an extension function.

0

The handle value is now -1 so it has been destroyed

0

20736

---> The circular buffer 'circHandle2' was not created

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

128 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

CircBufWrite

FUNCTION

This function is used to write an integer at the head end of the circular buffer and if there is no

space available to write, then it will return with a failure resultcode and NOT write the value.

CIRCBUFWRITE (circHandle, nData)

Returns:

INTEGER

An integer result code. The most typical value is 0x0000, which indicates a

successful operation.

Arguments:

circHandle
byRef circHandle AS INTEGER

This identifies the circular buffer to write into.

nData
byVal nData AS INTEGER

This is the integer value to write into the circular buffer

Interactive

Command
No

 // Example :: CircBufWrite.sb (See in Firmware Zip file)

 DIM rc

 DIM circHandle

 DIM i

 rc = CircBufCreate(16,circHandle)

 IF rc != 0 then

 PRINT "\nThe circular buffer was not created\n"

 ELSE

 PRINT "\nThe circular buffer was created successfully\n"

 ENDIF

 //write 3 values into the circular buffer

 FOR i = 1 TO 3

 rc = CircBufWrite(circHandle,i)

 IF rc != 0 then

 PRINT "\nFailed to write into the circular buffer\n"

 ELSE

 PRINT i;" was successfuly written to the circular buffer\r"

 ENDIF

 NEXT

Expected output:

The circular buffer was created successfully

1 was successfuly written to the circular buffer

2 was successfuly written to the circular buffer

3 was successfuly written to the circular buffer

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

129 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

CIRCBUFWRITE is an extension function.

CircBufOverWrite

FUNCTION

This function is used to write an integer at the head end of the circular buffer and if there is no

space available to write, then it will return with a failure resultcode but still write into the circular

buffer by first discarding the oldest item.

CIRCBUFOVERWRITE (circHandle, nData)

Returns:

INTEGER

An integer result code. The most typical value is 0x0000, which indicates a

successful operation

Note: If the buffer was full and the oldest value was overwritten then a non-zero

value of 0x5103 will still be returned.

Arguments:

circHandle
byRef circHandle AS INTEGER

This identifies the circular buffer to write into.

nData

byVal nData AS INTEGER

This is the integer value to write into the circular buffer. It is always written into the

buffer. Oldest is discarded to make space for this.

Interactive

Command
No

 // Example :: CircBufOverwrite.sb (See in Firmware Zip file)

 DIM rc,circHandle,i

 rc = CircBufCreate(4,circHandle)

 IF rc != 0 THEN

 PRINT "\nThe circular buffer was not created\n"

 ELSE

 PRINT "\nThe circular buffer was created successfully\n"

 ENDIF

 FOR i = 1 TO 5

 rc = CircBufOverwrite(circHandle,i)

 IF rc == 0x5103 THEN

 PRINT "\nOldest value was discarded to write ";i

 ELSEIF rc !=0 THEN

 PRINT "\nFailed to write into the circular buffer"

 ELSE

 PRINT "\n";i

 ENDIF

 NEXT

Expected Output:

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

130 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

CIRCBUFOVERWRITE is an extension function.

CircBufRead

FUNCTION

This function is used to read an integer from the tail end of the circular buffer. A nonzero

resultcode will be returned if the buffer is empty or if the handle is invalid.

CIRCBUFREAD(circHandle, nData)

Returns:

INTEGER

An integer result code. The most typical value is 0x0000, which indicates a

successful operation. If 0x5102 is returned it implies the buffer was empty so nothing

was read.

Arguments:

circHandle
byRef circHandle AS INTEGER

This identifies the circular buffer to read from.

nData
byRef nData AS INTEGER

This is the integer value to read from the circular buffer

Interactive

Command
No

 // Example :: CircBufRead.sb (See in Firmware Zip file)

 DIM rc,circHandle,i,nData

 rc = CircBufCreate(4,circHandle)

 IF rc != 0 THEN

 PRINT "\nThe circular buffer was not created"

 ELSE

 PRINT "\nThe circular buffer was created successfully\n"

 PRINT "Writing..."

 ENDIF

 FOR i = 1 TO 5

 rc = CircBufOverwrite(circHandle,i)

 IF rc == 0x5103 THEN

 PRINT "\nOldest value was discarded to write ";i;"\n"

 ELSEIF rc !=0 THEN

 PRINT "\nFailed TO write inTO the circular buffer"

 ELSE

 PRINT "\n";i

 ENDIF

The circular buffer was created successfully

1

2

3

4

Oldest value was discarded to write 5

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

131 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 NEXT

 //read 4 values from the circular buffer

 PRINT "\nReading...\n"

 FOR i = 1 to 4

 rc = CircBufRead(circHandle,nData)

 IF rc == 0x5102 THEN

 PRINT "The buffer was empty"

 ELSEIF rc != 0 THEN

 PRINT "Failed to read from the circular buffer"

 ELSE

 PRINT nData;"\n"

 ENDIF

 NEXT

Expected Output:

CIRCBUFREAD is an extension function.

CircBufItems

FUNCTION

This function is used to determine the number of integer items held in the circular buffer.

CIRCBUFITEMS(circHandle, nItems)

Returns:

INTEGER, a result code.

The typical value is 0x0000, indicating a successful operation. If 0x5102 is returned it

implies the buffer was empty so nothing was read.

Arguments:

circHandle
byRef circHandle AS INTEGER

This identifies the circular buffer which needs to be queried.

nData
byRef nItems AS INTEGER

This returns the total items waiting to be read in the circular buffer.

Interactive No

The circular buffer was created successfully

Writing...

1

2

3

4

Oldest value was discarded to write 5

Reading...

2

3

4

5

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

132 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Command

 // Example :: CircBufItems.sb (See in Firmware Zip file)

 DIM rc,circHandle,i,nItems

 rc = CircBufCreate(4,circHandle)

 IF rc != 0 THEN

 PRINT "\nThe circular buffer was not created\n"

 ELSE

 PRINT "\nThe circular buffer was created successfully\n"

 ENDIF

 FOR i = 1 TO 5

 rc = CircBufOverwrite(circHandle,i)

 IF rc == 0x5103 THEN

 PRINT "\nOldest value was discarded to write ";i

 ELSEIF rc !=0 THEN

 PRINT "\nFailed TO write inTO the circular buffer"

 ENDIF

 rc = CircBufItems(circHandle,nItems)

 IF rc == 0 THEN

 PRINT "\n";nItems;" items in the circular buffer"

 ENDIF

 NEXT

Expected Output:

CIRCBUFITEMS is an extension function.

Serial Communications Routines

In keeping with the event driven architecture of smart BASIC, the serial communications

subsystem enables smart BASIC applications to be written which allow communication events to

trigger the processing of user smart BASIC code.

Note that if a handler function returns a non-zero value then the WAITEVENT statement is

reprocessed, otherwise the smart BASIC runtime engine will proceed to process the next

statement after the WAITEVENT statement – not after the handlers ENDFUNC or EXITFUNC

statement. Please refer to the detailed description of the WAITEVENT statement for further

information.

UART (Universal Asynchronous Receive Transmit)

This section describes all the events and routines used to interact with the UART peripheral

available on the platform. Depending on the platform, at a minimum, the UART will consist of a

The circular buffer was created successfully

1 items in the circular buffer

2 items in the circular buffer

3 items in the circular buffer

4 items in the circular buffer

Oldest value was discarded to write 5

4 items in the circular buffer

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

133 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

transmit, a receive, a CTS (Clear To Send) and RTS (Ready to Send) line. The CTS and RTS lines are

used for hardware handshaking to ensure that buffers do not overrun.

If there is a need for the following low bandwidth status and control lines found on many

peripherals, then the user is able to create those using the GPIO lines of the module and

interface with those control/status lines using smart BASIC code.

 Output DTR Data Terminal Ready

 Input DSR Data Set Ready

 Output/Input DCD Data Carrier Detect

 Output/Input RI Ring Indicate

The lines DCD and RI are marked as Output or Input because it is possible, unlike a device like a

PC where they are always inputs and modems where they are always outputs, to configure the

pins to be either so that the device can adopt a DTE (Data Terminal Equipment) or DCE (Data

Communications Equipment) role.

Note: DCD and RI have to be BOTH outputs or BOTH inputs; one cannot be an output and

the other an input.

UART Events

In addition to the routines for manipulating the UART interface, when data arrives via the receive

line it is stored locally in an underlying ring buffer and then an event is generated.

Similarly when the transmit buffer is emptied, events are thrown from the underlying drivers so

that user smart BASIC code in handlers can perform user defined actions.

The following is a detailed list of all events generated by the UART subsystem which can be

handled by user code.

EVUARTRX
This event is generated when one or more new characters have arrived

and have been stored in the local ring buffer.

EVUARTTXEMPTY
This event is generated when the last character is transferred from the

local transmit ring buffer to the hardware shift register.

 // Example :: EVUARTRX.sb (See in Firmware Zip file)

 DIM rc

 FUNCTION HndlrUartRx()

 PRINT "\nData has arrived\r"

 ENDFUNC 1 //remain blocked in WAITEVENT

 FUNCTION Btn0Pressed()

 ENDFUNC 0

 rc = GPIOBindEvent(0,16,1)

 PRINT "\nPress Button 0 to exit this application \n"

 ONEVENT EVUARTRX CALL HndlrUartRx

 ONEVENT EVGPIOCHAN0 CALL Btn0Pressed

 WAITEVENT //wait for rx, tx and modem status events

 PRINT "Exiting..."

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

134 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Expected Output:

Note: If you type unknown commands, an E007 error displays in UwTerminal.

 // Example :: EVUARTTXEMPTY.sb (See in Firmware Zip file)

 FUNCTION HndlrUartTxEty()

 PRINT "\nTx buffer is empty"

 ENDFUNC 0

 ONEVENT EVUARTTXEMPTY CALL HndlrUartTxEty

 PRINT "\nSend this via uart"

 WAITEVENT

Expected Output:

UartOpen

Note: Until further notice, the parity parameter shall not be changed when using this function.

FUNCTION

This function is used to open the main default uart peripheral using the parameters specified.

If the uart is already open then this function will fail. To prevent this, call UartClose() or

UartCloseEx() before calling this function.

If this function is used to alter the communications parameters, like say the baudrate and the

application exits to interactive mode, then those settings will be inherited by the interactive

mode parser. Hence this is the only way to alter the communications parameters for Interactive

mode.

While the uart is open, if a BREAK is sent to the module, then it will force the module into deep

sleep mode as long as BREAK is asserted. As soon as BREAK is deasserted, the module will wake

up through a reset as if it had been power cycled.

UARTOPEN (baudrate,txbuflen,rxbuflen,stOptions)

Returns: INTEGER Indicates success of command:

Press Button 0 to exit this application

e

Data has arrived

Data has arrived

Data has arrived

Exiting...

Send this via uart

Tx buffer is empty

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

135 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

0 Opened successfully

0x5208 Invalid baudrate

0x5209 Invalid parity

0x520A Invalid databits

0x520B Invalid stopbits

0x520C Cannot be DTE (because DCD and RI cannot be inputs)

0x520D
Cannot be DCE (because DCD and RI cannot be

outputs)

0x520E Invalid flow control request

0x520F Invalid DTE/DCE role request

0x5210
Invalid length of stOptions parameter (must be five

characters)

0x5211 Invalid Tx buffer length

0x5212 Invalid Rx buffer length

Exceptions
 Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments:

baudrate

byVal baudrate AS INTEGER

The baudrate for the uart. Note that, the higher the baudrate, the more

power will be drawn from the supply pins.

AT I 1002 or SYSINFO(1002) returns the minimum valid baudrate
AT I 1003 or SYSINFO(1003) returns the maximum valid baudrate

txbuflen

byVal txbuflen AS INTEGER

Set the transmit ring buffer size to this value. If set to 0 then a default value will
be used by the underlying driver

Rxbuflen

byVal rxbuflen AS INTEGER

Set the receive ring buffer size to this value. If set to 0 then a default value will
be used by the underlying driver

stOptions

byVal stOptions AS STRING

This string (can be a constant) MUST be exactly 5 characters long where each
character is used to specify further comms parameters as follows.

Character Offset:

0

DTE/DCE role request:

 T – DTE

 C – DCE

1

Parity:

 N – None

 O – Odd

 E – Even

2 Databits: 5, 6, 7, 8, or 9

3 Stopbits: 1 or 2

4

Flow Control:

 N – None

 H – CTS/RTS hardware

 X – xon/xof

Related

Commands

UARTINFO, UARTCLOSE, UARTWRITE, UARTREAD, UARTREADMATCH

UARTGETDSR, UARTGETCTS, UARTGETDCD, UARTGETRI, UARTSETDTR,

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

136 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

UARTSETRTS, UARTSETDCD, UARTSETRI, UARTBREAK, UARTFLUSH

Interactive

Command
NO

Note: There will be further restrictions on the options based on the hardware as for example a

PC implementation cannot be configured as a DCE role. Likewise many microcontroller

uart peripherals are not capable of 5 bits per character – but a PC is.

Note: In DTE equipment DCD and RI are inputs, while in DCE they are outputs.

 // Example :: UartOpen.sb (See in Firmware Zip file)

 DIM rc

 FUNCTION HndlrUartRx()

 PRINT "\nData has arrived\r"

 ENDFUNC 1 //remain blocked in WAITEVENT

 FUNCTION Btn0Pressed()

 UartClose()

 ENDFUNC 0

 rc = GPIOBindEvent(0,16,1) //For button0

 ONEVENT EVUARTRX CALL HndlrUartRx

 ONEVENT EVGPIOCHAN0 CALL Btn0Pressed

 UartClose() //Since Uart port is already open we must

 //close it before opening it again with

 //different settings.

 //--- Open comport so that DCD and RI are inputs

 rc = UartOpen(9600,0,0,"CN81H") //Open as DCE, no parity, 8 databits,

 //1 stopbits, cts/rts flow control

 IF rc!= 0 THEN

 PRINT "\nFailed to open UART interface with error code ";INTEGER.H' rc

 ELSE

 PRINT "\nUART open success"

 ENDIF

 PRINT "\nPress button0 to exit this application\n"

 WAITEVENT //wait for rx, events

 PRINT "\nExiting..."

Expected Output:

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

137 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

UARTOPEN is a core function.

UARTClose

FUNCTION

This subroutine is used to close a UART port which had been opened with UARTOPEN.

If after the uart is closed, a print statement is encountered, the uart will be automatically re-

opened at the default rate (see hardware specific user manual for actual default value) so that

the data generated by the PRINT statement is sent.

This routine will throw an exception if the uart is already closed, so if you are not sure then it is

best to call it if UARTINFO(1) returns a non-zero value.

When this subroutine is invoked, the receive and transmit buffers are both flushed. If there is any

data in either of these buffers when the UART is closed, it will be lost. This is because the

execution of UARTCLOSE takes a very short amount of time, while the transfer of data from the

buffers will take much longer.

In addition please note that when a smart BASIC application completes execution with the UART

closed, it will automatically be reopened in order to allow continued communication with the

module in Interactive Mode using the default communications settings.

UARTCLOSE()

Exceptions Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments None

Interactive

Command

NO

Related

Commands

UARTOPEN,UARTINFO, UARTWRITE, UARTREAD, UARTREADMATCH, UARTGETCTS,

UARTGETDCD, UARTGETRI, UARTSETDTR, UARTSETRTS, UARTSETDCD, UARTSETRI,

UARTBREAK, UARTFLUSH

 //Example :: UartClose.sb (See in Firmware Zip file)

 UartClose()

 IF UartInfo(0)==0 THEN

 PRINT "\nThe Uart port was closed"

 ELSE

UART open successful

Press button0 to exit this application

laird

Data has arrived

Data has arrived

Data has arrived

Data has arrived

Data has arrived

Data has arrived

Exiting...

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

138 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 PRINT "\nThe Uart port was not closed"

 ENDIF

 IF UartInfo(0)!=0 THEN

 PRINT "\nand now it is open"

 ENDIF

Expected Output:

UARTCLOSE is a core subroutine.

UARTCloseEx

FUNCTION

This function is used to close a uart port which had been opened with UARTOPEN depending on

the flag mask in the input parameter.

Please see UartClose() for more details

UARTCLOSEEX(nFlags)

Returns

INTEGER

An integer result code. The most typical value is 0x0000, which indicates a

successful operation. If 0x5231 is returned it implies one of the buffers was not

empty so not closed.

Exceptions
 Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments

nFlags

byVal nFlags AS INTEGER

If Bit 0 is set, then only close if both rx and tx buffers are empty. Setting this bit to 0

has the same effect as UartClose() routine.

Bits 1 to 31 are for future use and must be set to 0.

Interactive

Command
NO

Related

Commands

UARTOPEN,UARTINFO, UARTWRITE, UARTREAD, UARTREADMATCH, UARTGETCTS,

UARTGETDCD, UARTGETRI, UARTSETDTR, UARTSETRTS, UARTSETDCD, UARTSETRI,

UARTBREAK, UARTFLUSH

 //Example :: UartCloseEx.sb (See in Firmware Zip file)

 DIM rc1

 DIM rc2

 UartClose()

 rc1 = UartOpen(9600,0,0,"CN81H") //open as DTE at 300 baudrate, odd parity

The Uart port was closed

and now it is open

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

139 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 //8 databits, 1 stopbits, cts/rts flow

control

 PRINT "Laird"

 IF UartCloseEx(1)!=0 THEN

 PRINT "\nData in at least one buffer. Uart Port not closed"

 ELSE

 rc1 = UartOpen(9600,0,0,"CN81H") //open as DTE at 300 baudrate, odd parity

 PRINT "\nUart Port was closed"

 ENDIF

Expected Output:

UARTCLOSEEX is a core function.

UARTInfo

FUNCTION

This function is used to query information about the default uart, such as buffer lengths, whether

the port is already open or how many bytes are waiting in the receive buffer to be read.

UARTINFO (infoId)

Returns INTEGER The value associated with the type of uart information requested

Exceptions
 Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments

infold

byVal infoId AS INTEGER

This specifies the type of UART information requested as follows if the UART is

open:

0
1 – The port is open

0 – The port is closed

The following specify the type of uart information when the port is open:

1 Receive ring buffer capacity

2 Transmit ring buffer capacity

3 Number of bytes waiting to be read from receive ring buffer

4 Free space available in transmit ring buffer

5 Number of bytes still waiting to be sent in transmit buffer

6 Total number of bytes waiting in rx and tx buffer

If the UART is closed, 0 is always returned regardless of the value of infold.

Note: UARTINFO(0) always returns the open/close state of the UART.

Interactive

Command
NO

Related UARTOPEN, UARTCLOSE, UARTWRITE, UARTREAD, UARTREADMATCH

Laird

Data in at least one buffer. Uart Port not closed

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

140 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Commands UARTGETDSR, UARTGETCTS, UARTGETDCD, UARTGETRI, UARTSETDTR,

UARTSETRTS, UARTSETDCD, UARTSETRI, UARTBREAK, UARTFLUSH

 //Example :: UartInfo.sb (See in Firmware Zip file)

 DIM rc,start

 UartClose()

 IF UartInfo(0)==0 THEN

 PRINT "\nThe Uart port was closed\n"

 ELSE

 PRINT "\nThe Uart port was not closed\n"

 ENDIF

 PRINT "\nReceive ring buffer capacity: ";UartInfo(1)

 PRINT "\nTransmit ring buffer capacity: ";UartInfo(2)

 PRINT "\nNo. bytes waiting in transmit buffer: ";UartInfo(5)

 start = GetTickCount()

 DO

 UNTIL UartInfo(5)==0

 PRINT "\n\nTook ";GetTickSince(start);" milliseconds for transmit buffer to be

emptied"

Expected Output:

UARTINFO is a core subroutine.

UartWrite

FUNCTION

This function is used to transmit a string of characters.

UARTWRITE (strMsg)

Returns
INTEGER

0 to N : Actual number of bytes successfully written to the local transmit ring buffer

Exceptions

 Local Stack Frame Underflow

 Local Stack Frame Overflow

 Uart has not been opened using UARTOPEN (or auto-opened with PRINT

statement)

Arguments

The Uart port was closed

Receive ring buffer capacity: 256

Transmit ring buffer capacity: 256

No. bytes waiting in transmit buffer: 134

Took 142 milliseconds for transmit buffer to be emptied

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

141 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

strMsg

byRef strMsg AS STRING

The array of bytes to be sent. STRLEN(strMsg) bytes are written to the local

transmit ring buffer. If STRLEN(strMsg) and the return value are not the same, this

implies the transmit buffer did not have enough space to accommodate the

data. If the return value does not match the length of the original string, then use

STRSHIFTLEFT function to drop the data from the string, so that subsequent calls to

this function only retries with data which was not placed in the output ring buffer.

Interactive

Command
NO

Related

Commands

UARTOPEN,UARTINFO, UARTCLOSE, UARTREAD, UARTREADMATCH

UARTGETDSR, UARTGETCTS, UARTGETDCD, UARTGETRI, UARTSETDTR,

UARTSETRTS, UARTSETDCD, UARTSETRI, UARTBREAK, UARTFLUSH

Note: strMsg cannot be a string constant, e.g. “the cat”, but must be a string variable and so

if you must use a const string then first save it to a temp string variable and then pass it

to the function

 //Example :: UartWrite.sb (See in Firmware Zip file)

 DIM rc,str$,i,done,d

 //str$ contains a lot of space so that we can satisfy the condition in the IF

statement

 str$="

Hello World"

 FUNCTION HndlrUartTxEty()

 PRINT "\nTx buffer is now empty"

 ENDFUNC 0 //exit from WAITEVENT

 rc=UartWrite(str$)

 //Shift 'str$' if there isn't enough space in the buffer until 'str$' can be written

 WHILE done == 0

 IF rc < StrLen(str$) THEN

 PRINT rc;" bytes written"

 PRINT "\nStill have ";StrLen(str$)-rc;" bytes to write\n"

 PRINT "\nShifting 'str$' by ";rc

 StrShiftLeft(str$,rc)

 done = 0

 ELSE

 PRINT "\nString 'str$' written successfully"

 done=1

 ENDIF

 ENDWHILE

 ONEVENT EVUARTTXEMPTY CALL HndlrUartTxEty

 WAITEVENT

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

142 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Expected Output:

UARTWRITE is a core subroutine.

UartRead

FUNCTION

This function is used to read the content of the receive buffer and append it to the string

variable supplied.

UARTREAD(strMsg)

Returns

INTEGER 0 to N : The total length of the string variable – not just what got

appended. This means the caller does not need to call strlen() function to
determine how many bytes in the string that need to be processed.

Exceptions

 Local Stack Frame Underflow

 Local Stack Frame Overflow

 Uart has not been opened using UARTOPENxxx

Arguments

strMsg
byRef strMsg AS STRING

The content of the receive buffer will get appended to this string.

Interactive

Command
NO

Related

Commands

UARTOPEN,UARTINFO, UARTCLOSE, UARTWRITE, UARTREADMATCH, UARTGETDSR,

UARTGETCTS, UARTGETDCD, UARTGETRI, UARTSETDTR, UARTSETRTS, UARTSETDCD,

UARTSETRI, UARTBREAK, UARTFLUSH

Note: strMsg cannot be a string constant, e.g. “the cat”, but must be a string variable and so

if you must use a const string then first save it to a temp string variable and then pass it

to the function

 //Example :: UartRead.sb (See in Firmware Zip file)

 DIM rc,strLength,str$

 str$="Your name is "

 FUNCTION HndlrUartRx()

 TimerStart(0,100,0) //Allow enough time for data to reach rx buffer

 ENDFUNC 1

 FUNCTION HndlrTmr0()

 strLength=UartRead(str$)

 PRINT "\n";str$

256 bytes written

Still have 18 bytes to write

Shifting 'str$' by 256

String 'str$' written successfully

Tx buffer is now empty

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

143 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 ENDFUNC 0

 ONEVENT EVTMR0 CALL HndlrTmr0

 ONEVENT EVUARTRX CALL HndlrUartRx

 PRINT "\nWhat is your name?\n"

 WAITEVENT

Expected Output:

UARTREAD is a core subroutine.

What is your name?

David

Your name is David

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

144 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

UartReadN

FUNCTION

This function is used to read the content of the receive buffer and append it to the string

variable supplied but it ensures that the string is not longer than nMaxLen.

UARTREADN(strMsg, nMaxLen)

Returns

INTEGER 0 to N : The total length of the string variable – not just what got

appended. This means the caller does not need to call strlen() function to
determine how many bytes in the string that need to be processed.

Exceptions

 Local Stack Frame Underflow

 Local Stack Frame Overflow

 Uart has not been opened using UARTOPENxxx

Arguments

strMsg
byRef strMsg AS STRING

The content of the receive buffer will get appended to this string.

nMaxLen

byval nMaxLen AS INTEGER

The output string strMsg will never be longer than this value. If a value less than 1

is specified, it will be clipped to 1 and if > that 0xFFFF it will be clipped to 0xFFFF.

Interactive

Command
NO

Related

Commands

UARTOPEN,UARTINFO, UARTCLOSE, UARTWRITE, UARTREADMATCH, UARTGETDSR,

UARTGETCTS, UARTGETDCD, UARTGETRI, UARTSETDTR, UARTSETRTS, UARTSETDCD,

UARTSETRI, UARTBREAK, UARTFLUSH

Note: strMsg cannot be a string constant, e.g. “the cat”, but must be a string variable and so

if you must use a const string then first save it to a temp string variable and then pass it

to the function

 //Example

 DIM rc,strLength,str$

 str$="Your name is "

 FUNCTION HndlrUartRx()

 TimerStart(0,100,0) //Allow enough time for data to reach rx buffer

 ENDFUNC 1

 FUNCTION HndlrTmr0()

 strLength=UartReadn(str$,11)

 PRINT "\n";str$

 ENDFUNC 0

 ONEVENT EVTMR0 CALL HndlrTmr0

 ONEVENT EVUARTRX CALL HndlrUartRx

 PRINT "\nWhat is your name?\n"

 WAITEVENT

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

145 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Expected Output:

UARTREADN is a core subroutine.

UartReadMatch

FUNCTION

This function is used to read the content of the underlying receive ring buffer and append it to

the string variable supplied, up to and including the first instance of the specified matching

character OR the end of the ring buffer.

This function is very useful when interfacing with a peer which sends messages terminated by a

constant character such as a carriage return (0x0D). In that case, in the handler, if the return

value is greater than 0, it implies a terminated message arrived and so can be processed further.

UARTREADMATCH(strMsg , chr)

Returns

INTEGER Indicates the presence of the match character in strMsg as follows:

0 – Data may have been appended to the string, but no matching character.
1 to N – The total length of the string variable up to and including the match chr.

Note: When 0 is returned you can use STRLEN(strMsg) to determine the length of

data stored in the string. On some platforms with low amount of RAM

resources, the underlying code may decide to leave the data in the
receive buffer rather than transfer it to the string.

Exceptions

 Local Stack Frame Underflow

 Local Stack Frame Overflow

 Uart has not been opened using UARTOPEN

Arguments

strMsg

byRef strMsg AS STRING

The content of the receive buffer will get appended to this string up to and

including the match character.

Chr

byVal chr AS INTEGER

The character to match in the receive buffer, for example the carriage return
character 0x0D

Interactive

Command
NO

Related

Commands

UARTOPEN,UARTINFO, UARTCLOSE, UARTWRITE, UARTREAD, UARTGETDSR,

UARTGETCTS, UARTGETDCD, UARTGETRI, UARTSETDTR, UARTSETRTS, UARTSETDCD,

UARTSETRI, UARTBREAK, UARTFLUSH

What is your name?

David

Your name i

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

146 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Note: strMsg cannot be a string constant, e.g. “the cat”, but must be a string variable and so

if you must use a const string then first save it to a temp string variable and then pass it

to the function

 //Example :: UartReadMatch.sb (See in Firmware Zip file)
 DIM rc,str$,ret,char,str2$

 ret=1 //Function return value

 char=13 //ASCII decimal value for 'carriage return'

 str$="Your name is "

 str2$="\n\nMatch character ' ' not found \nExiting.."

 FUNCTION HndlrUartRx()

 TimerStart(0,10,0) //Allow time for data to reach rx buffer

 ENDFUNC 1

 FUNCTION HndlrTmr0()

 rc = UartReadMatch(str$,char)

 PRINT "\n";str$

 IF rc==0 THEN

 rc=StrSetChr(str2$,char,19) //Insert 'char', the match character

 PRINT str2$

 str2$="\n\nMatch character not found \nExiting.." //reset str2$

 ret=0

 ELSE

 PRINT "\n\n\nNow type something without the letter 'a'\n"

 str$="You sent " //reset str$

 char=97 //ASCII decimal value for 'a'

 ret=1

 ENDIF

 ENDFUNC ret

 ONEVENT EVTMR0 CALL HndlrTmr0

 ONEVENT EVUARTRX CALL HndlrUartRx

 PRINT "\nWhat is your name?\n"

 WAITEVENT

Expected Output:

What is your name?

Your name is David

Now type something without the letter 'a'

You sent hello

Match character 'a' not found

Exiting..

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

147 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

UARTREADMATCH is a core subroutine.

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

148 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

UartFlush

SUBROUTINE

This subroutine is used to flush either or both receive and transmit ring buffers.

This is useful when, for example, you have a character terminated messaging system and the

peer sends a very long message and the input buffer fills up. In that case, there is no more space

for an incoming termination character and the RTS handshaking line would have been asserted

so the message system will stall. A flush of the receive buffer is the best approach to recover

from that situation.

Note: Execution of UARTFLUSH is much quicker than the time taken to transmit data to/from

the buffers

UARTFLUSH(bitMask)

Exceptions

 Local Stack Frame Underflow

 Local Stack Frame Overflow

 Uart has not been opened using UARTOPEN

Arguments

bitMask

byVal bitMask AS INTEGER

This bit mask is used to choose which ring buffer to flush.

Bit Description

0 Set to flush the Rx buffer

1 Set to flush the Tx buffer

 Set to flush both buffers

Interactive

Command
NO

Related

Commands

UARTOPEN,UARTINFO, UARTCLOSE, UARTWRITE, UARTREAD, UARTREADMATCH,

UARTGETCTS, UARTGETDCD, UARTGETRI, UARTGETDSR, UARTSETRTS, UARTSETDCD,
UARTBREAK, UARTFLUSH

 //Example :: UartFlushRx.sb (See in Firmware Zip file)

 FUNCTION HndlrUartRx()

 TimerStart(0,2,0) //Allow time for data to reach rx

buffer

 ENDFUNC 1

 FUNCTION HndlrTmr0()

 PRINT UartInfo(3);" bytes in the rx buffer,\n"

 UartFlush(01) //clear rx buffer

 PRINT UartInfo(3);" bytes in the rx buffer after flushing"

 ENDFUNC 0

 ONEVENT EVUARTRX CALL HndlrUartRx

 ONEVENT EVTMR0 CALL HndlrTmr0

 PRINT "\nSend me some text\n"

 WAITEVENT

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

149 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Expected Output:

 //Example :: UartFlushTx.sb (See in Firmware Zip file)

 DIM s$: s$ = "Hello World"

 DIM rc : rc = UartWrite(s$)

 UartFlush(10) //Will flush before all chars have been transmitted

 PRINT UartInfo(5); " bytes in the tx buffer after flushing"

Expected Output:

UARTFLUSH is a core subroutine.

UartGetCTS

FUNCTION

This function is used to read the current state of the CTS modem status input line.

If the device does not expose a CTS input line, then this function will return a value that signifies

an asserted line.

UARTGETCTS()

Returns

INTEGER Indicates the status of the CTS line:

0 : CTS line is NOT asserted
1 : CTS line is asserted

Exceptions

 Local Stack Frame Underflow

 Local Stack Frame Overflow

 Uart has not been opened using UARTOPEN

Arguments None

Interactive

Command
NO

Related

Commands

UARTOPEN,UARTINFO, UARTCLOSE, UARTWRITE, UARTREAD, UARTREADMATCH,

UARTGETDSR, UARTGETDCD, UARTGETRI, UARTSETDTR, UARTSETRTS, UARTSETDCD,

UARTSETRI, UARTBREAK, UARTFLUSH

 //Example :: UartGetCTS.sb (See in Firmware Zip file)

 IF UartGetCTS()==0 THEN

Send me some data

Laird

6 bytes in the rx buffer,

0 bytes in the rx buffer after flushing

H0 bytes in the tx buffer after flushing

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

150 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 PRINT "\nCTS line is not asserted"

 ELSEIF UartGetCTS()==1 THEN

 PRINT "\nCTS line is asserted"

 ENDIF

Expected Output:

UARTGETCTS is a core subroutine.

UartSetRTS

SUBROUTINE

This function is used to set the state of the RTS modem control line. When the UART port is closed,

the RTS line can be configured as an input or an output and can be available for use as a

general purpose input/output line.

When the uart port is opened, the RTS output is automatically defaulted to the asserted state. If

flow control was enabled when the port was opened then the RTS output cannot be

manipulated as it is owned by the underlying driver.

UARTSETRTS(newState)

Exceptions

 Local Stack Frame Underflow

 Local Stack Frame Overflow

 Uart has not been opened using UARTOPEN

Arguments

newState
byVal newState AS INTEGER

0 to deassert and non-zero to assert

Interactive

Command
NO

Related

Commands

UARTOPEN,UARTINFO, UARTCLOSE, UARTWRITE, UARTREAD, UARTREADMATCH,

UARTGETCTS, UARTGETDCD, UARTGETRI, UARTGETDSR, UARTSETDTR, UARTSETDCD,

UARTSETRI, UARTBREAK, UARTFLUSH

Note: This subroutine is not implemented in some modules. Refer to module specific user

manual if this is available

UARTSETRTS is a core subroutine.

CTS line is not asserted

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

151 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

UartBREAK

SUBROUTINE

This subroutine is used to assert/deassert a BREAK on the transmit output line. A BREAK is a

condition where the line is in non idle state (that is 0v) for more than 10 to 13 bit times,

depending on whether parity has been enabled and the number of stopbits.

On certain platforms the hardware may not allow this functionality, contact Laird to determine if

your device has the capability. On platforms that do not have this capability, this routine has no

effect.

UARTBREAK(state)

Exceptions

 Local Stack Frame Underflow

 Local Stack Frame Overflow

 Uart has not been opened using UARTOPEN

Arguments

newState
byVal newState AS INTEGER

0 to deassert and non-zero to assert

Interactive

Command
NO

Related

Commands

UARTOPEN, UARTINFO, UARTCLOSE, UARTWRITE, UARTREAD, UARTREADMATCH,

UARTGETCTS, UARTGETDCD, UARTGETRI, UARTGETDSR, UARTSETRTS, UARTSETDCD,

UARTFLUSH

UARTBREAK is a core subroutine.

I2C (Two Wire Interface or TWI)

Note: The routines in this section only work if I2C is supported on the platform.

This section describes all the events and routines used to interact with the I2C peripheral if it is

available on the platform. An I2C interface is also known as a Two Wire Interface (TWI) and has a

master/slave topology.

An I2C interface allows multiple masters and slaves to communicate over a shared wired-OR

type bus consisting of two lines which normally sit at 5 or 3.3v.

Some modules can only be configured as an I2C master with the additional constraint that it be

the only master on the bus and only 7 bit slave addressing is supported. Please refer to the

specific user manual for clarification.

The two signal lines are called SCL and SDA. The former is the clock line which is always sourced

by the master and the latter is a bi-directional data line which can be driven by any device on

the bus.

It is essential to remember that pull up resistors on both SCL and SDA lines are not provided in the

module and MUST be provided external to the module.

A very good introduction to I2C can be found at http://www.i2c-bus.org/i2c-primer/ and the

reader is encouraged to refer to it before using the api described in this section.

http://ews-support.lairdtech.com/
http://www.i2c-bus.org/i2c-primer/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

152 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

153 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

I2C Events

The API provided in the module is synchronous and so there is no requirement for events.

I2cOpen

FUNCTION

This function is used to open the main I2C peripheral using the parameters specified.

See the module reference manual for details of which pins expose the SCL and SDA functions.

I2COPEN (nClockHz, nCfgFlags, nHande)

Returns

INTEGER Indicates success of command:

0 Opened successfully

0x5200 Driver not found

0x5207 Driver already open

0x5225 Invalid clock frequency requested

0x521D Driver resource unavailable

0x5226 No free PPI channel

0x5202 Invalid signal pins

0x5219 I2C not allowed on specified pins

Exceptions
 Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments

nClockHz

byVal nClockHz AS INTEGER

This is the clock frequency to use, See module specific documentation for valid

frequencies.

nCfgFlags

byVal nCfgFlags AS INTEGER

This is a bit mask used to configure the I2C interface. All unused bits are allocated

as for future use and MUST be set to 0. Used bits are as follows:-

Bit Description

0 If set, then a 500 microsecond low pulse will NOT be sent on open. This low

pulse is used to create a start and stop condition on the bus so that any

signal transitions on these lines prior to this open which may have confused

a slave can initialise that slave to a known state. The STOP condition should

be detected by the slave.

1-31 Unused and MUST be set to 0

nHandle

byRef nHandle AS INTEGER

The handle for this interface will be returned in this variable if it was successfully

opened. This handle is subsequently used to read/write and close the interface.

Related

Commands

I2CCLOSE, I2CWRITEREAD$, I2CWRITEREG8, I2CWRITEREG16, I2CWRITEREG32,

I2CREADREG8, I2CREADREG16, I2CREADREG32

 //Example :: I2cOpen.sb (See in Firmware Zip file)

 DIM handle

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

154 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 DIM rc : rc=I2cOpen(100000,0,handle)

 IF rc!= 0 THEN

 PRINT "\nFailed to open I2C interface with error code "; INTEGER.h' rc

 ELSE

 PRINT "\nI2C open success \nHandle is ";handle

 ENDIF

Expected Output:

I2COPEN is a core function.

I2cClose

SUBROUTINE

This subroutine is used to close a I2C port which had been opened with I2COPEN.

This routine is safe to call if it is already closed.

I2CCLOSE(handle)

Exceptions
 Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments

handle

byVal handle AS INTEGER

This is the handle value that was returned when I2COPEN was called which

identifies the I2C interface to close.

Interactive

Command
NO

Related

Commands

I2COPEN, I2CWRITEREAD$, I2CWRITEREG8, I2CWRITEREG16, I2CWRITEREG32,

I2CREADREG8, I2CREADREG16, I2CREADREG32

 //Example :: I2cClose.sb (See in Firmware Zip file)
 DIM handle

 DIM rc : rc=I2cOpen(100000,0,handle)

 IF rc!= 0 THEN

 PRINT "\nFailed to open I2C interface with error code "; INTEGER.h' rc

 ELSE

 PRINT "\nI2C open success \nHandle is ";handle

 ENDIF

 I2cClose(handle) //close the port

 I2cClose(handle) //no harm done doing it again

I2CCLOSE is a core subroutine.

I2C open success

Handle is 0

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

155 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

I2cWriteREG8

SUBROUTINE

This function is used to write an 8 bit value to a register inside a slave which is identified by an 8

bit register address.

Note: A handle parameter is NOT required as this function is used to interact with the main

interface. In the future, a new version of this function will be made available if more

than one I2C interface is made available, most likely made available by bit-bashing

gpio.

I2CWRITEREG8(nSlaveAddr, nRegAddr, nRegValue)

Exceptions
 Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments

nSlaveAddr
byVal nSlaveAddr AS INTEGER

This is the address of the slave in range 0 to 127.

nRegAddr
byVal nRegAddr AS INTEGER

This is the 8 bit register address in the addressed slave in range 0 to 255.

nRegValue

byVal nRegValue AS INTEGER

This is the 8-bit value to written to the register in the addressed slave.

Note: Only the lowest eight bits of this variable are written.

Interactive

Command
NO

Related

Commands

I2COPEN, I2CCLOSE, I2CWRITEREAD$, I2CWRITEREG8, I2CWRITEREG16,

I2CWRITEREG32, I2CREADREG8, I2CREADREG16, I2CREADREG32

 //Example :: I2cWriteReg8.sb (See in Firmware Zip file)

 //**Please ensure that nSlaveAddr is the slave address of your I2C peripheral**

 DIM rc, handle, nSlaveAddr, nRegAddr, nRegVal

 //--- Open I2C Peripheral

 rc=I2cOpen(100000,0,handle)

 IF rc!= 0 THEN

 PRINT "\nFailed to open I2C interface with error code "; INTEGER.H' rc

 ELSE

 PRINT "\nI2C open success"

 ENDIF

 //--- Write 'nRegVal' to register 'nRegAddr'

 nSlaveAddr=0x6f : nRegAddr = 23 : nRegVal = 0x63

 rc = I2cWriteReg8(nSlaveAddr, nRegAddr, nRegVal)

 IF rc!= 0 THEN

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

156 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 PRINT "\nFailed to Write to slave/register "; INTEGER.H'rc

 ELSE

 PRINT "\n";nRegVal; " written successfully to register ";nRegAddr

 ENDIF

 I2cClose(handle) //close the port

Expected Output:

I2CWRITEREG8 is a core function.

I2cReadREG8

SUBROUTINE

This function is used to read an 8 bit value from a register inside a slave which is identified by an 8

bit register address.

Note a ‘handle’ parameter is NOT required as this function is used to interact with the main

interface. In the future, a new version of this function will be made available if more than one

I2C interface is made available, most likely made available by bit-bashing gpio.

I2CREADREG8(nSlaveAddr, nRegAddr, nRegValue)

Exceptions
 Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments

nSlaveAddr
byVal nSlaveAddr AS INTEGER

This is the address of the slave in range 0 to 127.

nRegAddr
byVal nRegAddr AS INTEGER

This is the 8 bit register address in the addressed slave in range 0 to 255.

nRegValue

byRef nRegValue AS INTEGER

The 8 bit value from the register in the addressed slave will be returned in this

variable.

Interactive

Command
NO

Related

Commands

I2COPEN, I2CCLOSE, I2CWRITEREAD$, I2CWRITEREG8, I2CWRITEREG16,

I2CWRITEREG32, I2CREADREG8, I2CREADREG16, I2CREADREG32

 //Example :: I2cReadReg8.sb (See in Firmware Zip file)

 //**Please ensure that nSlaveAddr is the slave address of your I2C peripheral**

 DIM rc, handle, nSlaveAddr, nRegAddr, nRegVal

 //--- Open I2C Peripheral

I2C open success

99 written successfully to register 23

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

157 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 rc=I2cOpen(100000,0,handle)

 IF rc!= 0 THEN

 PRINT "\nFailed to open I2C interface with error code "; INTEGER.H' rc

 ELSE

 PRINT "\nI2C open success"

 ENDIF

 //---Read value from address 0x34

 nSlaveAddr=0x6f : nRegAddr = 23

 rc = I2cReadReg8(nSlaveAddr, nRegAddr, nRegVal)

 IF rc!= 0 THEN

 PRINT "\nFailed to Read from slave/register "; INTEGER.H'rc

 ELSE

 PRINT "\nValue read from register is ";nRegVal

 ENDIF

 I2cClose(handle) //close the port

Expected Output:

I2CREADREG8 is a core function.

I2cWriteREG16

SUBROUTINE

This function is used to write a 16 bit value to 2 registers inside a slave and the first register is

identified by an 8 bit register address supplied.

Note a ‘handle’ parameter is NOT required as this function is used to interact with the main

interface. In the future, a new version of this function will be made available if more than one

I2C interface is made available, most likely made available by bit-bashing gpio.

I2CWRITEREG16(nSlaveAddr, nRegAddr, nRegValue)

Exceptions
 Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments

nSlaveAddr
byVal nSlaveAddr AS INTEGER

This is the address of the slave in range 0 to 127.

nRegAddr
byVal nRegAddr AS INTEGER

This is the 8 bit start register address in the addressed slave in range 0 to 255.

nRegValue

byVal nRegValue AS INTEGER

This is the 16 bit value to be written to the register in the addressed slave.

Please note only the lowest 16 bits of this variable are written.

Interactive

Command
NO

I2C open success

Value read from register is 99

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

158 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Related

Commands

I2COPEN, I2CCLOSE, I2CWRITEREAD$, I2CWRITEREG8, I2CWRITEREG16,

I2CWRITEREG32, I2CREADREG8, I2CREADREG16, I2CREADREG32

 //Example :: I2cWriteReg16.sb (See in Firmware Zip file)

 //**Please ensure that nSlaveAddr is the slave address of your I2C peripheral**

 DIM rc, handle, nSlaveAddr, nRegAddr, nRegVal

 //--- Open I2C Peripheral

 rc=I2cOpen(100000,0,handle)

 IF rc!= 0 THEN

 PRINT "\nFailed to open I2C interface with error code "; INTEGER.H' rc

 ELSE

 PRINT "\nI2C open success"

 ENDIF

 //--- Write 'nRegVal' to register 'nRegAddr'

 nSlaveAddr=0x6f : nRegAddr = 0x34 : nRegVal = 0x4210

 rc = I2cWriteReg16(nSlaveAddr, nRegAddr, nRegVal)

 IF rc!= 0 THEN

 PRINT "\nFailed to Write to slave/register "; INTEGER.H'rc

 ELSE

 PRINT "\n";nRegVal; " written successfully to register ";nRegAddr

 ENDIF

 I2cClose(handle) //close the port

Expected Output:

I2CWRITEREG16 is a core function.

I2cReadREG16

SUBROUTINE

This function is used to read a 16 bit value from two registers inside a slave which is identified by

an 8 bit register address.

Note: A handle parameter is NOT required as this function is used to interact with the main

interface. In the future, a new version of this function will be made available if more

than one I2C interface is made available, most likely made available by bit-bashing

gpio.

I2CREADREG16(nSlaveAddr, nRegAddr, nRegValue)

Exceptions
 Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments byVal nSlaveAddr AS INTEGER

I2C open success

16912 written successfully to register 52

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

159 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

This is the address of the slave in range 0 to 127.

nSlaveAddr
 byVal nRegAddr AS INTEGER

This is the 8 bit start register address in the addressed slave in range 0 to 255.

nRegAddr

byRef nRegValue AS INTEGER

The 16 bit value from two registers in the addressed slave will be returned in this

variable.

Interactive

Command
NO

Related

Commands

I2COPEN, I2CCLOSE, I2CWRITEREAD$, I2CWRITEREG8, I2CWRITEREG16,

I2CWRITEREG32, I2CREADREG8, I2CREADREG16, I2CREADREG32

 //Example :: I2cReadReg16.sb (See in Firmware Zip file)

 //**Please ensure that nSlaveAddr is the slave address of your I2C peripheral**

 DIM rc, handle, nSlaveAddr, nRegAddr, nRegVal

 //--- Open I2C Peripheral

 rc=I2cOpen(100000,0,handle)

 IF rc!= 0 THEN

 PRINT "\nFailed to open I2C interface with error code "; INTEGER.H' rc

 ELSE

 PRINT "\nI2C open success"

 ENDIF

 //---Read value from address 0x34

 nSlaveAddr=0x6f : nRegAddr = 0x34

 rc = I2cReadReg16(nSlaveAddr, nRegAddr, nRegVal)

 IF rc!= 0 THEN

 PRINT "\nFailed to Read from slave/register "; INTEGER.H'rc

 ELSE

 PRINT "\nValue read from register is ";nRegVal

 ENDIF

 I2cClose(handle) //close the port

Expected Output:

I2CREADREG16 is a core function.

I2cWriteREG32

SUBROUTINE

This function is used to write a 32 bit value to 4 registers inside a slave and the first register is

identified by an 8 bit register address supplied.

I2C open success

Value read from register is 16912

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

160 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Note: A handle parameter is NOT required as this function is used to interact with the main

interface. In the future, a new version of this function will be made available if more

than one I2C interface is made available, most likely made available by bit-bashing

gpio.

I2CWRITEREG32(nSlaveAddr, nRegAddr, nRegValue)

Exceptions
 Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments

nSlaveAddr
byVal nSlaveAddr AS INTEGER

This is the address of the slave in range 0 to 127.

nRegAddr
byVal nRegAddr AS INTEGER

This is the 8 bit start register address in the addressed slave in range 0 to 255.

nRegValue
byVal nRegValue AS INTEGER

This is the 32 bit value to be written to the register in the addressed slave.

Interactive

Command
NO

Related

Commands

I2COPEN, I2CCLOSE, I2CWRITEREAD$, I2CWRITEREG8, I2CWRITEREG16,

I2CWRITEREG32, I2CREADREG8, I2CREADREG16, I2CREADREG32

 //Example :: I2cWriteReg32.sb (See in Firmware Zip file)

 //**Please ensure that nSlaveAddr is the slave address of your I2C peripheral**

 DIM handle

 DIM nSlaveAddr, nRegAddr,nRegVal

 DIM rc : rc=I2cOpen(100000,0,handle)

 IF rc!= 0 THEN

 PRINT "\nFailed to open I2C interface with error code ";INTEGER.h' rc

 ELSE

 PRINT "\nI2C open success"

 ENDIF

 nSlaveAddr = 0x6f : nRegAddr = 0x56 : nRegVal = 0x4210FEDC

 rc = I2cWriteReg32(nSlaveAddr, nRegAddr, nRegVal)

 IF rc!= 0 THEN

 PRINT "\nFailed to Write to slave/register "; INTEGER.H'rc

 ELSE

 PRINT "\n";nRegVal; " written successfully to register ";nRegAddr

 ENDIF

 I2cClose(handle) //close the port

Expected Output:

I2C open success

1108410076 written successfully to register 86

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

161 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

I2CWRITEREG32 is a core function.

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

162 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

I2cReadREG32

FUNCTION

This function is used to read a 32 bit value from four registers inside a slave which is identified by

a starting 8 bit register address.

Note: A handle parameter is NOT required as this function is used to interact with the main

interface. In the future, a new version of this function will be made available if more

than one I2C interface is made available, most likely made available by bit-bashing

gpio.

I2CREADREG32(nSlaveAddr, nRegAddr, nRegValue)

Exceptions
 Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments

nSlaveAddr
byVal nSlaveAddr AS INTEGER

This is the address of the slave in range 0 to 127.

nRegAddr
byVal nRegAddr AS INTEGER

This is the 8 bit start register address in the addressed slave in range 0 to 255.

nRegValue

byRef nRegValue AS INTEGER

The 32 bit value from four registers in the addressed slave will be returned in this

variable.

Interactive

Command
NO

Related

Commands

I2COPEN, I2CCLOSE, I2CWRITEREAD$, I2CWRITEREG8, I2CWRITEREG16,

I2CWRITEREG32, I2CREADREG8, I2CREADREG16, I2CREADREG32

 //Example :: I2cReadREG32.sb (See in Firmware Zip file)

 //**Please ensure that nSlaveAddr is the slave address of your I2C peripheral**

 DIM handle

 DIM nSlaveAddr, nRegAddr,nRegVal

 DIM rc : rc=I2cOpen(100000,0,handle)

 IF rc!= 0 THEN

 PRINT "\nFailed to open I2C interface with error code ";INTEGER.h' rc

 ELSE

 PRINT "\nI2C open success"

 ENDIF

 //---Read value from address 0x56

 nSlaveAddr = 0x6f : nRegAddr = 0x56

 rc = I2cReadReg32(nSlaveAddr, nRegAddr, nRegVal)

 IF rc!= 0 THEN

 PRINT "\nFailed to read from slave/register"

 ELSE

 PRINT "\nValue read from register is "; nRegVal

 ENDIF

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

163 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 I2cClose(handle) //close the port

Expected Output:

I2CREADREG16 is a core function.

I2cWriteRead

SUBROUTINE

This function is used to write from 0 to 255 bytes and then immediately after that read 0 to 255

bytes in a single transaction from the addressed slave. It is a ‘free-form’ function that allows

communication with a slave which has a 10 bit address.

Note: A handle parameter is NOT required as this function is used to interact with the main

interface. In the future, a new version of this function will be made available if more

than one I2C interface is made available, most likely made available by bit-bashing

gpio.

I2CWRITEREAD(nSlaveAddr, stWrite$, stRead$, nReadLen)

Exceptions
 Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments

nSlaveAddr
byVal nSlaveAddr AS INTEGER

This is the address of the slave in range 0 to 127.

stWrite$

byRef stWrite$ AS STRING

This string contains the data that must be written first. If the length of this string is 0

then the write phase is bypassed.

stRead$

byRef stRead$ AS STRING

This string will be written to with data read from the slave if and only if nReadLen is

not 0.

nReadLen

byRef nReadLen AS INTEGER

On entry this variable contains the number of bytes to be read from the slave and

on exit will contain the actual number that were actually read. If the entry value is

0, then the read phase will be skipped.

Interactive

Command
NO

Related

Commands

I2COPEN, I2CCLOSE, I2CWRITEREAD$, I2CWRITEREG8, I2CWRITEREG16,

I2CWRITEREG32, I2CREADREG8, I2CREADREG16, I2CREADREG32

 //Example :: I2cWriteRead.sb (See in Firmware Zip file)

I2C open success

Value read from register is 1108410076

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

164 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 //**Please ensure that nSlaveAddr is the slave address of your I2C peripheral**

 DIM rc

 DIM handle

 DIM nSlaveAddr

 DIM stWrite$, stRead$, nReadLen

 rc=I2cOpen(100000,0,handle)

 IF rc!= 0 THEN

 PRINT "\nFailed to open I2C interface with error code ";integer.h' rc

 ELSE

 PRINT "\nI2C open success"

 ENDIF

 //Write 2 bytes and read 0

 nSlaveAddr=0x6f : stWrite$ = "\34\35" : stRead$="" : nReadLen = 0

 rc = I2cWriteRead(nSlaveAddr, stWrite$, stRead$, nReadLen)

 IF rc!= 0 THEN

 PRINT "\nFailed to WriteRead "; integer.h'rc

 ELSE

 PRINT "\nWrite = ";StrHexize$(stWrite$);" Read = ";StrHexize$(stRead$)

 ENDIF

 //Write 3 bytes and read 4

 nSlaveAddr=0x6f : stWrite$ = "\34\35\43" : stRead$="" : nReadLen = 4

 rc = I2cWriteRead(nSlaveAddr, stWrite$, stRead$, nReadLen)

 IF rc!= 0 THEN

 PRINT "\nFailed to WriteRead "; integer.h'rc

 ELSE

 PRINT "\nWrite = ";StrHexize$(stWrite$);" Read = ";StrHexize$(stRead$)

 ENDIF

 //Write 0 bytes and read 8

 nSlaveAddr=0x6f : stWrite$ = "" : stRead$="" : nReadLen = 8

 rc = I2cWriteRead(nSlaveAddr, stWrite$, stRead$, nReadLen)

 IF rc!= 0 THEN

 PRINT "\nFailed to WriteRead "; integer.h'rc

 ELSE

 PRINT "\nWrite = ";StrHexize$(stWrite$);" Read = ";StrHexize$(stRead$)

 ENDIF

 I2cClose(handle) //close the port

Expected Output:

I2CWRITEREAD is a core function.

I2C open success

Write = 3435 Read =

Write = 343543 Read = 1042D509

Write = Read = 2B322380ED236921

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

165 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

SPI Interface

Note: The routines in this section will only work if SPI is supported on the hardware you are

developing for.

This section describes all the events and routines used to interact with the SPI peripheral if it is

available on the platform.

The three signal lines are called SCK, MOSI and MISO, where the first two are outputs and the last

is an input.

A very good introduction to SPI can be found at

http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus and the reader is encouraged to

refer to it before using the api described in this section.

It is possible to configure the interface to operate in any one of the 4 modes defined for the SPI

bus which relate to the phase and polarity of the SCK clock line in relation to the data lines MISO

and MOSI. In addition, the clock frequency can be configured from 125,000 to 8000000 and it

can be configured so that it shifts data in/out most significant bit first or last.

Note: A dedicated SPI Chip Select (CS) line is not provided and it is up to the developer to

dedicate any spare gpio line for that function if more than one SPI slave is connected

to the bus. The SPI interface in this module assumes that prior to calling SPIREADWRITE,

SPIREAD or SPIWRITE functions the slave device has been selected via the appropriate

gpio line.

SPI Events

The API provided in the module is synchronous and so there is no requirement for events.

SpiOpen

FUNCTION

This function is used to open the main SPI peripheral using the parameters specified.

SPIOPEN (nMode, nClockHz, nCfgFlags, nHande)

Returns

INTEGER Indicates success of command:

0 Opened successfully

0x5200 Driver not found

0x5207 Driver already open

0x5225 Invalid clock frequency requested

0x521D Driver resource unavailable

0x522B Invalid

Exceptions
 Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments

nMode
byVal nMode AS INTEGER

This is the mode, as in phase and polarity of the clock line, that the interface

http://ews-support.lairdtech.com/
http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

166 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

shall operate at. Valid values are 0 to 3 inclusive:

Mode CPOL CPHA

0 0 0

1 0 1

2 1 0

3 1 1

nClockHz

byVal nClockHz AS INTEGER

This is the clock frequency to use, and can be one of 125000, 250000, 500000,

1000000, 2000000, 4000000 or 8000000.

nCfgFlags

byVal nCfgFlags AS INTEGER

This is a bit mask used to configure the SPI interface. All unused bits are allocated

as for future use and MUST be set to 0. Used bits are as follows:

Bit Description

0
If set, then the least significant bit is clocked in/out

first.

1-31 Unused and must be set to 0.

nHandle

byRef nHandle AS INTEGER

The handle for this interface will be returned in this variable if it was successfully

opened. This handle is subsequently used to read/write and close the interface.

Related

Commands
SPICLOSE, SPIREADWRITE, SPIWRITE, SPIREAD

SPIOPEN is a core function.

The following is an example which demonstrates usage of all the SPI related functions available

in smartBASIC.

 //Example :: SpiExample.sb (See in Firmware Zip file)

 //The SPI slave used here is the Microchip 25A512

 //See http://ww1.microchip.com/downloads/en/DeviceDoc/22237C.pdf

 DIM rc

 DIM h //handle

 DIM rl //readlen

 DIM rd$,wr$,p$

 DIM wren

 //---

 //Get eeprom Status Register

 //---

 FUNCTION EepromStatus()

 GpioWrite(13,0)

 wr$="\05\00" : rd$="" : rc=SpiReadWrite(wr$,rd$)

 GpioWrite(13,1)

 ENDFUNC StrGetChr(rd$,1)

 //---

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

167 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 //Wait for WR bit in status flag to reset

 //---

 SUB WaitWrite()

 DO

 GpioWrite(13,0)

 wr$="\05\00" : rd$="" : rc=SpiReadWrite(wr$,rd$)

 GpioWrite(13,1)

 UNTIL ((StrGetChr(rd$,1)&1)==0)

 ENDSUB

 //---

 //Enable writes in eeprom

 //---

 SUB EnableWrite()

 GpioWrite(13,0)

 wr$="\06" : rd$="" : rc=SpiWrite(wr$)

 GpioWrite(13,1)

 ENDSUB

 //---

 // Configure the Chip Select line using SIO13 as an output

 //---

 rc= GpioSetFunc(13,2,1)

 // ensure CS is not enabled

 GpioWrite(13,1)

 //---

 //open the SPI

 //---

 rc=SpiOpen(0,125000,0,h)

 //...

 //Write DEADBEEFBAADC0DE 8 bytes to memory at location 0x0180

 //...

 EnableWrite()

 wr$="\02\01\80\DE\AD\BE\EF\BA\AD\C0\DE"

 PRINT "\nWriting to location 0x180 ";StrHexize$(wr$)

 GpioWrite(13,0)

 rc=SpiWrite(wr$)

 GpioWrite(13,1)

 WaitWrite()

 //...

 //Read from written location

 //...

 wr$="\03\01\80\00\00\00\00\00\00\00\00"

 rd$=""

 GpioWrite(13,0)

 rc=SpiReadWrite(wr$,rd$)

 GpioWrite(13,1)

 PRINT "\nData at location 0x0180 is ";StrHexize$(rd$)

 //...

 //Prepare for reads from location 0x180 and then read 4 and then 8 bytes

 //...

 wr$="\03\01\80"

 GpioWrite(13,0)

 rc=SpiWrite(wr$)

 rd$=""

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

168 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 rc=SpiRead(rd$,4)

 PRINT "\nData at location 0x0180 is ";StrHexize$(rd$)

 rd$=""

 rc=SpiRead(rd$,8)

 GpioWrite(13,1)

 PRINT "\nData at location 0x0184 is ";StrHexize$(rd$)

 //---

 //close the SPI

 //---

 SpiClose(h)

Expected Output:

SPIOPEN is a core subroutine.

SpiClose

SUBROUTINE

This subroutine is used to close a SPI port which had been opened with SPIOPEN.

This routine is safe to call if it is already closed.

SPICLOSE(handle)

Exceptions
 Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments

handle

byVal handle AS INTEGER

This is the handle value that was returned when SPIOPEN was called which

identifies the SPI interface to close.

Interactive

Command
NO

Related

Commands
SPICLOSE, SPIREADWRITE, SPIWRITE, SPIREAD

 //Example :: See SpiExample.sb

SPICLOSE is a core subroutine.

SpiReadWrite

FUNCTION

Writing to location 0x180 020180DEADBEEFBAADC0DE

Data at location 0x0180 is 000000DEADBEEFBAADC0DE

Data at location 0x0180 is DEADBEEF

Data at location 0x0184 is BAADC0DEFFFFFFFF

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

169 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

This function is used to write data to a SPI slave and at the same time read the same number of

bytes back. Every 8 clock pulses result in one byte being written and one being read.

Note: A handle parameter is NOT required as this function is used to interact with the main

interface. In the future, a new version of this function will be made available if more

than one SPI interface is made available.

SPIREADWRITE(stWrite$, stRead$)

Returns
INTEGER, a result code. The typical value is 0x0000, indicating a successful
operation.

Exceptions
 Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments

stWrite$
byRef stWrite$ AS STRING

This string contains the data that must be written.

stRead$

byRef stRead$ AS STRING

While the data in stWrite$ is being written, the slave sends data back and that

data is stored in this variable. Note that on exit this variable will contain the same

number of bytes as stWrite$.

Interactive

Command
NO

Related

Commands
SPICLOSE, SPIREADWRITE, SPIWRITE, SPIREAD

 //Example :: See SpiExample.sb

SPIWRITEREAD is a core function.

SpiWrite

FUNCTION

This function is used to write data to a SPI slave and any incoming data will be ignored.

Note: A handle parameter is NOT required as this function is used to interact with the main

interface. In the future, a new version of this function will be made available if more

than one SPI interface is made available.

SPIWRITE(stWrite$)

Returns
INTEGER, a result code. The typical value is 0x0000, indicating a successful

operation.

Exceptions
 Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments

stWrite$ byRef stWrite$ AS STRING

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

170 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

This string contains the data that must be written.

Interactive

Command
NO

Related

Commands
SPICLOSE, SPIREADWRITE, SPIWRITE, SPIREAD

 //Example :: See SpiExample.sb

SPIWRITE is a core function.

SpiRead

FUNCTION

This function is used to read data from a SPI slave.

Note: A handle parameter is NOT required as this function is used to interact with the main

interface. In the future, a new version of this function will be made available if more

than one SPI interface is made available.

Returns
INTEGER, a result code. The typical value is 0x0000, indicating a successful

operation.

Exceptions
 Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments

stRead$
byRef stRead$ AS STRING

This string will contain the data that is read from the slave.

nReadLen
byVal nReadLen AS INTEGER

This specifies the number of bytes to be read from the slave.

Interactive

Command
NO

Related

Commands
SPICLOSE, SPIREADWRITE, SPIWRITE, SPIREAD

 //Example :: See SpiExample.sb

SPIREAD is a core function.

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

171 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Cryptographic Functions

This section describes cryptographic functions that can be used to encrypt and decrypt data,

over and above and in addition to any crypting applied at the transport layer.

In cryptography there are many algorithms which could be symmetric or assymetric. Each

function described in this section will detail the type and modes catered for.

AesSetKeyIV

FUNCTION

This function is used to initialise a context for AES encryption and decription using the mode, key

and initialisation vector supplied. The modes that are catered for is EBC and CBC with a block

size of 128 bits.

AESSETKEYIV (mode, blockSize,key$, initVector$)

Returns

INTEGER

Is 0x0000 if the context is created successfully. Otherwise, an appropriate

resultcode is returned which conveys the reason it failed.

Arguments

mode

BYVAL mode AS INTEGER

This shall be as follows:

0x100 for EBC mode

0x101 for EBC mode but data is XORed with same initVector$ everytime

0x200 for CBC mode

blockSize
BYVAL blockSize AS INTEGER

Must always be set to 16, which is the size in bytes.

key$

BYREF key$ AS STRING

This string specifies the key to use for encryption and decryption and MUST be

exactly 16 bytes long

initVector$

BYREF initVector$ AS STRING

If mode is 0x101 or 0x200, then this string MUST be supplied and it should be 16

bytes long. It is left to the caller to ensure a sensible value is supplied. For example,

providing a string where all bytes are 0 is going to be of no value.

Interactive

Command
NO

 //Example :: AesSetKeyIv.sb (See in Firmware Zip file)

 DIM key$, initVector$

 DIM rc

 //Create context for EBC mode, 128 bit

 key$="\00\01\02\03\04\05\06\07\08\09\0A\0B\0C\0D\0E\0F"

 initVector$="" //EBC does not require initialisation vector

 rc=AesSetKeyIv(0x100,16,key$,initVector$)

 IF rc==0 THEN

 PRINT "\nEBC context created successfully"

 ELSE

 PRINT "\nFailed to create EBC context"

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

172 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 ENDIF

 //Create context for EBC mode with XOR, 128 bit

 key$="\00\01\02\03\04\05\06\07\08\09\0A\0B\0C\0D\0E\0F"

 initVector$="\FF\01\FF\03\FF\05\FF\07\FF\09\FF\0B\FF\0D\FF\0F"

 rc=AesSetKeyIv(0x101,16,key$,initVector$)

 IF rc==0 THEN

 PRINT "\nEBC-XOR context created successfully"

 ELSE

 PRINT "\nFailed to create EBC-XOR context"

 ENDIF

 //Create context for CBC mode, 128 bit

 key$="\00\01\02\03\04\05\06\07\08\09\0A\0B\0C\0D\0E\0F"

 initVector$="\FF\01\FF\03\FF\05\FF\07\FF\09\FF\0B\FF\0D\FF\0F"

 rc=AesSetKeyIv(0x200,16,key$,initVector$)

 IF rc==0 THEN

 PRINT "\nCBC context created successfully"

 ELSE

 PRINT "\nFailed to create CBC context"

 ENDIF

Expected Output:

AESSETKEYIV is a core language function.

AesEncrypt

FUNCTION

This function is used to encrypt a string up to 16 bytes long using the context that was

precreated using the most recent call of the function AesSetKeyIv.

For all modes, AesSetKeyIV is called only once which means in CBC mode the cyclic data is kept

in the context object that was created by AesSetKeyIV.

For example, on the BL600, which has AES 128 encryption hardware assist, the function has been

timed to take roughly 125 microseconds, otherwise it can take about 500 microseconds on a

16Mhz ARM Cortex M0 processor.

AESENCRYPT (inData$,outData$)

Returns

INTEGER

Is 0x0000 if the data is encrypted successfully. Otherwise, an appropriate

resultcode is returned which conveys the reason it failed. ALWAYS check this.

Arguments

inData$
BYREF inData$ AS STRING

This string is up to 16 bytes long and should contain the data to encrypt

outData$ BYREF outData$ AS STRING

EBC context created successfully

EBC-XOR context created successfully

CBC context created successfully

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

173 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

On exit, if the function was successful, then this string will contain the encrypted

cypher data. If unsuccessful, then string will be 0 bytes long.

Interactive

Command
NO

 //Example :: AesEncrypt.sb (See in Firmware Zip file)

 DIM key$, initVector$

 DIM inData$, outData$

 DIM rc

 //Create context for EBC mode, 128 bit

 key$="\00\01\02\03\04\05\06\07\08\09\0A\0B\0C\0D\0E\0F"

 initVector$="" //EBC does not require initialisation vector

 rc=AesSetKeyIv(0x100,16,key$,initVector$)

 IF rc==0 THEN

 PRINT "\nEBC context created successfully"

 ELSE

 PRINT "\nFailed to create EBC context"

 ENDIF

 inData$="303132333435363738393A3B3C3D3E3F"

 inData$=StrDehexize$(inData$)

 rc=AesEncrypt(inData$,outData$)

 IF rc==0 THEN

 PRINT "\nEncrypt OK"

 ELSE

 PRINT "\nFailed to encrypt"

 ENDIF

 PRINT "\ninData = "; strhexize$(inData$)

 PRINT "\noutData = "; strhexize$(outData$)

Expected Output:

AESENCRYPT is a core language function.

AesDecrypt

FUNCTION

This function is used to decrypt a string of exactly 16 bytes using the context that was precreated

using the most recent call of the function AesSetKeyIv.

For all modes, AesSetKeyIV is called only once which means in CBC mode the cyclic data is kept

in the context object that was created by AesSetKeyIV.

EBC context created successfully

Encrypt OK

inData = 303132333435363738393A3B3C3D3E3F

outData = 03F2C3BDCA826BF082D7CFB035CDB8C1

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

174 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

In terms of speed of execution, for example on the BL600, which does not have AES 128

decryption hardware assist, the function has been timed to take roughly 570 microseconds.

AESDECRYPT (inData$,outData$)

Returns

INTEGER

Results in 0x0000 if the data is decrypted successfully. Otherwise an appropriate
resultcode is returned which conveys the reason it failed. ALWAYS check this.

Arguments

inData$
BYREF inData$ AS STRING

This string MUST be eactly 16 bytes long and should contain the data to decrypt

outData$

BYREF outData$ AS STRING

On exit, if the function was successful, then this string will contain the decrypted

plaintext data. If unsuccessful, then string will be 0 bytes long.

Interactive

Command
NO

//Example :: AesDecrypt.sb (See in Firmware Zip file)

DIM key$, initVector$

DIM inData$, outData$, c$[3]

DIM rc

//Create context for CBC mode, 128 bit

key$="\00\01\02\03\04\05\06\07\08\09\0A\0B\0C\0D\0E\0F"

initVector$="\FF\01\FF\03\FF\05\FF\07\FF\09\FF\0B\FF\0D\FF\0F"

rc=AesSetKeyIv(0x200,16,key$,initVector$)

IF rc==0 THEN

 PRINT "\nCBC context created successfully"

ELSE

 PRINT "\nFailed to create EBC context"

ENDIF

//encrypt some data

inData$="303132333435363738393A3B3C3D3E3F"

inData$=StrDehexize$(inData$)

rc=AesEncrypt(inData$,c$[0])

IF rc==0 THEN

 PRINT "\nEncrypt OK"

ELSE

 PRINT "\nFailed to encrypt"

ENDIF

PRINT "\ninData = "; strhexize$(inData$)

PRINT "\noutData = "; strhexize$(c$[0])

//encrypt same data again

rc=AesEncrypt(inData$,c$[1])

IF rc==0 THEN

 PRINT "\nEncrypt OK"

ELSE

 PRINT "\nFailed to encrypt"

ENDIF

PRINT "\ninData = "; strhexize$(inData$)

PRINT "\noutData = "; strhexize$(c$[1])

//ecrypt same data again

rc=AesEncrypt(inData$,c$[2])

IF rc==0 THEN

 PRINT "\nEncrypt OK"

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

175 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

ELSE

 PRINT "\nFailed to encrypt"

ENDIF

PRINT "\ninData = "; strhexize$(inData$)

PRINT "\noutData = "; strhexize$(c$[2])

//Rereate context for CBC mode, 128 bit

key$="\00\01\02\03\04\05\06\07\08\09\0A\0B\0C\0D\0E\0F"

initVector$="\FF\01\FF\03\FF\05\FF\07\FF\09\FF\0B\FF\0D\FF\0F"

rc=AesSetKeyIv(0x200,16,key$,initVector$)

IF rc==0 THEN

 PRINT "\nCBC context created successfully"

ELSE

 PRINT "\nFailed to create EBC context"

ENDIF

//now decrypt the data

rc=AesDecrypt(c$[0],outData$)

IF rc==0 THEN

 PRINT "\n**Decrypt OK**"

ELSE

 PRINT "\nFailed to decrypt"

ENDIF

PRINT "\ninData = "; strhexize$(c$[0])

PRINT "\noutData = "; strhexize$(outData$)

//now decrypt the data

rc=AesDecrypt(c$[1],outData$)

IF rc==0 THEN

 PRINT "\n**Decrypt OK**"

ELSE

 PRINT "\nFailed to decrypt"

ENDIF

PRINT "\ninData = "; strhexize$(c$[1])

PRINT "\noutData = "; strhexize$(outData$)

//now decrypt the data

rc=AesDecrypt(c$[2],outData$)

IF rc==0 THEN

 PRINT "\n**Decrypt OK**"

ELSE

 PRINT "\nFailed to decrypt"

ENDIF

PRINT "\ninData = "; strhexize$(c$[2])

PRINT "\noutData = "; strhexize$(outData$)

Expected Output:

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

176 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

AESDECRYPT is a core language function.

File I/O Functions

A portion of module’s flash memory is dedicated to a file system which is used to store

smartBASIC applications and user data files.

Due to the internal requirement, set by the smartBASIC runtime engine (because applications

are interpreted in-situ), compiled application files must be stored in one continguous memory

block. This means the file system is currently restricted so that it is NOT possible for an application

to open a file and then write to it. To store application data so that they are non-volatile, use the

functions described in the section “Non-Volatile Memory Management Routines”

All user data files must be preloaded using the following commands which are described in the

section Interactive Mode Commands:

 AT+FOW

 AT+FWR or AT+FWRH

 AT+FCL

The utility UwTerminal helps with downloading such files, but is not required.

With the use of READ, FTELL, and FSEEK, downloading configuration files (such as digital

certificates) can be a useful and convenient way of making an app behave in a custom

manner from data derived from these data files as demonstrated by the example application

listed in the description of FOPEN.

FOPEN

FUNCTION

This function is used to open a file in mode specified by the ‘mode$’ string parameter. When the

file is opened the file pointer is set to 0 which effectively means that a read operation will

happen from the beginning of the file and then after the read the file pointer will be adjusted to

offset equal to the size of the read.

Function FSEEK is provided to move that file pointer to an offset relative to the beginning, or

current position or from the end of the file and function FTELL is provided to obtain the current

position as an offset from the beginning of the file.

CBC context created successfully

Encrypt OK

inData = 303132333435363738393A3B3C3D3E3F

outData = 55EAFC8281CC28054C4AA268763AFA3B

Encrypt OK

inData = 303132333435363738393A3B3C3D3E3F

outData = 2A8640BD480E092B432139CF28BA2C80

Encrypt OK

inData = 303132333435363738393A3B3C3D3E3F

outData = A418B500A3E0AC30F18DE6AE2E923314

CBC context created successfully

Decrypt OK

inData = 55EAFC8281CC28054C4AA268763AFA3B

outData = 303132333435363738393A3B3C3D3E3F

Decrypt OK

inData = 2A8640BD480E092B432139CF28BA2C80

outData = 303132333435363738393A3B3C3D3E3F

Decrypt OK

inData = A418B500A3E0AC30F18DE6AE2E923314

outData = 303132333435363738393A3B3C3D3E3F

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

177 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

FOPEN (filename$, mode$)

Returns

INTEGER

A non-zero integer representing an opaque handle to the file that was opened. If

the file failed to open (for example because the mode specified writing to the file
which is not allowed on certain platforms) then the returned value will be 0.

Arguments

filename$
BYREF filename$ AS STRING

This string specifies the name of the file to open.

mode$

BYVAL mode$ AS STRING

Must always be set to r

This string specifies the mode in which the file should be opened and for this

module, as only reading is allowed, must always be specified as r.

Interactive

Command
NO

 //Example :: FileIo.sb (See in Firmware Zip file)

 //

 // First download a file into the module by submitting the following

 // commands manually (wait for a 00 response after each command) :-

 //

 // at+fow "myfile.dat"

 // at+fwr "Hello"

 // at+fwr " World. "

 // at+fwr " This is something"

 // at+fwr " in a file which we can read"

 // at+fcl

 //

 // You can check you have the file in the file system by submitting

 // the command AT+DIR and you should see myfile.dat listed

 //

 DIM handle,fname$,flen,frlen,data$,fpos,rc

 fname$="myfile.dat" : handle = fopen(fname$,"r")

 IF handle != 0 THEN

 //determine the size of the file

 flen = filelen(handle)

 print "\nThe file is ";flen;" bytes long"

 //get the current position in the file (should be 0)

 rc = ftell(handle,fpos)

 print "\nCurrent position is ";fpos

 //read the first 11 bytes from the file

 frlen = fread(handle,data$,11)

 print "\nData from file is : ";data$

 //get the current position in the file (should be 11)

 rc = ftell(handle,fpos)

 print "\nCurrent position is ";fpos

 //reposition the file pointer to 6 so that we can read 5 bytes again

 rc = fseek(handle,6,0)

 //get the current position in the file

 rc = ftell(handle,fpos)

 //read 5 bytes

 frlen = fread(handle,data$,5)

 print "\nData from file is : ";data$

 //reposition to the start of 'is'

 rc = fseek(handle,19,0)

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

178 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 //read until a 'w' is encountered : w = ascii 0x77

 frlen = freaduntil(handle,data$,0x77,32)

 print "\nData from file is : ";data$

 //finally close the file, which on exit will set the handle to 0

 fclose(handle)

 ELSE

 print "\nFailed to open file ";fname$

 ENDIF

Expected Output:

FOPEN is a core language function.

FCLOSE

FUNCTION

This function is used to close a file previously opened with FOPEN. It takes a handle parameter as

a reference and will on exit set that handle to 0 which signifies an invalid file handle.

FCLOSE (fileHandle)

Returns N/A (it is a subroutine)

Arguments

fileHandle
BYREF fileHandle AS INTEGER

The handle of the file to be closed. On exit it will be set to 0

Interactive

Command
NO

 //See the full and detailed example in the FOPEN section

FCLOSE is a core language function.

FREAD

FUNCTION

This function is used to read X bytes of data from a file previously opened with FOPEN and will

return the actual number of bytes read.

FREAD (fileHandle, data$, maxReadLen)

Returns
INTEGER

The actual number of bytes read from the file. Is 0 if read from end of file is

The file is 59 bytes long

Current position is 0

Data from file is : Hello World

Current position is 11

Data from file is : World

Data from file is : is something in a file w

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

179 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

attempted.

Arguments

fileHandle
BYVAL fileHandle AS INTEGER

The handle of the file to be read from

data$
BYREF data$ AS STRING

The data read from file is returned in this string

maxReadLen
BYVAL maxReadLen AS INTEGER

The max number of bytes to read from the file

Interactive

Command
NO

//See the full and detailed example in the FOPEN section

FREAD is a core language function.

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

180 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

FREADUNTIL

FUNCTION

This function is used to read X bytes or until (and including) a match byte is encountered,

whichever comes earlier, from a file previously opened with FOPEN and will return the actual

number of bytes read (includes the match byte if encountered).

FREADUNTIL (fileHandle, data$, matchByte, maxReadLen)

Returns

INTEGER

The actual number of bytes read from the file. Will be 0 if read from end of file is

attempted.

Arguments

fileHandle
BYVAL fileHandle AS INTEGER

The handle of the file to be read from

data$
BYREF data$ AS STRING

The data read from file is returned in this string

matchByte

BYVAL matchByte AS INTEGER

Read until this matching byte is encountered or the max number of bytes are

read. Whichever condition is asserted first.

maxReadLen
BYVAL maxReadLen AS INTEGER

The max number of bytes to read from the file

Interactive

Command
NO

 //See the full and detailed example in the FOPEN section

FREADUNTIL is a core language function.

FILELEN

FUNCTION

This function is used determine the total size of the file in bytes.

FILELEN (fileHandle)

Returns

INTEGER

The total number of bytes read from the file specified by the handle. Is 0 if an

invalid handle is supplied.

Arguments

fileHandle
BYVAL fileHandle AS INTEGER

The handle of a file for which the total size is to be returned.

Interactive

Command
NO

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

181 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 //See the full and detailed example in the FOPEN section

FILELEN is a core language function.

FTELL

FUNCTION

This function is used determine the current file position in the open file specified by the handle. It

will be a value from 0 to N where N is the size of the file.

FTELL (fileHandle, curPosition)

Returns

INTEGER

The total number of bytes read from the file specified by the handle. Will be 0 if an

invalid handle is supplied.

Arguments

fileHandle
BYVAL fileHandle AS INTEGER

The handle of a file for which the total size is to be returned.

curPosition

BYREF curPosition AS INTEGER

This will be updated with the current file position for the file specified by the

fileHandle.

Interactive

Command
NO

 //See the full and detailed example in the FOPEN section

FTELL is a core language function.

FSEEK

FUNCTION

This function is used to move the file pointer of the open file specified by the handle supplied.

The offset is relative to the beginning of the file or the current position or the end of the file which

is specified by the ‘whence’ parameter.

FSEEK (fileHandle, offset, whence)

Returns
INTEGER

Is 0 if successful

Arguments

fileHandle
BYVAL fileHandle AS INTEGER

The handle of a file for which the file pointer is to be moved

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

182 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

offset
BYVAL offset AS INTEGER

This is the offset relative to the position defined by the ‘whence’ parameter.

whence

BYVAL whence AS INTEGER

This parameter specifies from which position the offset is to be calculated. It shall

be 1 to specify from the current position, 2 from the end of the while and then for

all other values from the beginning of the file.

When the start position is ‘end of file’ then a positive ‘offset’ value is used to

calculate backwards from the end of file. Hence supplying a negative value has

no meaning.

Interactive

Command
NO

 //See the full and detailed example in the FOPEN section

FSEEK is a core language function.

Non-Volatile Memory Management Routines

These commands provide access to the non-volatile memory of the module and provide the

ability to use non-volatile storage for individual records.

NvRecordGet

FUNCTION

NVRECORDGET reads the value of a user record as a string from non-volatile memory.

NVRECORDGET (recnum, strvar$)

Returns

INTEGER, the number of bytes that were read into strvar$. A negative value is
returned if an error was encountered:

Error Description

-1 Recnum is not in valid range or is unrecognised.

-2 Failed to determine the size of the record.

-3
The raw record is less than 2 bytes long (possible flash

corruption).

-4 Insufficient RAM.

-5 Failed to read the data record.

Exceptions
 Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments

recnum

byVal recnum AS INTEGER

The record number to be read, in the range 1 to n, where n is the maximum

number of records allowed by the specific module.

strvar$
byRef strvar$ AS STRING

The string variable that will contain the data read from the record.

Interactive NO

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

183 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Command

 //Example :: NvRecordGet.sb (See in Firmware Zip file)

 DIM r$

 PRINT NvRecordGet(100,r$);" bytes read"

 PRINT "\n";r$

Expected Output (When no data present in record):

NVRECORDGET is a module function.

NvRecordGetEx

FUNCTION

NVRECORDGETX reads the value of a user record as a string from non-volatile memory and if it

does not exist or an error occurred, then the specified default string is returned.

NVRECORDGETEX (recnum, strvar$, strdef)

Returns INTEGER, the number of bytes that are read into strvar$.

Exceptions

 Local Stack Frame Underflow

 Local Stack Frame Overflow

 Out of Memory

Arguments

recnum

byVal recnum AS INTEGER

The record number that is to be read, in the range 1 to n, where n is the maximum

number of records allowed by the specific module.

strvar$
byRef strvar$ AS STRING

The string variable that will contain the data read from the record.

strdef$
byVal strdef$ AS STRING

The string variable that will supply the default data if the record does not exist.

Interactive

Command
NO

 //Example :: NvRecordGetEx.sb (See in Firmware Zip file)
 DIM r$

 PRINT NvRecordGetEx(100,r$,"default");" bytes read"

 PRINT "\n";r$

Expected Output:

0 bytes read

7 bytes read

default

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

184 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

NVRECORDGETEX is a module function.

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

185 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

NvRecordSet

FUNCTION

NVRECORDSET writes a value to a user record in non-volatile memory. For each record saved, an

extra 28 bytes is used as an overhead, so it is recommended to minimise the writing of small

records.

NVRECORDSET (recnum, strvar$)

Returns

INTEGER Returns the number of bytes written.

If an invalid record number is specified then -1 is returned. There are a limited

number of user records which can be written to, depending on the specific
module.

Exceptions
 Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments

recnum

byVal recnum AS INTEGER

The record number that is to be read, in the range 1 to n, where n depends on the

specific module.

strvar$
byRef strvar$ AS STRING

The string variable that will contain the data to be written to the record.

Interactive

Command

WARNING: You should minimise the number of writes. Each time a record is changed, empty

flash is used up. The flash filing system does not overwrite previously used

locations. Eventually there will be no more free memory and an automatic

defragmentation will occur. This operation takes much longer than normal as a

lot of data may need to be re-written to a new flash segment. This sector erase

operation could affect the operation of the radio and result in a connection loss.

 //Example :: NvRecordSet.sb (See in Firmware Zip file)

 DIM w$, r$, rc : w$ = "HelloWorld"

 PRINT NvRecordSet(500,w$);" bytes written\n"

 PRINT NvRecordGetEx(500,r$,"default");" bytes read\n"

 PRINT "\n";r$

Expected Output:

NVRECORDSET is a module function.

10 bytes written

10 bytes read

HelloWorld

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

186 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

187 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

NvCfgKeyGet

FUNCTION

NVCFGKEYGET reads the value of a built-in configuration key. See AT+CFG for a list of

configuration keys.

NVCFGKEYGET (keyId, value)

Returns
INTEGER, a result code. The most typical value is 0x0000, indicating a successful
operation.

Exceptions
 Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments

keyId

byVal keyId AS INTEGER

The configuration key that is to be read, in the range 1 to n, where n depends on

the specific module and the full list is described for the AT+CFG command.

value

byRef value AS INTEGER

The integer variable that will be updated with the value of the configuration key if

it exists.

Interactive

Command
See AT+CFG

 //Example :: NvCfgKeyGet.sb (See in Firmware Zip file)
 DIM v : v = 0 //initial the value just in case the key does not

exist

 PRINT NvCfgKeyGet(100,v)

 PRINT "\n";v

Expected Output:

NVCFGKEYGET is a module function.

NvCfgKeySet

FUNCTION

NVCFGKEYSET writes a value to a pre-existing configuration key. See AT+CFG for a complete list

of configuration keys. If a key does not exist, calling this function will not create a new one. The

set of configuration keys are created at firmware build time. If you wish to create a database of

non-volatile configuration keys for your own application use the NvRecordSet/Get() commands.

NVCFGKEYSET (keyId, value)

Returns

INTEGER

An integer result code. The most typical value is 0x0000, which indicates a
successful operation.

0

33031

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

188 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Exceptions
 Local Stack Frame Underflow

 Local Stack Frame Overflow

Arguments

keyId

byVal keyId AS INTEGER

The configuration key that is to be read, in the range 1 to n, where n depends on

the specific module and the full list is described for the AT+CFG command.

value
byVal value AS INTEGER

If the configuration key ‘keyId’ exists then it is updated with the new value.

Interactive

Command
NO

WARNING: You should minimise the number of writes, as each time a record is changed,

empty flash is used up. The flash filing system does not overwrite previously used

locations. At some point there will be no more free memory and an automatic

defragmentation will occur. This operation takes much longer than normal as a

lot of data may need to be re-written to a new flash segment. This sector erase

operation could affect the operation of the radio and result in a connection loss.

 //Example :: NvCfgKeyGet.sb (See in Firmware Zip file)
 DIM rc, r, w : w=0x8107

 PRINT "\n";NvCfgKeySet(100,w)

 PRINT "\n";NvCfgKeyGet(100,r)

 PRINT "\nValue for 100 is ";r

Expected Output:

NVCFGKEYSET is a module function.

Input/Output Interface Routines

I/O and interface commands allow access to the physical interface pins and ports of the smart

BASIC modules. Most of these commands are applicable to the range of modules. However,

some are dependent on the actual I/O availability of each module.

GpioSetFunc

FUNCTION

This routine sets the function of the GPIO pin identified by the nSigNum argument.

The module datasheet contains a pinout table which denotes SIO (Special I/O) pins. The number

designated for that special I/O pin corresponds to the nSigNum argument.

0

0

Value for 100 is 33031

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

189 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

GPIOSETFUNC (nSigNum, nFunction, nSubFunc)

Returns
INTEGER, a result code. The most typical value is 0x0000, indicating a successful

operation.

Note: See module specific user manual for details.

GpioConfigPwm

FUNCTION

This routine configures the PWM (Pulse Width Modulation) of all output pins when they are set as

a PWM output using GpioSetFunc() function described above.

Note: This is a ‘sticky’ configuration; calling it affects all PWM outputs already configured. It is

advised that this be called once at the beginning of your application and not

changed again within the application, unless all PWM outputs are deconfigured and

then re-enabled after this function is called.

The PWM output is generated using 32 bit hardware timers. The timers are clocked by a 1MHz

clock source.

A PWM signal has a frequency and a duty cycle property, the frequency is set using this function

and is defined by the nMaxPeriodus parameter. For a given nMaxPeriodus value, given that the

timer is clocked using a 1MHz source, the frequency of the generated signal will be 1000000

divided by nMaxPeriodus. Hence if nMinFreqHz is more than that 1000000/nMaxPeriodus, this

function will fail with a non-zero value.

The nMaxPeriodus can also be viewed as defining the resolution of the PWN output in the sense

that the duty cycle can be varied from 0 to nMaxPeriodus. The duty cycle of the PWM signal is

modified using the GpioWrite() command

For example, a period of 1000 generates an output frequency of 1KHz, a period of 500, a

frequency of 2Khz etc.

On exit the function will return with the actual frequency in the nMinFreqHz parameter.

GPIOCONFIGPWM (nMinFreqHz, nMaxPeriodus)

Returns
INTEGER, a result code. The most typical value is 0x0000, indicating a successful

operation.

Note: See module specific user manual for details.

GpioRead

FUNCTION

This routine reads the value from a SIO (special purpose I/O) pin.

The module datasheet will contain a pinout table which will mention SIO (Special I/O) pins and

the number designated for that special I/O pin corresponds to the nSigNum argument.

GPIOREAD (nSigNum)

Returns
INTEGER, the value from the signal. If the signal number is invalid, then it will return

value 0. For digital pins, the value will be 0 or 1. For ADC pins it will be a value in the

range 0 to M where M is the max value based on the bit resolution of the analogue

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

190 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

to digital converter.

Note: See module specific user manual for details.

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

191 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

GpioWrite

SUBROUTINE

This routine writes a new value to the GPIO pin. If the pin number is invalid, nothing happens.

If the GPIO pin has been configured as a PWM output then the nNewValue specifies a value in

the range 0 to N where N is the max PWM value that will generate a 100% duty cycle output

(that is, a constant high signal) and N is a value that is configure using the function

GpioConfigPWM().

If the GPIO pin has been configured as a FREQUENCY output then the nNewValue specifies the

desired frequency in Hertz in the range 0 to 4000000. Setting a value of 0 makes the output a

constant low value. Setting a value greater than 4000000 will clip the output to a 4MHz signal.

GPIOWRITE (nSigNum, nNewValue)

Note: See module-specific user manual for details.

GPIO Events

EVGPIOCHANn Here, n is from 0 to N where N is platform dependent and an event is

generated when a preconfigured digital input transition occurs. The

number of digital inputs that can auto-generate is hardware dependent.

For example in the BL600 module, N can be 0,1,2 or 3. Use GpioBindEvent()

to generate these events.

EVDETECTCHANn Here, n is from 0 to N where N is platform dependent and an event is

generated when a preconfigured digital input transition occurs. The

number of digital inputs that can auto-generate is hardware dependent.

For example in the BL600 module, N can only be 0. Use GpioAssignEvent()

to generate these events.

GpioBindEvent/GpioAssignEvent

FUNCTION

These routine binds an event to a level transition on a specified special i/o line configured as a

digital input so that changes in the input line can invoke a handler in smart BASIC user code.

GPIOBINDEVENT (nEventNum, nSigNum, nPolarity)

GPIOASSIGNEVENT (nEventNum, nSigNum, nPolarity)

Returns
INTEGER, a result code. The most typical value is 0x0000, indicating a successful

operation.

Note: See module specific user manual for details.

Generally BindEvent consumes more power than the AssignEvent function and the choice as to

which is used is based on the specific use case with regards to how much power can be used.

GpioUnbindEvent/ GpioAssignEvent

FUNCTION

This routine unbinds the runtime engine event from a level transition bound using

GpioBindEvent() or GpioAssignEvent() respectively.

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

192 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

GPIOUNBINDEVENT (nEventNum)

GPIOUNASSIGNEVENT (nEventNum)

Returns
INTEGER, a result code. The most typical value is 0x0000, indicating a successful

operation.

Note: See module specific user manual for details.

User Routines

As well as providing a comprehensive range of built-in functions and subroutines, smart BASIC

provides the ability for users to write their own, which are referred to as ‘user’ routines as

opposed to ‘built-in’ routines.

These are often used to perform frequently repeated tasks in an application and to write event

and message handler functions. An application with user routines is highly modular, allowing

reusable functionality.

SUB

A subroutine is a block of statements which constitute a user routine which does not return a

value but takes arguments.

SUB routinename (arglist)

EXITSUB

ENDSUB

A SUB routine MUST be defined before the first instance of it being called. It is good practice to

define SUB routines and functions at the beginning of an application, immediately after global

variable declarations.

A typical example of a subroutine block would be

SUB somename(arg1 AS INTEGER arg2 AS STRING)

 DIM S AS INTEGER

 S = arg1

 IF arg1 == 0 THEN

 EXITSUB

 ENDIF

ENDSUB

Defining the routine name

The function name can be any valid name that is not already in use as a routine or global

variable.

Defining the arglist

The arguments of the subroutine may be any valid variable types, i.e. INTEGER or STRING.

Each argument can be individually specified to be passed either as byVal or byRef. By default,

simple variables (INTEGER) are passed by value (byVal) and complex variables (STRING) are

passed by reference (byRef).

However, this default behaviour can be varied by using the #SET directive during compilation of

an application.

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

193 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

#SET 1,0 ‘Default Simple arguments are BYVAL

#SET 1,1 ‘Default Simple arguments are BYREF

#SET 2,0 ‘Default Complex arguments are BYVAL

#SET 2,1 ‘Default Complex arguments are BYREF

When a value is passed by value to a routine, any modifications to that variable will not reflect

back to the calling routine. However, if a variable is passed by reference then any changes in

the variable will be reflected back to the caller on exit.

The SUB statement marks the beginning of a block of statements which will consist of the body of

a user routine. The end of the routine is marked by the ENDSUB statement.

ENDSUB

This statement ends a block of statements belonging to a subroutine. It MUST be included as the

last statement of a SUB routine, as it instructs the compiler that there is no more code for the SUB

routine. Note that any variables declared within the subroutine lose their scope once ENDSUB is

processed.

EXITSUB

This statement provides an early run-time exit from the subroutine.

FUNCTION

A statement beginning with this token marks the beginning of a block of statements which will

consist of the body of a user routine. The end of the routine is marked by the ENDFUNC

statement.

A function is a block of statements which constitute a user routine that returns a value. A

function takes arguments, and can return a value of type simple or complex.

FUNCTION routinename (arglist) AS vartype

EXITFUNC arithemetic_expression_or_string_expression

ENDFUNC arithemetic_expression_or_string_expression

A function MUST be defined before the first instance of its being called. It is good practice to

define subroutines and functions at the beginning of an application, immediately after variable

declarations. A typical example of a function block would be:

FUNCTION somename(arg1 AS INTEGER arg2 AS STRING) AS INTEGER

 DIM S AS INTEGER

 S = arg1

 IF arg1 == 0 THEN

 EXITFUNC arg1*2

 ENDIF

ENDFUNC arg1 * 4

Defining the routine name

The function name can be any valid name that is not already in use. The return variable is

always passed as byVal and shall be of type varType.

Return values are defined within zero or more optional EXITFUNC statements and ENDFUNC is

used to mark the end of the block of statements belonging to the function.

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

194 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Defining the return value

The variable type AS varType for the function may be explicitly stated as one of INTEGER or

STRING prior to the routine name. If it is omitted, then the type is derived in the same manner as

in the DIM statement for declaring variables. Hence, if function name ends with the $ character

then the type will be a STRING. Otherwise, it is an INTEGER.

Since functions return a value, when used, they must appear on the right hand side of an

expression statement or within a [] index for a variable. This is because the value has to be 'used

up' so that the underlying expression evaluation stack does not have 'orphaned' values left on it.

Defining the arglist

The arguments of the function may be any valid variable type, i.e. INTEGER or STRING.

Each argument can be individually specified to be passed either as byVal or byRef. By default,

simple variables (INTEGER) are passed byVal and complex variables (STRING) are passed byRef.

However, this default behaviour can be varied by using the #SET directive.

SET 1,0 Default Simple arguments are BYVAL

SET 1,1 Default Simple arguments are BYREF

SET 2,0 Default Complex arguments are BYVAL

SET 2,1 Default Complex arguments are BYREF

Interactive Command: NO

ENDFUNC

This statement marks the end of a function declaration. Every function must include an ENDFUNC

statement, as it instructs the compiler that here is no more code for the routine.

ENDFUNC arithemetic_expression_or_string_expression

This statement marks the end of a block of statements belonging to a function. It also marks the

end of scope on any variables declared within that block.

ENDFUNC must be used to provide a return value, through the use of a simple or complex

expression.

FUNCTION doThis$(byRef s$ as string) AS STRING

 S$=S$+” World”

ENDFUNC S$ + “world”

FUNCTION doThis(byRef v as integer) AS INTEGER

 v=v+100

ENDFUNC v * 3

EXITFUNC

This statement provides a run-time exit point for a function before reaching the ENDFUNC

statement.

EXITFUNC arithemetic_expression or string expression

EXITFUNC can be used to provide a return value, through the use of a simple or complex

expression. It is usually invoked in a conditional statement to facilitate an early exit from the

function.

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

195 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

FUNCTION doThis$(byRef s$ as string) AS STRING

 S$=S$+” World”

 IF a==0 THEN

 EXITFUNC S$ + “earth”

 ENDIF

ENDFUNC S$ + “world”

7. EVENTS AND MESSAGES

smart BASIC is designed to be event driven, which makes it suitable for embedded platforms

where it is normal to wait for something to happen and then respond.

To ensure that access to variables and resources ends up in race conditions, the event handling

is done synchronously, meaning the smart BASIC runtime engine has to process a WAITEVENT

statement for any events or messages to be processed. This guarantees that smart BASIC will

never need the complexity of locking variables and objects.

There are many subsystems which generate events and messages as follows:

 Timer events, which generate timer expiry events and are described here.

 Messages thrown from within the user’s BASIC application as described here.

 Events related to the UART interface as described here.

8. MODULE CONFIGURATION

There are many features of the module that cannot be modified programmatically which relate

to interactive mode operation or alter the behaviour of the smartBASIC runtime engine. These

configuration objects are stored in non-volatile flash and are retained until the flash file system is

erased via AT&F* or AT&F 1.

To write to these objects, which are identified by a positive integer number, the module must be

in interactive mode and the command AT+CFG must be used which is described in detail here.

To read current values of these objects use the command AT+CFG, described here.

Predefined configuration objects are as listed under details of the AT+CFG command.

9. ACKNOWLEDGEMENTS

The following are required acknowledgements to address our use of open source code in

smartBASIC to implement AES encryption.

Laird’s implementation includes the following files: aes.c and aes.h.

Copyright (c) 1998-2008, Brian Gladman, Worcester, UK. All rights reserved.

LICENSE TERMS

The redistribution and use of this software (with or without changes) is allowed without the

payment of fees or royalties providing the following:

 Source code distributions include the above copyright notice, this list of conditions and

the following disclaimer;

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

196 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

 Binary distributions include the above copyright notice, this list of conditions and the

following disclaimer in their documentation;

 The name of the copyright holder is not used to endorse products built using this

software without specific written permission.

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

197 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

DISCLAIMER

This software is provided 'as is' with no explicit or implied warranties in respect of its properties,

including, but not limited to, correctness and/or fitness for purpose.

Issue 09/09/2006

This is an AES implementation that uses only 8-bit byte operations on the cipher state (there

are options to use 32-bit types if available).

The combination of mix columns and byte substitution used here is based on that developed

by Karl Malbrain. His contribution is acknowledged.

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

198 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

INDEX

#SET ...59

? (Read Variable) ..44

= (Set Variable) ...45

ABORT ...47

ABS ..85

Arrays ..56

AT I ...35

AT Z ..49

AT&F ...48

AT+FCL ..44

AT+GET ..41

AT+REN ..48

AT+RUN .. 38, 39, 40, 41, 42, 43

AT+SET ...41

ATI ..35

ATZ ...49

BASIC ... 6

BP 78

BREAK ..68

BYREF .. 165

BYVAL ... 165

CIRCBUFCREATE 124, 165, 166, 167, 171, 172, 173, 174,

175

CIRCBUFITEMS ... 129

CIRCBUFOVERWRITE ... 127

CIRCBUFREAD.. 128

CIRCBUFWRITE ... 126

CONTINUE ...69

Declaring Variables ..58

DIM ..52

DO / DOWHILE ...63

DO / UNTIL ..62

ENDFUNC ... 185

ENDSUB .. 184

Exceptions ..51

EXITFUNC .. 185

EXITSUB ... 184

FOR / NEXT ..64

FUNCTION .. 184

GETTICKCOUNT ... 122

GETTICKSINCE ... 123

GPIO Events .. 182

GPIOUNBINDEVENT .. 182

GPIOWRITE... 181

I2C Events .. 148

I2CCLOSE ... 149

IF THEN / ELSEIF / ELSE / ENDIF ..65

LEFT$..87

MAX ...85

MID$..88

MIN ..87

Notepad++ ...19

Numeric Constants ...58

ONERROR ...70

ONEVENT ..72

ONFATALERROR ...71

PRINT ..74

RAND .. 115

RANDEX.. 115

RANDSEED .. 116

RESET ... 114

RESETLASTERROR .. 81

RESUME ... 47

RIGHT$.. 89

SELECT / CASE / CASE ELSE / ENDSELECT 67

SENDMSGAPP .. 83

SO ... 46

SPI Events ... 159

SPICLOSE .. 162

SPIOPEN .. 159

SPIREAD .. 164

SPIREADWRITE .. 163

SPIWRITE ... 163

SPRINT ... 75

STOP .. 77

STRCMP .. 98

STRDEESCAPE ... 102

STRDEHEXIZE$... 99

STRESCAPE$... 101

STRFILL ... 96

STRGETCHR ... 94

STRHEX2BIN .. 100

STRHEXIZE ... 99

String Constants .. 59

STRLEN ... 90

STRPOS .. 91

STRSETBLOCK ... 95

STRSETCHR .. 93

STRSHIFTLEFT ... 97

STRSPLITLEFT$.. 104

STRSUM ... 105

Structuring an Application .. 30

STRVALDEC... 103

STRXOR ... 106, 107, 109

SUB .. 183

Syntax ... 50

SYSINFO .. 81

SYSINFO$.. 83

TABLEADD ... 111

TABLEINIT .. 110

TABLELOOKUP .. 112

TextPad .. 19

Timer Events ... 117

TIMERCANCEL .. 121

TIMERRUNNING .. 120

TIMERSTART .. 118

UART Events ... 131

UARTBREAK .. 147

UARTCLOSE .. 135

UARTCLOSEEX .. 136

UARTFLUSH ... 144

UARTGETCTS ... 145

UARTINFO ... 137

UARTOPEN .. 132

UARTREAD .. 140, 141

UARTREADMATCH ... 142

UARTSETRTS ... 146

UARTWRITE .. 138

http://ews-support.lairdtech.com/

smart BASIC Core Functionality

User Manual

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/bluetooth

199 Laird Technologies

Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852-2268-6567 x026

Useful Shortcuts..17

Using UWTerminal ..18

Variables .. 52

WHILE / ENDWHILE .. 66

http://ews-support.lairdtech.com/

	Revision History
	Contents
	1. smartBASIC Documentation
	2. Introduction to smartBASIC
	Why Do We Need smart BASIC?
	Why Write Applications?
	What Does a BLE Module Contain?
	smart BASIC Essentials
	Developing with smart BASIC
	smart BASIC Operating Modes
	Types of Applications
	Non Volatile Memory
	Using the Module’s Flash File System

	3. Getting Started
	Requirements
	Connecting Things Up
	UWTerminal
	Navigating UWTerminal
	Useful Shortcuts
	Using UWTerminal

	Your First smart BASIC Application
	Create ‘Hello World’ App
	Download ‘Hello World’ App
	smart BASIC Statement Format
	Autorun
	Debugging Applications
	Structuring an Application

	4. Interactive Mode Commands
	AT
	AT I or ATI
	COMMAND
	AT+DIR
	AT+DIR <“string”>
	AT+DEL
	AT+DEL “filename” (+)
	AT+RUN
	AT+RUN “filename”
	AT+DBG
	AT+DBG “filename”
	AT+SET
	AT+GET
	AT+CFG
	AT+CFG num value or AT+CFG num ?
	AT+FOW
	AT+FOW “filename”
	AT+FWR
	AT+FWR “string”
	AT+FWRH
	AT+FWRH “string”
	AT+FCL
	AT+FCL
	? (Read Variable)
	? var <[index]>
	= (Set Variable)
	= var<[n]> value
	SO
	RESUME
	RESUME
	ABORT
	ABORT
	AT+REN
	AT+REN “oldname” “newname”
	AT&F
	AT&F integermask
	AT Z or ATZ
	AT Z

	5. smart BASIC Commands
	Syntax
	Functions
	Subroutines
	Statements
	Exceptions
	Language Definitions
	Command
	Variables
	DIM
	Variable Scope
	Variable Class
	Arrays
	General Comments on Variables
	Declaring Variables

	Constants
	Numeric Constants
	String Constants

	Compiler Related Commands and Directives
	#SET

	Arithmetic Expressions
	Conditionals
	DO / UNTIL
	DO / DOWHILE
	FOR / NEXT
	IF THEN / ELSEIF / ELSE / ENDIF
	WHILE / ENDWHILE
	SELECT / CASE / CASE ELSE / ENDSELECT
	BREAK
	CONTINUE

	Error Handling
	ONERROR
	ONFATALERROR

	Event Handling
	WAITEVENT
	ONEVENT

	Miscellaneous Commands
	PRINT
	SPRINT
	STOP
	BP

	6. Core Language Built-in Routines
	Result Codes
	Information Routines
	GETLASTERROR
	GETLASTERROR ()
	RESETLASTERROR
	RESETLASTERROR ()
	SYSINFO
	SYSINFO(varId)
	SYSINFO$
	SYSINFO$(varId)

	Event & Messaging Routines
	SENDMSGAPP
	SENDMSGAPP(msgId, msgCtx)

	Arithmetic Routines
	ABS
	ABS (var)
	MAX
	MAX (var1, var2)
	MIN
	Returns the minimum of two integer values.
	MIN (var1, var2)

	String Routines
	LEFT$
	LEFT$(string,length)
	MID$
	RIGHT$
	STRLEN
	STRPOS
	STRSETCHR
	STRGETCHR
	STRSETBLOCK
	STRFILL
	STRSHIFTLEFT
	STRCMP
	STRHEXIZE$
	STRDEHEXIZE$
	STRHEX2BIN
	STRESCAPE$
	STRDEESCAPE
	STRVALDEC
	STRSPLITLEFT$
	STRSUM
	STRXOR
	EXTRACTSTRTOKEN
	EXTRACTINTTOKEN

	Table Routines
	TABLEINIT
	TABLEADD
	TABLELOOKUP

	Miscellaneous Routines
	RESET

	Random Number Generation Routines
	RAND
	RANDEX
	RANDSEED

	Timer Routines
	Timer Events
	TimerStart
	TimerRunning
	TimerCancel
	GetTickCount
	GetTickSince

	Circular Buffer Management Functions
	CircBufCreate
	CircBufDestroy
	CircBufWrite
	CircBufOverWrite
	CircBufRead
	CircBufItems

	Serial Communications Routines
	UART (Universal Asynchronous Receive Transmit)
	UART Events
	UartOpen
	UARTClose
	UARTCloseEx
	UARTCLOSEEX(nFlags)
	UARTInfo
	UartWrite
	UartRead
	UartReadN
	UartReadMatch
	UartFlush
	UartGetCTS
	UartSetRTS
	UartBREAK

	I2C (Two Wire Interface or TWI)
	I2C Events
	I2cOpen
	I2cClose
	I2cWriteREG8
	I2CWRITEREG8(nSlaveAddr, nRegAddr, nRegValue)
	I2cReadREG8
	I2CREADREG8(nSlaveAddr, nRegAddr, nRegValue)
	I2cWriteREG16
	I2CWRITEREG16(nSlaveAddr, nRegAddr, nRegValue)
	I2cReadREG16
	I2CREADREG16(nSlaveAddr, nRegAddr, nRegValue)
	I2cWriteREG32
	I2CWRITEREG32(nSlaveAddr, nRegAddr, nRegValue)
	I2cReadREG32
	I2CREADREG32(nSlaveAddr, nRegAddr, nRegValue)
	I2cWriteRead
	I2CWRITEREAD(nSlaveAddr, stWrite$, stRead$, nReadLen)

	SPI Interface
	SPI Events
	SpiOpen
	SPIOPEN (nMode, nClockHz, nCfgFlags, nHande)
	SpiClose
	SPICLOSE(handle)
	SpiReadWrite
	SPIREADWRITE(stWrite$, stRead$)
	SpiWrite
	SPIWRITE(stWrite$)
	SpiRead

	Cryptographic Functions
	AesSetKeyIV
	AESSETKEYIV (mode, blockSize,key$, initVector$)
	AesEncrypt
	AESENCRYPT (inData$,outData$)
	AesDecrypt
	AESDECRYPT (inData$,outData$)

	File I/O Functions
	FOPEN
	FCLOSE
	FREAD
	FREADUNTIL
	FILELEN
	FTELL
	FSEEK

	Non-Volatile Memory Management Routines
	NvRecordGet
	NvRecordGetEx
	NvRecordSet
	NvCfgKeyGet
	NvCfgKeySet

	Input/Output Interface Routines
	GpioSetFunc
	GpioConfigPwm
	GpioRead
	GpioWrite
	Note: See module-specific user manual for details.
	GPIO Events
	GpioBindEvent/GpioAssignEvent
	GpioUnbindEvent/ GpioAssignEvent

	User Routines
	SUB
	Defining the routine name
	Defining the arglist

	ENDSUB
	EXITSUB
	FUNCTION
	Defining the routine name
	Defining the return value
	Defining the arglist

	ENDFUNC
	EXITFUNC

	7. Events and Messages
	8. Module Configuration
	9. Acknowledgements
	License Terms
	Disclaimer

	Index

