
A

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/ramp

1

© Copyright 2016 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Interfacing with LoRaWAN
RM191 LoRa + BLE Module

Application Note v1.2

INTRODUCTION

The Laird RM1xx is a series of wireless communications modules that combines a Nordic nRF51822_QFAC
(256/16) BLE device and a Semtech SX1272 860 to 1020 MHz low power, long range transceiver. The RM186 and
RM186_PE are designed to function in the EU863-870MHz ISM band as opposed to the RM191 and RM191_PE,
which is a very similar device designed for the US 902-928 MHz ISM band.

Both versions can collect data from external sources by interfacing directly with a sensor over a UART, SPI or I2C
serial communication channel, or over a wireless BLE connection with a sensor that is physically connected to a
BLE peripheral device. The RM1xx can also gather data internally using the analog or digital IO pins. Once the
data has been collected and arranged in packets, it may be transmitted to a remote LoRaWAN Gateway up to 16
kilometers away. From there, the data can be transmitted to a server or database over a TCP/IP link.

As well as supporting two distinct frequency ranges, the LoRaWAN specification also supports two different
protocols. Although there are slight differences relating to power levels and data rates, the main differences
between these protocols are how a module Joins a network, specifically which frequency it must use, and how
the network then configures the module once it has joined.

The first protocol, used in the EU and AS (Asia) regions, requires that the modules must support a specified
number of mandatory channels on which a JoinRequest must be transmitted. Then, as part of a JoinAccept
message, the network configures up to five additional channels that the module can then transmit data packets
on.

The second protocol, used in the US and AU regions, initially enables 64 125kHz and 8 500kHz channels, and will
transmit JoinRequests on random alternate 500kHz and 125kHz channels until it transmits on a frequency
supported by a receiving gateway. Once the module has joined the network, the network can then update the
enabled channels by means of a specific MAC command which modifies an internal ChannelsMask parameter
which tracks the state of the channels.

The purpose of this document is to describe how the RM191 and RM191_PE, which support the US region
protocol, interface with the LoRaWAN specification and explains what happens inside the module to support
this protocol.

All smartBASIC APIs and LoRa Events that are referenced below are described more fully in the RM1xx Series
smartBASIC LoRa Extensions user guide.

http://ews-support.lairdtech.com/
https://www.lora-alliance.org/For-Developers/LoRaWANDevelopers
https://assets.lairdtech.com/home/brandworld/files/User%20Guide%20-%20RM1xx%20smartBASIC%20Extensions%20(LoRa%20Functions).pdf
https://assets.lairdtech.com/home/brandworld/files/User%20Guide%20-%20RM1xx%20smartBASIC%20Extensions%20(LoRa%20Functions).pdf

Interfacing with LoRaWAN
Application Note

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/ramp

2

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

GATEWAYS AND SERVERS

LoRaWAN is a wireless standard developed by the LoRa Alliance. It enables low-power wide-area networking
using low data rates and minimal power usage. The RM1xx modules are designed to communicate with any
LoRaWAN gateway which is within RF range, can receive a signal within the correct frequency range, and meets
the requirements defined in the appropriate section of the LoRaWAN specification.

The gateway does nothing with the data, except to timestamp it and then send it to a network server via a
TCP/IP link. The network server must be running LoRaWAN-compatible software to handle the decryption of
messages and authentication of devices. There are several vendors that provide such services.

A module must be set up as a member of this network. This involves a network supporting the application that
the module provides, so the network server knows which Application server to send the data to, and the
Application server having a list of all the modules that support that application.

It is possible that a packet could be received by a LoRa gateway that is not connected to the desired network.
However, in this instance the data should be discarded by the network server as it cannot be decrypted
correctly. The only network server that would be able to decrypt the data successfully is the one to which the
RM191 is a member. This is explained in greater detail in the Connecting to the LoRaWAN Network section.

TRANSMIT/RECEIVE SEQUENCE

Before looking at the various commands and events it is very important to understand that once you send a
packet into the LoRa stack you are starting a predefined sequence that must be allowed to complete before you
can send another packet.

In loRa an uplink packet refers to a packet transmitted by the LoRa module and a downlink packet refers to a
packet transmitted by the network server/Lora Gateway.

In Class A devices, once an uplink packet is transmitted, the module waits a predefined time for a downlink
packet. This packet may or may not be transmitted by the gateway, however, the module must still open up
receive windows to receive it if necessary.

http://ews-support.lairdtech.com/
https://www.lora-alliance.org/For-Developers/LoRaWANDevelopers

Interfacing with LoRaWAN
Application Note

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/ramp

3

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

For unconfirmed packets this is the end of the cycle. There are no resends. The module assumes that the
transmitted packet has been received at the gateway and onto the server. The server may have data to send
back to the module and these should be picked up in whichever Receive window they coincide with and dealt
with accordingly by the stack.

However, in the case of confirmed uplink packets the cycle is more complicated as the stack actively waits or an
acknowledgement. If that acknowledgment isn’t received the stack automatically resends the packet a set
number of times. The sequence only finishes after an acknowledgement is received or all the retries are
attempted or an error has occurred causing the sequence to abort.

Similarly, for the JoinRequest, if the stack fails to receive a JoinAccept, it resends the JoinRequest a set number
of times. Again, the sequence only finishes after a JoinAccept is received or all retries are attempted or an error
has occurred.

This can be very offputting in the RM1xx because there is no indication of all that was happening in the
background; it could seem that the module had frozen. However, this is not the case so it is very important not
to interfere with this sequence by sending another packet to the stack.

The events that mark the end of the sequence are indicated in section 5.3. It is very important to monitor all
these sequence complete events and act on them accordingly.

For testing purposes, it is possible to use the LoramacSetDebug command or monitor the EVLORAMACTXDONE
or LORAMACNOSYNC events. These should reassure that there is actually something happening in the
background. In the case of the US/AU modules this should be quite quick as there are no duty cycle restrictions.
In the case of the EU modules, however, it is likely to be minutes between resends. However here you can use
the LoramacGetOption(LORAMAC_OPT_NEXT_TX) command to check if there is another packet due for
transmission.

RM191 FREQUENCIES AND DUTY CYCLES

The RM191 module functions in the US 902-928 MHz ISM band. This band is divided into three different sets of
channels. Uplink data can be sent on any one of 72 upstream channels. The first 64 of these channels have a
bandwidth of 125 kHz starting at 902.3 MHz and spaced evenly at 200 KHz increments up to 914.9 MHz. The
final eight uplink channels have a bandwidth of 500 kHz starting at 903.0 MHz and spaced evenly at 1.6 MHz
increments up to 914.2 MHz. There are also eight downlink channels which also have a bandwidth of 500 KHz
starting at 923.3 MHz and spaced evenly at 600 KHz increments up to 927.5 MHz. Unlike the EU 863-870 band,
there are no duty cycle restrictions for the US 902-928 band.

While the LoRaWAN specification clearly states that 72 uplink channels are available for US 902-928 mode, this
is often overlooked with networks that have smaller number of gateways. For this reason, in most of the
available gateways the full spectrum of frequencies has been split up into a series of sub-bands of eight 125kHz
channels and one 500kHz channel.

The RM191 module defaults to having all 72 uplink channels enabled. This is done by setting all the bits in the
ChannelsMap, which is an internal value that controls which channel are enabled. Each bit of the channelsmap
represents an individual channel. This is because the protocol is designed so that a module will transmit a
JoinRequest on alternate random 500kHz and 125kHz channels until it eventually transmits on a frequency
supported by a gateway. The gateway can then send the request to the network server, and if successful it
transmits the JoinAccept back to the module.

When the module starts transmitting data to the network the network should then respond with a series of
MAC Commands that will configure the module’s channelsmap to match that of the available gateways. Once

http://ews-support.lairdtech.com/

Interfacing with LoRaWAN
Application Note

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/ramp

4

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

this configuration is completed the module should only then transmit on the correct frequencies for that
network. This means that it should only be the initial JoinRequest that will have to be transmitted a number of
times. Data packets should only be transmitted on supported frequencies.

LORAWAN EVENTS

A series of events are raised by the LoRaWAN stack to indicate the success or failure of a specific task. These
events are then routed through the RM191 firmware and finally output as smartBASIC events. Some of these
events are raised by the stack. Some have been created by Laird to make the system more user friendly in terms
of feedback.

The events listed in Table 1 are referenced later in this document.

Table 1: LoRaWAN events

Event Description

EVLORAMACJOINING A JoinRequest has been sent to the gateway/server.

EVLORAMACJOINED
The JoinRequest has been successfully received by the
gateway/server and the subsequent JoinAccept has been received by
the RM191. The module is now connected to the network.

EVLORAMACJOINFAIL
Indicates that a JoinAccept message contains a MIC error. However,
no direct action should be taken on receipt of this event.

EVLORAMACTXDONE

A signal from the module indicating that a packet was transmitted
from the SX1272. This can be a JoinRequest, LinkCheck or data
packet. This is an important event as all subsequent receive timings
are taken from this event. However, no direct action should be taken
on receipt of this event.

EVLORAMACTXCOMPLETE
Created when an uplink packet is loaded into the radio. However this
event is not thrown until the successful end of the uplink/downlink
sequence.

EVLORAMACRXDATA
A downlink packet has been received that contains data from the
server to the module.

EVLORAMACRXCOMPLETE

A downlink packet has been received by the module. This event can
indicate a combination of an acknowledgement, a MAC command or
actual data from the server. Downlink packets are not limited to
confirmed uplink packets. MAC commands and/or downlink data
packets can be transmitted in response to an unconfirmed uplink
packet.

EVLORAMACTXTIMEOUT
Very rarely thrown. Usually indicates that a packet has failed to be
transmitted due to an internal SPI error.

EVLORAMACRXTIMEOUT

Only valid with JoinRequests, confirmed uplink or LinkCheck packets.
For JoinRequests and confirmed uplink packets, it is sent after the
module fails to receive a downlink after the configured number of
transmission attempts. A LinkCheck is not retransmitted so it is sent
if the LinkCheck doesn’t receive a response.

EVLORAMACRXERROR An RxError has been received from the SX1272.

EVLORAMACSEQUENCECOMPLETE
This event is an combination of all the events that can indicate the
end of an uplink/downlink sequence. Two variables are returned
with this event, the first indicates the terminating event via the

http://ews-support.lairdtech.com/

Interfacing with LoRaWAN
Application Note

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/ramp

5

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Event Description
following values:

1: EVLORAMACTXCOMPLETE

2: EVLORAMACRXCOMPLETE

3: EVLORAMACRXTIMEOUT

4: EVLORAMACRXCRCERROR

5: EVLORAMACTXTIMEOUT

6: EVLORAMACRXERROR

7: EVLORAMACTXDRPAYLOADSIZEERROR

The second parameter is the time until there is available duty cycle
to transmit another uplink packet. This is also the time until the
EVLORAMACNEXTTX Event will be thrown. For US/AU modules this
will always be 0.

EVLORAMACNEXTTX

This event indicates that there is now duty cycle available to transmit
the next uplink packet. For modules that do not have duty cycle
constraints this event will always be thrown at the same time as the
EVLORAMACSEQUENCECOMPLETE event.

EVLORAMACNOSYNC
Notification that a receive window has closed without receiving a
sync pulse. This event is for information only and no action should be
taken on receipt of this event.

EVLORAMACADR

Notification that an ADR command has been received from the
gateway and that some transmit parameters may have changed.

This event also returns 2 parameters -

Packet Type:

3: unconfirmed downlink packet

5: confirmed downlink packet

Frame Pending :

If 1 it indicates that the server has any packets yet to be transmitted.

EVLORAMACLINKCHECKRESPMSG
Notification that the module has received the response to a
LinkCheck packet.

EVLORAMACMICFAILED There has been a MIC error in a received downlink packet.

EVLORAMACDOWNLINKREPEATED
The received downlink packet is a repeat of the previous downlink
packet.

EVLORAMACTXDRPAYLOADSIZEERROR

Notification that a packet is too large to be transmitted with the
current datarate setting. This event can only occur during the
resending of a packet where the datarate has been reduced by the
stack.

EVLORAMACFRAMESLOSS
Indicates that the received downlink sequence number is larger than
the maximum expected value. This event should not be acted upon
directly, the stack should correct this automatically.

http://ews-support.lairdtech.com/

Interfacing with LoRaWAN
Application Note

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/ramp

6

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

DATA RATE

The LoRaWAN specification states that the following transmit data rates must be supported by the RM191.

Table 2: LoRaWAN transmit data rates for RM191

Data Rate Configuration Physical Bit Rate (bit/s)

0 SF10 @ 125kHz 980

1 SF9 @ 125kHz 1760

2 SF8 @ 125kHz 3125

3 SF7 @ 125kHz 5470

4 SF8 @ 500kHz 12500

5-7 Reserved for future use -

8 SF12 @ 500kHz 980

9 SF11 @ 500 kHz 1760

10 SF10 @ 500 kHz 3900

11 SF9 @ 500 kHz 7000

12 SF8 @ 500 kHz 12500

13 SF7 @ 500 kHz 21900

14:15 Reserved for future use -

SF7 to SF12 refers to the spreading factor of the system. The spreading factor refers to how many chips of
information represent each bit (or symbol) of payload data. The actual chip value is calculated by 2x. So for SF7
there are 27 (128) chips per symbol and for SF12 there are 212 (4096) chips per symbol.

This explains why the physical bit rate is heavily dependent on the spreading factor. The higher the spreading
factor, the more chips that must be sent for each bit of information and, consequently the longer the time it
takes to transmit the data. This is very important when you look at the potential data throughput of a module.

The default configured bit rate for the RM191 is data rate 3, SF7@125kHz. At any time, you can reconfigure this
value using the LORAMACSetOption(LORAMAC_OPT_DATA_RATE,var$) command and read it back using the
LORAMACGetOption(LORAMAC_OPT_DATA_RATE,var$) command. These are important commands because
the server can modify the data rate at any time using the LinkAdrReq command.

As with any changes to the configuration of the frequency channels by the gateway/server, notification of
changes to the data rate are not automatically passed back to the user. You must use the smartBASIC
LORAMACGetOption command to obtain the latest configuration.

As with any changes to the configuration of the frequency channels by the gateway/server, notification of any
changes to the data rate are not automatically passed back to the user. However the EVLORAMACADR is thrown
on receipt of an ADR command from the server. Then call the appropriate smartBASIC LORAMACGetOption
commands to obtain the latest configuration.

Note: Increasing the data rate reduces the maximum range of the module by making the signal more
susceptible to noise. At high spreading factors, the receiver can receive data at much lower signal
strengths than it can with low spreading factors.

http://ews-support.lairdtech.com/
https://www.lora-alliance.org/For-Developers/LoRaWANDevelopers

Interfacing with LoRaWAN
Application Note

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/ramp

7

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

UPLINK/DOWNLINK CYCLE

Before looking at the various commands and events it is very important to understand that once you send a
packet into the LoRa stack you are starting a predefined sequence that must be allowed to complete before you
can send another packet.

In loRa an uplink packet refers to a packet transmitted by the LoRa module and a downlink packet refers to a
packet transmitted by the network server/Lora Gateway.

In Class A devices, once an uplink packet is transmitted, the module waits a predefined time for a downlink
packet. This packet may or may not be transmitted by the gateway, however, the module must still open up
receive windows to receive it if necessary.

For unconfirmed packets this is the end of the cycle. There are no resends. The module assumes that the
transmitted packet has been received at the gateway and onto the server. The server may have data to send
back to the module and these should be picked up in whichever Receive window they coincide with and dealt
with accordingly by the stack.

However, in the case of confirmed uplink packets the cycle is more complicated as the stack actively waits or an
acknowledgement. If that acknowledgment isn’t received the stack automatically resends the packet a set
number of times. The sequence only finishes after an acknowledgement is received or all the retries are
attempted or an error has occurred causing the sequence to abort.

Similarly, for the JoinRequest, if the stack fails to receive a JoinAccept, it resends the JoinRequest a set number
of times. Again, the sequence only finishes after a JoinAccept is received or all retries are attempted or an error
has occurred.

This can be very offputting in the RM1xx because there is no indication of all that was happening in the
background; it could seem that the module had frozen. However, this is not the case so it is very important not
to interfere with this sequence by sending another packet to the stack.

The events that mark the end of the sequence are indicated in section 5.3. It is very important to monitor all
these sequence complete events and act on them accordingly.

For testing purposes, it is possible to use the LoramacSetDebug command or monitor the EVLORAMACTXDONE
or LORAMACNOSYNC events. These should reassure that there is actually something happening in the
background. In the case of the US/AU modules this should be quite quick as there are no duty cycle restrictions.
In the case of the EU modules, however, it is likely to be minutes between resends. However here you can use
the LoramacGetOption(LORAMAC_OPT_NEXT_TX) command to check if there is another packet due for
transmission.

CONNECTING TO THE LORAWAN NETWORK

Before the RM191 can transmit any data to a LoRaWAN network it must first be connected to that network. As
the RF link between the RM191 and a gateway is over a secure channel, this connection process involves the
exchange of certain keys between the module and the network server.

This can either be achieved by calculating the keys afresh every connection or by configuring the RM191 and
network server with identical key information in advance.

In both cases below, the module will throw the EVLORAMACJOINING, EVLORAMACJOINED and
EVLORAMACNEXTTX during the Join process.

http://ews-support.lairdtech.com/

Interfacing with LoRaWAN
Application Note

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/ramp

8

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Over-the-Air Authentication

The recommended method of connecting an RM191 to a network is by using the Over-the-Air Authentication
(OTAA) method. With this method the module must be configured with certain IDs so that the Network Session
Key (NwkSKey) and the Application Session Key (AppSKey) can be calculated. These IDs are also transmitted to
the server as part of the JoinRequest command so that the NwkSKey and AppSKey can be calculated and stored
there as well. These keys are unique between a module and a server.

The following IDs must be configured:

▪ Application Identifier (AppEUI) – This is a global application ID in IEEE EUI64 which uniquely identifies the
application provider of the module.

▪ End-device Identifier (DevEui) – This is a global end-device ID in IEEE EUI64 which uniquely identifies the
module/end-device.

▪ Application Key (AppKey) – This is an AES-128 application key specific to the module which is used to derive
the session keys NwkSKey and AppSKey.

These values can be stored and read back from the RM191 using the following commands listed in Table 3. The
values set using the LORAMACSETOPTION are not persisted over a power cycle.

Table 3: OTAA IDs

ID
Data

Length
(Bytes)

Write Command Read Command

AppEui 8
at+cfgex 1010 “xxxx”

(For firmware versions prior to 17.4.1.0 the AppEui Id is 1000)
at+cfgex 1010?

LORAMACSetOption(7, xxxx) LoramacGetOption(5)

DevEui 8

N/A. Configured during production ati 25
at+cfgex 1011 “xxxx”

(For firmware versions prior to 17.4.1.0 the DevEui Id is 1001)
at+cfgex 1011?

LORAMACSetOption(5, xxxx) LoramacGetOption(7)

AppKey 16

at+cfgex 1012 “yyyy”
(For firmware versions prior to 17.4.1.0 the AppKey Id is

1002) Write only

LORAMACSetOption(6,yyyy)

Note: The xxxx above represents an 8 byte hexadecimal value and yyyy a 16 byte hexadecimal value.

The IDs configured using the at+cfgex command only take effect after a module reset. This is not performed
automatically as part of the command; it must be manually initiated.

IDs configured using the LORAMACSetOption API are only valid while the module is powered. The value is not
persisted so is discarded when the module is powered down or reset.

Note: There are two options for configuring a permanent DevEui. The device is initially configured with a
global DevEui during production. However, it is possible to override this value with a local value using
the at+cfgex option. When it comes to selecting which one to use, the code will select the local value
first if it is available. If not, it reverts to the global value. The ati 25 command only returns the global
value and at+cfgex 1011? only returns the local value.

 The LORAMACSetOption only temporarily replaces the at+cfgex option.

http://ews-support.lairdtech.com/

Interfacing with LoRaWAN
Application Note

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/ramp

9

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

On receipt of a LORAMACJoin(LORAMAC_JOIN_BY_REQUEST) command, the module first checks that all the
required parameters have been configured. If not, the join request is cancelled and an error message is
returned.

If everything is working, then the join request is transmitted to the gateway/server on a random 500kHz
channel. If successful, an EVLORAMACJOINED event is passed to the user. This event is not received for at least
five seconds after the transmission of the join request command due to the preprogrammed delays in the
system. This is explained in the Data Reception section and the expected delays are defined in Table 5 below.

If the join request fails, the firmware will resend the JoinRequest on a random 125kHz channel. If this fails the
default action of the RM191 is to stop transmitting JoinRequests and throw an EVLORAMACRXTIMEOUT event
to the smartBASIC app. So both attempts have a 1 in 8 chance of success of selecting a supported frequency. The
module remembers which frequencies have been attempted and should not transmit again on those
frequencies until all others have been attempted. So the chances of success should improve.

However, on receiving the EVLORAMACRXTIMEOUT event the app needs to send another JoinRequest. This
causes the record of previous attempts to be cleared so the chances of success return to 1 out of 8. Therefore it
could take many attempts to Join before you are eventually successful. This should only happen with the
JoinRequests because once joined the network server should configure the module with the correct
channlesmap for that network.

There are very good reasons for limiting the number of Join attempts. The first has to do with saving power. In
the previous version of the stack the module would just keep on sending retries. If there were no gateways in
the area this would only waste power. Secondly, when the module moves into this retry sequence it doesn’t
change the packet in any way. So in the case of JoinRequests the DevNonce value doesn’t change. This brought
about the slim possibility that if a gateway/server receives and responds to the JoinRequest with a JoinAccept
but that JoinAccept is not received by the module, any further JoinRequests with the same DevNonce will be
rejected. So the module would never be able to connect with any amount of retries.

This can be very frustrating during testing. So Laird has developed several workarounds. The simplest is to
increase the number of JoinRequests that will be attempted before throwing EVLORAMACRXCTIMEOUT event.
This can be carried out using:

LORAMACSetOption(LORAMAC_OPT_MAX_JOIN_ATTEMPTS, “x”)

where x is the number of Join attempts, up to a maximum of 8. The value is passed in as a string. This value must
be set before sending a JoinRequest as this is when the number of retries is set up. Increasing this value means
you increase the probability of the module selecting a supported frequency. It is also in keeping with the
expected operation, in that the module will “search” for a gateway.

It is also possible to modify the channel configuration of the RM191, the channelsmap parameter, by using one
of the 2 available methods. These methods can be set either through a configuration command or through a
smartBASIC API. As is usual with all RM191 modules, the configuration commands are persisted, and the
smartBASIC commands are lost after a reset.

It is important to realise that for these options to work you must first know how a gateway is configured. If you
set up the channelsmap incorrectly it is possible that the module will never connect to a network. The default
method of just trying random channels may be slow, but it will eventually succeed.

Because there are multiple options to configure the channelsmask, the firmware needs to know which to use. So
there is another configuration variable required using at+cfg 1002 Y which defines the method that must be
used. The valid values for Y in this command are as follows:

http://ews-support.lairdtech.com/

Interfacing with LoRaWAN
Application Note

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/ramp

10

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

at+cfg 1002 Y Methods

0 Default : all channels enabled

1 Sub-band setting configured via at+cfg 1001 or
LORAMACSetOption(LORAMAC_OPT_SUBBAND, …)

2 ChannelsMask configured directly via at+cfgex 1009 or

LORAMACSetOption(LORAMAC_OPT_CHANNELMASK,…)

In most instances it is recommended that option 1 is selected, which sets a specific sub-band. This is how the
majority of gateways work. The only time that option 2 would be useful is if you want to split the channels map
over multiple sub-bands. This is not an option that is generally supported in most gateways, but it is an option
on Laird’s Sentrius gateway.

More information on these commands are given in the RM1xx Series LoRa smartBASIC Extensions User Guide.

Activation by Personalization

When using Activating by Personalization, the NwkSKey and the AppSkey must be configured on both the
RM191 and any server with which it might communicate. By default, it is likely that the DevEui and AppEUi will
also be set in the module as the values must be set on the network server, however these IDs are not used in
the Join process.

▪ Network Session Key (NwkSKey): Specific to the end device. Used by the module and gateway/server to
calculate the checksum of all data messages. Also used to encrypt and decrypt the payload field of MAC only
data messages.

▪ Application Session Key (AppSKey): Specific to the end device. Used by the module and gateway/server to
encrypt and decrypt the payload data. It may also be used to calculate the optional payload checksum.

▪ End Device Address (DevAddr): 32 bits (4 bytes) that identifies the module within the current network.

Table 4: Personalization IDs

ID
Data Length

(Bytes)
Write Command

Read
Command

NwkSKey 16
at+cfgex 1013 “xxx.xxxx”

(For firmware versions prior to 17.4.1.0 the NwkSKey Id is 1003)
Write only

AppSKey 16
at+cfgex 1014 “xxx.xxx”

(For firmware versions prior to 17.4.1.0 the AppSKey Id is 1004)
Write only.

DevAddr 4
at+cfgex 1015 “xxxx”

(For firmware versions prior to 17.4.1.0 the DevAddr Id is 1005)
at+cfgex 1015?

Note: The xxxx above represents a hexadecimal value. For example:

 at+cfgex 1013 "2b7e151628aed2a6abf7158809cf4f3c"

As with the OTAA, once a LORAMACJoin(LORAMAC_JOIN_BY_PERSONALIZATION) is received by the module it
checks that the above IDs (Table 4) are configured. If not, an error message is returned and the request is
cancelled.

http://ews-support.lairdtech.com/
https://assets.lairdtech.com/home/brandworld/files/User%20Guide%20-%20RM1xx%20smartBASIC%20Extensions%20(LoRa%20Functions).pdf

Interfacing with LoRaWAN
Application Note

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/ramp

11

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

When you join a network using the personalization method, there is no handshaking required between the
RM191 and the server. Both sides of the link should be configured with the same key values and the RM191
assumes to have joined the network as soon as the command is sent. The module is ready to start transmitting.
See the section on personalization and the handling of the sequence numbers below.

If using the Multitech gateway, refer to the Conduit mLinux: LoRa Use with Third-Party Devices webpage for
details on how to configure the gateway.

DATA TRANSMISSION

Transmitting data to the server is a simple task. Call the smartBASIC LoramacTxData command containing the
data you wish to send to the server along with the port number and the confirm flag. Everything else is handled
by the firmware.

A recent change to the RM1xx firmware has now made it possible to query the stack as to the maximum
possible packet size using the LORAMACQueryTxPossible API, which returns the theoretical and actual
maximum packet sizes. With this command it is now possible to control the data packets more efficiently. It is
worth pointing out here that in the case of confirmed packets it is possible that although the packet is valid
when you first send it, if it enters the resend phase, as the datarate reduces the packet size may become too
large and the EVLORAMACTXDRPAYLOADSIZEERROR will be thrown.

When a packet is loaded into the stack it randomly selects one of the enabled channels and transmits the packet
on that channel. Once a packet has been loaded it cannot be deleted or overwritten. As there are no duty cycle
limitations with the RM191, any packet is transmitted immediately.

There are a number of different ways the successful completion of an uplink/downlink sequence can be
determined using the LoRa events.

You should always receive an EVLORAMACTXCOMPLETE event, provided nothing has gone wrong with the
transmission or reception of data, i.e. you received an EVLORAMACTXDONE event, and nothing has gone wrong
with any received packet. If there is an error in the received packet the EVLORAMACTXCOMPLETE will not be
thrown.

The only exception is when a confirmed transmit packet is rejected by the server, but the server has a downlink
packet to transmit. The downlink packet would still be transmitted so in this case you would receive the
EVLORAMACRXCOMPLETE event but not the EVLORAMACTXCOMPLETE event as the uplink would not have
been acknowledged.

If there is a successful downlink packet you should also receive an EVLORAMACRXCOMPLETE event along with
the EVLORAMACTXCOMPLETE . This confirms an acknowledgment to a confirmed uplink packet. If that packet
also contains data there will also be an EVLORAMACRXDATA event.

To make the process simpler, a new event has been created: EVLORAMACSEQUENCECOMPLETE. Internally the
firmware monitors what is supposed to happen and so which event should end the uplink/downlink sequence.
This event is then thrown along with a variable indicating which event was the actual terminating event. So now
all that is required is to monitor the EVLORAMACSEQUENCECOMPLETE and act on that.

Examples of when the events are thrown are shown below. The waveforms are obtained using the
LoramasSetDebug API. The blue waveform represents when the module is transmitting and the red waveform
represents when the module is in receive mode.

In figure 1 the module has been programmed to transmit a confirmed packet. Once the module stops
transmitting, the EVLORAMACTXDONE event is thrown. One second later the first receive window opens. This

http://ews-support.lairdtech.com/
http://www.multitech.net/developer/software/lora/conduit-mlinux-lora-communication/conduit-mlinux-lora-use-third-party-devices/

Interfacing with LoRaWAN
Application Note

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/ramp

12

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

window will open for a minimum of 8 preamble characters. If the module doesn’t receive these preamble
characters from the gateway it will close. In this case it does receive these characters and so stays open. At the
end of the window, once all of the downlink packet has been received the window closes and the module
throws the following events :

▪ EVLORAMACTXCOMPLETE event – because it has successfully transmitted a packet

▪ EVLORAMACRXCOMPLETE event – because the downlink packet was received correctly

▪ EVLORAMACSEQUENCECOMPLETE event – returned with a numeric value of 2

▪ EVLORAMACNEXTTX event – because the module can now transmit the next packet

Figure 1: Confirmed packet

Figure 2 below shows an example of an unconfirmed packet transmitted to the gateway. The transmit trace is
the same as before. However, because it was an unconfirmed uplink there is no downlink packet. So the receive
windows will only open for the minimum time causing the EVLORAMACNOSYNC events to be thrown. In this
example the numeric value returned with the EVLORAMACSEQUENCECOMPLETE event would be 1.

Again the EVLORAMACNEXTTX is thrown, indicating the module can now transmit the next packet.

http://ews-support.lairdtech.com/

Interfacing with LoRaWAN
Application Note

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/ramp

13

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Figure 2: Unconfirmed data packet

As mentioned in an earlier section, if the transmission fails, the confirmed/not confirmed option determines
what happens next. If the confirmed option is selected and the confirmation is not received, the module
attempts to retransmit the packet. By default, the module attempts to send a specific packet eight times, i.e. the
initial attempt and seven retries. The number of retries can be configured using the
LORAMACGetOption(LORAMAC_OPT_MAX_RETRIES,var$) command. The number of retries cannot exceed
eight. If the number of retries is reached without a receiving a response, then an EVLORAMACRXTIMEOUT event
is thrown.

During this retransmit process the LoRaWAN stack automatically decrements the data rate after every two failed
transmissions. So, depending on the starting data rate, the data rate at the end of this process could be much
lower than at the beginning, potentially causing this process to take longer than might be expected. The module
tends towards decreasing the data rate as this has the effect of increasing the range of the module. Reducing
the datarate could have the effect of now making the packet too large for transmission causing a
EVLORAMACTXDRPAYLOADSIZEERROR event to be thrown.

If an EVLORAMACRXTIMEOUT event is received, it is up to the user how to proceed. You can either try to join
the network again or try sending another packet.

One the uplink/downlink sequence has completed it is possible to transmit the next uplink packet immediately,
so the EVLORAMACNEXTTX event will fire immediately after the EVLORAMACSEQUENCECOMPLETE event.

http://ews-support.lairdtech.com/

Interfacing with LoRaWAN
Application Note

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/ramp

14

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

DATA RECEPTION

After each transmitted uplink packet on a Class A LoRaWAN device, the module must listen for a downlink
packet which may or may not be sent from the gateway. There are two possible receive windows in which this
downlink packet can be transmitted, illustrated in Figure .

Transmit Rx1 Rx2

Tx On Air time

Rx Delay 2

Rx Delay 1

Figure 3: Receive window timings

The actual length of the delays (Table 5) is dependent on whether the RM191 is transmitting a join request or a
normal data packet.

Table 5: Receive delay times

Packet Type Rx Delay 1 Rx Delay 2
Join Request 5 seconds 6 seconds
Data Packet 1 second 2 seconds

In the first receive window, the downlink frequency channel is a function of the uplink channel, calculated by

 Receive Channel = Transmit Channel modulo 8

With the second receive window, the gateway transmits on the same frequency as the uplink packet.

The downlink data rate depends on the uplink data rate.

If the downlink packet is transmitted in the first window and is successfully received by the module, then the
second window is not required and does not open.

If the downlink packet is not received during the first Receive window, then the second Receive window is
opened. The first receive window frequency is a function of the upstream channel and shares the same data rate
as the upstream message. The second receive window has a set frequency and data rate. By default, the
frequency and data rate of the second receive window are 923.3 MHz and DR 8.

As shown in Figure , all timings are taken from the end of the uplink transmission. This is the
EVLORAMACTXDONE event. At the designated interval, the RM191 turns on the receiver for a short period and
listens for a sync message. If the signal is not detected, the receiver is switched off and the RM191 then waits for
the second window to open and repeat the process.

If the sync message is detected in any of the receive windows, then the RM191 receiver remains on until the full
downlink packet is received. In this way the RM191 saves power by only having the receiver switched on for the
minimum amount of time.

Note: If the sync message is transmitted outside this initial small receive window, the downlink packet is
missed. The LoRa gateway has no knowledge of this fact. As far as the gateway is concerned, the
packet was sent. It is not retransmitted in the second window.

http://ews-support.lairdtech.com/

Interfacing with LoRaWAN
Application Note

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/ramp

15

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Again, the uplink packet option (confirmed or not confirmed) determines the RM191’s response to this. If
confirmed is selected, then the same uplink packet is resent, following the procedure outlined above.

Receive timings are hardcoded. There are no configuration options available to modify these timings. The
RM191 timings meet those of the LoRaWAN specification. It is the gateway’s responsibility to send the downlink
packet at the correct time.

LINK CHECK

A module can transmit a Link Check request to the server using the LORAMACLinkCheck API.

The Link Check response from the server contains an indication of the signal strength of the last Link Check
request received by the server and the number of gateways that have received that request.

CONTROLLING THE PERSONALISATION SEQUENCE NUMBER

The LoraWan specification states that, when a module has joined a network using the personalisation option, it
must keep track of the uplink and downlink counter values over a reset. The reason for this is that a module is
deemed to have “Joined” a network when the keys are loaded into both the module and the network server.
There are no handshaking messages. So when the module is powered down it is still, in effect, joined to that
network.

For both uplink and downlink packets the main requirement is that the counter value of an incoming packet
must be less than 16384 greater than that of the previous received packet. If the value is greater than 16384
more than the previous packet the incoming packet is rejected. No indication is sent back to the transmitting
device on why the incoming packet was rejected.

Also worth noting is that if the incoming packet counter value is less than that of the previous packet, for
example either the module or server has been reset, this is likely to result in a negative difference which will
probably equate to a large positive number greater than 16384 and so will also be rejected.

It is important to note that the incoming counter value does not necessarily have to be just one more than the
previous value. Provided the difference is less than 16384, the incoming packet will be accepted.

To support this requirement the RM1xx now stores uplink and downlink counter values in the internal serial
eeprom that will be used to initialise the internal counters on boot up, before the first uplink packet is
transmitted. However, to ensure we’re not writing to the serial eeprom every time we transmit and receive
packets the module uses an incremental step to determine when the values need to be updated.

This incremental value defaults to 256 but it can be modified in Flash using the at+cfg 1003 command or
temporarily using the LoramacSetOption(LORAMAC_OPT_SEQUENCE_INCREMENT, ..) smartBASIC command.
In both cases the value must lie between 1 and 256.

Looking at the uplink counter first and starting with the scenario where everything has been reset, the first
uplink counter value will be 0. If the incremental step is set to the default value of 256, this means that the
uplink counter stored in the serial eeprom will be 256.

Every time an uplink packet is transmitted the counter value of the uplink packet will be increased by 1 byte the
stack. When it reaches 256 then the value in the serial eeprom will be incremented by 256 up to 512. On
subsequent uplink packets the counter value will continue to increase by one every packet.

http://ews-support.lairdtech.com/

Interfacing with LoRaWAN
Application Note

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com

www.lairdtech.com/ramp

16

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

If, for whatever reason, the module then resets it will lose this running counter value. However when it reboots
it will read in the value stored in the serial eeprom and so start counting from, following from the previous
paragraph, 512. This, in turn, will cause the value in the serial eeprom to update to 768.

In the scenario where a module will only send a single packet before going to deep sleep (which requires a
reboot to wake up from), it the incremental step is 256 then the first 4 uplink packet sequence numbers will be
0, 256, 512 and 768.

The downlink counter is handled slightly differently. It uses the same incremental step value but the value
stored in the eeprom is only updated when the actual counter value is the incremental step greater than the
stored value. So, again using the default value of 256, for downlink counter values of 0-255 the value stored in
the eeprom will be 0. When the downlink counter reaches 256 the value in the eeprom is updated to 256.

So if the module resets and the actual downlink counter lies between 0 and 255, it will initialise with 0. If the
actual value is greater than 256 to 511 it will be 256. This ensures that the local value is close enough to the
next incoming value to not cause problems.

Also supporting these counter operations are the LoraMacSetOption/LoramacGetOption commands,
LORAMAC_OPT_EEPROM_UPCOUNTER and LORAMAC_OPT_EEPROM_DOWNCOUNTER. These can be used to
set or read the stored sequence number value stored in the serial eeprom. This has the effect of setting the
sequence number to a value of your choosing after a reset.

The actual real values being passed between the module and the server can be retrieved using the
LORAMAC_OPT_DOWNLINK_COUNTER and LORAMAC_OPT_UPLINK_COUNTER ids. These are read only
commands.

REFERENCES

▪ Lora Alliance - LoRaWAN Specification – The current version is available from the LoRa Alliance website.
▪ LoRaWAN Regional Parameters – The current version is available from the LoRa Alliance website.
▪ User Guide – RM1xx Series smartBASIC Extensions (documentation tab of RM1xx product page)
▪ User Guide - smartBASIC Core Functionality (documentation tab of RM1xx product page)
▪ Application Note – Connecting to Multitech Conduit Gateway (documentation tab of RM1xx product page)
▪ http://www.multitech.net/developer/software/lora/conduit-mlinux-lora-communication/conduit-mlinux-

lora-use-third-party-devices/

REVISION HISTORY
Version Date Notes Approver

1.0 24 May 2016 Initial Release Tim Carney

1.1 10 Oct 2016 Updates to several ID values Colin Anderson

1.2 11 Oct 2017 Updated for versions 101.6.1.0 & 111.6.1 Jonathan Kaye

© Copyright 2017 Laird. All Rights Reserved. Patent pending. Any information furnished by Laird and its agents is believed to be accurate and reliable. All
specifications are subject to change without notice. Responsibility for the use and application of Laird materials or products rests with the end user since
Laird and its agents cannot be aware of all potential uses. Laird makes no warranties as to non-infringement nor as to the fitness, merchantability, or
sustainability of any Laird materials or products for any specific or general uses. Laird, Laird Technologies, Inc., or any of its affiliates or agents shall not be
liable for incidental or consequential damages of any kind. All Laird products are sold pursuant to the Laird Terms and Conditions of Sale in effect from
time to time, a copy of which will be furnished upon request. When used as a tradename herein, Laird means Laird PLC or one or more subsidiaries of Laird
PLC. Laird™, Laird Technologies™, corresponding logos, and other marks are trademarks or registered trademarks of Laird. Other marks may be the
property of third parties. Nothing herein provides a license under any Laird or any third party intellectual property right.

http://ews-support.lairdtech.com/
https://www.lora-alliance.org/For-Developers/LoRaWANDevelopers
https://www.lora-alliance.org/For-Developers/LoRaWANDevelopers
http://www.lairdtech.com/products/rm1xx-series
http://www.lairdtech.com/products/rm1xx-series
http://www.lairdtech.com/products/rm1xx-series
http://www.multitech.net/developer/software/lora/conduit-mlinux-lora-communication/conduit-mlinux-lora-use-third-party-devices/
http://www.multitech.net/developer/software/lora/conduit-mlinux-lora-communication/conduit-mlinux-lora-use-third-party-devices/

	Introduction
	Gateways and Servers
	Transmit/Receive Sequence
	RM191 Frequencies and Duty Cycles
	LoRaWAN Events
	Data Rate
	Uplink/Downlink Cycle
	Connecting to the LoRaWAN Network
	Over-the-Air Authentication
	Activation by Personalization

	Data Transmission
	Data Reception
	Link Check
	Controlling the Personalisation Sequence Number
	References
	Revision History

