
A

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/wireless

1 Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BL600 and BL620 smartBASIC Application Walkthrough

INTRODUCTION

This walkthrough is designed for those new to Bluetooth Low Energy (BLE) and smartBASIC on the Laird BL6xx
modules. We begin by explaining some fundamental BLE principles that need to be understood before you can
begin working with smartBASIC on the modules. We then break down a pair of smartBASIC programs that
demonstrate the BLE principles explained in the first section of the document. The smartBASIC programs make
use of the BL6xx development board buttons and LEDs. Pressing a button on one development board illuminates
the corresponding LED on the other board and vice versa. A straightforward task but only once you have
understood how BLE organizes data.

BLUETOOTH LOW ENERGY BASICS

This section covers some key aspects of BLE that must be understood before we look at the smartBASIC code.

Note: This BLE overview is written with Bluetooth 4.0 in mind as used on the BL600/BL620.

The Bluetooth 4.0 core specification introduced Bluetooth Low Energy (BLE) also known as Bluetooth Smart.
Bluetooth 4.0 covers both classic and low energy Bluetooth, so BLE can be thought of as a subset of the
Bluetooth 4.0 specification. Although BLE shares some aspects of classic Bluetooth, it works in a very different
way and should not be thought of as simply a lower power version of classic Bluetooth. Rather than streaming
data in the way classic Bluetooth does, BLE focuses on exposing state information in a simple and efficient way
(Figure 1).

Figure 1: BLE communication

http://ews-support.lairdtech.com/

BL600 and BL620 smartBASIC Application Walkthrough

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/wireless

2 Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

GAP – Advertising and Connections

Adverts

The Generic Access Profile (GAP)
allows BLE devices to broadcast,
discover, and connect with each
other. Many aspects of BLE (including
GAP) are very asymmetrical. A
peripheral role device advertises its
presence and a central role device
scans for adverts from peripheral
devices.

Everything in BLE starts with an
advert from a peripheral device (the
only devices that can advertise).
Likewise, a central role device is the
only device that can scan for adverts.
An advert may be broadcasting
information, it may be inviting a
connection, or it may be doing both.

Adverts are sent periodically and the longer the advertising interval (the time between adverts), the less power
is consumed. The shorter the advertising interval, the more responsive the application feels but at the cost of
higher power consumption (Figure 3).

Figure 3: Advertising intervals

As well as inviting connections, adverts can indicate that more advert data is available if requested by the
central device sending the scan request. Upon receiving a scan request, an advertiser sends a second packet of
advertising data without the need of a connection.

Adverts are made up of one or more fields of data; each data field is identified by a data type value as listed on
the GAP page of the BT SIG (Special Interest Group) website: https://www.bluetooth.org/en-
us/specification/assigned-numbers/generic-access-profile.

For example, if you want to include the name of your device in the advert, you may use data type 0x09
«Complete Local Name».

Figure 2: Advert (BL600)

http://ews-support.lairdtech.com/
https://www.bluetooth.org/en-us/specification/assigned-numbers/generic-access-profile
https://www.bluetooth.org/en-us/specification/assigned-numbers/generic-access-profile

BL600 and BL620 smartBASIC Application Walkthrough

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/wireless

3 Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

You can find a description along with the format for each datatype in the Supplement to Bluetooth Core
Specification which can be found here:
https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=302735

We recommend that you become familiar with these two resources and their locations on the Bluetooth.org
website as they are key to understanding and creating adverts.

The application designer can choose which data types to include in the advert (see the list located on the GAP
page of the BT SIG website accessible from the earlier link). Adverts are limited to 31 bytes in size but, but using
a scan response, it is possible to make use of two advertising packets.

A typical raw advert payload may appear as shown in the following. Notice how the total length in bytes exceeds
the advert packet limit of 31 bytes. In this case, the complete local name is available by way of the scan
response.

Example – Raw advert data captured with a sniffer with the different data types differentiated by color:

Table 1 displays the advert data breakdown.

Table 1: Advert data breakdown

Length Type Value Notes

0x02 0x01 0x06 Flags

0x11 0x07 0X7C16A55EBA11CB920C497FB802199A56
Complete list of 128 bit service UUIDs (what data
to expect to be available when connected)

0x1B 0x09
0X4C616972642042746E204C45442044656
D6F202D20424C363030

Complete local name, in this case Laird Btn LED
Demo - BL600

As previously stated, an advert can be just a broadcast, it can invite connections, or it can be/do both. The
different types of adverts are listed in Table 2. An iBeacon is a good example of a broadcast-only application
where the advert contains data to help a smartphone application provide location context information to the
user.

Table 2: Advert types

Advert Type Scannable Connectable Description

ADV_IND YES YES Connectable and undirected

ADV_DIRECT_IND NO YES Only the specified device may connect

ADV_NONCONN_IND NO NO Broadcast

ADV_SCAN_IND YES NO Scannable broadcast

BL600 Single Mode Peripheral Device

BLE is very asymmetrical, peripheral devices advertise their presence to scanning central devices. The Laird
BL600 BLE module is a single mode device (BLE only) that supports only the peripheral device role. So it will be
the BL600 that broadcasts adverts so that a central device can discover and connect to it.

0x02010611077C16A55EBA11CB920C497FB802199A561B094C616972642042746E204C45442044656
D6F202D20424C363030

http://ews-support.lairdtech.com/
https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=302735

BL600 and BL620 smartBASIC Application Walkthrough

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/wireless

4 Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BL620 Single Mode Central Device

The Laird BL620 BLE module is a single mode device that supports only the central role. Therefore it is the BL620
that will search for and initiate a connection with an adverting peripheral device.

CONNECTIONS

As mentioned previously, a BLE application
might involve only adverts (broadcasts) or it
might invite other devices to connect with an
advert. Only peripheral devices advertise,
inviting connections from scanning central
devices. The functional states between which a
BLE device moves differ between peripheral and
central device (see Figure 4 and Figure 5). The
darker circles indicate the possible functional
states when performing each role.

The central device initiates the connection after
discovering an advert from a peripheral by way
of a scan.

Figure 4: Peripheral role device

Figure 5: Central role device

http://ews-support.lairdtech.com/

BL600 and BL620 smartBASIC Application Walkthrough

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/wireless

5 Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Connection Parameters

One of the fundamental things to understand is that during a BLE connection the radios are switched off for as
much of the time as possible, the more you can keep the radios switched off the lower the power consumption
will be. Although it should be noted that this is at odds with throughput, but remember BLE is about exposing
state information not streaming large amounts of data.

Connections are made up of connection events, each connection event involves an exchange of packets
between the master (central in a connection) and the slave (peripheral) in a connection. The time between each
connection event is known as the connection interval (Figure 6).

Slave latency is the number of connection events that the slave can ignore but still remain in a connection. This
allows for low latency provided by frequent connection events but allow low power operation for the peripheral
device by only actively taking part in a connection event when it needs to.

There is also a connection timeout, which is the time between two packets before a connection is considered
lost.

Figure 6: Connection events

Connected Topology

A BLE master (Figure 7) may be in a
connection with multiple peripheral/slave
devices but a slave device can only be in a
connection with a single master. Exactly how
many concurrent connections depends on
the central/slave resources. A smartphone or
tablet is likely to be able support more
connections than an embedded module and
a BLE equipped personal computer more
again.

Figure 7: BLE master

http://ews-support.lairdtech.com/

BL600 and BL620 smartBASIC Application Walkthrough

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/wireless

6 Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

GATT - SERVICES AND CHARACTERISTICS

BLE uses GATT (General Attribute Profile) and GATT
communicates using the ATT (Attribute Protocol)
where data is transferred as attributes. Attributes
are just pieces of data at the end of the day. There
are different types of attributes such as
characteristics, values and descriptors each
identified with a 16 bit UUID listed on the
Bluetooth.org website at:
https://www.bluetooth.org/en-
us/specification/assigned-numbers. 128 bit UUIDs
can be used by developers for proprietary services
and characteristics so that data not adopted by the
Bluetooth SIG can be sent using BLE.

Characteristics

 A characteristic can be thought of as a pot of data,
which contains a value with descriptors providing
additional information about the characteristic.
GATT is essentially giving structure and hierarchy to
attributes. Characteristics can contain zero or more
descriptors.

Services

Services can contain zero or more characteristics,
Services group characteristics together into logical
groupings.

Profiles

BLE profiles differ from classic BT profiles in that they don’t define a protocol, instead they describe how specific
device types go about discovering, connecting with and sharing data with each other.

GATT Server/Client

The attributes that make up characteristics and services are grouped together on a GATT server where a server
has data and a client wants data. When a client wants the data it reads from the GATT server but it can also
write data to the GATT server.

For the scope of this document the BL600 will be the GATT server and the BL620 will be the GATT client. It
should be noted that a GATT server can reside on either the peripheral role, the central role device or even both
at the same time.

Handles

An attribute handle is a 16 bit identifier that is used to locate a particular attribute in a GATT server. Handles are
discovered by the client by way of a discovery process. A handle will not change between transactions and
between bonded devices will not change between connections.

Figure 8: GATT services and characteristics

http://ews-support.lairdtech.com/
https://www.bluetooth.org/en-us/specification/assigned-numbers
https://www.bluetooth.org/en-us/specification/assigned-numbers

BL600 and BL620 smartBASIC Application Walkthrough

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/wireless

7 Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

It should be noted that some client devices may cache handles so that a discovery operation need not be carried
out during each connection. Instead the client maintains a list of previously discovered handles locally. BLE
provides a method for the server to communicate to the client that a service and its handles have changed. This
is achieved by way of the service changed characteristic that is part of the mandatory GATT service.

Problems can occur if a BL600 module has been loaded with a smartBASIC that program creates a set of services
different from the services it had previously used when bonding with a client. Therefore it is recommended to
either use a at&f* to clear the non-volatile memory before loading a new smartBASIC program or use at+btd* to
clear any bonding information. This should be done on both the central and client devices to ensure you are
starting from a known state.

SOFTWARE TOOLS

Text Editor

smartBASIC source can be written/edited in your preferred text editor; however we provide color syntax files for
Textpad and Notepad++ (Figure 9) to make the source code more attractive and readable. More information on
how to setup color syntax can be found on the BL600 support page. https://laird-ews-
support.desk.com/?b_id=1945

Figure 9: Notepad++ text editor

UwTerminal

Laird provides a terminal emulator called UwTerminal for use with our Bluetooth modules. Any terminal
emulator such as Terraterm or RealTerm can also be used be UwTerminal has a number of very useful additions
for example being able to compile and load smartBASIC programs onto the development board.

Further information on using UwTerminal can be found in the Bl600 section of the Laird module support center.

https://laird-ews-support.desk.com/?b_id=1945

http://ews-support.lairdtech.com/
https://laird-ews-support.desk.com/?b_id=1945
https://laird-ews-support.desk.com/?b_id=1945
https://laird-ews-support.desk.com/?b_id=1945

BL600 and BL620 smartBASIC Application Walkthrough

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/wireless

8 Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BLE BUTTON/LED DEMO SMARTBASIC

This walkthrough uses the following smartBASIC sample programs available from our Github site accessible
from: https://github.com/LairdCP/BL600-Applications

 btnled.gatt.server.sb (BL600)
 btnled.gatt.client.sb (BL620)

Because they are designed to be run on the BL600/620 development boards, two development boards are
required – one loaded with BL600 firmware and the other loaded with BL620 firmware.

Instructions for loading firmware onto a development board and the latest firmware are available from our
support site: https://laird-ews-support.desk.com/?b_id=1909

It is also possible to replace the BL620 and the client smartBASIC program with an Android BT4.0 smartphone
running Nordics Mater Control Panel application:
https://play.google.com/store/apps/details?id=no.nordicsemi.android.mcp&hl=en_GB. Nordic master control
panel is an Android BLE application that takes on the central role, allowing you to inspect and interact with GAP
and GATT data.

BL600 Peripheral

Figure 10: BL600 Peripheral and BL620 Central

btnled.gatt.server.sb

BL620 Central

btnled.gatt.client.sb

USB cable to PC

USB cable to PC

LEDs

Buttons

LEDs

Buttons

http://ews-support.lairdtech.com/
https://github.com/LairdCP/BL600-Applications
https://laird-ews-support.desk.com/?b_id=1909
https://play.google.com/store/apps/details?id=no.nordicsemi.android.mcp&hl=en_GB

BL600 and BL620 smartBASIC Application Walkthrough

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/wireless

9 Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Ensure that switches 3 and 4 on Conn1 5 are to the left to enable
the LEDs on the development boards as Figure 11.

Figure 11: Switch setup

Running the Demo

at&f*

Its good practice to start from a known state by clearing the non-volatile memory from both of the development
boards using at&f*.

ati 0

It’s also good practice to confirm you have communications with the development board; using the ati 0
command confirms to which device you are connected.

Compiling

UwTerminalX also allows for smartBASIC text source files (.sb) to be compiled and loaded into a module by right-
clicking in its main window and choosing Xcompile + Load . For this demo, we want to XCompile and load the
following.

 btnled.gatt.server.sb (BL600)
 btnled.gatt.client.sb (BL620)

Figure 12: XCompile and Load - UwTerminalX

http://ews-support.lairdtech.com/

BL600 and BL620 smartBASIC Application Walkthrough

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/wireless

10 Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

at+dir

Once the programs have been compiled and loaded onto the deployment boards, its good practice to confirm
they have been loaded by using at+dir to check the file system.

Btnled

To run the programs on each of the development boards, simply type btnled followed by a return, first on the
BL600 (server) which then begins advertising (Figure 13).

Figure 13: BL600 advertising

Once the BL600 is advertising, you can run btnled on the BL620 (client) at which point it scans for the adverts
from the BL600 and connects to it.

Once connected, pressing a button on one of the development boards should result in the corresponding LED
lighting on the other (Figure 14).

Figure 14: BL620 scanning

http://ews-support.lairdtech.com/

BL600 and BL620 smartBASIC Application Walkthrough

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/wireless

11 Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Overview

The aim of this demonstration is to allow the buttons on a BL600 development board, when pressed, to
illuminate the LEDs on a BL620 development board and vice versa.

To do this we must create a custom service on the GATT server (BL600) with two characteristics. One
characteristic (SERLEDS_CHAR) controls the BL600 development board LEDs and the other (CLILEDS_CHAR)
controls the BL620 development board LEDs. As both characteristics reside on the GATT server, one is written to
by the client and the other is read by the client.

A custom service requires a 128 bit UUID, as opposed to a 16 bit UUID, for SIG adopted services. Each
characteristic also needs a UUID but, to save memory, we use a randomly-generated 128 bit UUID as our Laird
base UUID and then use 16 bit offsets of that base UUID for the service and characteristics.

Table 3: Custom service

 Name UUID

 Laird Base UUID 569A----B87F490C92CB11BA5EA5167C

Service LED_SVC 569A1902B87F490C92CB11BA5EA5167C

Characteristic CLILEDS _CHAR 569A2030B87F490C92CB11BA5EA5167C

Characteristic SERLEDS_CHAR 569A2031B87F490C92CB11BA5EA5167C

There are also mandatory services which the BL600 creates automatically. For the purposes of this demo we are
going to concentrate on custom LED_SVC service. These services and characteristics can be explored using
Nordics master control panel application for Android and are not covered further in this document.

Figure 15: Custom service

CLILED and SERLEDCharacteristic Values:

 0x00 Both LEDs are off
 0x01 LED 0 is on, LED 1 is off
 0x02 LED 1 is on, LED 0 is off
 0x03 Both LEDs are on

http://ews-support.lairdtech.com/

BL600 and BL620 smartBASIC Application Walkthrough

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/wireless

12 Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Basic Program Flow

The following flow chart (Figure 16) shows the smartBASIC startup routine. This runs when the program starts
but does not show variable and constant definitions; these are described later in this walkthrough document.

Figure 16: Basic program flow chart

BL600 smartBASIC Code Sections

In this section, we break down the smartBASIC programs block-by-block.

Definitions

#define is used to define constants which are values that do not change while a smartBASIC program is running.
For example, with the following, any occurrence of DEVICENAME in the source will be replaced with the string
Laird Btn LED Demo - BL600.

#define DEVICENAME "Laird Btn LED Demo - BL600"

This allows for the device name to be changed once rather than multiple times throughout the source code. We
also define the Laird base UUID here – this is a 128 bit randomly-generated number that Laird uses for any
custom services and characteristics. To make efficient use of memory, each service and characteristic takes that
base UUID and uses a 16 bit offset. This way we avoid having multiple 128 bit identifiers that would consume
memory.

http://ews-support.lairdtech.com/

BL600 and BL620 smartBASIC Application Walkthrough

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/wireless

13 Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Global Variable Declarations

Global variables are those available from any part of the program (as opposed to local variables only used within
a function); they are only accessible after they have been declared and therefore should be declared early in the
source code.

Initialize Global Variables

Unlike constants, variables may change while a program runs. Because of this, it may be necessary to set an
initial value when the program starts. For example, the following takes the DEVICENAME constant, defined in
the definitions section, and places it into the string variable called dn$.

dn$=DEVICENAME

Function and Subroutine Definitions

Debugging

Throughout this sample application you will see the use of result codes when calling a function.

For example:

 rc=gpiosetfunc(GPIO_BTN0,1,2) //button 0
digital input with weak pull up resistor

 AssertRC(rc,188)

Functions always return a value which indicates success or failure and knowing why a function call fails can help
when debugging.

rc is a variable having been declared previously using the Dim statement. The value returned by the function is
placed into rc allowing it to be passed to the AssertRC subroutine.

If the function completes successfully, then 0 is returned; if a non-0 value is returned and debugging is enabled
then the result code and the line are printed to the UART. The second argument 188 is an arbitrary number
created by the programmer so that, should this number be printed to the UART, the programmer can search the
source code and find which function threw the error.

Sub AssertRC(rc,ln)

 if rc!=0 then

 if (ENABLE_DEBUG_PRINTS!=0) then

 print "\nFail :";integer.h' rc;" at tag ";ln

 endif

 endif

EndSub

The result code can then be looked up by highlighting it in a UwTerminal window as in the following example
(Figure 17).

http://ews-support.lairdtech.com/

BL600 and BL620 smartBASIC Application Walkthrough

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/wireless

14 Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Figure 17: Highlighted result code

Expected Output:

//smartBASIC Error Code: 073D -> “RUN_INV_CIRCBUF_HANDLE”

Delay Loop

This subroutine is used to create a delay loop that can be called from other parts of the program. In this case it is
used after a button has been pressed and the button GPIO handler called.

Sub Delay(ms)

 dim i : i = GetTickCount()

 while GetTickSince(i)<ms

 endwhile

EndSub

When the subroutine is called from another part of the program, value is passed to it using the following
command:

Delay(150)

The value of 150 is now used in place of ms effectively substituting ms for the value 150.

Tickcount is a free running timer, so this subroutine captures the current value of Tickcount, putting the value
into the local i variable. GetTickSince then compares that value against ms (150); when it is no longer less than
150 milliseconds, the subroutine ends.

http://ews-support.lairdtech.com/

BL600 and BL620 smartBASIC Application Walkthrough

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/wireless

15 Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Initialize Adverts

Before we can begin advertising we must create the advert report. This is done in three steps:

1. Initialize – Initialize the basic advert structure using the BleAdvRptinit function. This function does not
start advertising; it only creates the basic format.

We then do the same for the scan report using BleScanRptInit, don’t forget advert data can be sent in two
packets, the main advert packet and an optional, additional scan response packet.

The advert we are creating will be known as advRpt$ and the scan report will be known as scnRpt$.

At this point if we commit and start the advert it would contain the following data which just contains the
flags datatype and nothing else.

Len Type Value Notes

2 0x01 0x06 Flags

2. Append – To add data to the advert we must append data to it. We are going to be adding the local name
to the advert and the 128 bit UUID to the scan report. Don’t forget – space is limited in advertising packets
so you may need to put some of your data into the main advert and the rest of the data in the scan report.
You’re using the advert packet to identify the application which allows the central device to decide if it’s
interested in getting the extra data in the scan report.

The function BLEADVRPTADDUUID128 (advRpt, nUuidHandle) is used to add the 128 bit UUID to the
advert packet. The UUID was previously set in the Initialize Service section above.

After committing and starting the advert, it contains the following information:

Len Type Value Notes

2 0x01 0x06 Flags

17 0x07 7C16A55EBA11CB920C497FB802199A56 128 bit UUID

Now we add the scan report data using the function BLEADVRPTAPPENDAD (advRpt, nTag, stData$).

The advRpt argument is the name of the advert or scan report to which we want to append; in this case,
it’s the scan report named ScanRpt$.

The nTag argument is the datatype we wish to add to the scan report.

The stData$ is the value for the AD type, in our case the value is held within the dn$ variable. Or advert
data will now look as follows, note that this is the combined advert and scan report. Data types where
previously covered in a previous section.

Len Type Value Notes

2 0x01 0x06 Flags

17 0x07 0x7C16A55EBA11CB920C497FB802199A56 128 bit UUID

27 0x09 0x4C616972642042746E204C45442044656D6F202D20424C363030 Local name

Sub MakeAdvRpts()

 dim advRpt$, scnRpt$

 '//Initialise the advert report

http://ews-support.lairdtech.com/

BL600 and BL620 smartBASIC Application Walkthrough

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/wireless

16 Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 rc = BleAdvRptInit(advRpt$, 2, 0, 0)

 '//initialise scan report

 rc=BleScanRptInit(scnRpt$)

 '//Add local name to scan report

 rc=BleAdvRptAppendAD(scnRpt$,0x09,dn$)

 '//Add led svc uuid to advert report

 rc=BleAdvRptAddUuid128(advRpt$, hSvcUuid)

 // print "\n";advRpt$

 // print "\n";StrHexize$(advRpt$)

 '//Commit the reports to stack

 rc = BleAdvRptsCommit(advRpt$,scnRpt$)

EndSub

3. Commit – The last stage in creating an advert is the commit which is handled by the BleAdvRptsCommit
function. This function takes the advert and scan report and creates the advert. The actual advertisements
will not happen until the BLEAdvertStart function is called.

Start Advertising

Once an advert has been initialized, appended, and committed, the advert module starts advertising once the
BLEADVERTSTART function has been called. This function has the following functions:

 nAdvType – Defined in the # define section of the source; in our case this value is 0 (ADV_IND), a scannable
and connectable advert.

 peerAddr$ – Only used with directed adverts so is not relevant to this example.
 nAdvInterval – The time between advertising events.
 nAdvTimeout – The time after which the module stops advertising.
 nFilterPolicy – Whitelisting and filter policies are not in the scope of this document.

Sub StartAdvertising()

 rc = BleAdvertStart(ADVERT_TYPE, prAddr$, ADV_INTERVAL_MS, ADV_TIMEOUT_MS,0)

 print "\n-- Advertising"

EndSub

Initialize GPIO

Because we use LEDs and buttons on both development kits, we must configure the GPIO correctly with the
GpioSetFunc function. The following are the applicable parameters:

GPIOSETFUNC (nSigNum, nFunction, nSubFunc)

http://ews-support.lairdtech.com/

BL600 and BL620 smartBASIC Application Walkthrough

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/wireless

17 Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

rc=gpiosetfunc(GPIO_BTN0,1,2) //button 0 digital input with weak pull up

resistor

rc=gpiosetfunc(GPIO_BTN1,1,2) //button 1 digital input with weak pull up

resistor

rc=GpioSetFunc(GPIO_LED0,2,0) //sets sio18 (LED0) as a digital out

rc=GpioSetFunc(GPIO_LED1,2,0) //sets sio19 (LED1) as a digital out

GpioWrite(GPIO_LED0,0)

The SigNum refers to the GPIO pin in question and the Function and SubFunctions are shown in Table 4. Please
refer to the BL600 smartBASIC guide for full GPIO configuration options.

Table 4: Functions and subfunctions

nFunction nSubFunc
Function
Description

Sub function
Description

Notes

1 1 Digital in Pull down weak

1 2 Digital in Pull up weak Demo button configuration

1 3 Digital in Pull down strong

1 4 Digital in Pull up strong

2 0 Digital out Initial output low Demo LED configuration

2 1 Digital out Initial output high

2 2 Digital out PWM output

2 3 Digital out Frequency output

On Start-up

This subroutine performs tasks we require when the program first runs. Optionally, we first print some
information to the UART showing some basic information about the operation of this demo. We then call the
following subroutines (described elsewhere in this document):

 CreateSvc
 MakeAdvRpts
 InitGpios
 StartAdvertising

As well as initializing the GAP service with the following:

rc=BleGapSvcInit(dn$,DEVICENAME_WRITABLE,APPEARANCE,MIN_CONN_INTERVAL,MAX_CONN_INT

ERVAL,CONN_SUP_TIMEOUT,SLAVE_LATENCY)

The GAP service is a mandatory GATT service that every device must include in its attributes. It is freely readable
during a connection and contains the following:

 Device name – A user-readable friendly name
 Appearance Characteristic – Typically used to provide a generic identification icon to connected devices,

often seen in a smartphone’s Bluetooth settings page.
 Preferred Connection Parameters – These are the connection parameters preferred by the peripheral

device but note that the central device is under no obligation to use them.

http://ews-support.lairdtech.com/

BL600 and BL620 smartBASIC Application Walkthrough

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/wireless

18 Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Handler Definitions

Smartbasic is an event driven language and therefore its structure revolves around events and their handlers.
When an event occurs, it calls the appropriate handler. The handler is one or more functions that define what
should be down when that event occurs.

New Characteristic Value (HndlrCharVal)

This handler is triggered when a characteristic value has changed. In our case, this happens when the client
writes a new value into SERLEDS char which is then used to determine which of the developments boards LEDs is
to be switched on. The event passes the characteristic handle to the function from which the value is read and
then applies it to the GPIOs.

Function HndlrCharVal(charHndl, offset, len)

 dim i,s$

 //Get characteristic value

 rc=BleCharValueRead(charHndl, s$)

 //write values to LEDs

 GpioWrite(GPIO_LED0,StrGetChr(s$,0))

 GpioWrite(GPIO_LED1,StrGetChr(s$,1))

EndFunc 1

BLE Event (HndlrBleMsg)

This handler follows a BLE event coming up from the stack communicating if a connection or disconnection has
occurred and prints it to the UART. Two parameters are passed, nMsgID and connHandle. Various messages can
be passed up from the stack and, in this case, to see if the msgid is 1 (which indicates a disconnection) or 0
(which indicates a connection has occurred). The connection handle is not used in this case.

Function HndlrBleMsg(ByVal nMsgId, ByVal connHndl)

 if nMsgID==1 then

 print "\n\n-- Disconnected from client\n"

 elseif nMsgID==0 then

 print "\n-- Connected to client"

 endif

EndFunc 1

Button Transition (HndlrGpio)

We have already enabled a GpioBind to look for a level transition on a GPIO which in turn triggers a GPIO event.
That GPIO event then calls this function which takes the value from the GPIO and passes it to BleCharIndicate
which in turns sends an indication to the client to allow the client LED’s to be set/cleared as required.

Function HndlrGpio()

 OnEvent EvGpioChan0 disable

 OnEvent EvGpioChan1 disable

http://ews-support.lairdtech.com/

BL600 and BL620 smartBASIC Application Walkthrough

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/wireless

19 Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 Delay(150)

 dim val$

 rc=StrSetChr(val$, !GpioRead(GPIO_BTN1), 1)

 AssertRC(rc,1203)

 rc=StrSetChr(val$, !GpioRead(GPIO_BTN0), 0)

 AssertRC(rc,1203)

 // print "\n";val$

 if nTxBufs > 0 then

 //GATT Server indicates the value to the GATT client

 //In other words, "Turn on your LED"

 rc=BleCharValueIndicate(hCliLeds,val$)

 AssertRC(rc,1203)

 nTxBufs = nTxBufs-1

 endif

 OnEvent EvGpioChan0 call HndlrGpio

 OnEvent EvGpioChan1 call HndlrGpio

EndFunc 1

The following diagram (Figure 18) shows the process starting at the button press on the server to the LED action
on the client.

Figure 18: Process - button press on the server to the LED action on the client

http://ews-support.lairdtech.com/

BL600 and BL620 smartBASIC Application Walkthrough

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/wireless

20 Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Write CCCD (HndlrCccd)

CCCD stands for Client Characteristic Configuration Descriptor. A descriptor is extra information about a
characteristic and its value. In our case, the descriptor is used to enable/disable automatic server-initiated
updates of the characteristic value. Once enabled, whenever the CLILEDS characteristic value is changed on the
server as a result of a button press on the BL600 development board, the server automatically sends that value
by way of an unsolicited indication to the client, without the client having to request that value.

The CCCD can have the following values:

 0x00 disabled
 0x01 Notifications enabled
 0x02 Indications enabled

The difference between notifications and indications is that indications make use of an acknowledgement from
the client in the form of a confirmation whereas notifications do not.

Function HndlrCccd(charHndl, val)

 if charHndl == hCliLeds then

 // print "\n";val

 if val==2 then

 rc=GpioBindEvent(0,GPIO_BTN0,2) //binds a gpio transition

high or low on button 0 (SIO16) to event 0

 AssertRC(rc,309)

 rc=GpioBindEvent(1,GPIO_BTN1,2) //binds a gpio transition

high or low on button 1 (SIO17) to event 1

 AssertRC(rc,311)

 print "\n Indications enabled"

 nTxBufs = nTxBufs + 1

 else

 rc=GpioUnbindEvent(0)

 rc=GpioUnbindEvent(1)

 print "\n Indications disabled"

 endif

 endif

EndFunc 1

If the value (val) passed to the function equals 2 (indications enabled), then the function enables level changes
on the GPIO to trigger an event using GpioBindEvent.

Disconnection (HndlrDiscon)

When a disconnection event is thrown, this handler restarts the BL600 advertising so that it’s ready to accept a
new connection. The two parameters hConn and rsn passed are the connection handle and the reason for the
disconnection, but they are not used in this example.

Function HndlrDiscon(hConn, rsn)

http://ews-support.lairdtech.com/

BL600 and BL620 smartBASIC Application Walkthrough

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/wireless

21 Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 StartAdvertising()

EndFunc 1

Indicate Ack (HndlrCharHvc)

HVC stands for handle value confirmation.

This handler is called from an event EvCharHvc triggered by an acknowledgement to an indication being
received by the radio. The single parameter passed to the function from the event is the related handle
characteristic. In our case, it is not important as we are only using a single indicating characteristic.

nTxBufs is used in the GPIO handler so that an indication is only sent when txBufs is > 0. Each time we send an
indication we deduct one from the TxBuf and each time we get a confirmation we add 1.

Function HndlrCharHvc(hChar)

 nTxBufs = nTxBufs + 1

EndFunc 1

Main

This part of the program is key; it’s here that the program starts running when the onstartup() subroutine is
called, which in turn triggers the subroutines described above.

As smartBASIC is an event-driven language, it’s here we use the OnEvent functions to drive the program when
events occur.

OnStartup()

OnEvent EvCharVal call HndlrCharVal

OnEvent EvBleMsg call HndlrBleMsg

OnEvent EvCharCccd call HndlrCccd

OnEvent EvGpioChan0 call HndlrGpio

OnEvent EvGpioChan1 call HndlrGpio

OnEvent EvDiscon call HndlrDiscon

OnEvent EvCharHvc call HndlrCharHvc

Wait event

The final statement in the program is Waitevent, which never returns but waits for events to happen and calls
the appropriate handler. Ideally, a smartBASIC program should be at the waitevent statement as much as
possible. The following diagram shows the basic flow when each event is triggered. See Figure 19.

http://ews-support.lairdtech.com/

BL600 and BL620 smartBASIC Application Walkthrough

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/wireless

22 Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Figure 19: Wait event

BL620 SMARTBASIC

Because some sections of the BL620 client code are identical or very similar to the BL600 sever code, we have
only included, in this section, those code sections that differ in functionality.

Function and Subroutine Definitions

Start Scanning

This function starts the BL620 scanning for adverts from nearby peripheral devices. If an advert is found then the
event EVBLE_ADV_REPORT is thrown.

Function StartScanning()

 rc = BleScanStart(0,0)

 AssertRC(rc,197)

 print "\n-- Scanning"

EndFunc 1

Start-up

This subroutine runs when the program starts running. It first calls another subroutine that sets up the GPIO
(described elsewhere in this document). BleGattcOpen is used to initialize the GATT client functionality and
allocate memory for the appropriate buffers. For the purposes of this demo, we’ll use the default settings. More
information can be found in the BL620 smartBASIC extensions manual available from the BL620 Laird website
product page.

http://ews-support.lairdtech.com/

BL600 and BL620 smartBASIC Application Walkthrough

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/wireless

23 Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Sub OnStartup()

 InitGpios()

 rc=BleGattcOpen(0,0)

 // rc=BleScanConfig(2,1)

 rc=StartScanning()

EndSub

Handler Definitions

Attribute Notify (HndlrAttrNotify)

The BL600 GATT server sends its button status by way of an unsolicited indication packet whenever the button
state changes. Each time we get an indication from the BL600 GATT server, the event EvNotifyBuf calls this
handler which then uses BleGattcNotifyRead to take the indication value (dta$) and write it to the GPIO to light
the LED. The function also returns the connection handle, attribute handle and number of discarded indications.
For this simple demo we are assuming that only one indication is received for the client LEDs and therefore we
are not concerned with the handles but other application may involve multiple indicating/notifying
characteristic values where the handles become important to identify the originating characteristics. StrGetChr
simply takes the character from the dta$ at the position indicated where the character at position 0 is LED 0 and
the character at position 1 is LED 1.

Function HndlrAttrNotify()

 // print "\nAttrNotify"

 dim dta$, nDisc, hAttr, dta

 '//Read the data

 rc=BleGattcNotifyRead(hConn, hAttr, dta$, nDisc)

 AssertRC(rc,239)

 if nDisc == 0 then

 //write values to LEDs

 GpioWrite(GPIO_LED0,StrGetChr(dta$,0))

 GpioWrite(GPIO_LED1,StrGetChr(dta$,1))

 else

 print "\n:: ";nDisc;" notifications discarded"

 endif

EndFunc 1

Attribute Write (HndlrAttrWrite)

To enable indications from the server we must enable them by writing to the CCCD of the characteristic. If
successful then the event EVATTRWRITE is thrown, which in turn calls this handler. Although the connection
handle and attribute handle are passed to the handler, since this demo only uses a single indication, we do not
need to concern ourselves with these handles; we only need to know whether the action is successful or not

http://ews-support.lairdtech.com/

BL600 and BL620 smartBASIC Application Walkthrough

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/wireless

24 Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

using the status parameter. ATTR_WRT_SUCCESS is a constant, defined in the definitions part of the program as
0. So if the status does not equal 0 then there is a problem.

Function HndlrAttrWrite(nCtx, hAttr, status)

 if status != ATTR_WRT_SUCCESS then

 print "\n:: ATT Error 0x"; integer.h'status

 else

 print "\nEnabled Indications"

 endif

EndFunc 1

Notify Buffer (HndlrNotifyBuf)

This handler is called by EVNOTIFYBUF which is thrown when there is at least one free buffer in the stack when
writing server LEDs characteristic value on the server.

Function HndlrNotifyBuf()

 txBuffs = txBuffs + 1

EndFunc 1

As long as txBuffs is greater than 0, we can write to the value. Conversely, each time we write the value to the
characteristic in HndlrGpio, we deduct 1 from txBuffs.

Handler Advert Report (HndlrAdvRpt)

When an advert is seen, this handler is called by EVBLE_ADV_REPORT. BleScanGetAdvReport then takes each
queued advert and extracts the data payload as advDta$. We then use the StrPos function to see if the advert
contains the UUID of our LED service. If it does, we stop scanning for further adverts and make a connection
using BleConnect to the device with the LED service UUID. We know which device to connect to because the
address of the device with BleScanAdvertReport was passed.

Function HndlrAdvRpt()

 dim pAddr$, advDta$, nDisc, nRssi, adVal$, tag, found //found is set to 1

when laird VSP UUID is found in advert data

 dim uuid$: uuid$ = LED_SVC_UUID

 do

 rc=BleScanGetAdvReport(pAddr$, advDta$, nDisc, nRssi)

 if StrPos(advDta$,uuid$, 0)>0 then

 rc=BleScanStop()

 AssertRC(rc,89)

 rc=BleConnect(pAddr$, 15000, MIN_CONN_INTERVAL,

MAX_CONN_INTERVAL, CONN_SUP_TIMEOUT)

 print "\nConnecting...\n"

 AssertRC(rc,92)

 break

http://ews-support.lairdtech.com/

BL600 and BL620 smartBASIC Application Walkthrough

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/wireless

25 Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 endif

 until rc!=0

EndFunc 1

The BleConnect function is used to make a connection to an advertising peripheral such as the BL600. This
includes the connection parameters that control the connection interval, slave latency, and timeout. We can see
these values are defined in the #definitions part of the code in both the BL600 server code and the BL620 client
code, but it’s important to understand the differences. The BL600 as the peripheral can suggest suitable
connection parameters but ultimately it’s the BL620 as the central device that actually sets the parameters to be
used. This is because a central role device may be servicing multiple peripheral devices and may need to share
its resources amongst those peripherals.

Handler GPIO (HndlrGpio)

As soon as a connection is established, the GPIO event is active, calling the GPIO handler whenever a button
level changes. This causes the sequence of actions shown in the diagram below to occur and ultimately
set/unset the LED on the BL600 server development board.

Figure 20: Client BL620 Right

Function HndlrGpio()

 OnEvent EvGpioChan0 disable

 OnEvent EvGpioChan1 disable

 Delay(150)

 dim val$

http://ews-support.lairdtech.com/

BL600 and BL620 smartBASIC Application Walkthrough

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/wireless

26 Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 rc=StrSetChr(val$, !GpioRead(GPIO_BTN1), 1)

 AssertRC(rc,1203)

 rc=StrSetChr(val$, !GpioRead(GPIO_BTN0), 0)

 AssertRC(rc,1203)

 if txBuffs>0 then

 //GATT Client requests to write to the GATT server's characteristic

 //In other words, "Can I turn on your LED?"

 rc=BleGattcWriteCmd(hConn, SERLEDS_CHAR_HANDLE, val$)

 AssertRC(rc,1203)

 txBuffs = txBuffs-1

 // print "\n";val$

 endif

 OnEvent EvGpioChan0 call HndlrGpio

 OnEvent EvGpioChan1 call HndlrGpio

EndFunc 1

BLE Event (HndlrBleMsg)

Once we have connected to the GATT server on the BL600, we then musts enable indications to ensure that
button presses on the BL600 are sent to the BL620. To enable indication, we must write to the CCCD of the
SERLEDS characteristic. To do this, we must know the handle of the CCCD which comes from the #define in the
definitions section, 15 in this case. We can define this as a constant because the handle should never change as
we control both the server and the client. However, if connecting to an unknown device, use the discovery
process to discover services, UUIDS, and handles.

Function HndlrBleMsg(ByVal nMsgId, ByVal connHndl)

 if nMsgID==1 then

 print "\n\n-- Disconnected from client\n"

 elseif nMsgID==0 then

 print "\n-- Connected to GATT Server"

 hConn = connHndl

 //write 1 to CCCD to enable notifications

 dim notf$: notf$ = "\02\00"

 rc=BleGattcWrite(hConn, SERLEDS_CHAR_CCCD_HANDLE, notf$)

 AssertRC(rc,277)

 OnEvent EvGpioChan0 call HndlrGpio

 OnEvent EvGpioChan1 call HndlrGpio

http://ews-support.lairdtech.com/

BL600 and BL620 smartBASIC Application Walkthrough

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/wireless

27 Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 endif

EndFunc 1

Main

This is the code that runs on start, with the OnStartup subroutine being called and the events registered. Each
time an event occurs the appropriate handler is called.

OnStartup()

OnEvent EvAttrWrite call HndlrAttrWrite

OnEvent EvNotifyBuf call HndlrNotifyBuf

onevent EVATTRNOTIFY call HndlrAttrNotify

onevent EVBLE_SCAN_TIMEOUT call StartScanning

onevent EVBLE_ADV_REPORT call HndlrAdvRpt

OnEvent EvBleMsg call HndlrBleMsg

OnEvent EvDiscon call HndlrDiscon

GLOSSARY

Term Definition

128-bit UUID Used to identify proprietary services and characteristics defined by a developer

16-bit UUID A shortened UUID for BT SIG-adopted services and characteristics

Advert
The method by which a peripheral device shares data outside of a connection and
invites connections

Advert Data Type Adverts data is made up of one or more fields, each defined by an advert data type

Advert Report A string variable in smartBASIC that contains advert data types

Advertiser A peripheral device sharing data outside of a connection or inviting a connection

Advertising Interval The time in milliseconds between adverts from a peripheral

Attribute The smallest piece of addressable data defined in a GATT server

Base UUID
A randomly generated 128-bit number used as a base from which 16-bit UUIDs can be
derived

CCCD
Client Characteristic Configuration Descriptor – Used to enable/disable server-initiated
characteristic values

Central
A BLE device that scans for adverts from peripheral role devices or initiates
connections

Characteristic Pots of data made up of two or more attributes

Client GATT client – Clients want a server’s data

Connectable A peripheral role device is connectable if adverting with a connectable advert

Connection Interval The time in milliseconds during a connection when data packets are exchanged

CSS
Core Specification Supplement
https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=302735

http://ews-support.lairdtech.com/
https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=302735

BL600 and BL620 smartBASIC Application Walkthrough

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/wireless

28 Americas: +1-800-492-2320

Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Descriptor Additional metadata for a characteristic and its value

Dual Mode Supporting both classic and low energy Bluetooth

Event A trigger in smartBASIC

Event Handler The smartBASIC code that runs after being triggered by an event

GATT Generic Attribute Profile – Defines how data is exchanged within a connection

GAP Generic Access Profile – Defines how devices broadcast data and invite connections

HVC Handle Value Confirmation (see CCCD)

HVI Handle Value Indication (see CCCD)

HVN Handle Value Notification (see CCCD)

Indication Unsolicited messages from a GATT server that invoke confirmations from a client

Master A central role device within a connection

MCP
Nordic Master Control Panel Android application
https://play.google.com/store/apps/details?id=no.nordicsemi.android.mcp&hl=en_GB

Notification
Unsolicited messages from a GATT server that do not invoke confirmations from the
client

Peripheral A BLE device that broadcasts data or invites connections

Profile A set of instructions on how devices should share application data

Scan Report An optional additional piece of adverting data represented as a string in smartBASIC

Scannable A BLE advertiser with extra data available without needing a connection

Scanner A BLE device that can receive peripheral broadcasts and connection invitations

Server A GATT server that holds data

Service A group of characteristics organised logically

Sibling UUID A 16-bit UUID derived from a 128-bit base UUID

SIG Bluetooth Special Interest Group

Single Mode A device that is BLE only

Slave A peripheral device within a connection

Slave Latency
The number of connection events a peripheral role device can ignore while still
remaining in a connection

UwTerminal A terminal program developed by Laird specifically for use with its Bluetooth module

REVISION HISTORY

Version Date Notes Approved By

1.0 01 Dec 2015 Initial Version Mark Duncombe

http://ews-support.lairdtech.com/
https://play.google.com/store/apps/details?id=no.nordicsemi.android.mcp&hl=en_GB

