
LSR
Design. Create. Certify. Connect.

Leveraging the simplicity of TiWiConnect LIFT device-to-cloud
software for embedded Wi-Fi® product design

Innovative Alternatives
to AT Command Sets

IoT White Paper

www.lsr.com 2

“Don’t I need an AT Command Set to control my Wi-Fi
module?”

With the current white-hot trends of the Internet of Things (IoT) and Machine-to-Machine (M2M)

communications, there is a strong push on product developers to convert their current prod-

ucts into “connected products” by integrating Wi-Fi or another wireless technology. Typically,

engineering teams look to shorten development time by minimizing the number of changes to

the existing design. While the latest generation of Wi-Fi modules and chipsets now provide the

ability to run custom applications directly, there are often advantages in keeping the product’s

existing microcontroller (MCU) or microprocessor (MPU) in the design. There typically is a sig-

nificant investment in the design, development and testing of the product’s embedded software,

and retaining the original MCU/MPU can allow it to act as a host that controls the Wi-Fi radio.

Using this type of host with a pre-certified Wi-Fi module is often a significantly faster and easier

means of adding Wi-Fi connectivity to an existing product.

While the technology and capabilities of Wi-Fi modules have progressed significantly in recent

years, there remains a common perception that an “AT-like” ASCII command set is the best way

for a host to control a Wi-Fi module over a serial interface. However, because there is frequently

one command for each parameter that can be set in the Wi-Fi module, an AT-like command set

can have tens or even hundreds of commands. Furthermore, these commands may have inter-

dependencies on the order or values, which adds complexity. Fortunately, there are new, innova-

tive software approaches to the Wi-Fi host

interface, greatly reducing complexity and

shrinking the learning curve for the devel-

oper.

The goal of this white paper is to walk

through the benefits and inherent limita-

tions of traditional ASCII-based command

sets for integrating Wi-Fi with an existing

microcontroller, and detailing how new software approaches can provide significant advantages

in development time and efforts for those engineering teams that lack deep experience in Wi-Fi

development.

Historical Prevalence on AT Command Sets

AT Command Sets have long been utilized as a means to transmit commands between embed-

ded systems and communication devices using minimally-sized data packets. AT Command

Sets, also referred to as Hayes Command Sets after their creator Dennis Hayes, originated back

in 1981 as a command language for a 300 Baud computer modem. At the time, this was an

“there are new, innovative
software approaches to the
Wi-Fi host interface, greatly
reducing complexity and
shrinking the learning curve
for the developer”

www.lsr.com 3

elegant solution that overcame the strict memory constraints and availability of a single serial

port for commands and data. Short ASCII strings were used to represent detailed high-level

commands such as dialing or hanging up. It became commonly referred to as an “AT Command

Set” because implementations typically had each command begin with the first 2 characters

“AT”, short-hand for “Attention.”

For today’s embedded software developers, the term AT Command Set is still frequently used

when referring to any ASCII-based command set that facilitates serial communications between

an MCU and another serial device such as a Wi-Fi module. The primary benefit of these AT-Like

command sets is that they provide a human-readable interface and enable the developer to

experiment with a new module using a terminal and serial port.

This benefit doesn’t come without trade-offs, however. Most notably, it requires the embedded

developer to not only learn lower-level details concerning Wi-Fi, but also a proprietary command

set that may have tens or even hundreds of terse commands. Depending on the application, a

developer may have to search through a large library of commands to determine how to cor-

rectly perform common Wi-Fi tasks such as scanning for nearby networks, provisioning, join-

ing networks, configuring the network interface and low-level socket connection management,

amongst others. This does not even include the application layer operations such as making

HTTP requests, setting up network time synchronization, or communicating with a cloud server,

which often requires large combinations of such commands. Figure 1 below provides an exam-

ple of what an ASCII-based command set approach may look like for a common Wi-Fi function in

an IoT application.

Figure 1: Example of an ASCII command set approach for a common device-to-cloud Wi-Fi transaction

… MCU awakes on a timer interrupt
… MCU reads sensor values to report to the cloud
… Wake up the Wi-Fi radio and wait for it to enter command mode
>$$$
… scan for the first 8 nearby Wi-Fi networks on all channels
>AT+SCAN 0 8
… wait for list of nearby access points by SSID
… parse the list for SSID of interest
… parse security mode settings for SSID of interest
>AT+SECMODE WPA2
>AT+ENCMODE AES
>AT+PASS mySecurePassphrase
>AT+JOIN 4
… wait for confirmation of joining network 4 in the scan list
>AT+DHCP 1
… Enable DHCP to request an IP address, wait for confirmation
… Open a connection to a web server using socket 1
>AT+OPEN 1 tcp 192.168.1.32 80
… Send the HTTP request from the MCU as raw bytes
… MCU receives the HTTP response as raw bytes
… Process the HTTP response on the MCU
… Take action in response to the HTTP transaction
… Close the open connection on socket 1
>AT+CLOSE 1
… Disconnect from the Wi-Fi network
>AT+DISCONNECT
… Put the radio in low power mode
>AT+SLEEP 1
… MCU configures next wake timer interval and enters low power mode

Using a Web Service with an AT Command Set

www.lsr.com 4

The advantages of a human-readable approach to
embedded code

One of the pros of ASCII-based command sets (i.e. large sets of short commands) can also be

seen as a con. In order to utilize the communications interface, the commands are abstract

representations for very specific functions provided by the module. This relies on a sort of

“dictionary” to define all the various commands essential for operating the module. This places

the burden on the developer working on the attached host MCU to send the proper sequence of

commands to the module in order to accomplish higher layer application tasks. For developers

not already familiar with the detailed sequences required for a particular technology, such as

Wi-Fi, this means hours of additional research to understand how to locate a network and initi-

ate a connection before even considering the overall goal of sending application data to a cloud

server for example.

With today’s advancements in wireless module feature sets and the greater amount of memory

available to embedded processors, there are strong advantages to employing an approach

that utilizes a human-readable, object-oriented data format. With a modest increase in on-chip

memory, a development team can utilize formats, such as JSON and XML, that are directly com-

patible across embedded, server, and mobile applications. This can minimize system integration

time by reducing the learning curve across developers of different disciplines working on differ-

ent parts of the system.

Figure 2: Spectrum of data formats and trade-offs in terms of size, speed, and usability.

Human Readable

Hierarchical
Structure

Self Describing

JSON

CSV

Text Encoded

Base64

Hexadecimal Strings

Size Optimized Binary

XML
<Attribute>
 <Name>Temperature</Name>
 <Value>68</Value>
 <Units>F</Units>
</Attribute>

{
 “Temperature”: 68,
 “Units”: “F”
}

“Temperature,68,Units,F”

“NjgsRg==”

“4446”

0100010001000101

Characteristics Example Data SizeFormat

Common Data Formats

UsabilitySpeed

www.lsr.com 5

Figure 2 above compares several common data formats from a number of perspectives. Look-

ing across this spectrum, there is a clear trade-off between human readability and data size.

Usability takes into account how quickly a developer who’s new to a project can get up to speed.

Choosing formats that balance both performance and maintainability can save time during

development, provide flexibility for future feature enhancements, and ease the burden when

troubleshooting during system integration.

JSON-RPC (Remote Procedure Call) is an example of a human-readable solution and is

employed in the TiWiConnect platform. JSON-RPC is inherently an object-oriented approach to

data communication. Rather than having one command per parameter, groups of related param-

eters are supplied to function calls. The result is a much simpler, cleaner and more intuitive

interface for the developer. In addition to the benefits of human readability, JSON-RPC inte-

grates seamlessly into existing server infrastructures and web services platforms. This provides

crucial benefits for “connected products” with remote data-sharing requirements.

Extending a serial host interface all the way to the
cloud-server

So why did the architects of the TiWiConnect IoT platform choose not to follow the traditional

path of creating an ASCII-based command set? It started with the recognition that the solution

that it supports, TiWiConnect, is more expansive than just a Wi-Fi module solution. TiWiCon-

nect was created to provide product developers with an end-to-end solution for building cloud-

connected IoT products for their

customers. That means there is an

opportunity to arm the developer with

something that does far more than

facilitate host-to-module communica-

tion, TiWiConnect LIFT enables

host-to-cloud communication for their

product.

To frame it another way, a Wi-Fi module manufacturer would typically provide a command set to

allow the developer to be able to call very basic Wi-Fi and network level commands (e.g. scan for

a network, join a network, open a socket, etc.). TiWiConnect LIFT recognizes that the problem to

be solved is not just to get the Wi-Fi module on the local network, but get the data to the cloud.

With TiWiConnect LIFT, there is an additional host MCU API library that implements the Wi-Fi

control interface as simple C function calls. The interface to the module is human-readable

JSON, so developers can easily see the result of making a function call. With this solution, the

developer has the tools to define the specific data structures needed by their application, and

“…far more than facilitating host-
to-module communication,
TiWiConnect LIFT enables
host-to-cloud communication for
their product.”

www.lsr.com 6

is provided the software to handle all

the serial transactions to perform data

sharing with the cloud server. With

TiWiConnect LIFT, a product developer

doesn’t need to be well-versed in AT

commands, JSON, or even how HTTP works. And to the host MCU, sharing data with the cloud

looks just like any other API library call.

Figure 3: Interface Layers in Embedded Software found in Wi-Fi Modules

Figure 3 above illustrates the varying breadth of software layers that may be available based on

the Wi-Fi module selected for a design. Though most modules provide Wi-Fi Driver and Network

Interface functionality, some also provide Application Interface layer functionality. The highest-

value modules go one step further and include System Interface functionality to integrate

directly with other systems such as cloud services and mobile apps.

Ultimately, the problem that needs to be solved for a cloud-connected IoT application is not just

getting onto a network via Wi-Fi, but to communicate with something on the “other end” of that

network. For this reason, TiWiConnect LIFT bridges the space from the host MCU all the way to

the cloud server through the Wi-Fi module, utilizing a data format (JSON-RPC) familiar to data-

base and server applications.

Wi-Fi Module Interface Layers

Scan for
Networks

Join a Network

Select Antenna
Configuration

Enable Client
and/or Soft AP

Initiate a
Connection

Listen on a
Socket

Encryption
Mode

Authentication
Mode

DHCP/Static
Network Address

Query MAC
Address

Network Time
Service DNS Lookup HTTP

Requests
Network
Discovery

Application Interface

Network Interface

Wi-Fi Driver Interface

System Interface
Authenticate and Connect

to Cloud Service

Device Data to
Cloud Service

Device Actions from
Cloud Service

Trigger
Alerts

Report Network
Status and Location

M2M
Communication

Over-the-Air
Updates

Channel
Selection

Low Power
Settings

“With TiWiConnect LIFT … sharing
data with the cloud looks just like
any other API library call.”

www.lsr.com 7

The TiWiConnect LIFT device-to-cloud solution

LSR’s IoT Platform, TiWiConnect, is powered by the TiWiConnect LIFT software. Its components

focus on complete device-to-cloud integration, providing software components across several

platforms to link devices to their users through cloud connectivity. TiWiConnect LIFT is com-

prised of 3 main software elements necessary to provide the ‘data tunnel’ between the on-board

MCU and the TiWiConnect cloud server: LIFT Client, LIFT Agent, and LIFT Server.

Figure 4: The key software components of TiWiConnect LIFT and how they interact across devices, cloud and apps

LIFT Client refers to the LSR-

provided C source code that runs

on the host MCU. This code is

auto-generated by the LIFT

Device Designer web-based tool.

It is designed to run on any MCU

with a serial port and C compiler,

allowing developers to continue

working in their preferred environ-

ment (IAR, etc.). Furthermore, the

API documentation is customized

specifically to their design’s data

needs, and embedded directly

within the commenting of the C

source code.

TiWiConnectTM Software Components

CloudDevice

Pe
rip

he
ra
ls

Host MCU TiWi-C-W Wi-Fi
Module

Application
Firmware

LIFT Client LIFT Agent

Services

LIFT Server App Service

App
User Interface

Web App

Mobile App

Device-to-Cloud Software
TiWiConnect LIFT

Making simple even simpler: LIFT Device Designer tool

While a JSON-RPC based software approach (as used in the TiWi-
Connect LIFT software) brings inherent simplicity with its human-
readable nature, the task of defining your specific serial data can
be further simplified for those without experience handling coding
in JSON. The LIFT Device Designer is a web-based, drag-and-drop
GUI tool that allows the user to define the data attributes and
remote actions that their connected product will need, and auto-
generate the necessary embedded code on the fly. The LIFT Device
Designer is available to users developing with LSR’s TiWi-C-W Dev
Kit featuring TiWiConnect.

LIFT Device Designer tool for TiWiConnect™ IoT Platform (devkit.tiwiconnect.com)

www.lsr.com 8

LIFT Agent refers to the LSR-designed embedded software running on the TiWi-C-W™ module

alongside a soft AP-based network provisioning feature for the module. The LIFT Agent acts as

the bridge between the host MCU and the cloud-server, abstracting lower-level Wi-Fi commands,

saving the developer time and effort.

LIFT Server refers to LSR’s server-side interface running on the TiWiConnect cloud, communicat-

ing with the device through a simple JSON-RPC ‘data tunnel.’ In cases where a developer wishes

to integrate TiWi-C-W communication with their own servers, LSR provides example source code

for the LIFT Server.

Going back to the complexity of an AT Command Set approach to Wi-Fi (as detailed in Figure 1

earlier), Figure 5 below contrasts that experience with how the LIFT Client embedded firmware

can dramatically simplify a common IoT web-service task by providing direct function calls on

the host MCU.

Figure 5: Comparison of an ASCII Command Set approach and TiWiConnect’s LIFT Client approach for a common device-to-cloud
Wi-Fi transaction

Bringing it All Together

The continued expansion of IoT products will be driven in part by the ability for product develop-

ers to integrate wireless cloud-connectivity into their product with minimal development time

… MCU awakes on a timer interrupt
… MCU reads sensor values to report to the cloud
… Wake up the Wi-Fi radio and wait for it to enter command mode
>$$$
… scan for the first 8 nearby Wi-Fi networks on all channels
>AT+SCAN 0 8
… wait for list of nearby access points by SSID
… parse the list for SSID of interest
… parse security mode settings for SSID of interest
>AT+SECMODE WPA2
>AT+ENCMODE AES
>AT+PASS mySecurePassphrase
>AT+JOIN 4
… wait for confirmation of joining network 4 in the scan list
>AT+DHCP 1
… Enable DHCP to request an IP address, wait for confirmation
… Open a connection to a web server using socket 1
>AT+OPEN 1 tcp 192.168.1.32 80
… Send the HTTP request from the MCU as raw bytes
… MCU receives the HTTP response as raw bytes
… Process the HTTP response on the MCU
… Take action in response to the HTTP transaction
… Close the open connection on socket 1
>AT+CLOSE 1
… Disconnect from the Wi-Fi network
>AT+DISCONNECT
… Put the radio in low power mode
>AT+SLEEP 1
… MCU configures next wake timer interval and enters low power mode

Using a Web Service with an AT Command Set

… At installation, Wi-Fi module enters “Config Mode”
SetModuleMode(MODULE_MODE_CONFIG);
… SSID/passphrase set via Wi-Fi using “Soft Access Point” web page
or set with call to SetNetworkInfo(pNetworkInfo) function

… MCU awakes, reads sensor values and awakens the Wi-Fi module
SetModuleMode(MODULE_MODE_CLIENT);
… Automatically joins network with credentials from “Config Mode”

… Send sensor data from a structure to the server
SetAttributes_MyProfile(pMyProfile_mySensorData);

… LIFT Client handles serial port transactions
… LIFT Agent on Wi-Fi module handles HTTP request/response

… Disconnect from the Wi-Fi network and enter low power mode
SetModuleMode(MODULE_MODE_SLEEP);
… MCU configures next wake timer interval and enters low power mode

LIFT Client C Function API to a Web Service
™

www.lsr.com 9

and risk. One key aspect for achieving this is the ease of establishing serial host communica-

tions between the wireless module and the product’s existing microcontroller.

While ‘AT-like’ ASCII command sets are historically familiar to many embedded developers, there

are superior software approaches developed specifically for cloud-connectivity systems that

dramatically reduce complexity and development time. Today’s IoT platforms, such as TiWiCon-

nect™, provide a more elegant, efficient, and powerful approach to establish connectivity for

data not simply to pass between host controller and Wi-Fi radio, but to have a ‘data tunnel’ all

the way from host to the cloud-server. The TiWiConnect LIFT device-to-cloud software offers a

higher level of functionality designed specifically for developing cloud-connected products, and

tools like the LIFT Device Designer virtually eliminates the learning curve for adding wireless

connectivity to your product design.

Want to learn more about accelerating your IoT product designs?

Check out these additional white papers from LSR at, www.lsr.com/white-papers

10

Inspiring through Wireless Innovations.

Bringing a winning product to market in today’s competitive environment requires greater skill, creativity and experience than

ever before. More and more, your customers demand intuitive, reliable wireless capabilities that give them the real-time infor-
mation and controls to be more connected.

Since 1980, our partners, spanning a wide range of industries, have trusted LSR to help develop solutions that exceed their
customers’ expectations. We provide an unmatched suite of both integrated services and wireless products that improve
speed to market and return on your development investment.

Our experienced professionals are passionate and committed to partnering with you, allowing your team to focus on the most
important element of product development: the unique needs of your customers.

Visit us at www.lsr.com and follow us on LinkedIn and Twitter (@LSResearch).

LSR
Design. Create. Certify. Connect.

Elevate your products with TiWiConnect™

LSR introduces the TiWiConnect cloud-connectivity platform, the first true end-to-end IoT
solution for wirelessly connecting products to the cloud. This IoT platform enables smartphone
apps and web portals that can re-define the product experience for both your customers and
service professionals alike.

TiWiConnect simplifies your product development efforts by providing all the components of a
comprehensive solution, all built from the ground up to connect seamlessly: Embedded
wireless modules, cloud platform and mobile apps.

Learn more at www.tiwiconnect.com.

Module | Cloud | App

™

Innovative Alternatives V1.0

https://www.linkedin.com/company/ls-research
https://twitter.com/lsresearch

